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Abstract

This article gives a study of the higher-dimensional Penrose transform between
conformally invariant massless fields on space-time and cohomology classes on twistor
space, where twistor space is defined to be the space of projective pure spinors of the
conformal group. We focus on the 6-dimensional case in which twistor space is the
six-quadric Q in CP7 with a view to applications to the self-dual (0, 2)-theory. We
show how spinor-helicity momentum eigenstates have canonically defined distribu-
tional representatives on twistor space (a story that we extend to arbitrary dimen-
sion). These give an elementary proof of the surjectivity of the Penrose transform.
We give a direct construction of the twistor transform between the two different
representations of massless fields on twistor space (H2 and H3) in which the H3s
arise as obstructions to extending the H2s off Q into CP7.

We also develop the theory of Sparling’s ‘Ξ-transform’, the analogous totally
real split signature story based now on real integral geometry where cohomology no
longer plays a role. We extend Sparling’s Ξ-transform to all helicities and homo-
geneities on twistor space and show that it maps kernels and cokernels of conformally
invariant powers of the ultrahyperbolic wave operator on twistor space to confor-
mally invariant massless fields on space-time. This is proved by developing the
6-dimensional analogue of the half-Fourier transform between functions on twistor
space and momentum space. We give a treatment of the elementary conformally
invariant Φ3 amplitude on twistor space and finish with a discussion of conformal
field theories in twistor space.
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1 Introduction

Twistor methods have become a powerful tool in the study of four-dimensional gauge the-
ories [1, 2, 3, 4] and the question arises as to how it might interact with other important
techniques such as AdS/CFT and reductions of (2, 0) self-dual gerbe theory in six dimen-
sions. This article is a study of the appropriate higher-dimensional twistor theory that
applies to such higher dimensional theories with a focus on six dimensions. Ultimately
we would like to encode interacting field theories on twistor space in higher dimensions,
but this paper will focus mostly on the twistor correspondence for linear fields (with the
exception of a discussion of the φ3 vertex for scalar fields).

The Penrose transform in higher dimensions and indeed for general classes of homo-
geneous spaces was developed in the 1980s with the general framework summarized in
[5]. In higher even dimension 2m, twistor space can be taken to be the space of totally
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null self-dual m-planes so that twistor space is the projective self-dual chiral pure spinor
space of the conformal group [6]. There is a Penrose transform from conformally invariant
massless fields on space-time to cohomology classes on regions in twistor space. In six
dimensions the conformal group is a real form of SO(8,C) and we have a version of triality
so that the chiral spinor representations for the conformal group are eight-dimensional
and are endowed with a quadratic form like the fundamental one. This is the first dimen-
sion in which the purity condition is nontrivial being the condition that the chiral spinors
should be null with respect to the quadratic form. Thus, twistor space turns out to be
the six- dimensional complex quadric Q in CP7. As a manifold it is the same as complex-
ified space-time, but the representation of the conformal group and its correspondence
with space-time is quite different. Conformally invariant massless fields on space-time
are represented on Q both as H2 and as H3 cohomology classes (i.e., closed Dolbeault
(0, 2) or (0, 3)-forms modulo exact ones). As far as massless fields are concerned, Maxwell
and linearized gravity are no longer conformally invariant, but the wave equation and
symmetric spinor fields satisfying higher spin versions of the massless Dirac equation are,
and it is these fields of a fixed chirality that are most straightforwardly represented on
twistor space. The abelian version of the (2, 0) self-dual gerbe theory can be built from
such ingredients and we focus on these fields in this paper. The Penrose transform for
H3s, which we will describe as the direct transform, is most straightforward being easily
obtained by an integral formula (3) and was the first to be studied in [7, 8, 9, 10]. The
Penrose transform for H2s is not direct, although we give an integral formula in (24).
This is the case that naturally gives rise to a holomorphic gerbe on twistor space [11] and
so may well be the most geometrically natural for making contact with the (0, 2) gerbe
theory.1 In [12] a super-twistor space was introduced and some speculations were made
concerning the Penrose transform of the (0, 2)-theory (in H3 form).

Much recent progress in the study of scattering amplitudes in four dimensions has
exploited the simplicity arising from spinor helicity methods and these have recently been
extended to six dimensions and higher [13, 14]. Spinor helicity is essentially a method
for efficiently encoding the polarization information of momentum eigenstates in terms of
spinors. It is a useful starting point for exploring the twistor space formulation of scat-
tering amplitudes and thereby gives insight into the structure of the twistor formulation
of the theory; it is straightforward to construct the twistor space representation of an
amplitude given the twistor representation of momentum eigenstates and the momentum
space amplitude in spinor helicity form. This has been instrumental in recent progress,
both for expressing known amplitudes in twistor space and for obtaining amplitudes on
momentum space from their counterparts in twistor space, see for example [15, 16, 17].

In this paper we obtain distributional Dolbeault representatives on twistor space for
such spinor-helicity representations of momentum eigenstates. We do so in a way that
naturally extends to higher dimensions and indeed gives some explanation of the structure
of the Penrose transform in higher dimensions; the fact that in dimension 2m, the relevant
cohomology is obtained in Hm−1 and Hm(m−1)/2, and the fact that the helicities obtained
of these different cohomology degrees are the same for m odd, and opposite for m even.
In brief, the spinor-helicity data for a momentum eigenstate consists of a null momentum
P and polarization data ξ in some irreducible representation of the ‘little group’, i.e.,

1We remind the reader that, loosely speaking, a gerbe is the extension of the concept of a line bundle
with connection 1-form (or (0, 1)-form deforming a ∂̄-operator in the holomorphic case) replaced by a
connection 2-form (or (0, 2)-form in the holomorphic case).
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the SO(2m − 2) inside the stabilizer of P . For our massless fields, the polarization data
will be irreducible symmetric spinor representations of this little group and these can be
obtained both as holomorphic sections of line bundles, or dually as H(m−1)(m−2)/2s on
the chiral projective pure spinor spaces for the little group. These can then be combined
with distributional Dolbeault forms supported on the little group spin space inside twistor
space to generate the spinor-helicity Dolbeault representatives. In four dimensions, with
m = 2, the projective pure spin space for the little group is trivial (just a point) and so
this feature does not play a role, but in six it is the Riemann sphere and so this is the
first nontrivial case where this comes in. It is the dimension of this little group pure spin
space that gives the difference between the cohomology degrees in the Penrose transform.

These twistor representatives associated to spinor helicity forms of the momentum
eigenstates are a useful tool that allow us to understand key features of the Penrose
transform. For example, they give an elementary proof of the Penrose transform isomor-
phism without the spectral sequences of [5]. One feature that is peculiar to six dimensions
is that the same massless fields are represented both as H2s and H3s. We will see that
the best way to understand the correspondence between these two representations is to
consider the problem of extending the cohomology classes off Q into CP7. The H2s turn
out to have a unique extension to the order given by the helicity, but any further exten-
sion is obstructed with obstruction given by the corresponding H3. This understanding
of the extrinsic behaviour of the cohomology class allows us to write an integral formula
in this indirect case. The proof here is expedited by the spinor-helicity representatives in-
troduced earlier. Although such features are not encountered in four-dimensional twistor
space CP3, they are reminiscent of the extensions off ambitwistor space that arise in the
description of four-dimensional physics [22, 23, 25, 21, 24, 47, 20] although in that case
it is H1s that are extended with obstructions in H2s as opposed to H2s being extended
with obstructions in H3.

Another tool that has proved important in four dimension is the half-Fourier transform
introduced by Witten [1] and developed and exploited in [26]. The Penrose transform
is replaced here by an integral transform first studied by Sparling [36, 37] for the wave
equation and referred to as the Ξ-transform. In four dimensions this is known as the X-ray
transform and takes functions on real twistor space, RP3 to functions on split signature
space-time by integrating over lines. This can then be concatenated with the Fourier
transform which then gives functions on the momentum light-cone. This is the half-
Fourier transforms which involves Fourier transforming in two of the four non-projective
variables. In six dimensions twistor space is now six-dimensional whereas the momentum
light-cone is only five-dimensional and so there must be some loss of information. The
spinor helicity momentum eigenstates have a natural representation in this split signature
also, and lead to a natural generalization of the half-Fourier transform from functions
on twistor space to the momentum light-cone augmented by the pure spinor space for
the little group at each point. This is also a six-manifold and hence can be, and is an
isomorphism.

We make a preliminary investigation of amplitudes. However, for the self-dual gerbe
theory, Huang and Lipstein [18, 19] have observed, using the spinor-helicity formalism,
that there are no good candidates for amplitudes that are local in space-time. This is in
keeping with the idea that the self-dual gerbe theory only exists as a strongly coupled
theory in six dimensions with no parameters that can be taken as a coupling constant to
expand in to obtain perturbative amplitudes. Because we have restricted our attention to
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conformally invariant chiral fields in this paper, the only nontrivial interaction we are able
to consider is the basic conformally invariant φ3 vertex, but we see that it has a natural
formulation on twistor space.

In this article, we find new features important to higher-dimensional twistor theory
that are absent in the four-dimensional case. This may account for some of the remarkable
features of six-dimensional quantum theories. One of the motivations for studying higher-
dimensional twistor space was the realisation that twistor theory is the natural framework
to study extended supersymmetry [27]. It is tempting to suggest that a study of higher-
dimensional supersymmetric physics from a twistorial perspective may illuminate many
of the mysterious properties that higher-dimensional supersymmetric theories exhibit [28,
29, 30, 31, 32, 33, 34, 35]. We hope to return to this in a subsequent paper.

The format of this paper is as follows. The next section gives an overview of the geom-
etry of six-dimensional twistor space and the Penrose transforms that relate cohomology
classes in twistor space to the solutions of zero-rest-mass field equations. Section three
presents a higher-dimensional formalism for relating spinor-helicity methods and twistor
theory that generalises the four-dimensional approach outlined in [15] to six dimensions.
Although the focus is on the six-dimensional case, in section four we show how our formal-
ism works in arbitrary dimension. Section five considers two integral transforms that exist
in split-signature. The first is a six-dimensional analogue of the half-Fourier transform
introduced by Witten in [1] which relates objects on null momentum space to objects in
twistor space. The second is the Ξ-transform introduced by Sparling in [36, 37]. We find
an analogue of the half-Fourier transform in six dimensions and extend the Ξ-transform
to include fields of arbitrary spin. We give a brief discussion of interacting theories in
six-dimensions focussing on the conformal Φ3 scalar theory. We show how the three-point
amplitude for this theory may be constructed from six-dimensional twistor space and close
with some discussion of the formulation of conformal field theories in twistor space. In
an appendix, we give the indirect Penrose tranform for a gerbe.

Whilst this preparing this manuscript we learnt of work [39] which overlaps with some
sections of this article.

2 The Six-Dimensional Twistor Correspondence

In this section we review the structure of six-dimensional twistor space and the Penrose
transform. For reviews of the four-dimensional case see [40, 41, 4]. In order to deal
with a variety of different signatures, we will start by working on complexified Minkowski
space, MI = C6. We can extend MI to the compactified, complexified Minkowski space
M by adding a lightcone at infinity to give a six-quadric M in CP7. For the most part,
we shall be working some region in M or one of its real slices and its associated twistor
space. Introducing spinor indices from the start, we can coordinatize MI with coordinates
xAB = x[AB], A,B = 1, . . . , 4 equipped with metric

ds2 =
1

2
εABCD dxAB dxCD , εABCD = ε[ABCD] , ε0123 = 1 .

The two four-dimensional chiral spinor representations, dual to one another, are denoted
SA and SA with the given index structure and have structure group SL(4,C) in the com-
plex.

5



The real slice MI
p,q of MI are those R6 ⊂ C6 on which the metric has signature (p, q).

On Euclidean, Lorentzian or split signature real slices, the spin group reduces to the real
subgroups SU(4), SL(2,H) or SL(4,R) respectively. These can be characterized as follows

• (p, q) = (6, 0) ; SU(4), the subgroup of SL(4,C) that commutes with the conjuga-
tion πA → π̄A with πAπ̄

A positive definite.

• (p, q) = (5, 1) ; SL(2,H) is the subgroup commuting with a quaternionic conjuga-
tionˆ: πA 7→ π̂A =: π̂A on SA (and on SA) where

π̂A = (−π̄1, π̄0,−π̄3, π̄2) .

We have ˆ̂πA = −πA so there are no real spinors.

• (p, q) = (4, 2) ; SU(2, 2), the subgroup of SL(4,C) that commutes with the con-
jugation πA → π̄A, but this time, SA divides into three parts according to the
definiteness of πAπ̄

A.

• (p, q) = (3, 3) ; SL(4,R), the group commuting with a conjugation πA → π̄A and
we can take spinors to be real πA = π̄A.

There is no natural way to raise or lower individual spin indices; however, skew-
symmetric pairs of indices can be raised and lowered by means of 1

2
εABCD, i.e. vAB =

1
2
εABCDv

CD. We have the useful identities vACv
BC = 1

4
δBAv

2 for any vector vAB.
A null vector vAB satisfies v[ABvCD] = 0, and so has vanishing determinant as a 4× 4

matrix. Since skew matrices have even rank, if it is to be non-trivial, this rank must be
two so it can be decomposed as vAB = λ0

[Aλ
1
B] for some spinors λaA = (λ0

A, λ
1
A). This

decomposition is not unique, but is subject to the SL(2,C) freedom λaA 7→ Λa
bλ
b
A for some

Λa
b ∈ SL(2,C). For a real null vector in Lorentz signature we can take λ1

A = λ̂0
A and in

split signature the λaA can be taken to be real.

2.1 Twistor space

Twistor space Q is the six-dimensional projective quadric in CP7 [6]. We introduce the
homogeneous coordinates Zα = (ωA, πA) ∈ SA ⊕ SA on CP7, and define the quadric as

Q := {[Zα] ∈ CP7|Z2 = 0} where Z2 = 2ωAπA . (1)

The relationship with space-time MI follows from the incidence relations

ωA = xABπB , (2)

where we assume πB 6= 0 for now. Since xAB is skew-symmetric, we must have the
condition ωAπA = 0, i.e., the quadric condition Z2 = 0. Holding xAB fixed in equation (2)
and varying [ωA, πA], this defines a three-dimensional linear subspace CP3 ⊂ Q, which we
shall denote Sx. The converse statement, what a point in twistor space corresponds to in
space-time, is found by holding [ωA, πA] fixed and allowing xAB to vary. This determines
a totally null self-dual three-plane xAB = xAB0 + εABCDπAαB for some αB defined modulo
πB. This is an α-plane.

We have so far ignored the case when πA = 0, but we can easily extend the geometric
interpretation of twistor space to compact complex spacetime M by simply identifying
[ωA, 0] as the CP3 corresponding to the point added to MI at infinity. Notationally, Q
and QI will refer to the twistor spaces of M and MI respectively.
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Z3

Z2

Z1

M

α2

α3

α1

Q ⊂ CP7

Z3

Z2

Z1

M

α2

α3

α1

Figure 1: Self-dual null planes are represented by points in twistor space.

In contrast to the four-dimensional case where a null line in space-time is a point
in twistor space, null lines in six-dimensional space-time correspond to null lines in six-
dimensional twistor space. Generically two α-planes, α1 and α2, do not intersect. How-
ever, if Z1 · Z2 = 0, then they do and indeed they must do in a null line L = α1 ∩ α2

[45]. In twistor space, this configuration is given by the line joining the two twistors, Z1

and Z2, connected by the null line L′ corresponding to the null line L in space-time (if
Z1 · Z2 6= 0, then the line joining Z1 to Z2 in CP7 will not lie in Q).

Z1

Z2

L′L

α1

α2

Figure 2: Two α-planes always intersect in a null line in M.

Twistor space is a quadric in the projectivation of the positive chiral spinor repre-
sentation Sα of SO(8,C). Primed twistor space Q′ is the quadric in the projectivation
of the negative chiral spinor representation Sα′ of SO(8,C) which we can coordinatize as
Wα′ = (µA, λ

A) with inner product W ·W = 2λAµA. Primed twistor space Q′ is the space
of all anti-self-dual null planes, β-planes, in M given by µA = xABλ

B. Analogously to QI ,
the primed twistor space of MI will be denoted Q′I .

This primed twistor space is the six-dimensional analogue of the dual twistor space
from four dimensions. The latter is also a primed twistor space, but happens to be
isomorphic to the dual of twistor space, a feature of dimensions 0 mod 4. However, in
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dimensions 2 mod 4, twistor space and primed twistor space have canonically defined
inner products and so are dual to themselves. Thus important aspects of the Penrose
transform are different in these cases as we shall see.

As a final remark, we note that one of the features of six-dimensional twistor theory is
the triality between the three six-dimensional complex quadrics M, Q and Q′. This can
be described by means of the generators of the Clifford algebra for SO(8,C), but here, it
suffices to say that the geometric correspondences between M and Q, and M and Q′ are
also mirrored by one between Q and Q′, e.g. an α-plane in Q′ corresponds to a point in
Q, and so on. Triality holds in split signature, but is broken by other choices of signature
(it holds also for SO(8,R) but then the real quadrics are empty).

2.2 Massless fields

Our main interest in this article will be conformally invariant chiral theories. Unlike
in four dimensions, Yang-Mills theories cannot be chiral in six dimensions nor are they
conformally invariant. We will instead focus on symmetric spinor fields φA1...Ak

= φ(A1...Ak)

and ψA1...Ak = ψ(A1...Ak) describing chiral fields of helicity k
2

and −k
2

respectively. In
linearised, or non-interacting theories, such fields with k > 0 satisfy the zero-rest-mass
equations of motion

∇BA1φA1A2...Ak
= 0 , ∇BA1

ψA1A2...Ak = 0 , where ∇AB =
∂

∂xAB
.

For scalar fields (k = 0) we have

2φ = 0 ,

For any k ∈ Z, the space of massless fields of helicity k/2 on a region U in space-time will
be denoted Γk(U) although we will often drop the dependence on U .

2.3 The Penrose transform

In six dimensions, the Penrose transform [46, 5] relates the space of massless fields of
non-negative helicity on a region U ⊂M to the cohomology classes with values in certain
holomorphic line bundles O(m) over the corresponding region QU swept out by the Sx
with x ∈ U in twistor space. For most of the paper, we shall in fact take U to be
MI , complexified space-time, so that the corresponding twistor space QU will simply be
QI , the six-dimensional quadric with a CP3 removed. The line bundles O(m) are the
restriction of the corresponding line bundles from CP7 whose sections can be identified
with holomorphic functions on the nonprojective space C8 that are homogeneous of degree
m. We denote these cohomology classes by H•(QU ;O(m)).

We note that one can obtain massless fields of negative helicity from cohomology of
holomorphic line bundles over some subset of primed twistor space. This is in contradis-
tinction to four-dimensional twistor theory, where fields of any integral helicity can be
obtained from twistor space. This dichotomy corresponds to that of whether twistor
space is canonically isomorphic to itself or to its primed counterpart.

There are two ways one can obtain Γk for k ≥ 0 from cohomology classes in Q. The
first, the direct Penrose transform is

P : H3(QU ,O(−k − 4))
'−→ Γk(U) .
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This is direct in the sense that it follows explicitly by means of an integral formula:

FA1...Ak
(x) =

∫
Sx

πA1 ...πAk
f(x · π, π)D3π , (3)

where f = f(ω, π) is a (0, 3)-form homogeneous of degree −k − 4 representing the coho-
mology class2 on twistor space, and D3π = εABCDπA dπB dπC dπD is the projective volume
form on Sx = CP3.

The second transform will be referred to as the indirect Penrose transform

P̃ : H2(QU ,O(k − 2))
'−→ Γk(U) .

In this case, the cohomology classes in H2(QU ,O(k − 2)) have trivial restriction on CP3

embedded in QU . For this reason, one cannot obtain the value of a massless field directly.
The transform most naturally yields a potential modulo-gauge description3 of the field,
but this is nevertheless equivalent locally to the given field.

3 Spinor-helicity representatives

In this section we turn to the problem of how to relate the six-dimensional spinor helicity
methods proposed in [13] to the six-dimensional twistor theory discussed in the preceding
section. We first review the spinor-helicity formalism.

3.1 The spinor-helicity formalism

For the fields Γk, a momentum eigenstate is a field ΦA1...Ak
= Φ0

A1...Ak
eiP ·x with Φ0

A1...Ak

constant. The massless field equation then implies that PBA1Φ0
A1...Ak

= 0. We can solve
these algebraic equations as follows. Firstly, if PAB were invertible then Φ0

A1...Ak
would

have to vanish. Thus its rank must be less than four for a nontrivial solution. However,
a skew matrix necessarily has even rank so that if P is to be nonzero, it must have rank
two. This certainly implies P 2 = 0 and furthermore means that we can write

PAB = εabλ
a
Aλ

b
B , a, b = 0, 1,

for some λaA. We refer to a, b as ‘little group’ indices. The little group is SU(2)× SU(2),
the maximally compact part of the stabilizer of P in Spin(1, 5). The representations of
this maximal compact sub-group constitute the possible polarization data for massless
fields. The a, b are indices for the first of these SU(2) factors and we will introduce a′, b′

indices below for the second. Little group indices will be raised and lowered by means of
the invariant skew forms εab and εab respectively, satisfying εacε

bc = δba. The reduction
from SL(2,C) to SU(2) is effected by choosing λ1

A = λ̂0
A.

2We focus on Dolbeault cohomology here but it is sometimes more elegant to express the cohomology
class in terms Čech cohomology, by use of the Čech-Dolbeault isomorphism

Ȟ•(Q;O(m)) ∼= H•∂̄(Q;O(m))

so that massless space-time fields can be described by holomorphic functions on regions in twistor space.
In this case (3) is interpreted as a contour integral surrounding poles of f .

3We elaborate on this construction in section six.
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It is easily seen from the definition of λaA that PABλaB = 0 and in fact that λaA, a = 0, 1
span the kernel of PAB. Thus Φ0

A1...Ak
= λa1A1

. . . λakAk
ξa1...ak for some ξa1...ak = ξ(a1...ak).

The irreducible polarization information is therefore contained in the polarization spinor
ξa1...ak which is a spin k/2 representation of the little group (which is the spin group two
dimensions down, here a four-dimensional spin group). We therefore have the spinor-
helicity representation of a momentum eigenstate as

ΦA1...Ak
(x) = λa1A1

. . . λakAk
ξa1...akeiP ·x

with data (λaA, ξa1...ak). Massless fields of the opposite chirality and of mixed type can be
treated similarly4 but we will not consider them here although we will return to these in
[38]; they require the use of cohomology with values in a vector bundle rather than a line
bundle, and in the mixed case require also the breaking of conformal invariance

3.2 Twistor representatives for momentum eigenstates

We now find canonical twistor cohomology classes for such momentum eigenstates. Using
Dolbeault cohomology, the twistor representatives will be ∂̄-closed (0, 3)-forms (6) of
weight −k − 4 for the direct transform (3) or a (0, 2)-form (7) of homogeneity k − 2 for
the indirect case. We first establish some machinery and notation.

We can encode the polarization information as a cohomology class on a Riemann
sphere CP1

u acted on by the unprimed SU(2) of the little group. We will use homogeneous
coordinates ua, a = 0, 1, on CP1

u (hence the subscript). The polarization information can
be expressed as a holomorphic function homogeneous of degree k on CP1

u

ξ(u) = ξa1...aku
a1 . . . uak ∈ H0(CP1;O(k)) .

Alternatively, by Serre duality, there is an αξ ∈ H1(CP1,O(−2− k)) such that

ξa1...ak =

∫
CP1

u

ua1 . . . uakαξ ∧Du , e.g. αξ = ξa1...ak û
a1 . . . ûak Dû ,

where

ûa =
1

(|u0|2 + |u1|2)

(
ū0

ū1

)
, and Du = ua dua , Dû = ûa dûa.

4For the massless fields of the opposite chirality we introduce λ̃Aa
′

so that

ΦA1...Ak(x) = λ̃A1

a′1
. . . λ̃Ak

a′k
ξa
′
1...a

′
keiP ·x where PAB = εa′b′ λ̃

Aa′ λ̃Bb
′
, a′, b′ = 0, 1.

Linearised gravity and Maxwell theory are of mixed type. Maxwell theory is described by a photon
with (traceless) field strength FAB satisfying ∇ABFBC = 0 = ∇ABFCB with momentum eigenstates

FAB (x) = λ̃Aa′λ
b
B ζ

a′
b eiP ·x ,

for some little-group spinor ζa
′
b. Similarly, linearised gravity is described by a linearised Weyl tensor

ΨCD
AB symmetric in each pair, subject to ∇ABΨBC

DE = 0 = ∇ABΨDE
BC with momentum eigenstates

ΨAB
CD(x) = λ̃Aa′ λ̃

B
b′λ

c
Cλ

d
D ζ

a′b′
cd eiP ·x ,

for some little group spinor ζa
′b′

cd = ζ
(a′b′)
(cd) . The corresponding polarization data ζa

′
b and ζa

′b′

cd has little-

group indices of both types.
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Here the ûa coordinates can be also invariantly defined as ûa = ūa
ubūb

, where ūa = (−ū1, ū0)

are antiholomorphic coordinates on CP1
u, so that it is normalised, i.e. uaû

a = 1, and is
thus homogeneous of weight −1 in ua.

The little group spinor u defines two full spinors

λA(u) := λaAua , λ̂A(u) := λaAûa

and we will have that PAB = λ[Aλ̂B]. We will often suppress the indices and dependence

on u just writing λ and λ̂ for these quantities in what follows and make the dependence
explicit with λ · u where confusion might otherwise arise.

The twistor representative associated to the momentum space eigenstate of null mo-
mentum P , will turn out to be supported on the line in the ‘πA’ spin space spanned by
the two λaA, a = 1, 2. This can be done with holomorphic delta functions on CP3. To
define these, we first introduce, for z = x+ iy

δ̄(z) = δ(x)δ(y) dz̄ .

These can be multiplied together to give delta functions on C4: δ̄4(µA) =
∏4

A=1 δ̄(µA).
To give a delta function on the projective space CP3, for two points with homogeneous
coordinates µA, νA we define

δ̄3
k(µ, ν) =

∫
C

ds

sk+1
∧ δ̄4(µ+ sν)

which has weight −k − 4 in µ and k in ν.
Given spinor-helicity data (λaA, ξa1...ak), we can now write the two formulae for the

twistor representatives. We define the corresponding representative φ ∈ H3(Q;O(−k−4))
to be

φ(ω, π) = eiP ·x
∫
CP1

u

αξ ∧ δ̄3
k(π, λ) ∧Du , (4)

and the representative ψ ∈ H2(Q;O(k − 2)) to be

ψ(ω, π) = eiP ·x
∫
CP1

u

ξ(u) δ̄3
−2−k(π, λ · u) ∧Du . (5)

Throughout, we take k ≥ 0.
In these formulae, P · x is not manifestly a twistor function; however, on the support

of the delta function it is in the sense that it satisfies πA∂
AB(P · x) = 0 as PABπB =

0. We can make this more explicit by observing that PAB = λ[Aλ̂B] and that on the
support of the delta-function δ̄4(sπ−λ) we can take sπA = λA. Thus, using the incidence

relations x · P = −sω · λ̂. We therefore obtain as our definitive formulae for our twistor
representatives of momentum eigenstates

φ(ω, π) =

∫
C×CP1

u

e−isω·λ̂ αξ ∧ δ̄4(sπ − λ · u) ∧ sk+3 ds ∧Du , (6)

ψ(ω, π) =

∫
C×CP1

u

e−isω·λ̂ ξ(u) δ̄4(sπ − λ · u) ∧ ds

sk−1
∧Du . (7)

In both cases it is easy to check that all the weights and form degrees match appropriately.
The ∂̄-closure on Z ·Z = 0 can be seen by checking ∂̄-closure of the integrands of (7) and
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(6) as ∂̄-closure is preserved by integration. In the H3 case ∂̄-closure follows by virtue of
its holomorphic dependence on ω and being a form of maximal degree on the CP3 ×CP1

parametrised by (π, u). In the H2 case, ξ(u) δ̄3
−2−k(π, λ · u) ∧Du is ∂̄-closed. Taking ∂̄ of

the exponential factor we obtain, on the support of the delta function,

∂̄
(
ω · λ̂

)
= ωAλaA∂̄ûa = −ωAλaAuaDû (8)

where we have used the fact that ∂̄ûa = uaDû. On the support of the delta function
ωAλaAua = ω · π and so (8) vanishes on Q.

4 Twistor spinor helicity states in higher dimensions

The spinor helicity formalism and the corresponding twistor space representatives that we
have presented in six dimensions have straightforward extensions to higher dimensions.
One new issue that we meet in higher dimensions is the fact that purity conditions come
in for spinors in dimensions greater than six and symmetric spinors are then no longer an
irreducible representation of the Lorentz group so that further irreducibility conditions
must be imposed. The other is that the canonical structures and identifications amongst
spinors changes from dimension to dimension. We will work in the complex to avoid
further changes in character between the various signatures.

The purity condition on a spinor πA
′

can be expressed in many ways, but the most
convenient for our purposes will be as follows. We first establish notation. Let µ =
1, . . . , 2m be the space-time indices, and A = 1, . . . , 2m−1 and A′ = 1′, . . . , 2m−1′ be the
primed and the unprimed spinor indices and decompose the gamma matrices into their
chiral parts, so that

Γµ =

(
0 γ B′

µA

γ B
µA′ 0

)
, (9)

and the Clifford algebra relations become

γ A
(µ|A′ γ

B′

|ν)A = −ηµν δB
′

A′ , γ A′

(µ|A γ B
|ν)A′ = −ηµν δBA , (10)

where ηµν is the metric on C2m. The purity condition on a spinor πA is the condition

πA
′
πB
′
γ A
µA′ γ

µ B
B′ = 0 . (11)

This guarantees that the vector fields of the form V µ = γµ A
A′ π

A′αA for arbitrary αA span
a totally null plane which can be of dimension at most m and will, for non-zero πA

′
, be

m-dimensional.

4.1 Spinor-helicity in higher dimensions

We shall only be interested in the elementary conformally invariant symmetric spinor
fields that we have been discussing in six dimensions; massless fields such as Maxwell
and linearized gravity are never conformally invariant in dimensions greater than four
with their standard second order field equations. Thus we will take our massless fields
to be symmetric spinors φA

′
1...A

′
k = φ(A′1...A

′
k) and ψA1...Ak

= ψ(A1...Ak). This choice allows
us to deal with both cases m even and odd at once. But when m is odd, there will be

12



some redundacy in this notation since primed indices can be eliminated by means of the
isomorphism between primed spinor space and dual spinor space. This is consistent with
the fact that the Penrose transform, as we describe it in this paper, produces massless
fields of both positive and negative helicities when m is even, but only massless fields of
positive helicity when m is odd. Further distinctions between these cases will be pointed
out in the course of this section and the next. In dimensions greater than six these spinors
are also subject to a further irreducibility condition. This can be expressed in the form

φA
′
1...A

′
kγ A

µA′1
γµ B

A′2
= 0 , ψA1...Ak

γ A1

µA′ γµ A2

B′ = 0 . (12)

The zero-rest-mass equations on such fields are then

γ A
µA′1
∇µφA

′
1...A

′
k = 0 , γ A1

µA′ ∇
µψA1...Ak

= 0 . (13)

We can now obtain the spinor helicity formalism for such fields. We shall assume that

our momentum eigenstates take the form φA
′
1...A

′
k = eiP ·xφ

A′1...A
′
k

0 and ψA1...Ak
= eiP ·xψ0

A1...Ak

with φ
A′1...A

′
k

0 and ψ0
A1...Ak

constant, and so

P µγ A
µA′1

φA
′
1...A

′
k = 0 , P µγ A1

µA′ ψA1...Ak
= 0 . (14)

The Clifford algebra relations imply that P µγ B
µA′ is invertible unless P is null in which

case it is standard5 that P µγ B
µA′ is nilpotent with rank 2m−2. We can, as before, introduce

bases λA
′

a and λaA, (a = 1 . . . , 2m−2), respectively, of the kernel of P · γ and deduce that
we must have

φ
A′1...A

′
k

0 = ξa1...akλA
′
1

a1
. . . λ

A′k
ak , ψ0

A1...Ak
= ηa1...akλ

a1
A1
. . . λakAk

, (15)

for some symmetric ξa1...ak and ηa1...ak . However, we must now also implement the irre-
ducibility conditions (12) on ξa1...ak and ηa1...ak . To do this we note that a is a spinor index
for the group SO(2m− 2,C), the spin group for the space-time of two dimensions lower,
which is the semi-simple part of the stabilizer of P acting on P⊥/P . The irreducibility
conditions

ξa1a2...akλA
′
1

a1
λA
′
2

a2
γ A1

µA′1
γµ A2

A′2
= 0 , ηa1a2...akλ

a1
A1
λa2A2

γ A1

µA′1
γµ A2

A′2
= 0 (16)

are then simply the analogues of (12) for symmetric spinors ξa1...ak and ηa1...ak for SO(2m−
2,C). This is first non-trivial for dimension 2m = 10 when it is simply a trace-free
condition on ξa1...ak . Here again, we remark that when m is odd, the little group spinor
space is isomorphic to its dual, and the little group spinor indices can be raised and
lowered. Thus, in this case, the identification of λA

′
a with λaA is consistent with the fact

that only massless fields of positive helicity are treated here. On the other hand, when m

5This follows by choosing another null vectorQ with P ·Q = 1
2 and observing that P ·γ·Q·γ+Q·γ·P ·γ =

1 and this algebra has a standard representation with

P · γ =

(
0 I
0 0

)
, Q · γ =

(
0 0
I 0

)
,

where I is the identity matrix on C2m−2

.
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is even, the little group spinor space and its dual are not isomorphic to one another, but
correspond to distinct chiral spinor spaces for SO(2m− 2,C)

Thus we are left with momentum eigenstates for solutions to (12) and (13) given by
the formula

φA
′
1...A

′
k = ξa1...akλA

′
1

a1
. . . λ

A′k
ak eiP ·x , ψA1...Ak

= ηa1...akλ
a1
A1
. . . λakAk

eiP ·x . (17)

This gives the chiral spinor-helicity description for these fields.

4.2 Twistor representatives for spinor-helicity states

Following the last chapter of [6], in arbitrary even dimension 2m twistor space will be
defined to be the projective pure spinors for the the conformal group SO(2m + 2,C).
Here we work in the complex and make no restriction on m, so that we have to work
independently of the special structures that arise in different dimension modulo 8. The
space of projective positive pure spinors for SO(2m,C) will be denoted PPSm. The space
PPSm has dimension m(m − 1)/2 and can be represented as the space of α-planes, the
homogeneous space SO(2m)/U(m) or the complex subvariety of the (2m−1−1)-dimensional
projective spin space PSm cut out by the purity conditions

πA
′
πB
′
γ A
µA′ γ

µ B
B′ = 0 . (11)

This condition guarantees that V µ = γµ A
A′ π

A′αA is a null vector for any choice of αA
and, with the purity condition, this will be maximal so that πA

′
will determine a totally

null self-dual m-plane through the origin. We take PT := PPSm+1 as our definition
of (projective) twistor space, the space of such totally null self-dual m-planes but not
necessarily through the origin in C2m. For example, in dimension six (m = 3) the twistor
space is PT = Q = PPS4, the space of projective pure spinors in eight dimensions. These
null self-dual planes, often called α-planes in this context, can be represented by the
incidence relation

ωA = xµγ A
µA′ π

A′ , (18)

as is familiar in dimension four and as was seen for dimension six in (2) where primed
indices are eliminated in favour of the unprimed ones. However, we note that (18) will be
inconsistent unless (ωA, πA

′
) is a pure SO(2m+ 2) spinor.

If we now wish to proceed analogously to our development of the six-dimensional
theory presented in previous sections, we must describe the physical degrees of freedom in
terms of cohomology representatives on spaces of projective pure spinors, i.e. on twistor
spaces. Let PPSm−1 be the (m−1)(m−2)/2-dimensional space of projective pure spinors
for SO(2m− 2,C). We will take ua to be homogeneous coordinates on the projective spin

space PSm−1 = CP2m−2−1 and impose the purity conditions

ua1ua2λA
′
1

a1
λA
′
2

a2
γ A
µA′1

γµ B
A′2

= 0 .

It is a standard consequence of Bott-Borel-Weyl theory [5] that the representations defined
by (16) can be represented by

αξ ∈ Htop(PPSm−1,O(4− 2m− k)) and η(u) ∈ H0(PPS∗m−1,O(k)) (19)
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respectively, where top= (m− 1)(m− 2)/2 is the dimension of PPSm−1; these are related
by Serre duality as the canonical bundle on PPSm−1 is O(4 − 2m) (see [5]). The second
of these is simply given by η(u) = ηa1...aku

a1 . . . uak whereas the first will not in general
have a canonical representative, and we will denote such a representative simply by αξ
satisfying

ξa1a2...ak =

∫
PPSm−1

ua1ua2 . . . uakαξDu ,

where Du is the projective holomorphic volume form of weight 2m− 4 on PPSm−1. When
m is odd, one has ξa1...ak = ηa1...ak since the little group spinor space is isomorphic to
its dual, and we thus have two ways of representing the polarisation spinor of a given
massless field of positive helicity.

We must also introduce the projective holomorphic volume form Dπ of weight 2m− 2

on PPSm and the weighted delta function δ̄(π, ρ) ∈ Ω0,
m(m−1)

2 (2 − 2m − k) on PPSm.
The former exists simply via the identification of the canonical bundle of PPSm as the
restriction of O(2 − 2m) as follows from the Bott Borel Weil theory as described in [5]
(explicit formulae in terms of the ambient projective coordinates in PSm are obtained in
[10]). The delta function is defined tautologically by

f(π) =

∫
f(ρ) δ̄(π, ρ) Dρ (20)

where f a function on PPSm of weight k, Dρ is the canonical holomorphic volume form
of weight 2m − 2 and δ̄(π, ρ) has appropriate weights in each of its arguments for the
formula to make sense, i.e., of weight k in π and weight 2− 2m− k in ρ.

We can now define the twistor representatives for the spinor-helicity states (17) as

φ(ω, π) =

∫
eiP ·xαξ ∧ δ̄(π, λ · u) Du

ψ(ω, π) =

∫
eiP ·xη(u) δ̄(π, λ · u) Du (21)

and it can be seen that these are respectively ∂̄-closed (0, 1
2
m(m − 1))-forms of weight

2− 2m− k and (0,m− 1)-forms of weight k− 2. This follows from the weights k of η(u),
4− 2m− k of αξ and 2m− 4 of the canonical holomorphic volume form Du on PPSm−1.
It can be checked that eiP ·x is indeed a function on twistor space when restricted to the
support of the delta function as before as it will be annihilated by πA

′
γµ A

A′ ∂µ on the
support of the delta function.

5 Formal neighbourhoods and the twistor transform

In four dimensions a field of a given helicity is represented by the H1(PTI ;O(m)) co-
homology classes on twistor space and the H1(PT∗I ;O(m − 4)) classes on dual twistor
space. The direct map between these two representations is known as the twistor trans-
form. In six dimensions, the situation is rather different as the fields of positive helicity
k/2 correspond to classes on the same twistor space either as an H2 of homogeneity k− 2
or an H3 of homogeneity −k − 4. There is no description of such fields simply in terms
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of homogenous functions on dual twistor space. We will identify the direct map between
these representatives, the twistor transform, T , on twistor space in this section via an
obstruction to the problem of extending the H2s off the quadric Q ⊂ CP7. The twistor
transform can be written schematically as

ΦA1...Ak
(x)

P−1

yy

P̃−1

%%
g(Z) Too // f(Z)

where ΦA1...Ak
(x) ∈ Γk, g(Z) ∈ H3(QI ; (−k − 4)) and f(Z) ∈ H2(QI ; (k − 2)).

The obstruction problem can also be motivated by the task of writing integral formulae
for the indirect transform. In four dimensions, there are integral formulae for the space-
time fields associated to classes in H1(PTI ;O(k − 2)) involving derivatives of the twistor
function, for example at k = 2, the self-dual photon, we have

Fa′b′(x) =

∫
CP1

x

Dλ
∂2

∂µa′∂µb′
f(x · λ, λ)

where f ∈ H1(PTI ;O). Such a formula was proposed in dimension six [10] with (µ, λ)
replaced by (ω, π). However, there are a number of problems: in six dimensions, the
cohomology classes are, a priori, only defined on Q rather than CP7, and straightforward
differentiation with respect to ωA takes a derivative in directions off Q into CP7 and so
are not immediately meaningful. We will however show in the following that certain such
derivatives can be canonically defined in the positive homogeneity case (although there
are other problems with the formula in [10] as the homogeneity weights and cohomology
degrees are not right either).

We will therefore consider the task of constructing extensions of the cohomology classes
off the quadric as an expansion in powers of Z2. In the H3 cases we will see that classes
can be extended off the quadric to all orders in Z2, but that there is no way to fix the
ambiguity that arises at each order and so the derivatives do not have any invariant
meaning. In the H2 case, we will show

Proposition 5.1 Every f ∈ H2(QI ,O(k−2)) has a canonical extension to the kth order
formal neighbourhood around Q, so that in particular, its kth derivative transverse to Q
is canonically defined; however, any further extension is obstructed, the obstruction being
the corresponding g ∈ H3(QI ,O(−4−k)) to which it corresponds by the twistor transform.

Thus in examining the obstruction theory we find the canonical map fromH2(QI ,O(k−2))
to H3(QI ,O(−4− k)) that we know must exist via the Penrose transform to space-time,
intrinsically in twistor space. This also enables us to write integral formulae for the H2

case.
Such extensions will be examined explicitly below for our representatives above. We

will first examine the problem abstractly of extending cohomology classes to formal neigh-
bourhoods of the quadric Z · Z = 2ωAπA = 0. The subsequent explicit calculations will
then demonstrate that certain maps are indeed isomorphisms as claimed.
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∂̄f = Z2k+2g

CP7

Q

∂̄f = 0

Figure 3: The extension of f ∈ H2 off Q is obstructed by g ∈ H3.

5.1 Formal neighbourhoods

We are interested in determining to what extent the cohomology classes H2(QI ;O(k−2))
and H3(QI ;O(−k − 4)) can be extended off the quadric. The natural language in which
to approach this question is that of formal neighbourhoods [25, 22, 48, 47, 20]; a step
by step process in which we consider the task of extending a class defined to rth order
to the (r + 1)th order about Q ⊂ CP7. The starting point is a twistor cohomology
class f(Z) ∈ H•(QI ;O(n)) defined only on Z2 = 0. The extension to the first formal
neighbourhood is given by introducing the commuting variable ξ such that ξ4 = 0 and
allowing the twistor function to now depend on (Zα, ξ), where Z2 = ξ2. Similarly, we can
think of the twistors associated with the rth formal neighbourhood as the usual twistor
Zα with an additional variable ξ, for which ξ2(r+1) = 0, subject to

(Zα, ξ) ∼ (tZα, tξ) Z2 = ξ2 ξ2(r+1) = 0

This leads to a thickening of twistor space Q→ Q[r] [24] where Q[r] can be thought of as
Q, but with the enlarged sheaf of holomorphic functions O[r] that contain the information
of the first r-derivatives off Q into CP7 encoded in the dependence on Z and ξ.

More formally, we make use of the long exact sequence of cohomology groups that
follows from the short exact sequence

0→ OQ(n− 2r)
×(Z·Z)r−→ O[r](n) −→ O[r−1](n)→ 0 .

So O[r] is the sheaf of functions on the rth formal neighbourhood which can be thought
of as local functions on a neighbourhood of Q in CP7 modulo local functions of the form
(Z · Z)r+1 × g where g is another local function, with OQ = O[0]. In terms of the ideal
sheaf I of Q, we have O[r] =

∑r
i=0 Ir/Ir+1. In the following we abbreviate OQ to O.

This short exact sequence leads to long exact sequences of cohomology groups in the
usual way. We know from [5] that the cohomology groups that are only non-zero at the
H2(QI ;O(n)) level for n ≥ −2 and H3(QI ;O(n)) for n ≤ −4. To give an idea of the
process we first consider the easy case of extending H3(O(n)) for n ≤ −4. The long exact
sequence gives

0→ H3(O(n− 2r))→ H3(O[r](n))→ H3(O(n))
δ→ 0 .

The zeros arise because there are no H2s in these homogeneity degrees and there are never
any H4s. Thus the obstruction δ to extending a class from one formal neighbourhood to
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a higher one always vanishes. However, there is always the freedom arising from adding
the choice of an element of H3(O(n − 2r)) to some original choice. So, we can extend
any class in H3(O(n)) to all orders but with much ambiguity, with a new nontrivial term
arising at each term in its Taylor series.

The problem of extending H2(QI ,O(n)) for n ≥ −2 is much less trivial. For the
extension to the first formal neighbourhood O[1], the long exact sequence gives

0→ H2(O(n− 2))→ H2(O[1](n))→ H2(O(n))
δ→ H3(O(n− 2))→ . . . .

The case n = −2 is exceptional here as H3(O(n − 2)) = H3(O(−4)) is only non-
vanishing in this case and by the Penrose transform is given by solutions to the wave
equation and so is indeed isomorphic to H2(O(−2)). In fact we will see by direct com-
putation that δ is an isomorphism, so that it is impossible to extend an element of
H2(O(−2)) to H2(O[1](−2)). In fact this sequence then implies that H2(O[1](−2)) = 0 as
H2(O(−4)) = 0.

For n > −2, H3(O(n)) = 0 so that the obstruction map δ always vanishes, and we
can always extend subject to an ambiguity in H2(O(n− 2)). This ambiguity is trivial for
n = −1 and in that case there is a unique extension H2(O[1](−1)) = H2(O(−1)), but in
all other cases there is some ambiguity. Finally for n ≥ 0, we now have no obstruction
to extension as the corresponding H3(O(n − 2)) vanishes, but we have an ambiguity of
H2(O(n− 2)) in the choice of extension.

At the higher orders we obtain

0→ H2(O(n− 2r))→ H2(O[r](n))→ H2(O[r−1](n))
δ→ H3(O(n− 2r))→ . . . .

For n = −1 and r = 2 we now see that there is a possible obstruction to extension as
H2(O[1](−1)) = H2(O(−1)) = H3(O(−5)) and indeed, as we shall see later the map δ is
again an isomorphism. Thus H2(O[2](−1)) = 0 and there is no extension to the second
formal neighbourhood in this homogeneity.

The other case we will be interested in is homogenieity n = 0. As we saw earlier, an α ∈
H2(O(0)) could always be extended to an H2(O[1](0)) but with freedom in H2(O(−2)).
Here at the next order r = 2, the obstruction group is now H3(O(−4)) and indeed.
This map can be non-zero because, in H2(O[1](0)) we had the summand (the freedom in
extension to H2(O[1])) consisting of H2(O(−2)) which is isomorphic to H3(O(−4)). We
will see again later that δ is an isomorphism from this summand and so we can always
choose an extension of α to α[1] ∈ H1(O[1](0)) so that δα[1] = 0. This condition fixes the
ambiguity in the first step completely and there exists a unique α[2] ∈ H2(O[2]) that maps
onto α[1] because at this homogeneity, H2(O(−4)) = 0. Now, at r = 3 the obstruction to
further extension is δ(α[2]) ∈ H3(O(−6)). This latter space is now isomorphic to the space
H2(O) that we started with and in fact the map δ will be seen to be an isomorphism.

5.1.1 Explicit Example: Momentum Eigenstates

Our task here is to explicitly compute the ‘connecting homomorphism’ δ using the spinor
helicity based twistor representatives and to show that it is an isomorphism whenever
the cohomology groups it connects are related by the twistor transform. In fact the
action of δ on Dolbeault representatives is clear. If we take the first nontrivial case
δ : H2(QI ;O(−2)) → H3(QI ;O(−4)), with ϕ ∈ H2(QI ;O((−2)) we should, abusing
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notation, redefine ϕ to be an arbitrary smooth (0, 2)-form on a neighbourhood of Z2 = 0
that agrees with the originally chosen ϕ. Then, because the original ϕ is a cohomology
class, we will have ∂̄ϕ = 0 on Z2 = 0, so on a neighbourhood we must have

∂̄ϕ = Z2δϕ

for some (0, 3)-form δϕ. If we change the extension of ϕ to ϕ + Z2Λ, then δϕ → δϕ +
∂̄Λ|Z2=0 so that the cohomology class of δϕ is well-defined.

We first show that for ϕ ∈ H2(O(−2)), δφ ∈ H3(O(−4)) is precisely the twistor
transform of the class that we started with corresponding to the same solution to the
wave equation Φ on space-time. We have that

ϕ =

∫
CP1

Du δ̄3
−2,−2(π, λ · u) e−iω·λ̂, φ =

∫
CP1

DuDû δ̄3
−4,0(π, λ · u) e−iω·λ̂ .

The classes clearly extend off Z2 = 0 and, using (8) we see that φ is ∂̄-closed. There is
clearly much freedom in extending these representatives off the quadric as we can add on
Z2 multiplied by any form of the same degree and with homogeneity two lower; however,
the form φ is not closed away from Z2 = 0. Following the calculation in (8) but not
imposing the condition Z2 = 0 we find

∂̄ϕ = −iω · π
∫
CP1

DuDû e−iω·λ̂ δ̄3(π, λ) = −iZ2φ

Thus δϕ = −iφ and this gives the non-triviality of the map δ.
Similar calculations can be done with other homogeneities. We shall be particularly

interested in twistor representatives corresponding to k = 0, 1 and 2 and so we only deal
with these cases here.

For k = 1 we have representatives χ ∈ H2(QI ,O(−1)) and ψ ∈ H3(QI ,O(−5))
corresponding to momentum eigenstates of the spin-half field ΨA(x) given by

χ =

∫
CP1

Du ξ · u δ̄3
−1,−3(π, λ) e−iω·λ̂ , ψ =

∫
CP1

DuDû ξ · û δ̄3
−5,1(π, λ) e−iω·λ̂ .

As before we calculate the anti-holomorphic derivative of the H2 representative

∂̄χ = −iω · π
∫
CP1

DuDû ξ · u δ̄3(π, λ) e−iω·λ̂ .

All this does not vanish to first order in Z2 = ω ·π. However, to first order in Z2 we must
have that this is exact by the abstract arguments above. To see this, we observe that

∂̄

∫
CP1

Du ξ · û δ̄3(π, λ) e−iω·λ̂ =

∫
CP1

DuDû (ξ · u) δ̄3(π, λ)e−iω·λ̂ − iω · πψ .

with the first term arising from ∂̄ξ · û and the second from ∂̄ of the exponential. Thus, if
we redefine

χ =

∫
CP1

Du
(
ξ · u δ̄3

−1,−3(π, λ) + i(ξ · û) (ω · π) δ̄3
−3,−1(π, λ)

)
e−iω·λ̂
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we obtain the desired relation
∂̄χ = −iZ4ψ .

The final case of interest to us is the case corresponding to spin-one fields, described
in twistor space by b ∈ H2(QI ,O) and h ∈ H3(QI ,O(−6)). Following the above strategy,
we now see that if we redefine

b =

∫
CP1

Du e−iω·λ̂ (ξabuaub δ̄3
0,−4(π, λ)− ξabuaûb ω · π δ̄3

−2,−2(π, λ)

+ξabû
aûb(ω · π)2δ̄3

−4,0(π, λ)
)

and

h =

∫
CP1

DuDû ξabû
aûb δ̄3

−6,2(π, λ) e−iω·λ̂ ,

then we will have
∂̄b = Z6h (22)

as desired. By the abstract arguments of the previous subsection, the final forms of these
representatives are unique. In general we have

∂̄f = Z2k+2 g (23)

where g(Z) ∈ H3(QI ; (−k − 4)) and f(Z) ∈ H2(QI ; (k − 2)).

5.2 Integral formulae in the k − 2 homogeneity case

The above uniquely extended representatives in the k−2 homogeneity case, together with
their connection to the negative homogeneity case allow us to define integral formulae.
Recalling the form of the integral expression for the direct Penrose transform

FA1...Ak
(x) =

∫
Sx

D3π πA1 . . . πAk
g(ω, π) .

where g(Z) ∈ H3(QI ; (−k − 4)). Combing this with the expression (23), we have

FA1...Ak
(x) =

∫
Sx

D3 πZ−2k−2 πA1 . . . πAk
∂̄f(ω, π) . (24)

where f(Z) ∈ H2(QI ; (k − 2)). This integral formula hides the cumbersome fact that we
have to construct the the canonical extension of f off Q so its practical use may well be
rather limited.

6 Ξ and half-Fourier transforms in split signature

As described in Section two, in split signature, the components of the twistor Zα can be
taken to be real and twistor space to be the real quadric of signature (4, 4) inside RP7,
Q = (S3 × S3)/Z2. In this signature, the integral formula for solutions to the massless
fields equations

F (x)A1...Ak
=

∫
Sx

D3π πA1 . . . πAk
f
(
xABπB, πA

)
, (25)
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can be taken as an integral now over Sx = RP3 with f being a straightforward smooth
function on Q of weight −4 − k rather than as a representative of some H3 cohomology
class. Thus we have the benefit in split-signature that Čech and Dolbeault representatives
are replaced by real functions on the real slice where all twistor coordinates and space-
time coordinates are real. Tree amplitudes generally are rational functions and so extend
to split signature real slices. This real approach simplifies matters significantly and allows
one to exploit standard tools such as Fourier analysis. Sparling [36, 37] referred to the
k = 0 version of this transform as the Ξ-transform, and we will follow his terminology
here. We will use Fourier analysis to identify the kernel of this map on twistor space and
to extend it to the ‘indirect’ cases of weight k − 2).

In four dimensions with split signature the Penrose transform similarly has a non-
cohomological analogue, the X-ray transform, that maps functions on the real twistor
space, RP3 to solutions to the massless field equations on space-time by straightforward
integration along lines in the real twistor space. This can be combined with the Fourier
transform to give a map from functions on twistor space to functions on the light-cone
in momentum space. This yields what has become known as the ‘half-Fourier transform’
[1]. Both the momentum light cone and twistor space are three-dimensional and the map
is a Fourier transform along a natural family of two-dimensional fibres.

In this section we derive the analogue of this construction for six-dimensional space-
time with split signature. However, the real momentum space light-cone is 5-dimensional
whereas the real twistor space is 6-dimensional and we will find that this leads to new
features in the correspondence as it can no longer be one to one. In this context, the
transforms have been studied by Sparling [36, 37] for the wave equation and homogeneities
−2 and −4 who referred to them as the Ξ-transform. He discovered that the −4 case
leads to solutions to the wave equation but the kernel of the map consists of those twistor
functions F that are in the image of the conformally invariant wave operator 2 on twistor
space, f = 2g for some g (recall that twistor space, being a quadric, is canonically a
conformal manifold in six dimensions). Using triality he was able to follow this around
the correspondences between twistor space, primed twistor space and space-time with
them all on an equal footing. Here we will extend this to all other weights, both positive
and negative and see how the conformally invariant powers of the Laplacian of [52, 49]
play a role in characterizing the twistor data in this case.

Twistor space is a conformal manifold and so admits conformally invariant powers of
the ultrahyperbolic wave operator [49]

2k+1 : E(−k − 2)→ E(−k − 4) .

Here, E(k) denotes the sheaf of smooth sections over Q homogeneous of degree k.
We will show

Proposition 6.1 The kernel of the Ξ-transform (25) for functions on twistor space of
weight −k − 4 is the image of

2k+1 : Γ(Q, E(−k − 2))→ Γ(Q, E(−k − 4)) .

The Ξ-transform therefore gives an isomorphism

Γk(M) ' Γ(Q, E(−k − 4))/{ Im 2k+1 : Γ(Q, E(−k − 2))→ Γ(Q, E(−k − 4))}

21



and as the analogue of the indirect Penrose transform we will show

Proposition 6.2 For k > 0,there is a one to one correspondence

{h ∈ Γ(Q, E(k))|2k+1h = 0} ' Γk(M) .

Our main tool will be the six-dimensional analogue of the half-Fourier transform. How-
ever, before we embark on that, we remark that the spinor-helicity representatives for
cohomology classes that we obtained earlier have totally real analogues that we write
down directly here as

φ(ω, π) =

∫
R×RP1

u

e−isω·λ̂ αξδ
4(sπ − λ · u) sk+3 ds ∧Du , (26)

ψ(ω, π) =

∫
R×RP1

u

e−isω·λ̂ ξ(u) δ4(sπ − λ · u)
ds

sk−1
∧Du . (27)

where now Z, λaA, ua and s are real, ûa = (u1,−u0)/(u2
0 + u2

1) as before but is real and αξ
is a smooth function of the ua of homogeneity −k − 2 satisfying∫

RP1
u

ua1 . . . uakαξDu = ξa1...ak .

Here, αξ can still be thought of as a representative of a class in H1(CP1,O(−k − 2), but
now as a Čech cocycle defined on RP1 ⊂ CP1. It is easily seen that substituting (26) into
(25) gives the spinor-helicity momentum eigenstate as expected.

Analogues of these representatives can be found in higher dimensions also as before.

6.1 The Fourier and half-Fourier transform

We first formulate the Fourier transform from space-time for a field F (x)A1...Ak
. Since it

satisfies the massless field equation ∇ABFB...D = 0, the transform to momentum space

F̃ (P )A1...Ak
=

∫
d6x F (x)A1...Ak

eiP ·x

will satisfy PABF̃B...D = 0. Thus F̃ only has support when PAB has rank two. In
particular P is null and F is supported on the momentum light cone

M0 = {PAB|P 2 = 0} = {PAB|PAB = εabλ
a
Aλ

b
B}

For some λaA defined up to SL(2,R) on the a index. As before, we obtain the spinor
helicity representation

F̃A1...Ak
= F̃ (λ)a1...akλ

a1
A1
. . . λakAk

δ(P 2),

and define F̃a1...ak to be the Fourier transform of the field F (x)A1...Ak
.

Our next task is to establish the following.
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Proposition 6.3 We have the following direct formula for F̃a1...ak in terms of the twistor
function f that gives rise to it via (25) in split signature

F̃ (λa)a1...ak =

∫
Du ua1 . . . uak

∫
d4ω δ(ωAλA) f(ωA, λA) e−iλ̂Aω

A

. (28)

where λA = λaAua where ua are now homogeneous coordinates on RP1 and λ̂A is any spinor

chosen so that λ[Aλ̂B] = PAB.

For definiteness we will often choose λ̂A = λaAûa where ûa = (−u1, u0)/(u2
0 + u2

1) but our

formulae will be invariant under λ̂→ λ̂+ αλ for all α.

Proof: In split signature all quantities, P , x, λ, u, û, ω and π can be taken real and, at
least for homogeneity −k − 4, the twistor cohomology class can be replaced by a smooth
function f of the real twistor variables (ωA, πA) of projective weight −k − 4. The direct
Penrose transform gives a space-time massless field

F (x)A1...Ak
=

∫
Sx

D3π πA1 . . . πAk
f
(
xABπB, πA

)
,

where now the integral is over Sx = RP3. We can Fourier transform this to get a function
on momentum space and substituting in its above form, we must obtain

F̃ (λ)a1...akλ
a1
A1
. . . λakAk

δ(P 2) =

∫
d6x D3π πA1 . . . πAk

f
(
xABπB, πA

)
eiP ·x .

We now reverse the order of integration performing the x-integral first. We can
reparametrise x with ωA together with a parameter χA defined up to the addition of
multiples of π by

xAB = εABCDω
CαD + χ[AπB] .

We can choose αA so that α · π = 1 and fix the freedom in χ so that α · χ = 0. This is
then consistent with the incidence relation ωA = xABπB and χA has three independent
components (and projective weight -1). We may now write

P · x = 2PABω
AαB + PABχAπB

The measure on space-time can then be written as

d6x = d4ω D3χ δ(ωAπA)

where D3χ = εABCDπA dχB dχC dχD(= d4χ δ(αAχA)). Thus we have

F̃ (λ)A1...Ak
δ(P 2) =

∫
d4ω D3χ D3π δ(ω · π) πA1 . . . πAk

f(ωA, πA) e2iPABω
AαB+iPABχAπB

Performing the χ integration we have6∫
D3χ eiPABχAπB = δ(P 2)

∫
RP1

Du δ3
−2(πA, λ

a
Aua) .

6To see this, choose α so that α · χ = χ1 = 0 so that
∫
D3χ eiχIP

IAπA =
∏
I=2,3,4 δ

3(P IAπA). On

P12 6= 0, we can choose λ0
1 = 1 λ0

2 = λ1
1 = 0 and λ1

2 = P12 and we find

|P12|δ(P 3AπA)δ(P 4AπA) = δ2(πA, λ
a
A).

Consider now δ(P 2)δ2(πA;λ+, λ−) = |P12|δ(P 12P 34 + P 14P 23 + P 13P 42)δ(P 3AπA)δ(P 4AπA). On the
support of the second and third delta-functions, the first can be rewritten and we find δ(P 2)δ2(πA;λa) =

δ3(P IAπA) and therefore
∫

D3χ eiPABχAπB = δ(P 2)δ2(πA, λ
a
A).
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On the support of this δ-function all the πA factors can be replaced by λaAua and we can
now remove the λaA and δ(P 2) factors from both sides of the equation to obtain

F̃ (λ)a1...ak =

∫
Du ua1 . . . uak

∫
d4ω D3π δ(ωAπA) δ3(πA;λA · u) f(ωA, πA) e2iPABω

AαB

Using εab = (uaûb − ubûa), on the support of the delta-functions, the exponent may be
written

2iPABω
AαB = −iλ̂Aω

A

where λA = λaAua and λ̂A = 2λaAûa. With this, and using the δ3(πA, λA) to do the D3π
integration, the map from functions on twistor space to scalar fields on the null cone
becomes

F̃ (λa)a1...ak =

∫
Du ua1 . . . uak

∫
d4ω δ(ωAλA) f(ωA, λA) e−iλ̂Aω

A

. (29)

as required.2

T (−2)RP3

M0

Q

∫
Du

Half Fourier Transform

Figure 4: The half Fourier transform relates a bundle over M0 to Q.

This map factors into a half Fourier transform followed by an integral over u. The half-
Fourier transform part of the map, being a Fourier transform, is necessarily one-to-one.
This takes functions on twistor space Q to functions on an extension of the momentum
light-cone M0 by RP1 to include the real projective coordinate ua giving a six-dimensional
auxiliary space with coordinates {λaA, ua}/{SL(2,R)×R∗} with the SL(2,R) acting on the
a-index and the R∗ on ua. We identify this space with the bundle T (−2)RP3 of tangent
vectors of homogeneity (−2) over RP3. This follows by rewriting the data (λaA, u

a) as(
λA, λ̂B

)
:= (λ · u, λ · û) −→

(
λA · u, λA · û

∂

∂λA

)
∈ RP3 × TλRP3

λ̂ is only defined up to the addition of multiples of λ but λ · ∂/∂λ is zero in TλRP3.
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Definition 6.1 The half-Fourier transform takes a homogeneous function f(ω, π) of weight

−4− k on twistor space to a homogeneous function K(λ, λ̂) on T (−2)RP3 of weight 2− k
by

K(λ, λ̂) =

∫
d4ω δ(ωAλA) f(ωA, λA) e−iλ̂Aω

A

. (30)

We remark that in this definition, k can be any integer.

The delta function in the integrand implies that K(λ, λ̂ + αλ) = K(λ, λ̂) for all α.
This gives an analogue of the half Fourier transform familiar from four-dimensions. It is
invertible with inverse

f(ωA, λA) δ(ωAλA) =
1

(2π)4

∫
d4λ̂ K(λA, λ̂A) eiλ̂Aω

A

where we think of f(ωA, λA)δ(ωAλA) as a distribution on RP7 with support on the twistor

quadric, the delta function arising because K(λ, λ̂) = K(λ, λ̂+ rλ) for all r.

6.2 The extended direct Ξ-transform and half-Fourier transform

Our proposition above therefore gives the Fourier transform of the massless field as the
following integral over RP1 of the half-Fourier transform K of f

F̃ (λaA)a1...ak =

∫
RP1

Du ua1 . . . uakK(λ, λ̂) . (31)

The combination cannot be one-to-one since the dimension of twistor space is six and the
dimension of the momentum null-cone is five. There must therefore be a kernel of the
map (25) from twistor functions to massless fields which we now seek to identify. Clearly,
since the half-Fourier transform is 1:1, the kernel is that of the integration in (31), i.e.,
those K for which the integrand is exact. We will identify this and its counterpart on
twistor space. We will also in the process see how to extend this correspondence to the
case of homogeneity k − 2 which will work dually.

It is clear that the integration (31) has as kernel those K for which the integrand is
exact for the RP1 integration. In order to understand this kernel, we need to review the
theory of the ðk operators on RP1. These are operators defined in the first instance on
functions on RP1, for k ≥ 0,

ðk+1 : E(k)→ E(−k − 2)

that are invariant under Mobius transformations. Following [53] we observe that for f(u)

of weight k, ∂kf
∂ua1 ...∂uak

has weight 0 so that

ua0
∂kf

∂ua0 . . . ∂uak
= 0 .

Thus
∂kf

∂ua0 . . . ∂uak
= ua0 . . . uakð

k+1f

for some ðk+1f of weight −k − 2. This defining equation can be written

d

(
∂kf

∂ua1 . . . ∂uak

)
= ua1 . . . uakð

k+1f Du (32)
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thus showing that K is in the kernel of the integral (31) iff K = ðk+1J for some J .
This gives a complete characterization of the kernel of the integration in (31) where

now ðk+1 is understood fibrewise for the fibres of the fibration T (−2)RP3 → M0. In
order to understand what this means on twistor space, we first express ð in terms of
the (λ, λ̂) coordinates on T (−2)RP3. We first observe that if we are not concerned to
preserve manifest projective invariance on RP1, then we can define ðk+1 = (ð)k+1 where
on a function f of weight k we define the action of a single ð : E(k) → E(k − 2) for all
integral values of k by

ðf = (u2
0 + u2

1)k/2ð
(
(u2

0 + u2
1)−k/2f

)
.

It is now possible to see that, with this definition, (ð)k+1 is independent of the choice
of quadratic form (here (u2

0 + u2
1)) and reduces to the invariant form given above. As

an operator on K(λ, λ̂) with K(λ, λ̂ + αλ) we find, using the chain rule, together with
ðua = ûa and ðûa = ua, that

ðK(λ, λ̂) = λ̂ · ∂K
∂λ

.

It is now straightforward to see that, since under the half-Fourier transform, λ̂↔ ∂/∂ωA,
we have

ðK ↔ ∂2f

∂ωA∂πA
.

Thus ð corresponds to the ultrahyperbolic wave operator 2 on the non-projective R8 asso-
ciated to the RP7 in which Q lives. Homogeneous functions on RP7 do simply correspond
to ordinary functions on this R8, but this is in general not well defined on functions on Q
as the derivative off the quadric Q is not given. However, for weights k ≥ 0 the following
operators are well defined on homogeneous functions on Q

2k+1 : E(k − 2)→ E(−k − 4)

as defined in precisely this context in [49] (see also [52, 50, 51] for antecedents). Thus we
have

Proposition 6.4 The kernel of the Ξ-transform (31) for functions on twistor space of
weight −k − 4 is the image of

2k+1 : Γ(Q, E(−k − 2))→ Γ(Q, E(−k − 4)) .

The Ξ-transform therefore gives an isomorphism

Γk(M) ' Γ(Q, E(−k − 4))/{ Im 2k+1 : Γ(Q, E(−k − 2))→ Γ(Q, E(−k − 4))} .

6.3 The indirect Ξ-transform

The question remains as to how the Ξ-transform works for homogeneity k − 2. The half-
Fourier transform is an isomorphism from functions h of weight k− 2 on twistor space to
functions J of weight k on T (−2)RP3. The map from a momentum space representative

F̃ (λaA)a1...ak to such a function J of weight k is clear: it should be

J = F̃ (λaA)a1...aku
a1 . . . uak .
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This is inverted by setting

F̃ (λaA)a1...ak =
∂k

∂ua1 . . . ∂uak
J(λ, λ̂)

but if J had been chosen arbitrarily, this will only give a sensible momentum space
representative if the right hand side is independent of ua. Using (32) we see that this
will follow iff ðk+1J = 0. Using the above argument, we can see that this is equivalent
for the function h on twistor space to the vanishing of the conformally invariant power
of the ultrahyperbolic wave equation 2k+1h = 0. Thus we have the positive chirality
Ξ-transform:

Proposition 6.5 For k > 0,there is a one to one correspondence

Γk(M) ' {h ∈ Γ(Q, E(k))|2k+1h = 0} .

Thus the Ξ-transform maps solutions of differential equations on one space to solutions on
another in this case. We remark also that in split signature we have triality, so that twistor
space, primed twistor space and (compactified) space-time are all on an equivalent footing
and the Ξ-transform applies between any two of these three spaces in either direction.

We finally note the integral formula in this case

φA1...Ak
(x) =

∫
γ⊂Sx

∂k+1h

∂ωA1 . . . ∂ωAk∂ωAk+1
εAk+1BCDπB dπC dπD , (33)

where the integral is over some 2-dimensional contour γ cohomologous to RP2 ⊂ Sx =
RP3. In order to make sense of the ∂/∂ωA derivatives, h must be extended off Q to kth
order in RP7; the k + 1th derivative is skewed with πA and so is acting only tangent to
Q. This is precisely what is done in [49] with the extension determined by the condition
that 2R8h = 0 in the ambient non-projective space to the appropriate order; the operator
2k+1
Q on h is obtained in [49] as the obstruction to extending h as a solution to 2R8h = 0

at k + 1th order although there is in any case some ambiguity at that order. The result
is independent of the chosen contour by virtue of 2k+1h = 0 which in particular implies
that the kth order extension is annihilated by 2R8 . We remark that it is not sufficient
to check this with the spinor-helicity representative (27) except for the k = 0 case as for
general k (27) has not been extended appropriately off Q into RP7 and formulae more
analogous to those used in the formal neighbouhood discussion are required.

7 Interactions and Scattering amplitudes

There has been considerable work on the spinor-helicity construction of scattering ampli-
tudes for (1,1) super Yang-Mills in six-dimensions [13, 55, 56, 57, 58, 59]. The invariances
of the theory appear to uniquely fix the form of the three photon amplitude and higher
point amplitudes have been derived using the BCFW construction [13]7. Despite a clear
demonstration that spinor-helicity methods are useful in six dimensions, there is little un-
derstanding of how to construct scattering amplitudes from six-dimensional twistor space.
We shall return to the question of how to describe non-chiral theories such as Yang-Mills

7Loop amplitudes have also been constructed by unitarity methods in [55, 57].
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in future work. In this article we are chiefly concerned with conformally invariant and
chiral theories. Because the amplitudes for the (0, 2)-theory are believed to be trivial, we
are rather limited as to the amplitudes we can consider and we focus on the Φ3 vertex.
(The only fields of spin less than one we can consider are scalars and spin-half fermions
and it does not seem possible to construct an interaction involving spin-half fields without
introducing a spin-half field ΨA(x) of opposite chirality.)

We can write down a classically conformally-invariant Lagrangian for an interacting
scalar field

L =
1

2
∂µΦ ∂µΦ +

κ

6
Φ3 (34)

where κ is a dimensionless coupling constant. By Fourier transform, the three-scalar
amplitude corresponding to the Φ3 vertex takes the simple form

A(P1, P2, P3) =
κ

6
δ6

(
3∑
i=1

P i
AB

)
.

A natural candidate for the three-point scalar amplitude in terms of indirect Penrose
transform functions ϕi, i = 1, 2, 3 of weight −2 is

A(P1, P2, P3) =

∫
RP7

D7Z δ(Z · Z) ϕ1 ϕ2 ϕ3 .

We insert the twistor representatives for momentum eigenstates:

ϕi(ω, π) =
1

2

∫
Dui dki ki δ

4(πA − kiλiA) e−
i
k
λ̂iAω

A

where a factor of one half has been introduced for later convenience.
The scattering amplitude is then

A(P1, P2, P3) =
1

8

∫
D3π d4ω δ(ω · π)

(
3∏
i=1

∫
Dui dki ki δ

4(πA − kiλiA)

)

× exp

(
−i

3∑
i=1

ωAλ̂iA
ki

)
.

Writing the quadric delta-function as an integral

δ(ω · π) =

∫
dt ei t ω·π ,

then doing the four ωA integrals, gives

A(P1, P2, P3) =
1

8

∫
D3π dt

(
3∏
i=1

∫
Dui dki ki δ

4(πA − kiλiA)

)
δ4

(
t πA −

3∑
i=1

λ̂iA
ki

)
.

We can already see that this expression has the support of the 6-momentum conserv-
ing delta-functions. Consider the skew product of the argument of the delta-function

δ4
(
tπA −

∑
i

1
ki
λ̂iA

)
with π

tπ[AπB] −
∑
i

1

ki
π[A|λ̂i|B] = 0 .
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The first term vanishes and on the support of the δ4(πA − kiλiA), the second term may
be written as

0 =
∑
i

λi[A|λ̂i|B] =
∑
i

P i
AB ,

which gives the expected momentum conservation. Thus

A(P1, P2, P3) = Kδ6

(
3∑
i=1

P
(i)
AB

)
. (35)

for some K. Since there are no Lorentz invariants of three null momenta that add up
to zero, we see that K must be constant and so we have the correct amplitude. A more
laborious argument can be used to obtain K explicitly.

8 Discussion: Conformal Theories in Twistor Space

One of the triumphs of the twistor programme was the elegant description of self-dual
Yang-Mills in four dimensions in terms of the Penrose-Ward correspondence [54]. This
correspondence relates a holomorphic vector bundle on projective twistor space without
connection to a holomorphic bundle over space-time with self-dual connection. In six
dimensions, a connection on a fibre bundle cannot be self-dual; however, a gerbe can have
self-dual connection. In this section we shall be particularly interested in six-dimensional
linearised physical theories in which self-dual gerbes play a role. These objects play an
important role in string theory and it is doubtful that a full understanding of M-theory
will be possible without at least a partial understanding of the conjectured non-linear
versions of such theories.

8.1 Self-dual Gerbes in Twistor Space

An abelian gerbe on space-time is usually thought of as a generalization of a connection
in which the connection 1-form is replaced by a two-form B defined modulo the addition
of the exterior derivative of a 1-form and so the ‘curvature’ dB is now a 3-form. On
twistor space, we have the two descriptions: as b ∈ H2(O) and g ∈ H3(O(−6)) both as
forms modulo ∂̄-exact forms. Since these are both in a potential modulo gauge format,
the form degree of the latter does not naturally fit the concept of the gerbe, but the H2

case does. Indeed this case has already been studied as a route to defining a holomorphic
gerbe on twistor space by Hitchin and Chatterjee [42, 11] who present the theory as a
generalization of the Čech description of line bundles; this is outlined in appendix A
for Čech cohomology along with the Penrose transform in the indirect case leading to a
potential modulo gauge description for the space-time field.

The Dolbeault route gives a slightly different picture to that arising from the Čech
approach. In the Dolbeault picture, we can think of the b ∈ H2(O) as defining a class of
local ∂̄-operators ∂̄ai on a fixed complex line bundles over a covering Ui of QI for which
∂̄2
ai

= b. In the simplest case these can be ∂̄-operators on the same trivial line bundle and
b is the obstruction to extending the local ∂̄ai to a global ∂̄-operator.
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It is straightforward to write down action principles for the linear theories on twistor
space. We first define the holomorphic volume form Ω ∈ Γ(Q,Ω6(6)) by∫

Q

(·)Ω =

∫
CP7

(·) D7Z δ̄1(Z2) .

In Euclidean signature, for MI = Euclidean R6, the Sx sweep out QI . Then an action for
a pair (g, f) ∈ Ω0,2(k − 2)× Ω0,3(−k − 4) to define Dolbeault cohomology classes is

S[g, f ] =

∫
Q

g ∧ ∂̄f ∧ Ω ,

since solutions to field equations mod gauge give

([g], [f ]) ∈ H2(O(k − 2))×H3(O(−k − 4)) = Γk × Γk .

For k = 2 this is an action for a pair of self-dual gerbe fields and for k = 4 it gives an
action for a pair of the spin-two field discussed below. Such an action for the k = 2 case
is echoed on space-time by the action

S(H,B) =

∫
MI

H ∧ dB , (H,B) ∈ Ω3+ × Ω2 ,

since self-dual 3-forms annihilate self-dual 3-forms under wedge product in six dimensions.
Thus it is not so surprising.

In Lorentz signature we can write action formulations that do not seem to have a
space-time analogue. Recall that in Lorentz signature we have the quaternionic reality

structure πA → π̂A etc., Z → Ẑ with
ˆ̂
Z = −Z. In this signature, the Sx that are invariant

under the quaternionic conjugation only sweep out the real codimension-one set

Q0 = {Z ∈ Q|Z · Ẑ = 0} .

If we now choose data (g, g̃) ∈ Ω0,2(k − 2)× Ω0,2(−k − 4) we obtain

S[g, g̃] =

∫
Q0

g̃ ∧ ∂̄g ∧ Ω .

The field equations lead to a pair of cohomology classes but now

([g], [g̃]) ∈ H2(Q0,O(k − 2))×H2(Q0,O(−k − 4)) = Γk × 0 .

Because of the vanishing of H2s for sufficiently negative homogeneity, we only obtain one
helicity k/2 field. Thus an action corresponding to a linear self-dual gerbe theory on
Minkowski space is given by

S[b] =

∫
Q0

D7Z ∧ δ̄(Z2) ∧ δ̄(Z · Ẑ) ∧ b̃ ∧ ∂̄ b (36)

for some twistor field b̃ of homogeneity −4. The equations of motion imply that b ∈
H2(Q;O) as it should and b̃ ∈ H2(Q;O(−4)); however, H2(Q;O(−4)) = 0 and so b̃ has
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no on-shell degrees of freedom and acts simply as a Lagrange multiplier that vanishes
on-shell, constraining b to lie in H2(Q;O).

The scattering amplitude for the scalar theory in split signature suggests that there
is a twistor action for the space-time Lagrangian (34), at least in Euclidean and split
signature. However, it is difficult to make this work coherently. One is tempted to write

S[ϕ, φ] =

∫
CP7

D7Z ∧ δ̄(Z2) ∧
(
φ ∧ ∂̄ϕ+

1

6
ϕ ∧ ϕ ∧ ϕ

)
(37)

where δ̄(Z2) is a (0, 1)-form of weight −2 and D7Z = εα0α1....α7Z
α0∂Zα1 ∧ ... ∧ ∂Zα7 =

D3π d4ω is the natural projective (7, 0) form on CP7 of weight +8. Here ϕ is a (0, 2)-form
of weight −2 and φ is a (0, 3)-form of weight −4. The form degrees and weights match
and so this action makes sense as an action functional. In split signature, the interaction
term gives the expression for the three-point amplitude (35). This action is well-defined
on the quadric Q and, under variation with respect to the representatives gives

∂̄ϕ = 0 , ∂̄φ+
1

2
ϕ ∧ ϕ = 0 .

So ϕ corresponds simply to a solution of the wave equation whereas φ seems likely to
correspond to a solution to an imhomogeneous wave equation sourced by ϕ2.

It therefore remains difficult to piece these together to give an action for the Φ3 theory
on twistor space. The Lorentzian formulation seems to be no better as it is not clear how
to encode the cubic interaction as a (0, 5)-form.

8.2 Non-geometric gravitational theories

Up until now we have been concerned with spin-one gerbes, here we extend our consid-
erations to spin-two fields. The on-shell graviton is given by a field strength ΨCD

AB with
spinor-helicity polarization data Ψab

a′b′ which has nine degrees of freedom; however, the
spin-two field strength Gabcd arising from the direct Penrose transform

GABCD =

∮
Sx

D3π πAπBπCπD g(ω, π) (38)

has five on-shell degrees of freedom. Furthermore Gabcd is a chiral field, whereas the
graviton is not. This spin-two field appearing from twistor space is clearly not describing
linearised Einstein gravity, but a more exotic six-dimensional relative. It is conjectured
that there exists a superconformal (4, 0) theory in six-dimensions [29, 43, 44, 30] which
includes just such a field; however, we can consider this field in a bosonic context. A
discussion of the supersymmetric theory will be presented in [38]. The novelty of this
theory is that the spin-two field is not a graviton in the conventional sense and is not
thought to give rise to a conventional, geometric, theory of gravitation. Rather, the spin-
two field is given by a tensor Cµνλρ with the symmetries of the Riemann tensor and field
strength

Gµνλρση = 3∂µ∂[νCλρ]ση + 3∂η∂[νCλρ]µσ + 3∂σ∂[νCλρ]ηµ

which is self-dual

Gµνλρση =
1

3!
ερση

κξζGµνλκξζ .
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In terms of spinor notation, the field can be encoded into a potential field CCD
AB symmetric

in each pair of indices with (linearised) manifestly self-dual field strength

GABCD = ∇(A|M∇|B|NC|CD)
MN .

This field, with 5 on-shell ‘gravi-gerbe’ degrees of freedom, is the highest spin member
of the (4, 0) multiplet. At the linearised level, a dimensional reduction on a circle to five
dimensions yields the linearised form of the conventional Einstein maximal supergravity
in five dimensions ad it is conjectured that there exists a non-linear (4, 0) theory in six-
dimensions which gives rise to the full Einstein supergravity in five dimensions [29]. It is
not clear what the full non-linear (4, 0) theory should look like but it is expected that the
interactions will not be of a conventional field-theoretic type but rather should be based
on yet to be identified M-theoretic principles. In this section we consider only the lin-
earised for of the (4, 0) theory in supertwistor space. The spin two field may be described
in terms of the conventional Penrose transform (38) where g(ω, π) ∈ H3(QI ;O(−8)) and
it is straightforward to generalise the arguments above for the spin-one gerbe to a repre-
sentative of H2(QI ;O(+2)) to get a description of this field in terms of a potential CABCD,
modulo gauge-invariance, from the indirect Penrose transform.

In a subsequent paper we will turn to the supersymmetric formulations, nonconfor-
mally invariant and non-chiral theories and reductions to lower dimensions.
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A The Indirect Penrose transform for a self-dual gerbe

It is perhaps simplest to understand what a holomorphic gerbe is by comparing its defi-
nition with that of a holomorphic line bundle [42]. A line bundle may be understood in
terms of a set of transition functions between open sets gij : Ui ∩ Uj → S1 with gij = g−1

ji

and a triviality condition on the overlap of three open sets: gijgjkgki = 1 on Ui ∩Uj ∩Uk.
The bundle is holomorphic if gij are holomorphic functions. By contrast a gerbe is defined
by functions on a triple intersection

bijk : Ui ∩ Uj ∩ Uk → S1 ,

with bijk = b−1
jik = b−1

ikj = b−1
kji and the triviality condition on the overlap of four open sets

bjklb
−1
iklbijlb

−1
ijk = 1 , on Ui ∩ Uj ∩ Uk ∩ Ul .

Crucially a gerbe, unlike a fibre bundle, is not a manifold8. A holomorphic gerbe is one
for which the bijk are holomorphic functions.

8An equivalent way to define a gerbe is in terms of transition line bundles on Ui ∩ Uj , as opposed to
the transition functions that define a line bundle.

32



We can also do differential geometry on gerbes. We can define a connection on a
line bundle by Ai − Aj = g−1

ij dgij and a field strength, defined over the whole bundle,
F = dAi = dAj. On a gerbe we may define a connection in a similar way

H = dBi = dBj , Bi −Bj = dAij , Aij + Ajk + Aki = b−1
ijk dbijk ,

where Bi is the connection9 and H is a globally-defined closed three-form field strength.
A connection on a gerbe is (anti) self-dual if H = ± ∗H. The six-dimensional analogue
of the Penrose-Ward correspondence, which we sketch below, relates cohomology classes
[b] = {bijk} on twistor space to self-dual connections B on space-time.

The simplest twistor representation for such a self-dual gerbe is via the direct Penrose
transform given by

HAB(x) =

∫
Sx

D3π πAπB h (ω, π) ,

where h ∈ Ȟ3(QI ;O(−6)) and the integral is taken over the CP3 picked out by the
incidence relation. However, this represents the gerbe as a (0, 3)-form potential modulo
gauge which is not appropriate to define a gerbe on twistor space.

The most natural association between twistor cohomology and connections of a gerbe
in space-time comes from representatives of H2(QI ,O) or more geometrically its exponen-
tiation H2(QI ;O∗) given by the indirect Penrose transform. This defines a holomorphic
gerbe on twistor space. Following [11] this can be understood via Čech coholomorgy: let
[b] be a representative of Ȟ2(QI ;O∗) and {Ui} a Leray cover10 of Q. We then have a family
of functions of homogeneity degree zero [b] = {bijk} defined on the triple intersection

bijk : Ui ∩ Uj ∩ Uk → C∗ , bijkbjklbkliblij = 1.

Here bijk is a cohomology representative and is defined on Q and may be lifted to the
correspondence space F = {(x, [π]) ∈ M × CP3} where, by virtue of being pulled back
from twistor space, it satisfies

µ∗
(
πB∇ABbijk

)
= 0 .

Restricting to Sx = CP3, Ȟ2(Sx;O) = 0 and so we can write

bijk = aijajkaki . (39)

Here aij = aij(x, π) is not pulled back from twistor space (assuming [b] was not trivial)
and so πB∇ABaij 6= 0. We can define aij

A = πB∇AB log aij, and differentiating (39) we
obtain

aij
A + ajk

A + aki
A = 0 .

It is also the case that Ȟ1(Sx;O) = 0 and so

aij
A = fi

A − fjA . (40)

Furthermore, since partial derivatives commute, πC∇C[Aa
B]
ij = 0. Thus differentiating

(40) we obtain

πC∇C[Af
B]
i = πC∇C[Af

B]
j = SAB

9Following the physics literature, we shall also refer to Bi as ‘the gerbe’.
10A Leray cover is one for which the open sets have no cohomology so that the Čech cohomology agrees

with the standard cohomology.
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The left and right hand sides of the first equality are defined on different patches (Ui and
Uj) but are equal. From this we infer the existence of the globally defined field sAB which
is homogenous of degree two in πA. We can therefore express the π dependence explicitly
as sAB = sABCDπCπD. We note that skew symmetry implies that πAπB∇AB = 0 so that
πAa

A
ij = 0 = πAf

A
ij and πAS

AB = 0. Thus sABCDcan be expressed in terms of some BB
A by

sABCD =
1

2
εABE(CB

D)
E .

This potential can be taken to be traceless, corresponding to a 2-form, and is defined
modulo gauge

BB
A ∼ BB

A +∇ACA
BC − 1

4
δBA∇ · A

for a 1-form ABC = −ACB because fAi was defined up to fAi → fAi + εABCDπBACD.
BB
A can therefore be interpreted as a gerbe connection on space-time. We have that

πA∇A[BSCD] = 0 from its definition, and this gives the field equation

∇A(BB
C)
A = 0 .

The gauge-invariant field strength for the gerbe is therefore

HAB = ∇(A|CB
C
|B) ,

corresponding to a self-dual three-form which is closed, being the exterior derivative of
the two-form corresponding to B.
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