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Proceedings of Symposia in Applied Mathematics

Relaxed schemes for nonlinear evolutionary PDEs

F. Cavalli, G. Naldi, G. Puppo, and M. Semplice

Abstract. In this work we present a class of relaxed schemes for non linear
convection diffusion problems, which can tackle also the cases of degenerate
diffusion and of convection dominated regimes. These schemes can achieve any
order of accuracy and they give non-oscillatory solutions even in the presence
of singularities.

Relaxation approximations to non-linear PDE’s are based on the replace-
ment of the original PDE with a semi-linear hyperbolic system of equations,
with a stiff source term, tuned by a relaxation parameter ε. When ε → 0,
the system relaxes onto the original PDE. A consistent discretization of the
relaxation system for ε = 0 yields a consistent discretization of the original
PDE. The advantage of this procedure is that the numerical scheme obtained
in this fashion does not need approximate Riemann solvers for the convective
term, still enjoying the robustness of upwind discretizations. We also present
a numerical test for a strongly degenerate convection diffusion equation.

1. Introduction

Relaxation approximations have been successfully employed as a basis to con-
struct novel numerical schemes for different kinds of partial differential equations
(PDEs). The origin of these schemes lies in the relaxation of kinetic equations to-
wards fluid dynamic limits. Jin-Xin relaxation system [JX95] in its characteristic
form can be viewed as a simplified kinetic system relaxing onto a conservation equa-
tion (see also [JL96, CJR97]). Exploiting the diffusive limit of kinetic systems
onto parabolic equations, relaxation schemes for convection-diffusion equations can
be built [NPT02, JPT98]. Relaxation systems can be obtained from different col-
lisional kernels: [ADN00, LN02] use BGK kernels and [Suc01, BKPS08] exploit
the lattice Boltzmann approach.

We start from a fairly general relaxation system and give consistency conditions
ensuring that the limit equation is the desired partial differential equation (PDE)
[CNPS]. This class includes the schemes of [ADN00, LN02], but also some new
relaxation schemes which are discussed in this work (see also [CNPS09]).
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The main idea at the base of relaxation approximations is to replace the original
nonlinear PDE with a semilinear hyperbolic system with a stiff source term and
a relaxation parameter ε. Since the resulting hyperbolic differential operator is
linear with constant coefficients, the mapping to characteristic variables is constant
in time and therefore convection can be computed with upwinding, without using
Riemann solvers. The stiffness in the source term (in the limit ε → 0) is treated
with a suitable time integrator, as Implicit-Explicit Runge-Kutta schemes.

In this paper we consider relaxation systems in the following general form

(1.1) st + Asx +
1

ε
Bsx =

1

ε
(h(u) − Cs),

with s ∈ Rd and suitable constant matrices A, B, C ∈ Rd×d. This framework
encompasses, among others, the Jin-Xin relaxation approximation of conservation
laws [JX95], the diffusive relaxation schemes of [JPT98] and the BGK kinetic
approximations of [ADN00, LN02].

As an example, consider the one-dimensional Maxwell-Cattaneo system derived
from the kinetic Goldstein-Taylor model of [Tay21, Gol51]

(1.2)

{

ut + vx = 0

vt + 1
εux = − 1

εv

that corresponds to the choices

s =

[

u
v

]

A =

[

0 1
0 0

]

B =

[

0 0
1 0

]

C =

[

1 0
0 1

]

h(u) =

[

u
0

]

In the limit ε → 0, the second equation of (1.2) relaxes onto ux = −v, while the
first one relaxes onto ut + vx = 0 and thus u formally converges to the solution of
the linear diffusion equation ut = uxx.

In [CNPS07] we studied the system corresponding to the choices

s =





u
v
w



 A =





0 1 0
0 0 0
0 1 0



 B =





0 0 0
0 0 1
0 0 0



 C =





1 0 0
0 1 0
0 0 1



 h(u) =





u
0

p(u)





which corresponds to the relaxation system

(1.3)







∂tu + ∂xv = 0
∂tv + 1

ε∂xw = 1
ε (−v)

∂tw + ∂xv = 1
ε (p(u) − w)

When ε → 0, the first equation relaxes onto ∂tu = ∂xxp(u), which includes for
example the porous media equation when p(u) = um with m > 1.

Finally, to obtain a relaxation approximation for the convection-diffusion equa-
tion ∂tu + ∂xf(u) = ∂xxp(u) we can choose

s =





u
v
w



 A =





0 1 0
a2 0 0
0 b2 0



 B =





0 0 0
0 0 1
0 0 0



 C =





1 0 0
0 1 0
0 0 1



 h(u) =





u
f(u)
p(u)





obtaining the relaxation system

(1.4)











∂tu + ∂xv = 0

∂tv + a2∂xu + 1
ε∂xw = 1

ε (f(u) − v)

∂tw + b2∂xv = 1
ε (p(u) − w)
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More applications and generalizations to the multidimensional diffusion and convection-
diffusion equations are described in [CNPS07, CNPS09, CNPS].

In the following we describe the numerical discretization of the relaxation sys-
tem. First we describe the semidiscretization in time and then the space discretiza-
tion (section 2). Then we investigate the stability of the first order numerical
schemes derived from the relaxation system (1.4) (section 3) and we test a few of
the proposed schemes on a strongly degenerate diffusion equation (section 4).

2. Numerical schemes

The form of system (1.1) is not suitable for numerical integration, because
of the stiffness contained in the linear convective term, which would result in a
prohibitively restrictive CFL condition. As in [NPT02] and [CNPS07], we remove
the stiffness from the convective term adding and subtracting the quantity φ2Bsx,
thus rewriting (1.1) in the form:

(2.1) st + (A + φ2B)sx =
1

ε
(h(u) + (εφ2 − 1)Bsx − Cs).

We point out that the choice of a relaxation system for a given PDE is by no
means unique. On the other hand, different relaxation systems give rise to different
numerical schemes: thus it is important to characterize the systems which result in
the most efficient schemes. In [CNPS] we showed that the following consistency
conditions ensure that (2.1) relaxes onto the convection diffusion equation ∂tu +
∂xf(u) = ∂xxp(u):

(2.2)

A + φ2B is diagonalizable with real eigenvalues ∀φ
s1 = u [C−1h(u)]1 = u

[B]1 = ~0
[

AC−1h
]

1
= f(u)

[

AC−1BC−1h
]

1
= p(u)

(C−1B)l = 0 , l ≥ 2.

Here we denoted with [W ]1 the first row of the matrix (or vector) W . Within this
framework several schemes can be obtained.

The system (2.1) can be integrated with any order of accuracy. The technical
details and the description of the high order schemes were studied in [CNPS] and
will be just sketched here.

2.1. Time semidiscretization. Let us rewrite system (2.1) as

(2.3) st + Aφsx =
1

ε
Hφ(s),

where Aφ = A + φ2B and Hφ(s) = h(u) + (εφ2 − 1)Bsx − Cs.
For the semi-discretization of (2.3) in time, the choice of an IMEX scheme

(Implicit-Explicit Runge-Kutta pair) [ARS97, KC03, PR05] is natural, given
the stiffness of the right hand side. Let us consider for simplicity a uniform time
step ∆t and denote with sn the numerical approximation of the variable s at time
tn = n∆t, for n = 0, 1, . . . We employ a ν-stages IMEX scheme and include the 1/ε
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terms in the implicit part, obtaining

sn+1 = sn − ∆t
ν

∑

i=1

b̃i∂x(Aφs(i)) +
∆t

ε

ν
∑

i=1

biHφ(s(i))(2.4a)

s(i) = sn − ∆t
i−1
∑

k=1

ãik∂x(Aφs(k)) +
∆t

ε

i
∑

k=1

aikHφ(s(k))(2.4b)

Here (aik, bi) and (ãik, b̃i) are the two Butcher’s tableaux of, respectively, the di-
agonally implicit and the explicit parts of the IMEX pair. Note that (2.4b) defines
implicitly the ith stage s(i) and (2.4a) computes s at time tn+1.

In this work we use the so-called relaxed schemes, that are obtained by letting
ε → 0 in the equations (2.4). In the limit we have that

∀i :

i
∑

k=1

aik[H(s(k))]j = 0

Then we obtain [H(s(k))]j = 0 for each component j, which simplifies (2.4) to

(2.5) sn+1 = sn − ∆t

ν
∑

i=1

b̃i∂x

(

Aφs(i)
)

s(i) = sn − ∆t

i−1
∑

k=1

ãik∂x

(

Aφs(k)
)

We remark that we need to advance in time only the first component [s(i)]1 = u,
which is the only physical variable we need to update. Thus the relaxed scheme
becomes an alternation of relaxation steps

(2.6a) H(s(i)) = 0

and transport steps

(2.6b) s
(i)
1 = sn

1 − ∆t

i−1
∑

k=1

ãik∂x
(

Aφs(i)
)

followed by the computation of sn+1
1 = un+1 according to (2.4a):

(2.7) un+1 = un − ∆t

ν
∑

i=1

b̃i∂x(Aφs(i))1

We point out that in the examples considered in section 1, the relaxation step
H(s(i)) = 0 can be solved by back substitution, determining values [s(i)]j for j ≥ 2
without the need to solve a nonlinear system. Moreover, it is important to realize

that there is no need to compute the components s
(i)
k for k ≥ 2 in the transport

steps, since they would be overridden by the implicit computation (2.6a) for the
next stage.

We point out that only the explicit part of the previous Runge-Kutta pair
is involved in updating the solution u. In fact, given a relaxation system and an
explicit RK scheme (ãik, b̃i), it is possible to construct an associated relaxed scheme,
provided that there exists a diagonally implicit RK scheme that forms an IMEX
pair of the same order.
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2.2. Space discretization. The main task of the space discretization is the
evaluation of the boundary extrapolated data along characteristic variables. Here
we describe the one-dimensional case, the generalization to multi-dimension being
straightforward by dimensional splitting. Let sn

j be the value of the vector function

s(x, t) at time tn at xj , the centre of the jth computational cell. We consider a
fully discrete scheme in conservation form

(2.8) sn+1
j = sn

j − ∆t

ν
∑

i=1

b̃i

(

F
(i)
j+1/2 − F

(i)
j−1/2

)

where F
(i)
j+1/2 are the numerical fluxes. In order to minimize dissipation we use

Godunov fluxes, which in this case coincide with upwinding. Let R be an invertible
constant matrix that diagonalizes Aφ, i.e. R−1AφR = Λ. The ith component of
S = R−1s satisfies an advection equation with constant speed Λii and the numerical
flux is

F
(i)
j+1/2 = R Λ S

(i),σ(λi)
j+1/2

where σ(λi) = −sign(λi) and S
(i),±
j+1/2 are the boundary extrapolated data at the

edges of the jth cell, computed from the point values S(i) = R−1s(i) using a non-
oscillatory procedure of suitable order.

The accuracy of the scheme depends on the accuracy of the reconstruction of
the boundary extrapolated data. In order to get a first order scheme one may use a
piecewise constant reconstruction such that S−

j+1/2 = Sj and S+
j+1/2 = Sj+1. ENO

or WENO reconstructions of appropriate accuracy are a valid choice for higher
order schemes [SO89].

Finally we wish to emphasize that, although the scheme is based on a system
of three or more equations, the construction is used only to select the correct
upwinding for the fluxes of the relaxed scheme and the computational cost of each
time step is not affected by the number of equations in the relaxation system. The
computational cost of the numerical approximation depends on the properties of the
Aφ and R matrices. Since only the first component of (2.8) has to be evaluated, the
space reconstructions and corresponding fluxes computation have to be performed
only for the components Sk such that R1k 6= 0 and Λkk 6= 0. Hence relaxation
schemes leading to Aφ matrices with zero eigenvalues and R matrices with the most
zero elements in the first row are to be preferred (see [CNPS] for two examples of
relaxation systems with four equations that give rise to two relaxed schemes whose
computational cost differ by a factor 2).

For convection-diffusion, the relaxation step requires the computation of gradi-
ents of some components of s(i). These are computed by centered finite-difference
formulas of suitable order, except at cells close to the boundary, where we employ
asymmetric formulas of the same order observing no loss of accuracy.

Finally, boundary conditions are enforced by extrapolating the approximate

solution and/or the stage values u
(i)
j to one ghost point located outside the domain

before the computation of each Runge-Kutta stage.

3. Three velocities models

As a prototypical example, we consider the first order numerical relaxed schemes
obtained from the relaxation system (1.4). Using the IMEX pair that combines the
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explicit and the implicit Euler scheme, one gets

(3.1) un+1
j = un

j − ∆t

2h

(

vn
j+1 − vn

j−1

)

+
a2∆t

2hµ

(

un
j−1 − 2un

j + un
j+1

)

− φ2∆t

2hµ

(

wn
j−1 − 2wn

j + wn
j+1

)

where µ =
√

a2 + b2φ2. Substituting vn
j = f(un

j ) − (wn
j+1 − wn

j−1)/2h, we get

(3.2) un+1
j = un

j − ∆t

2h

(

f
(

un
j+1

)

− f
(

un
j−1

)

)

+
a2∆t

2h

(

un
j−1 − 2un

j + un
j+1

)

+
∆t

2h

[

wn
j−2 − 2wn

j + wn
j+2

2h
+

φ2

µ

(

wn
j−1 − 2wn

j + wn
j+1

)

]

We now consider the stability of the above scheme. In particular we focus on the
monotonicity of the scheme, i.e. we require that the derivatives of un+1

j with respect
to un

j+k be positive for k = −2, . . . , 2. We note that monotone schemes are total
variation diminishing and thus convergent.

One easily checks that the scheme obtained from (3.2) is monotone provided
that the following conditions hold in each computational cell:

(3.3)











a2+φ2p′√
a2+φ2b2

> |f ′| (subcharacteristic)

∆t ≤ h
a2+p′φ2√
a2+φ2b2

+ p′

2h

(time step)

The first inequality is a kind of subcharacteristic condition, while the second one
contains the stability restriction of the time step ∆t. We observe that, using the
first relation, one may write the time step restriction as

∆t ≤ h

V + D
2h

where V and D are upper bounds for |f ′| and p′ respectively. In particular the
scheme is stable under the hyperbolic condition ∆t ∼ h/V in the case of convection-
dominated problems, and under the parabolic constraint ∆t ∼ h2/D for diffusion
dominated cases.

For higher order schemes we obtain similar constraints through Von Neumann
analysis applied to the linearization of the scheme (see [CNPS07]).

4. Numerical test

We consider the following evolutionary problem

(4.1) ∂tu + (W − V )∂xu = ∂xxβ(u)

where β(u) = (u − 1)+ − u− with initial data

u0(x) =

{

γ2
eV x−1

V + 1 x > 0

γ1
eV x−1

V x < 0

where γi are constants and V = γ2 − γ1. The problem has the exact solution
u(t, x) = u0(x+Wt) which represents a discontinuous travelling wave with velocity
W . In the case W = V this is a classical Stefan problem (see e.g. [NPV91]). Even
when W 6= V , this is a strongly degenerate diffusion problem, since β(u) vanishes
over the interval [0, 1].
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Figure 1. Stefan problem (4.1) with W = V . On the left the
exact solution and the numerical solution with 80 points at t = 0.5.
On the right, comparison of the numerical solutions around the
discontinuity with different grids.
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Figure 2. Stefan problem (4.1). On the left comparison of the
numerical solutions around the discontinuity with different grids,
in the case W = −V . On the right, relative L1 error for the
numerical integration of the Stefan problem with W = V and
W = −V .

We integrated numerically the above problem on the domain [−2, 2] up to time
t = 0.5, setting a = b = φ = 1 in the definition of the numerical scheme obtained
from (2.6) with the first order scheme (3.2) and with the second order ENO space
reconstruction and Euler time integration.

In Figure 1 we show the exact and the second order numerical solution in the
left panel, for the classical Stefan case (γ2 = 2, γ1 = 1, W = V ). On the right
there is an enlargement of the area around x = −0.5 (the final position of the step
discontinuity) showing the numerical solutions obtained with different number of
computational cells (from 40 to 320).

In Figure 2 we consider instead the case with the convective term: we take
W = −V . The left panel is an enlargement of the area around the final position
of the discontinuity (x = 0.5). The right panel shows the convergence rate of the
relative L1 errors for both tests (see also Table 1 for the second order scheme). The
dashed line is the reference for first order convergence, which is the expected result
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N W = V W = −V
20 9.9759e-03 rate 1.2191e-02 rate
40 2.3825e-03 2.07 6.7032e-03 0.86
80 1.3886e-03 0.78 4.0535e-03 0.73
160 7.1996e-04 0.95 2.1373e-03 0.92
320 2.7977e-04 1.36 1.2055e-03 0.83
640 1.6309e-04 0.78 5.5525e-04 1.12

average rate 1.14 0.88

Table 1. Stefan problem (4.1). Relative error ‖u−uh‖1/‖u‖1 for
the ENO2-based scheme.

since the exact solution is discontinuous. Nonetheless the graph shows the increase
in accuracy obtained using a higher order scheme.

5. Conclusions

We presented a general form for relaxation systems for nonlinear convection
diffusion equations, giving conditions that ensures consistency with the original
PDE. Deriving relaxed schemes in such a general setting, enlightens the features of
the method and the properties of the relaxation system that influence the compu-
tational cost of the schemes.

Even if in this paper we dealt only with a one-dimensional convection-diffusion
equation, we wish to point out that this method is not restricted to one-dimensional
evolutionary equations nor to second order equations. Equations set in more than
one spatial dimension can in fact be treated by dimensional splitting ([CNPS07,

CNPS]) and in principle also differential operators of order higher than two can
be treated by relaxation techniques.

In future works we plan to analyze further the nonlinear stability of high order
schemes and to study the extension of this method to reaction diffusion equations
and to nonlinear fourth order diffusion equations, like the thin film equation.
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