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Abstract

We study the geometric properties of a 2m-dimensional complex manifold M admitting a holomorphic
reduction of the frame bundle to the structure group P C Spin(2m, C), the stabiliser of the line spanned
by a pure spinor at a point. Geometrically, M is endowed with a holomorphic metric g, a holomorphic
volume form, a spin structure compatible with g, and a holomorphic pure spinor field £ up to scale. The
defining property of ¢ is that it determines an almost null structure, ie an m-plane distribution N¢ along
which g is totally degenerate.

We develop a spinor calculus, by means of which we encode the geometric properties of N¢ corre-
sponding to the algebraic properties of the intrinsic torsion of the P-structure. This is the failure of the
Levi-Civita connection V of g to be compatible with the P-structure. In a similar way, we examine the
algebraic properties of the curvature of V.

Applications to spinorial differential equations are given. In particular, we give necessary and sufficient
conditions for the almost null structure associated to a pure conformal Killing spinor to be integrable.
We also conjecture a Goldberg-Sachs-type theorem on the existence of a certain class of almost null
structures when (M, g) has prescribed curvature.

We discuss applications of this work to the study of real pseudo-Riemannian manifolds.

Keywords: complex Riemannian geometry; pure spinors; distributions; intrinsic torsion; curvature
prescription; spinorial equations

1 Introduction

Let M be a complex manifold of dimension n, and denote by TM and T* M its holomorphic tangent and
cotangent bundles respectively, and by FM its holomorphic frame bundle. Following [LeB83|, we define a
holomorphic metric on M to be a non-degenerate holomorphic section g of the bundle ®?>T* M — here ®
denotes the symmetric tensor product. We identify TM and T*M by means of g. The pair (M, g) will be
referred to as a compler Riemannian manifold, and is characterised equivalently by a holomorphic reduction of
the structure group of FM to the complex orthogonal group O(n, C). Analogously to real pseudo-Riemannian
geometry, there is a unique torsion-free holomorphic affine connection V preserving g, also referred to as the
Levi-Civita connection of g, with associated curvature tensors, which depend holomorphically on M. We shall
also assume the existence of a global holomorphic volume form e € T'(A"T* M) normalised to g(e,e) = n! —
here, we have extended g to a non-degenerate bilinear form on the bundle A*TM of holomorphic differential
forms, and its dual. This induces a further holomorphic reduction of the structure group of FM to the
complex special orthogonal group SO(n,C). The pair (g,e) can be used to define a holomorphic Hodge
duality operator x on A*T* M. We shall henceforth assume n = 2m. Then * squares to plus or minus the
identity on A™T*M, and thus splits A" T*M as a direct sum of the two eigensubbundles AT'T* M of *.
Elements of AT'T*M are referred to as holomorphic self-dual and anti-self-dual m-forms.

This article is concerned with the local geometric properties of an almost null structure on (M, g), i.e.
a holomorphic rank-m distribution N C TM totally null with respect to g, i.e g(v,w) = 0 for all v and w
in NV, and dim N, = m at any point p of M. Being determined (ie annihilated) by a holomorphic m-form,
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an almost null structure may be either self-dual or anti-self-dual, and is also referred to as an a-plane or
B-plane distribution accordingly.

There is a slick way to describe an almost null structure if we assume in addition (M, g) to be spin, i.e.
it admits a holomorphic reduction to Spin(2m, C), the two-fold covering of SO(2m, C). In this case, (M, g)
is endowed with two irreducible spinor bundles ST and S~. Sections of TM acts on sections of S* via
Clifford multiplication - : TM x S* — ST. In particular, a holomorphic section ¢ of ST or S~ determines
a distribution Mg on M in the sense that

WNe)p ={veTpM:v-&}, at any point p in M.

The defining property of the Clifford multiplication tells us that A is totally null. When Ng has dimension
m at every point, £ is said to be pure. If we refer to a pure spinor £ defined up to scale as a projective pure
spinor [€], it is clear that a projective pure spinor field [¢] determines a unique almost null structure Ng.
Conversely, any almost null structure arises in this way. Whether £ lies in ST or S~ corresponds to whether
N is self-dual or anti-self-dual. All spinors in S *+ are pure in dimensions two, four and six, but when m > 3,
the property of being pure imposes non-trivial algebraic conditions on the components of a spinor.

The geometric properties of an almost null structure Mg associated to a projective pure spinor [£] can be
expressed in terms of the covariant derivative of [¢]. For instance, if N is integrable, i.e. [['(Ng), T'(Ne)] C
I'(Ng), then one can show that the leaves of its foliation are totally geodetic, i.e. VxY € T'(Ng) for any
holomorphic sections X, ¥ of N¢. This condition can also be expressed as [HMS§]

Vx&=Ax¢, for any X € I'(N), and some holomorphic function A\x dependent on X, (1.1)

where, with a slight abuse of notation, V denotes the spin connection induced from the Levi-Civita connec-
tion. Note that (L)) is independent of the scale of . Further, if £ satisfies (ILT]), then

C(X,Y,Z,W) =0, for all X,Y,Z, W € T(Ng). (1.2)

where C' denotes the Weyl tensor of V, i.e. the conformally invariant part of the Riemann tensor of V.

The investigation of conditions such as (IT]) and (I2]) will be the subject of this article. For this purpose,
we note that an almost null structure N on (M, g) associated to a projective pure spinor field [£] is equivalent
to a holomorphic reduction of the structure group of FM to the stabiliser P C G := Spin(2m, C) of [{] at a
point. This P is an instance of a parabolic subgroup, and is isomorphic to the semi-direct product Gy x Py
where part Gy is reductive, and Py is nilpotent. The Lie algebras p C g = s0(2m,C) of P is isomorphic to
g0 ® P, where go =2 gl(m, C) and py =2 A2C™ are the Lie algebras of Gy and Py respectively. Here, we have
identified (NV¢), = C™ at any point p.

Condition (1) is intimately connected to the notion of intrinsic torsion or structure function of a first-
order G-structure [Che53|[Ber60,[Sal89]. In the present context, where the structure group is P, this is an
invariant of Mg, which, at any point, lies in the P-module 20 := U ® g/p, where U = C?™ is the standard
representation of g. Geometrically, it is the obstruction to finding a unique torsion-free connection compatible
with Ne. In other words, it measures the failure of the Levi-Civita connection to preserve Ne. A number
of geometric properties of N¢ can be encoded as P-invariant algebraic conditions on its intrinsic torsion.
For instance, condition ([I]) can be shown to be equivalent to the intrinsic torsion belonging to a certain
proper P-submodule of 20. Identifying all the possible P-submodules of 20 provides a systematic way of
‘classifying’ G-structures with structure group P. Such an approach was adopted to provide a classification
of almost Hermitian manifolds by Gray and Hervella in [GHS0).

Dealing with condition (2]) is similar. In general, if 9 is a finite G-module, P induces a filtration

=l cmtcm~c...cm T comt.=m (1.3)

of indecomposable P-modules M’ for some k and ¢. The nilpotent part P, acts trivially on each of the
associated quotients 9 /M1 while the reductive part Gy, and hence P, acts reducibly on these. This
applies in particular to the case where 2 is the space € of Weyl tensors at a point. We shall see, in this



case, k = ¢ =2, and condition ([C2) tells us that the Weyl tensor belongs to the P-submodule ¢! := 9~1
at a point. A precedent for this approach in almost Hermitian geometry can be found in [TVSIL[EFFS94].
The aims of the paper are to

e give a P-invariant decomposition of the space 2J of intrinsic torsions;

e give P-invariant decompositions of the spaces of curvature tensors, in particular, the tracefree Ricci
tensors, Cotton-York tensors and Weyl tensors;

e apply these decompositions to the study of almost null structures and pure spinor fields on complex
Riemannian manifolds.

An integral part of this article will be the construction of a spinor calculus in relation to the P-structure
above. This essentially impinges on the remark [HMSS|[BTR9| that if £ € I'(S™) is pure, then any Z € I'(Ng)
satisfies

9(Z, X)=(¢, X -§), for some ¢ € T'((§7)*) and for any X € I'(TM). (1.4)
Here (-,-) is the natural pairing between S~ and (§7)*. This fact will allow us to construct maps whose
kernels can be used to define certain P-submodules of a given P- or G-module. This is a standard procedure
in representation theory where (irreducible) representations are described in terms of kernels of suitable
multilinear maps. For instance, the kernel of the symmetrisation map ®2C™ — ©2C™ is the irreducible
SL(m, C)-module A2C™. The only difference here is that the maps will now depend on [¢].

Before we proceed, it is important to note that there will be obstructions to the global existence of a
holomorphic metric or of a holomorphic volume form, not to say of a holomorphic spin structure on a complex
manifold. While these issues are interesting in their own right, we shall not be concerned with them in this
article, some of which are dealt with in [LeB83|]. This being said, all our considerations will essentially be
local. In particular, we must emphasise that a spin structure can always be introduced locally, and our use
of spinors in this context arises essentially from practical considerations.

What is more, a complex manifold M can always be manufactured by complexifying a real-analytic
oriented manifold M’ — see [WB59[WooT7T7,[Fas84]. In this case, M is endowed with a reality structure that
singles out M’ as a real slice in M. Any real analytic structure on M’ can be extended to a holomorphic
one in a neighbourhood of M’ in M. This will apply more particularly to a metric ¢’ and spin structure on
M. We then obtain a spin complex Riemannian manifold (M, g) from (M’, ¢’). This approach is typically
exemplified by the study of real-analytic four-dimensional Lorentzian manifolds, which was central to the
development of twistor theory — see [PR84L[PR86] and references therein.

In fact, it is instructive to recall how (L)) and (L2) look like when (M, g) is a four-dimensional complex
Riemannian manifold. First, Spin(4, C) is no longer simple, but isomorphic to SL(2,C)™ x SL(2,C)~ where
SL(2,C)* are two copies of SL(2, C) acting on S*. Following [PR84], we adorn elements of ST and S~ with
abstract indices, eg 5‘4/ and (4 respectively. Let us fix a projective spinor [5‘4/] in PST. Using the fact that
TM =~ S8~ ® S8t in dimension four, the relation (IZ) simply tells us that any vector Z4B" tangent to the
distribution defined by 4" must be of the form ZAB" = ¢A¢B’ for some (. Then, equation (I} can be
re-expressed as

eV pntp =0, (1.5)

where V ap is the Levi-Civita connection. Similarly, condition (L2)) can be shown to reduce to one on the
self-dual part of the Weyl tensor, which we identify with a totally symmetric spinorEl Wy pepr:

Uapop e €8¢ e =0, (1.6)

When (M, g) is the complexication of a real-analytic four-dimensional Lorentzian manifold, equation (3]
describes a real-analytic shearfree congruence of null geodesics, and any spinor ¢4 satisfying (IZ6) is referred

IThis is often referred to as the Weyl spinor in the extant literature, but we shall avoid the term in this article.



to as a (gravitational) principal spinor of W4 p:crpr. Both concepts play an important réle in the study of
exact solutions of Einstein’s field equations.

Finally, while complexifying a smooth pseudo-Riemannian manifold will present difficulties in general,
the present work can be easily adapted to the setting of an oriented and time-oriented smooth real manifold
M equipped with a metric g of signature (m,m) and a spin structure, without the need of complexification.
One can then define smooth real almost null structures on (M, g) associated to smooth real pure spinor
fields.

An odd-dimensional analogue of the present paper is given in [TC13].

Structure of the paper: Section[Zcontains a construction of a spinor calculus based on a choice of pure
spinor up to scale. Proposition is a new algebraic characterisation of intersections of a- and [-planes.
Algebraic applications are then given in sections [l and @t Proposition gives an invariant decomposition
of the space of intrinsic torsions, while Propositions E.1], and give invariant decompositions of the
spaces of Ricci tensors, Cotton-York tensors and Weyl tensors respectively.

Geometric applications can be found in section B} Proposition 5.4 is a direct consequence of Proposition
B2l and characterises the intrinsic torsion of an almost null structure Ng in terms of the covariant derivative
of its associated projective pure spinor []. Proposition examines the conformal invariance of the
intrinsic torsion of M. Integrability conditions for the existence of geodetic and recurrent pure spinors are
derived in Propositions [B.11] and respectively. In section [£.2] we study the relation between solutions
to differential equations on pure spinor fields: Propositions and give necessary and sufficient
conditions on a pure conformal Killing spinor for its associated almost null structure to be integrable. Next,
we put forward Conjecture generalising the complex Goldberg-Sachs theorem of [TCI2|. Finally, in
section [5.3] we briefly discuss the extent to which the findings of the present article can be applied to real
pseudo-Riemannian manifolds.

We round up the paper with three appendices. We have collected in appendix [A]l material describing the
go- and p-submodules of the spaces of curvature tensors. Appendix [B] contains a brief discussion of spinor
calculus in dimensions four and six. In appendix [C] we give some concise background on conformal spin
geometry.

2 Spinor calculus

The aim of this section is to construct a spinor calculus given a preferred pure spinor, emphasising its relation
with representation theory. While we recall standard facts on the theory of spinors, which can be found in

one form or another in the literature [Car81L[BT8SBTRIHSI2], in particular the appendix of [PRS6], our

approach, which extends the calculus of [HMS8S], is relatively novel. Details on the representation theory

aspect are given in [BESY[FHITLCS09].

2.1 Clifford algebras and spinor representations

Let U be an n-dimensional complex vector space. We shall adopt the abstract index notation of for
most of this paper. Standard index-free notation will be used on occasion. Elements of U and its dual 0* will
carry upstairs and downstairs lower-case Roman indices respectively, eg V¢ € U and «, € U*. This notation
extends to tensor products of U and U*, i.e. we write T, for an element of ®?V* ® V @ V*. We equip
U with a non-degenerate symmetric bilinear form ga, = g(ap) € ©20*. Here, as elsewhere, symmetrisation
is denoted by round brackets, while skew-symmetrisation by square brackets, eg aupe = Qjapg € A30*. The
metric tensor gqp together with its inverse g% establishes an isomorphism between U and U*, so that one
will lower or raise the indices of tensorial quantities as needed. We shall also make a choice of orientation,
i.e. an element of A", and denote the associated Hodge star operator on A*YJ by . Elements of the two
eigenspaces A0 and A”J of x on A" are referred to as self-dual and anti-self-dual m-forms respectively.



We shall be dealing with spinor representations, and for this reason, we shall essentially view any finite
representation of the complex special orthogonal group SO(2m, C) as finite representation of the spin group
G := Spin(2m, C), the two-fold covering of SO(2m, C).

The Clifford algebra CL(T,g) of (U, g) is defined as the quotient algebra ®°20/J where J is the ideal
generated by elements of the form v ® v + g(v,v), where v € . This implies that C£(0, g) is isomorphic
to the exterior algebra A®*U as vector spaces, the wedge product of the latter being now replaced by the
Clifford product - : CL(T, g) x CL(T, g) — CL(T, g) defined by v - w :=v Aw — g(v)ow for any v and w in Y
viewed as elements of C{(0, g).

From now on, we assume n = 2m. Let 9 C U be a totally null m-dimensional subspace, i.e. glm = 0,
and fix a dual 9% of M so that Y = N @ N*. Then the vector space & := A®*IN can be turned into a
CL(50, g)-module by restricting the Clifford product to it: for any £ € A*S, (v,w) € N N* =2 Y, the action
of U C Cl(*V, g) on & is given by (v,w) - & =v A& —wif. The 2"-dimensional CL(T, g)-module & is known
as the spinor space of (U, g). Further, & splits as & = G @ &, where &F are the +-eigenspaces of the
orientation on U, viewed as an element of C/(J, g), with

ST AN A" NG ..., GTEATTINGATTING ...

The 2™~ -dimensional complex vector spaces &+ and &~ are called the positive and negative (chiral) spinor
spaces respectively, and can be shown to be irreducible representations of G = Spin(2m, C).

It turns out that the Clifford algebra can also be realised as the algebra of complex 2™ x 2"*-matrices acting
on & = 6T ¢ &~. Elements of &, respectively &~, will carry upstairs primed, respectively unprimed,
upper-case Roman indices, eg &4, respectively o, and similarly for their duals (6T)* and (&7)* with
downstairs indices, eg 74/ and B4 respectively. As we shall be working with &% rather than &, it will be
convenient to think of the generators of the Clifford algebra C£(U,g) in terms of the (Van der Waerden)
~-matrices v, AB/ and v, 4, which satisfy the (reduced) Clifford property

’ ’

Yaa V" = —gadi Yaa” Ve’ = —gard4 s (2.1)
where 55 and 55 are the identity elements on &% and &~ respectively. Thus, only skew-symmetrised
products of y-matrices count, and we shall make use of the notational short hand

T e Ca ' B ._ e cl B
7111(12...an T 7[,11 A 7@201 s /Yaq]Cq,l ) ’Yalag...an/ T 7[@1 A’ /YagCl s ’yaq]C;71 )
o c B B’ e B

(2.2)
B ._ 1 2 ._ Cy
’7a1a2...apA T 7[,11 A 7@201 cee /Yap]C; ) 7a1a2...apA’ T 7[(;1 A /YagCl s ’yap]Cp,1 ’

~

where p is even and ¢ is odd. These matrices give us an explicit realisation of the isomorphism C4(0, gas)
A\° U as vector spaces. Since x : AFU 5 A?m=F93 it is enough to consider forms of degree from 0 to m.

The spinor space G and its dual &* are equipped with non-degenerate bilinear forms, which realise the
isomorphisms

1R

Yarg s Yap 1 6T — (65)", when m even, (2.3)

1R

Yarp Yap i 6T — (6F)", when m odd,
by means of which we can raise or lower spinor indices. Thus, the y-matrices (Z2]) give rise to bilinear maps

/Yalag...apA’B’ ’ /Yalag...apAB ) for p=m (mOd 2)7

(2.4)
/Yalag...apA’B ’ /Yalag...apAB’ ’ for p=m— 1 (mOd 2)7

from &% x &F or &* x &F to A*Y. The spinor indices of the maps [Z3)) and (24 are subject to symmetries
as explained in [PR86], and this allows us to prove the following technical lemma needed subsequently.



Lemma 2.1 When m — p is even,

B D
YaAr Vby..b,BDVeC! = (=™ (’7cab1...pr’C’ t GeaVoy...bp_1b,A'C
“2D 91, ((a Ve)lba.bylarcr T PP+ 1) Gapy Giejoy Yoy bp]A/C/>

In particular,

VGA/B%I,,,prD%c/D = (=1)"2(m - P)%l...pr’C’ :
When m — p is odd,

’

B o m—1
YaAr Voy..b,BD'VeC = (-1) (’Ycabl...pr/c t 9eaVoy..bp_1b,A7C

=209, 1(a V) bs...by)arc T PP+ 1)Gafn, Ijejby Vo0, bp]A’C)

In particular,

’

”YaA/B%l,,.prD/%c = (=)™ 2(m _p)%l---pr/C )

Our treatment will be overwhelmingly dimension independent, and for this reason, we shall avoid making
use of the bilinear forms (Z3) and [Z4)). It suffices to say that when p = m, the bilinear forms (Z4) are
always symmetric, and yield injections from AT to ®2&*, and surjections from ©2&* to ATT*.

2.2 Null structures and pure spinors

Definition 2.2 A null structure on U is an m-dimensional vector subspace 9t C U that is totally null, i.e.
gap XYt =0 for all X, Y € M. A self-dual, respectively anti-self-dual, null structure is called an a-plane,
respectively, a S-plane.

Let 5‘4/ be a non-zero spinor in &, and consider the map
=Pyt U6
By (@), the kernel of ¢4 : 0 — &~ is totally null.

Definition 2.3 A non-zero (positive) spinor §A/ is said to be pure if the kernel of ¢ : ¥ — &~ is m-
dimensional, and thus defines a null structure.

The projectivisation of the line <§A,> spanned by a pure spinor §A, will be referred to as a projective
(positive) pure spinor [€4'] € PST.

The same definitions apply to a negative spinor.

Leaving the details aside, one can show

Proposition 2.4 ([Car81]) There is a one-to-one correspondence between projective pure spinors and null
structures on (0, g). Positive, respectively negative, pure spinors correspond to self-dual, respectively anti-
self-dual, null structures.

Henceforth, we shall assume m > 2 leaving the special case m = 2 to appendix [B.l For the remaining
of this section and sections Bl and @, ¢4 will denote a positive pure spinor. It goes without saying that our
statements apply analogously to negative pure spinors. We set

m

6% =), " =m& Vo6, V=9, W=kt Vo6, (25)




so that one can express the a-plane associated to fA/ as the filtration
{0} =V2 CcY2 CY 2. (2.6)

The full meaning of this notation, borrowed from ﬂm, will be explained in the course of this section. For
the moment, the reader should think of these numerical indices as homogeneity degrees. Thus, the map ¢4
yields an isomorphism between DI / 0% and 6%4, which we can write as

(m*%/m%) 2T 2 e, (2.7)
While the factor &% on the LHS of (Z7) may appear notationally redundant, it nonetheless balances the
degrees on each side of ([ZT), i.e. —3+ 2t = 22, From (Z7), it is also clear that " is an m-dimensional
subspace of G~

With a slight abuse of notation, we can also think of the map ¢ dually as €2 : * < (&7)* so that the
dual counterpart of (2.7 is given by

vt ~6% o (6—%/6—’"4’6) , (2.8)

where we have defined

& " = (67)", ST =keréd 1 U (&),
and made use of Uz = (‘B’% / ‘B%) . Isomorphism (228)) can be expressed concretely as follows.

Lemma 2.5 ([HAMBSBTRI)) A non-zero vector V is an element of V2 if and only if V* = £*Bug for

. . _m=2 _m—6
some non-zero spinor va in 6~ 1 /&7 1 .

Since U2 is a totally null m-dimensional vector subspace, we can now conclude
Proposition 2.6 ([HMS8]) A non-zero spinor €2 is pure if and only if it satisfies
¢4l =0. (2.9)

Applying Lemma 2.1] to Proposition 2.6] one recovers the following well-known characterisation of pure
spinors due to Cartan.

Proposition 2.7 ([CarR1]) A non-zero spinor £ is pure if and only if it satisfies

Yay..apAr B & B =0, foralp<m,p=m (mod 4),
Yap EYEP =0, when m =0 (mod 2), (2.10)
7a1...amA’B’§ lg , 7é 0.

In particular, all non-zero spinors are pure when m < 3

We shall refer to both equations (Z.9]) and (ZI0) as the purity conditions of a spinor §A/.

Proposition 27 tells us that the only non-trivial irreducible component of the tensor product §A/§B/ of
a pure spinor 4 lies in NG, In fact, the self-dual m-form ¢,, , = valmamA,B,{A/{B/ annihilates 7,
ie. falA(balaz...am = 0. In particular, it must be null (or simple or decomposable), ie

1  m-=2 _ m—6
by, = ;411 ...gfgaAlmAm e A™U2, for some e, 4 €A™ (6 T /6771 )

The next proposition generalises Proposition 27 in a certain sense.



Proposition 2.8 ([Car81]) Let o and B* be two pure spinors of opposite chirality. Then the a-plane
associated to o intersects the B-plane associated to 34 in a totally null k-plane where k = m — 1 (mod 2)
and k <m — 1 if and only if

Yaran...aparpa’ BE =0, forallp<k,p=k (mod?2),
yapa BP =0, when m=1 (mod 2), (2.11)

A’ pB
’Yalag...akA/Ba ﬂ ;A 0

Let BB and p? be any two negative pure spinors not proportional to each other. Then the B-planes
associated to BP and p? intersect in a totally null k-plane where k = m (mod 2) and k < m — 2 if and only

if
”Yalaz...apABﬂApB =0, forallp<k,p=k (mod 2),
yapBipP =0, when m =0 (mod 2), (2.12)
Yarag..arnan B PT #0.
The same result holds for any two positive pure spinors not proportional to each other.

An application of Lemma[2.1]leads to the following reformulation of Proposition 2.§ when k& = m — 1 and
k=m—2.

Proposition 2.9 Let o and B4 be two pure spinors of opposite chirality. Then the a-plane associated to
€A intersects the B-plane associated to B2 in a totally null (m — 1)-plane if and only if

a4l = —2a"'p4, (2.13)
where a4 = ”yaB,AozBl and B4 = ”yaBAIﬁB.

Let BB and p? be any two negative pure spinors not proportional to each other. Then the B-planes
associated to BB and p? intersect in a totally null (m — 2)-plane if and only if

B pE) =0, (2.14)

where 84" = ”y“BA/ﬂB and p“A/ = ”y“BA/pB.
The same result holds for any two positive pure spinors not proportional to each other.

Finally, as a direct consequence of the previous propositions, we obtain

Corollary 2.10 Let 5‘4/ be a pure spinor, and let V3 and ST be defined as in [238). Then
o Any non-zero spinor in ST isa pure Spinor.

o The B-plane associated to any non-zero spinor in S™T" intersects the a-plane U3 in a totally null
(m — 1)-plane.

o The B-planes associated to any two non-proportional non-zero spinors in S™T intersect in a totally
null (m — 2)-plane.

Proof. Let 4 and p” be a two non-zero spinors in S™T so that B4 = b2 and p? = po¢d for some b°
and p® not Uz, In particular, we can assume b%, p® to lie in a complementary subspace of 2z in 0, so that
they are null, and thus annihilate 54 and p# respectively. Assume that 84 pB! £ 0. We simply check:

o BUABE = b0y, Ay, 5 B (EAEE) + 4b B €8 4 dbgboe P = 0;



o €ABE = god (el B — 2aP ) = —2 A€

e Finally, since S™T is a vector space of pure spinors, the sum of 4 and p? is also a pure spinor, and
the result follows by polarisation, i.e. 0 = (B“A/ + p“A/) (Bf/ + pf/) = Qﬁ“(AlpaB ) i.e. the algebraic
condition ([2.I4]) is satisfied.

The result follows by Proposition 2.9 O

Remark 2.11 The last part of Corollary 210 is an articulation of a standard theorem [Che54.[BTR9] which
states that a sufficient and necessary condition for the sum of two pure spinors to be pure is that their
respective totally null m-planes intersect in a totally null (m — 2)-plane.

Splitting It is often more convenient to eliminate the quotient vector spaces in the isomorphisms (2.7))
and (Z8) in favour of splittings adapted to them. We split the filtration ([2.6) as

%Zm_%@%%, (2.15)

where %_% cCYtis complementary to U 1= U2 and is linearly isomorphic to Dins / 2. We note that
‘1]_% is a totally null m-plane dual to QI% = Y3 by virtue of U = U*. In particular, there exists a pure

spinor 714, dual to 5‘4/ such that 2U_1 annihilates 14/, ie

1
2

U_1 =kerng : ¥V — (67)", (2.16)

1
2
Conversely, any choice of spinor dual to €4 induces a splitting (ZI5) of 2.
With no loss, we normalise {4 and nas as 4y, = —2. We set
67%72 =imn,, 0 — (67)",

A

so that by Lemma 25}, any vector V¢ in U_1 takes the form V¢ = n4v# for some spinor v

&5, dual to 6 _um 2.
Finally, to make the pairing between 67%72 and & m_2 More explicit, we introduce the map

1 nGm-z =
2 4

I =05 67 - 6. (2.17)
By the Clifford property [@2I)), I is idempotent with trace 14§ = m. Thus, /3 must be the identity on

6mT72, or dually, on 67771T72.

2.3 The stabiliser of a projective pure spinor in so(2m,C) for m > 2

We now turn to the decomposition of the Lie algebra g := so(2m, C), which we shall identify with the space
A20* of 2-forms by means of gq;. We remind the reader that we assume m > 2.

Filtration The filtration (Z0) on U induces a filtration of vector subspaces

{0} =2g*°cg'cg’cgli=g (2.18)

of g, where
g! = {gbab €g: §aA§bB¢ab = 0} , gt = {(bab €g: §bA¢ba = O} . (2.19)
In fact, as can easily be checked from the definitions [2.19)), g is a filtered Lie algebra, in the sense that the
Lie bracket [,-] : g X g — g is compatible with the filtration on g, i.e. [g%, g/] C g'*/, with the convention

g = {0} for i > 2, and g' = g for all i < —1.



Proposition 2.12 The Lie subalgebra p := g° is the stabiliser of §A/, ie
R S S

Proof. From the identity ¢34¢%B¢ , = —%¢ab§D/7abp/cl”ycc/A§f, it follows that the stabiliser of ¢4 is
contained in g°, and, by rewriting qﬁabwabB/A/{B/ = ¢§Al for some ¢, and using ([29)), in fact contains g°. [J

The Lie subalgebra p is a Lie parabolic subalgebra of so(2m,C). From the Lie bracket commutation
relation of g, each vector subspace g’ is a p-module.

Splitting The splitting ZI5) of U adapted to the null structure associated to £4" endows g with the
structure of a |1]-graded Lie algebra, ie

g=0g1®g g, [9i595] C Gitj - (2.20)

where g; C g° are complementary to g**!, for each i = —1,0,1, and we set g; := {0} when |i] > 2 for
convenience. Explicitly, we have

g-1 %/\QQL%, g =Y 1Yy, 91%/\2W%-

In particular, g1 and g_; are dual to one another, and go is isomorphic to gl(m,C), the Lie algebra of
the complex general linear group GL(m,C) with standard representation U 1 If n4s is a pure spinor with

nad = — 2 so that (2I6) holds, then we can write

Pap = NaaTlopd™ " + 25{27717]13(25,43 +EMT s € g1 Dgo Do,

where A8 = ¢lAB] ¢ /\2(‘5mT72, 48 € 67%4 ®(‘5mT72, bap = ¢[AB] € /\2(‘57%72. Here, we emphasise that
spinor indices should not be raised nor lowered, i.e. 258, ¢ ap and ¢ AB are independent of each other.

By the commutation relation, g; is nilpotent. Further, since go is reductive, there is a direct sum
decomposition gg = 30 @ slp where 3¢ is the one-dimensional center of gg, and sl is the simple part of go,
which is isomorphic to sl(m, C), the Lie algebra of the complex special linear group SL(m, C). The center
30 can be seen to be spanned by the element

1
B = —&anya = —Eama + 59ab » (2.21)

with respect to which any ¢4, € sly is tracefree, i.e. E“b¢ab = 0. More generally, any ¢4, € go admits the
decomposition

Pap = Pwap + 25{3%}3@43 € go=j30Dslo,

where ¢ € C and ¢,7 € G m2®Cmais tracefree in the sense that ¢,ZI5 = 0 where we recall I§ =
¢4y p is the identity on 6% (see (ZI7)). Here, we have defined, for convenience, w,, := —2 E_, so that
wacwcb = gtl;.

The element F,; has the property §bAEb“ = %f‘“‘ and nZEb“ = —%nfg, i.e. Fgp has eigenvalues :I:% on
P 1 The action of E,;, extends by derivation to any tensor product of U and U*, and in particular E,
has eigenvalues ¢ on g; for ¢ = —1,0,1. Now, the image of E_, in the Clifford algebra C{(J, g) restricted to

m

End(61) is B = —%Eab'y“bB,A,, and has eigenvalues % on &m, and similarly for the action of Eqj, on

&~ and their duals. For these reasons, Eyy, is referred to as the grading element of g.

Parabolic Lie subgroups Moving to the level of Lie groups, we denote by P the stabiliser of the pro-
jective pure spinor [¢] in G = Spin(2m,C) so that P has Lie algebras p. More precisely, P admits a Levy
decomposition P = Gy x Py, where the image of Go in SO(2m,C) under the covering map is the complex
general Lie group GL(m, C) while Py has nilpotent Lie algebra g1. Any of the p-invariant structures, includ-
ing filtrations and associated graded vector spaces, considered in this article are also P-invariant and can be
regarded as finite representations of P. Similarly, we can view go-modules as Gy-modules.
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Associated graded vector space Associated to the filtration (ZI8) is the graded p-module gr(g) =
@D, gr,(g) where gr;(g) := g'/g't". In fact, each gr,(g) is a p-module since [g", g’] C g"t'. Each gr,(g) is
lineraly isomorphic to the go-module g; of the splitting (Z20). There is a further direct sum decomposition

gro(g) = g0 @ g6, where g0 == (g1 +30) /01, a0 := (g1 +sko) /g1,

of p-modules, where gJ = 39 and g§ = sly as vector spaces. Let us set g%, := gr,,(g) for convenience. Then
we can represent gr(g) in the form of a directed graph

a0
/ \
a? \ g%, (2.22)
g -

where the arrows are defined by the property
gg — gl — ﬁg Cor-0f 1, (2.23)

for any irreducible go-module ﬁf linearly isomorphic to gf Here the - denotes the algebraic action of g on
any g-module.
Such a description can be made explicit by defining the maps, for any ¢, € g,

A () =6 P b, Q) =& bay,  STIG(0) = 50A¢cb+%wbc/‘§cdc’¢cd. (2.24)

where €4 := 8y, 5,4 A28 — & and SU T = imé&A : A0 — &F. Then the kernels of the maps gHg
correspond to the p-submodules of g, ie '
g' +30 = {dar € 9 HTL5(0) = 0}, g' + sl = {¢ap € g : {117

0},
0° = {¢a € g: 12, (¢) = 0}, g' = {da € g: {TI5(¢) = £15(¢) = 0} .

The inclusions g' C g' + 30 C ¢° and g' C g" +5lp C g° now follow from ker JTIj C ker ¢TI2,. Passing now

to the associated graded module gr(g), we can express the irreducible p-modules g% in terms of gHz , eg.
86 = { 6w € 2" E11(9) = 0} /", o = { 0w € 0°: 1(0) = 0} /g,
and so on. The irreducibility of gg from the fact that the maps gHz are saturated with symmetries.

2.4 Generalisations

In more generality, for any arbitrary finite g-module 91, the parabolic subalgebra p induces a filtration
o= cmfcm~tc...cmHcoamF .=, (2.25)

for some k and ¢, of p-modules, with associated graded p-module gr(9M) = € gr; (M), where gr;(M) :=
M /ML on which the grading element E acts diagonalisably, with eigenvalues i. Each gr;(91) splits
as a direct sum of irreducible p-modules gr;(MM) = M? & M! & ... S MY for some ¢ depending on i, and
each sm{ is isomorphic to an irreducible go-module 93@ It is in fact easier to obtain the irreducible go-
modules of gr("M) by ‘branching’ from g to go. Using ad hoc methods, one can construct suitable bases

for the irreducible gg-modules, and check that they add up to a basis for M. In particular, one must have
dim 9 =37, - dim M = >, ; dim M.

11



We can then construct a graph on gr(91) as follows: we let the nilpotent part g of p act on each 95?1 ,
and draw an arrow sm{ — MF | for some i, j, k, whenever Sfﬁf Cgr- 93??_1. This graph allows us to identify
the p-submodules of 2 obtained by letting p act on each Sfﬁf . Such p-submodules can be expressed in terms
of kernels of maps ?‘Hi analogous to (224). From the irreducibilty of Sﬁg, each ?‘Hf must be ‘saturated’
with symmetries in the sense of [PR84]. The main application of this procedure will be found in section Hl
where we shall take 91 to be the space of some irreducible (algebraic) curvature tensors.

If 90 is a tensor, as opposed to spinor, representation, then we can view it as a g-submodule of ®” 5.
The filtration (Z6) induces a filtration of p-modules on ®” U, and thus on 90 in the obvious way: each O
in ([2:25) is a p-submodule of

Z V' @ ... @Y.
i1t Fip=j

When 9t is one of the spinor modules &, the description of the filtration of p-modules can be carried out
as follows. Define the maps

A ._ ¢B’ A A2k—1 - A’ _ ¢B’ A’ N2k +
5 _5 /Yal...a%,lB/ A T —6 ) 5 k_§ ’Yal...ang/ AT — 6 )

ap...a2k—-1 ° ay...az

for k = 1,...,m. Then, using the Clifford property (2], one can see that & admit p-invariant filtrations

6 ce"i Cc...ce " ceF=6" ,
me2 m—6 6 s when m is even,
G+ Cc6 T C...C6T T C6TT =67
m m—4 _m—6 _m=2 +
G717 C6 T C...C6TTT C67T =6 )
- - s . when m is odd,
G+ Cc6 7 C...C67T T C6 1 =6"
where we have defined 6% := (¢4) and
S T i=imed ATy e, S* T i=imed AT ST,
for k =1,...,m. Using the isomorphisms (23)), the above filtrations are also filtrations on the dual spinor
spaces (G%)*, where each of the p-modules can be identified with the kernels
ST —kerél AT (&), & —kerél AT (67)7,

fork=1,...,m,and "7 =keré4 : C (&),
A choice of splitting (ZI5)) fixes go-modules &; C &¢ such that &' = &; & and thus induces gradings

6% DG m-aD... 26 mw-asD6_m :6+
4 a 4
6m72 @Gmfﬁ @ e @6_77176 @6_77172 - 67
4 4 4 4
Gﬂ @67}174 @...@6_7?176 @6_77172 - 6+
4 1 1 1
67?172 @67}176 @...@6_7}174 @67ﬂ:67
4 4 1 4

when m is even,

when m is odd.

The grading element E of g defined by (221)) has eigenvalues %fm on 62i;m.
Finally generalising (2.8]), one has isomorphisms

m—2k 7n72k74)
)

AgE = 6% g (6— IR

AP 2 GT @G
the latter being the purity condition of Proposition 27 In particular, when k = 2, we have
9126%@)(@5*“[4/@*“4{8) 7 (67'/¢") @ 6% =& /&% .

We note that this description of &% is consistent with the identification of & with A*Yz.
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2.5 Null Grassmannians

The space of all null structures in (2, g) splits into two connected components Gr;’ (U, g) and Gr., (0, g),
which we identify with the spaces of self-dual null structures (a-planes) and anti-self-dual null structures
(B-planes) in (U, g) respectively. These spaces are conventionally referred to as null (or isotropic) Grassman-
nians. Proposition 24 tells us that Gr;\ (0, g) can be identified with the space of all projective pure positive
spinors, and must therefore be isomorphic to the homogeneous space G/ P where as before G = Spin(2m, C)
and P is the stabiliser of a projective pure positive spinor. The description of Gr, (U, g) is similar. In
particular, when m = 1,2,3, the absence of purity conditions means that each of Gr;, (%, g) is isomorphic
to the complex projective space (C]P’%m(mfl), and when m > 3, each can be realised as compact complex

subvarieties of P& of dimension 2m(m — 1) being the dimension of g_1 = g/p.

2.6 Real pure spinors

One can also consider a 2m-dimensional real vector space U equipped with a definite or indefinite non-
degenerate symmetric bilinear form g. In general, the spinor representations of (2, g) are complex vector
spaces equipped with a real or quaternionic structure. We then have a notion of pure spinor of real index
r, where r is the real dimension of the intersection of the associated totally null complex m-plane ¢ of the
complexification of (U, g) with its complex conjugate. The real index depends on the signature of g. For
instance, if g is positive definite, r is always zero: 91z and its conjugate define a Hermitian signature on
(0, ¢g). In Lorentzian signature, r is always 1, and the analogous structure is known as a Robinson structure
INT02L[Tra02,[TC14]. We refer to [KT92] for details.

More relevant to the present article, however, is the case when g has signature (m,m). Then, r = m
(mod 2) < m, the spinor representations are spanned by real pure spinors (when r = m) associated to real
totally null m-planes in . The algebraic setup of the previous sections carries over to this real setting with
no major change. The complex Lie algebra so(2m, C) is replaced by the real form so(m,m). The parabolic
Lie subalgebra stabilising a real pure spinor is a real form of the complex parabolic p, and is also described in
terms of a |1]-grading on so(m,m). The story is similar at the Lie group level, where Spin(2m, C) is replaced
by the connected identity component of the real Lie group Spin(m, m). The next two sections Bl and @l can
also be translated into this real case with no important issue.

3 Decomposition of the intrinsic torsion
As before, we assume m > 2. Let us consider the p-module
W=V (g/p) (3.1)

where, as usual, g := s0(2m,C), with standard representation U, and p the parabolic Lie subalgebra of
g stabilising a projective pure spinor [¢4]. In section [B we shall give the module 20 the geometrical
interpretation of the space of intrinsic torsions of a G-structure with structure group P.

Notation 3.1 In the table of the following proposition, ‘p-module’ and ‘go-module’ are abbreviated ‘p-mod’
and ‘go-mod’ respecitvely. We also use the notation 9t © 9’ for the Cartan product of two representations
M and M — see [Eas04]. This is the unique irreducible representation of highest dimension in the tensor
product M@ M. For gl(m, C)-modules, this is either the symmetric product @, the tracefree tensor product
®,, or a combination of both depending on 9t and 2. Finally, the algebraic action of g on any g-module
will be denoted by a dot -.

Proposition 3.2 The p-module W admits a filtration

W CW (3.2)



of p-modules on 20, where W3 := V2 @ (97'/¢°) and W2 =Yz @ (a71/a%).
The associated graded p-module

gr(2) = gr 3 (W) D gr (W) =W @ (mr% /mra) (3.3)

decomposes into a direct sum

gr 1(W) =W, aW',, gr 3(W)=w"; oW ;,
2 3 3 2 -2 2

of irreducible p-modules as described below:

p-mod go-mod Dimension p-mod go-mod Dimension

DI /\3%,% Lm(m—1)(m—2) DI T_, m

2 2

zml_% RUIERO (A%_%) sm(m? — 1) fml_% U, © (/\2‘17_%) Im(m+1)(m—2)

Further,
, . , 3 1
W] = {Tape"7€C € W' FI(T) =0, for all k # 3/ W i=—5.-5.  (34)

where
?]HO_% (F) = Fabcga[Agngccl ’
?Hig (F) = Fabcga(AgbB)gcc )

P04 (1) = €V Tyg§ P 7' P 4 €D

C B edD' b C cdD’ c
W (T L (==Y ( o P W ]) : m>3,
& -1 = . 5 . e )
2 Fapet 76 = i (5‘[1 ‘Fdeng’YbDlC] + gb[Blrbcdff:)d”ﬂl | ]) + %fbAFbcded”Ych , m=3,
where T, € Y@ g. For m = 3, we have made use of the isomorphism & = (&7)*. Notationally, the

aAB gnd Y4ap, and are skew-symmetric

primed indices are eliminated, and the y-matrices take the form ~
in their spinor indices.

Finally, the p-module gr(2) can be expressed by means of the directed graph

2

in_l %in_g
2

2 2

where the dotted arrow occurs only when m > 3. Here, an arrow from Qﬂf to ‘lﬁf_l for some i, j, k implies
that 907 C gy - W | for any choice of irreducible go-modules W and WE | isomorphic to W’ and W,
respectively, or equivalently that ker ?Hi C ker ?Hfﬁl.

Proof. Since 20 is not a g-module, one cannot strictly follow the argument of section 241 The idea is
nevertheless very similar. We first note that the filtration (2.0) on U induces the filtration [B2) of p-
submodules of 20. Now consider the associated graded p-module (33]). To make the analysis more tractable,
we can work with the grading (210 so that we have linear isomorphisms

=

gros (W) =0y @ (AP0, gy () 20y @ (AU
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between p-modules and gg-modules. That each of these gg-modules splits into irreducibles, i.e. 200 3 oW 3 =
T2 2

2
/\3m_% S3) (m_% © (/\2‘17_%)) and 20° 1 @ W' = m_% @ (‘ZT% © (/\zm_%)) respectively, is clear.
T2 T2

Let us be a bit more explicit by viewing an element of 20~ % as an element of Y~ ® (/\QGmsz), ie. of

the form T, £2P¢°C or ', &P (mod a,¢P") where Iy, = L', b lies in the g-module U © g. This means
that 902 = {T,,E05¢C € W5 [, £04€PB¢eC = 0}. To describe elements of the go-modules QVI]Z we
write

Fabcgngcc = naAFABC + é—:;‘FABC )
[ &P = (%AFABC + 5&4FABC) N8 +2 (ffFAcC + naAPACC) &, (3.5)

Vp AT apet P = TEP g o g™ + A0 + 2147,

where I‘ABC = I‘A[BC], [ABC — pABC] I‘ABC and FABC are all elements of tensor products of G -2 and
4

S_m_2 — see appendix[A1] As before, €4 and na satisfy €4 na = —1, and we recall that 1§ := ¢*P, , is
the identity map on & mo2. In particular, the irreducible go-components of an element of 2J are determined
by

2
m—1

(3.6)

L %em?,, 1,59 iy, et

Using (33) and ([B.4), it is then straightforward to check that the p-modules defined by the kernels of the
maps 11} are related to 207 as shown by ([B.4).

To obtain the diagram encoding the full p-invariance, we must also examine the action of the nilpotent
part gi of p on each of these irreducible go-modules. This can be checked by a direct computation or by
noting that ker gﬂﬂf C ker gﬂﬂi{l for suitable ¢, j and k.

Finally, extra care must be taken when m = 3 where A30 1 are one-dimensional. We can realise g; as
the pairing of %_%/EU% and /\3‘1]%: any element of gy can be written in the form ¢qp = %aabcqﬁc for some
vector ¢¢ € U_1, where eqpe € /\3%%. It then follows that g; - /\3‘1]7% cU_

have distinguished the cases m = 3 and m > 3 in the definition of the map ?]Hl_ 1. One may also use the
2

1 This also explains why we

identity
2 1
A A A
€T 4 PN = —2EPT 4y 556 PC = — oy e Doy F €T eMPC
where ¢48¢ .= %WGAB%CD ¢p is completely skew-symmetric. O

4 Decomposition of the curvature

As before, we assume m > 2. Consider the following g-modules:

g-mod Dimension Description
T (2m — 1)(m + 1) {(I)ab € R*U* . D, = q)(ab) ,q)cc = 0}
A %m(m +1)(m—-1) {Aube € @30 Agpe = Aa[bc] 7A[abc] =0,4%,. =0}

¢ %m(m +1)2m+1)2m —3) | {Cabea € R : Cupeq = O[ab][cd] 7C[abc]d =0,0%,4 = 0}
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These modules are to be interpreted as the spaces of irreducible curvature tensors of the Levi-Civita con-
nection at a point, more precisely, of the tracefree Ricci tensors, Cotton-York tensors and Weyl tensors.

We shall give p-invariant decompositions of these modules, where p is the stabiliser of a projective pure
spinor [§Al] in g. We state the results without proofs, which essentially follow from the discussion of section
24 and arguments similar to the proof of Proposition Details can be worked out using the material
contained in appendix [Al in particular, the bases for the go-modules and the multilinear maps referred to in
the following propositions. Notation 3] applies.

4.1 Decomposition of the space of the tracefree Ricci tensors

Proposition 4.1 The space § of tensors of tracefree symmetric 2-tensors admits a filtration
=% cFcid'cg'=3,
of p-modules
§ ={Pu € §: {1, (®) =0}, i=0,1,

where the maps EH? are defined in appendiz [A 2.
Further, each p-module §'/F+ is an irreducible p-module as described below:

p-mod go-mod Dimension p-mod go-mod Dimension

3 |view

1
2

4.2 Decomposition of the space of Cotton-York tensors

Proposition 4.2 The space 2 of tensors with Cotton-York symmetries admits a filtration
{O)=2AF cAT CAT CA T CAE =9,
of p-modules

A= {Agpe € A: 27 (A) =0, for all k}, i=—

NO| =
N =
N W

where the maps ?Hf are defined in appendiz [A2.
The associated graded p-module gr(2) = EBE,Q gr; (A), where gr,(A) = A /AL splits into a direct
- 2

sum

gy () =AYy, gray () =2, oAy oAy,
of trreducible p-modules as described below:
p-mod go-mod Dimension
A 5 RUISRON.ES] sm(m? —1)
213[% V.1 ©350 m
Ay | Vs ©gaa | gmlm —2)(m+1)
a2, | Wy el | dmim+2)m 1)
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Further,
A = {Agpe € A : FTF(A) = 0, for all k # j} /AT, for |i| = 1.

Finally, the p-module gr(2() can be expressed by means of the directed graph

where an arrow from QU to AF | for some i,j, k implies that QU C g1 -2A¥ | for any choice of irreducible
go-modules Qvlz and Qulf_l isomorphic to le and A¥_| respectively, or equivalently that ker?l‘lﬁ C ker ¥ ¢ I,

4.3 Decomposition of the space of Weyl tensors

Proposition 4.3 The space € of tensors with Weyl symmetries admits of a filtration
{0)=¢3celcelce’celce?.=¢, (4.1)
of p-modules
¢ ={Cec: ¢ ,(C)=0, foral k}, i=-1,0,1,2,

where the maps gﬂf are defined in appendiz [A2
The associated graded p-module gr(€) = @?:72 gr;(€), where gr;(€) := €' /&1 splits into a direct sum

gris(€) = ¢y, gri(€) = €L 9y, gro(€) = & & & @ &5,
of trreducible p-modules as described below:
p-mod | go-mod Dimension
p-mod | go-mod Dimension 5
¢ 30 © 30 1
€l | 941 @ g1 | ymi(m? —1) ’
; . Q(l) 5lp @ 30 m? —1
€i1 g+1 © 30 Em(m — 1) 9 1
1 9/ 9 [ g1@©g-1 | gm*(m+1)(m —3)
¢l | gr1 @5l zm*(m? —4)
e | slh@sly | Tm*(m—1)(m+3)

with the proviso that €% does not occur when m = 3. Further

¢l ={C e {IFC) =0, for all k # j}/C, for |i] < 1.
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Finally, the p-module gr(€) can be expressed by means of the directed graph

where an arrow from Cg to €F | for some i,j, k implies that éf C g1 - éf_l for any choice of irreducible
go-modules éf and éf_l isomorphic to & and €¥_| respectively, or equivalently that kergﬂg - kergﬂf_l.

5 Differential geometry of pure spinor fields

Throughout this section, (M, ¢) will denote an n-dimensional complex Riemannian manifold, where n = 2m,
i.e. a complex manifold M equipped with a global non-degenerate holomorphic section gq;, of ©2T* M, where
T* M is the holomorphic cotangent bundle of M. We also assume that (M, g) is equipped with a global
holomorphic volume element and a spin structure. These data are equivalent to a holomorphic reduction of
the structure group of the frame bundle FM of M to G := Spin(2m, C), with the Lie algebra g. Holomorphic
vector bundles over M can be constructed in terms of finite representations of G or g in the standard way
mm For instance, if U is the standard representation of G, then the holomorphic tangent bundle
is simply TM := FM xg U, and holomorphic sections of TM can be viewed as equivariant holomorphic
functions on FM taking values in 2. Similarly, the spinor bundle, the chiral positive and negative spinor
bundles, S, ST and S~ arise from the spinor representations &, & and &~ of section [ respectively.

The unique torsion-free metric-compatible holomorphic Levi-Civita connection and its associated covari-
ant derivative on M will both be denoted by V,. Recall that for any other metric-compatible holomorphic
connection Jd,, the difference between V, and J, is given by

VaVl=0,VP 4+ T, 0 ve, (5.1)

for any holomorphic vector field V¢, for some holomorphic tensor field T'spe = T'4p- For instance, if
0, preserves an orthonormal frame, then I'yp. can be identified with the components of the Levi-Civita
connection 1-form in that frame. The torsion of 9, equals 2 F[ab]c. The Riemann tensor of V, is given by

2V, Vy Ve =Ry, Ve,
for any holomorphic vector field V', and satisfies the Bianchi identity
V[a Rbc]de =0. (52)

The Riemann tensor splits into O(2m, C)-irreducible components as

4 2
Rapea = Cape ——=Pe|a ———Rgcla . 5.3
bed bd+n_2 [e]] gb]|d]+n(n_1) Gela I b)d (5.3)
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where C,_,; is the Weyl tensor, ®,, the tracefree part of the Ricci tensor R, := R,,°, and R := R,* the
Ricci scalar. For m > 2, this decomposition is also SO(2m, C)- and G-irreducible. When m = 2, the Weyl
tensor splits into a self-dual part and an anti-self-dual part, each SL(2, C)-irreducible.

Sections of ST and S~ will be denoted in the obvious way by means of the abstract index notation of
section 2 eg by §A/ and ¢4 and similarly for their dual. The spin connection on S, St and S~ can be
constructed canonically as a lift of the Levi-Civita connection, and will also be denoted V,. It has the

property of preserving the Clifford module structure of S in the sense that
Va(VPa %6Y) = (VaV )™ + Vo0 PV et

for any holomorphic vector field V' and positive spinor field &£ A" and similarly for the other spinor bundles.
Lifting any other metric-compatible holomorphic connection 9, to S, we have, with reference to ([&.1l),

’ ’ 1 ’ ’
Vaé.A = 8a§A - ZrabcﬁybCB’A gB ) (54)

for any holomorphic spinor field & A’ Finally, the curvature of the spin connection is given by
’ 1 ’ ’
2 V[a Vb]gA = _ZRabcd’YCdB/A gB ’
for any holomorphic spinor field §A/, and similarly for spinors of other types.

Notation 5.1 As in sections 2 [ and [3] we shall use the short-hand notation

/

A ._ ¢B A A" _ +B A — B’ — B’
ga _g YaB' s gab _g YabB’ ) Naa = Yaa B> Naba’ = YabAr "B »

! B, A A B A
Ca = C YaB ) Cab = C YabB s
and so on, for spinors 5‘4/, nar, CA.

Assumptions 5.2 Throughout this section, we shall assume that our tensor and spinor fields depend holo-
morphically on M, and I'(-) will denote the space of holomorphic sections of a holomorphic fiber bundle.
The reader will sometimes be reminded of this assumption for clarity. The application of this work to real
pseudo-Riemannian manifolds is given in section 5.3

Further, unless otherwise stated, we shall assume m > 2 for definiteness, although many of the results
here specialise to the case m = 2 too. Appendix [B.I] contains a brief review of this case.

Finally, let us emphasize that our results will be essentially local.

5.1 Projective pure spinor fields

We first make the following definition.

Definition 5.3 An almost null structure N on (M, g) is a rank-m distribution that is totally null, i.e.
g(v,w) = 0 for all sections v, w of N'. An almost null structure is (anti-)self-dual if it is annihilated by an
(anti-)self-dual m-form.

A self-dual, respectively, anti-self-dual, almost null structure will also be referred to as an a-plane, respec-
tively, S-plane, distribution. We shall denote the bundle of all self-dual, respectively, anti-self-dual, almost
null structures on (M, g) by Gr; (T M, g), respectively Gr,, (TM, g). These bundles have fibers isomorphic
to the im(m — 1)-dimensional family Gr;\,(T,M, g) of a-planes, respectively Gr,, (T, M, g) of 3-planes, in
T,M at any point p.

The existence of an almost null structure does not require a spin structure. But the latter allows us to
identify almost null structures with pure spinor fields up to scale, i.e. spinor fields satisfying condition (Z.9))
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or (ZI0) at every point. For, by Proposition[Z4] a totally null m-dimensional vector subspace of the tangent
space at a point can be identified with a pure spinor up to scale. Thus, we shall also identify the bundles
Gri(TM, ¢) with the bundles of projective pure spinors of either chirality.

Now, let [{A,] be a holomorphic projective pure spinor field, i.e. a holomorphic section of Gr; (T M, g),
and denote by N¢ its associated almost null structure, which can also be assumed to be holomorphic. Then
the structure group of FM is reduced to the stabiliser P of [¢4'] as described in section B and we obtain
filtrations of vector bundles, together with their associated graded vector bundles, constructed from finite
representations of P or its Lie algebra p. For instance, the filtration p-modules {€?} on the space € of tensors
with Weyl symmetries gives rise to a filtration of vector subbundles C* over M, where C* := FM x p €', and
so does the story go for the associated graded p-modules gr,(€), its irreducible modules €/ and the graded
go-modules ¢; in the obvious way and notation . We shall then recycle the notation of sections Bl
and @] and appendix [Alin this curved setting as the need arises. We shall characterise the (local) algebraic
degeneracy of curvature tensors with respect to [SA/] by means of the maps gHg, ?Hf and gl‘[i

5.1.1 Intrinsic torsion

Having singled out a holomorphic projective pure spinor field [§A/] on M, it remains to characterise the
various degrees of ‘integrability’ of the P-structure it defines. Following [Sal89], the P-structure being inte-
grable to first order, i.e. there exists a torsion-free connection compatible with the P-structure, is essentially
equivalent to [{A/] being parallel with respect to the Levi-Civita connection V, ie

Val¢*] =0, ie Vat” =a, (5.5)
for some 1-form «,. Equation (53) can be more conveniently expressed as
(V,£08)eC =0, or equivalently, (v, 8¢l =0. (5.6)

which is also equivalent to the Levi-Civita connection being p-valued.
The obstruction to (56) is known as the intrinsic torsion or structure function of the P-structure defined
by [€4'] [Che53Ber60,[Salg9). Measuring the extent to which (5.0) fails can be achieved by characterising

m—2
Y

(V,EP)eC € w2 0A26™ (5.7)

as an element of a p-submodule of W =V ® (g/p). Here, we have made use of the fact that the connection
1-form is g-valued, and the pair of skew-symmetric spinor indices of (5.7) projects out the part of g not in
p. This can be made more explicit by choosing a connection J, that preserves [¢'] so that (5.4) becomes

’ 1 ’ ’ ’

A A A
vaé = _Zrabcfych/ §B (mOd aaé ) (58)
In fact, with no loss of generality, we could choose 0, to preserve a chosen §A/. This makes contact with
the description of elements of 20 given in section Bl The expression (5.8]) allows us to express the algebraic
characterisation of the intrinsic torsion of the P-structure of Proposition B2 in terms of (&.7). This yields

the next proposition, and we leave the details of the proof the reader.

Proposition 5.4 Let [§AI] be a holomorphic projective pure spinor field on (M, g), and let T 4. £PBEC € 20
be its associated intrinsic torsion. Then, pointwise,

° ?HQQ(F) =0 if and only if
> 2
(1 v,eP)e " = 0; (5.9)
° ?Hig(F) =0 if and only if
> 2

(" AV, P =0, (5.10)
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° ?Ho_l(l") =0 if and only if
> 2

eV, — B eA = 0; (5.11)

o ?H{%(F) =0 if and only if
(V) + —— (P08 + 8P, =0, w3 (512)
(V)5 + (P9, 4 €8 9,60 - 2 (Ve P =0, m=3;  (5.13)

*

where we have made use of the isomorphism &1 = (&~ )* when m = 3.

All of these statements are independent of the scaling of {A,.

Remark 5.5 For the case m = 3, we refer to appendix [B:2] where conditions (£.9), (510), (5.11) and (G13)
are given as conditions (B.I0Q), (B11), (B12) and (BI3).

5.1.2 Geometric properties
Definition 5.6 An almost null structure AV is said to be totally geodetic if VxY € T'(N) for all X, Y € T(N).

Clearly, if NV is totally geodetic, it is integrable as a distribution, i.e. [[(N),['(NV)] € T'(N). By the
Frobenius theorem, N is locally tangent to a foliation by m-dimensional complex submanifolds of M, each
of which is a totally geodetic and totally null. In fact, the converse is also true [TCI2].

Lemma 5.7 An almost null structure is integrable as a distribution if and only if it is totally geodetic.

We shall henceforth also refer to an integrable almost null structure as a totally geodetic null structure.

Proposition 5.8 (J[HMS88|) Let N¢ be an almost null structure with associated projective pure spinor field
[€2] on (M, g). Then N is totally geodetic if and only if [€2] satisfies

€4V, 8Pl =0, or equivalently, (§“AVQ§[B/)§C/] =0. (5.14)

Proof. Using the decomposition ([B.35) together with (58], we find (£24V,£°8)¢C = T 4B for some functions

ABC that we can identify with the components of the Levi-Civita connection with respect to a basis for N.

But N being totally geodetic is equivalent to g,, XY °V Z? = 0, for all X, Y Z® as shown in [TC12].

Hence the result. g
Equation (.I4) also appears (in a slightly different form) in [LM89] in the almost Hermitian setting.

Definition 5.9 We shall refer to a projective pure spinor field [¢4'] satisfying (514) as geodetic.

Conformal invariance With reference to appendix [C] one can prove

Proposition 5.10 Conditions (59), (I0) and @I2) are conformally invariant.
Suppose further that [¢4'] satisfies (512) and

AV, — BV e = —(m - 1)¢2 BV, f (5.15)

for some holomorphic function f. Then there exists a holomorphic conformal rescaling of the metric such
that [€4] is parallel, i.e. it satisfies (5.0).
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Curvature conditions

Proposition 5.11 ([HMSS,TCIITCI2]) Let €4 be a geodetic pure spinor on (M,g), i.e. &Y satisfies
(I, i.e. its associated almost null structure N is totally geodetic (or equivalently, integrable). Then

§AEPECEIP Capeq =0, ie 11°,(C) = 0. (5.16)

Proof. We first note that (514) can be rewritten as £*4V,£8" = aA¢B for some o, Differentiating it along
N yields

ACYBfC + é-aAé-vaavbé-C _ (é-aAvaaB)é-C + aAanc )
Commuting the derivatives leads to

1 / /
~ 1 Raveat € P = 2(£°1 V0P (5.17)
which is equivalent to £*4¢PB¢C¢dP R, g = 0. The decomposition of the Riemann tensor together with the
purity condition concludes the proof. g

Closing this section, we give the integrability condition for the existence of a parallel projective pure
spinor.

Proposition 5.12 Let [fA/] be a parallel projective pure spinor on (M, g), i.e. fA/ satisfies (B.0). Then

gaAgbBRabcd =0, (5.18)
£14¢8d,, =0, ie 2, (@) =0 (5.19)
gHAhBeCo =0, ie M, (C) =L, (C) =0 (5.20)
and in addition, when m > 3,
fII5(C) =0. (5.21)
Further,
R=0 — SIC) =0 (ie €Oy = 0,)
and in addition, when m > 2,
SY(@) =0 (ie &4 =0) = fI5(C) = 0.

Proof. Taking a covariant derivative of equation (5.H) and commuting the derivatives yield

’

1 c ’ /
_4Rabcd’7 dB’A 5 =2 (v[aab])gA )

which is equivalent to equation (5I8). Contracting equation (BI8) with 725 yields the condition (GI9)
on the Ricei tensor. Conditions (520 and (521)) are obtained from the decomposition (E3). We find

o 2
3 Aca[bc]dde =— f[f‘bc]dfdm + beﬁD

(1)

—2
Dy, + 2 ﬁ

gaecl C

wedbE RePe”,

£ Cypgg €97 = 22 R&%F’ :
n—
and the remaining statements follow immediately from the formulae for QH%, eI, QHO of appendix O

Remark 5.13 The purity condition is crucial in deducing conditions (5:20) and (521)) on the Weyl tensor. A
study of pseudo-Riemannian manifolds admitting more general recurrent spinors was carried out in [Gall3].
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5.2 Spinorial differential equations

So far we have only considered spinorial differential equations on projective pure spinor fields, i.e. differential
equations that are invariant under rescalings of ¢4, In this section, we study spinorial differential equations
on pure spinors of fixed scales emphasing their relations to the intrinsic torsion of their associated P-
structures.

5.2.1 Scale-dependent geodetic spinors
A scale-dependent variation of the geodetic spinor equation (5.14]) is given by

€4V, =0, (5.22)

on a holomorphic pure spinor field ¢4, Since £*BV, (Q_lﬁAl) =02 (ganagA’), equation (22)) is

clearly conformally invariant if and only if the spinor field & A" has conformal weight —1. Accordingly, the
integrability condition for (£.22]) is expected to be conformally invariant. Indeed, a variation of the proof of
Proposition 51T with a, = 0 leads to

Proposition 5.14 Let ¢4 be a holomorphic pure spinor field satisfying E22). Then gH‘ll(C’) =0, ie.
CabcdgaAgbB§CdC/ =0.

5.2.2 Parallel pure spinors

The integrability condition for the existence of a parallel spinor §A/ is clearly that it annihilates the Riemann
tensor, i.e. RabchCdB/A ¢B" = 0. The assumption that £ is pure allows us to derive more information. To

prove the next proposition, set a, = 0 in the proof of Proposition (.12

Proposition 5.15 Let ¢4 be a parallel pure spinor on (M, g), i.e. €& satisfies

VP =0. (5.23)
Then
Rapeat™™ =0,
Sd(@) =0, ie D" =0,
R=0,
f19(0) =0, ie Capeal®P = 0.

5.2.3 Null zero-rest-mass fields

Conditions weaker than (523]) can be obtained by decomposing the covariant derivative of a spinor field into
two irreducible parts under Spin(2m, C). The smaller of these is known as the (Weyl-)Dirac equation

V0PV =0, (5.24)

on a holomorphic spinor field §A/. It admits a generalisation to irreducible symmetric spinor fields of higher

. . ’AT ’ ’oAt ’ . . Y ’ . .
valence, i.e. spinor field<d P14z Ay = (A1 A2 AL) gatisfying Yy By A CpA1 45 Ay = 0, which is known as
1 2

the zero-rest-mass (zrm) field equation [HMSS|,

a

V4 PV ag 1AM = 0. (5.25)

2From a representational theoretic viewpoint, ¢A,1AI2“'A;c lies in the k-fold Cartan product of 7.
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The case k = 2 corresponds to a closed, and thus coclosed, self-dual m-form. Equation (5.25]) is conformally
invariant provided that its solutions ¢41424% are of conformal weight —m — k 4 1. For k > 2, there is a
strong integrability condition on ¢#142-4x given by the following lemma.

Lemma 5.16 For k > 2, let 1424k be a solution of the zrm field equation [B25) on (M,g). Then
d c! ’ ’ 1y
Yio; 4y P Copea? 'y G §C-CIAD =0
Proof. We compute
A b B ’ ’ ’
0= 2/}/(101[ ol o ]VaVb¢Clc2"'ck

1 A b B ed Cp oy onp k=2 A b B cd (Cs ,Ch...CL)CLCLD!
= =57V ey Ravea? pr T = = 0 " ey Raea? PO R
b o[A B) cy..cip k=2 A b B cd (C3 ,Ch...CL)CLCLD"
= 0.y cg[ Vo ]¢ e _T'Yaci Yoy Capea¥ pr 201 WD,
The first term must vanish by symmetry consideration, which concludes the proof. O

A holomorphic irreducible symmetric spinor as above is said to be null if it takes the form

AL ALLLA, Al AL Al
¢12 k:ed"g 152_'_§k,

for some holomorphic function ¢ and holomorphic pure spinor field §A/. In this case, the integrability
condition for the existence of a solution of equation ([B.23]) is given by the following

Corollary 5.17 Fork > 2, suppose that ¢A’1A’2.,.A;€ = engllgA; .. .SA;C is a solution of the zrm field equation

BE23) on (M, g). Then
() =0, € AP Cpeg 6™ = 0. (5.26)

The relation between pure solutions to the zrm field equation and geodetic spinors was first established by
Robinson [Rob61] in four dimensions in his study of electromagnetism. It was later generalised by Hughston
and Mason [HMSS] to even dimensions.

Theorem 5.18 ([Rob61HMSR]) Let €4 be a holomorphic pure spinor field on (M, g) with almost null
structure Ne.

Let 1 be a holomorphic function and suppose that qSAll"'A;c = ewallfA/2 ...§A;c satisfies the zrm field
equation 28). Then €4 locally satisfies (14, i.e. 4 is geodetic, i.e. Ne is totally geodetic.

Conversely, suppose that §A/ is geodetic, i.e. Ng is totally geodetic. Then locally there exists a holomorphic
function 1 such that gbA/B/ = englfB/ satisfies the zrm field equation ([B.23). Suppose further that §A/
satisfies ([B.28). Then locally, for every k > 2, there exists a holomorphic function v such that ¢A/1"'A;c =
ewallfA/2 ...§A§€ satisfies the zrm field equation [(B28)). In both cases, there is the freedom of adding to ¢ a
holomorphic function constant along the leaves of Ne.

5.2.4 Conformal Killing spinors

The larger irreducible part of the covariant derivative of a spinor field leads to the twistor equation

’ 1 ’
A A’ +B
Val® + ﬁ”YaB " =0, (5.27)
on a holomorphic spinor field fA/ — here, (5.27)) determines (? = %7“ Y VafA/. We shall refer to a solution
of (BE27) as a conformal Killing spinor or twistor spinor. It is well-known that the twistor equation is
overdetermined, and for this reason, it is often more convenient to consider its prolongation [PRS6,BJI0]

1 /
vaCB + ﬁPab’YbA/BgA = 07 (528)
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L(I)ab_R

2—n

where Py, := Jab is the Rho or Schouten tensor (see appendix [C]). We immediately deduce

1
2n(n—1)
o
2v/2(n — 1)

Equations (5.27) and (528) are conformally invariant, provided that under a conformal change of metric
Gab = Q2gap for some non-vanishing holomorphic function €2, ¢4 and ¢4 transform as

VA = — ReY (5.29)

A PA A A A _o-1(a L L ocan
& =& =80, C= =0 (C +\/§Ta§ ) (5.30)

The equivalence class of pairs of spinors (fA/,CA) ~ (éA/,fA) is a section of what is known as the local
twistor bundle [PR8G] or spin tractor bundle [HS11]. Such a pair of spinors will be referred to as a tractor
spinor. This bundle arises from a chiral spinor representation for Spin(2m + 2, C).

We shall mostly be concerned with the case where the conformal Killing spinor fA/ is pure. We note
that the purity of fA/ does not in general entail the purity of ¢4 in dimensions greater than six. For future
reference, we record the integrability condition for a pure conformal Killing spinor.

Proposition 5.19 Let €4 be a pure conformal Killing spinor on (M, g) with (B = ﬂ”yaA,BVafAl. Then

n

Capea®P =0, ie () = o0, (5.31)
Cabcd CCdC - 2\/§Acabgcc = 07 (532)
A& 4P =0, A0, (4)=0. (5.33)

Here Agpe := 2V Py, is the Cotton-York tensor (see appendiz[C).

Proof. The LHS of (531) and (B32) are the usual integrability conditions for a (not necessarily pure)
conformal Killing spinor (see eg [BJ10]), and the RHS of (53] is simply the interpretation in the case when

¢4 is pure. Condition (5.33) follows from (5.31) and (5.32). O
In four dimensions, a conformal Killing spinor is always geodetic [Pen67,[PR8G|, but it is not so in general

in higher dimensions. We can nevertheless give necessary and sufficient conditions for this to happen.

Proposition 5.20 Let fA/ be a pure conformal Killing spinor on (M, g) with almost null structure Ne. Set
(B = ?VQA,BV(I{A,. Then §A/ satisfies
A GI0
Further, {A/ is geodetic, i.e. N is totally geodetic, if and only if
¢ =0, B = 207", (5.34)

i.e. ¢4, if non-zero, is pure, and its almost null structure N intersects Ne in a totally null (m —1)-plane at
any point.
Suppose that €4 is geodetic so that (4 satisfies conditions (G.34). Then (4 satisfies

(cvac®) ¢ = 0. (5.35)

Proof. From the twistor equation (5.27) and assuming &4 to be pure, we compute
1
V2

1
V2

(gaAvagbB) gbc — _ gaACaD’,_YbD/ngc _ gaAcﬁgbC )

25



This expression is skew in BC' and AB, which proves the first claim.
To prove the second statement, we consider the contraction of equation ([5.27) with £27, ie

’ 1 ’
aB A aB A
VA = _gaBeA 5.36
£ 3 \/55 G (5.36)
Let us work at a point, and in line with the notation of section @ set &% := <§A,>, G = im &4,
6" = iméA and 65" := im &, Generically, both sides of (5.30) lie in ™5° ® ™4, which contains

m—2

S™ ® &*. In fact, both sides of (536) will lie in ™7 ® &% if and only if €24V, 8" = BAB’ for some
B4 in S™T if and only if §A/ is geodetic. In sum, the conformal Killing spinor §A/ is geodetic if and only if

1
V2

The ‘if’ part of the statement is immediate already from (536, so we focus on the ‘only if” part.

BAEE = — —_gaBcA (5.37)

We know that generically, ¢4 lies in &7, which contains &“T-. One way to see this is to use E4)
where 9, is so chosen as to preserve ¢4 . Then
1

<—A _ _m (Fabcé-abCA + 2Faab§bA) c 6’";

Since the LHS of (5:37) is in 6™7° ® &%, so must be the RHS. This tells us that (4 must be proportional to

B4 and lie in ™7 too[ By Corollary 20, we conclude that ¢4 satisfies (E34) as claimed. The geometric
interpretation is given by Proposition 2.9
Finally, if ¢4 is geodetic, then ¢4 satisfies (5.34) by the above argument, and a computation leads to

(VaCbB/) <= 2. \/Li P o8B €€ from which (5:35) can be deduced. 0

6

Remark 5.21 The statements of Proposition are conformally invariant. In fact, it is straightforward
to check that conditions (534 are invariant under the transformation (G.30).

Further, the conditions that §A/ be pure and ¢# satisfy (5.34) is equivalent to the corresponding tractor
spinor (5‘4/,(‘4) being a pure section of the local twistor bundle, i.e. it is a pure spinor for Spin(2m + 2, C)

as stated in [HMS8S] — for a proof, see [TCTH).

Remark 5.22 Clearly, if ¢ = 0 in Proposition [5:20, then ¢ is parallel and AN is thus integrable. One can
show ﬂm that if £ is a geodetic pure conformal Killing spinor then there exists a conformal rescaling
such that & is parallel.

The next result is a refinement of Proposition [(.20in the case m = 3. A proof is given in appendix [B.2l

Proposition 5.23 Let {4 be a conformal Killing spinor on (M, g) where M has dimension siz. Then £

satisfies condition (BI13) (or (BI3)), and thus condition (BI0) (or (BII)).

Example 5.24 It is shown in how one can associate to a generic 3-plane distribution A on a six-
dimensional manifold M a conformal structure [g]. By generic, we mean that A is maximally non-integrable,
ie. T(N) + [['(WV),T'(NV)] = T(TM). The authors of [HSI1] later characterised (M, [g]) in terms of a tractor
spinor (€£4,¢4) which is generic in the sense that (€4,¢?4) satisfy the non-degeneracy condition £4¢4 # 0,
ie. (€4,¢1) is an ‘impure’ tractor spinor for the group Spin(4,4). In this case, the conformal holonomy of
(M, [g]) being reduced to (a subgroup of) Spin(3,4). This example clearly works in the category of complex
Riemannian manifold — see section (.3l Note that in this case, the intrinsic torsion of the P-structure
defined by [€4] is not generic since (5.10) is satisfied.

3This can also be computed by applying Cartan’s criterion (ZII) of Proposition 28 to (531) with &k = m —1 and oA = §A,.
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5.2.5 Relation to the Goldberg-Sachs theorem in higher dimensions

The Goldberg-Sachs theorem [GSQ09] is a classical theorem of general relativity, which, in the context of the
present paper, can be interpreted in the following terms [GHNI0LTCT2].

Theorem 5.25 Let (M, g) be a four-dimensional non-conformally flat spin complex Riemannian manifold
satisfying the Einstein equations Rap, = Agap for some constant \. Let [€4'] is a holomorphic projective pure
spinor, then locally

Coapeaf®ePBecC =0 — (€4 is geodetic. (5.38)

One can show that the condition on the Weyl tensor really restricts to its self-dual part — see appendix [B.1l
There are other versions of the theorem, all of which are reviewed in [GHNI0]. A conformally invariant
version [KT62,[RS63,[PR86G] motivated the author’s partial generalisation, which we present in truncated
form in the language of pure spinors.

Theorem 5.26 ([TC12]) Assume m > 2. Let [¢2'] be a holomorphic projective pure spinor field on a 2m-
dimensional spin complex Riemannian manifold (M, g) with associated almost null structure Ne¢. Suppose
that the Weyl tensor and the Cotton-York tensor satisfy the algebraic degeneracy conditions

§1°,(C) = £, (C) =0, e Capeal®ePBecC =0,
0 (5.39)

fM0L(A) =0, e AggMEPEC =0,

Suppose further that the Weyl tensor is otherwise generic. Then locally, [5‘4/] is geodetic, i.e. N is totally
geodetic (or equivalently, integrable).

When m = 2, Theorem agrees with parts of the generalisation [KT62L[RS63,[PR86]. If (M,g) is
assumed to be Einstein, one can dispense of the genericity assumption and recover the (=) part of (538).

However, when m > 2, even if we assume that (M, g) is Einstein, the proof of Theorem does not
account for all the possible degeneracies of Cypeq and must depend on the genericity of Cypeq. In fact,
Proposition invalidates the (=) part of (538): generically, a pure conformal Killing spinor ¢4’ is not
geodetic, but satisfies (E10). On the other hand, by Proposition 519, conditions (.39]) are satisfied ezcept
for the genericity assumption, since gH(l)(C) = 0. This is independent of whether (M, g) is Einstein or not,

and in fact, with reference to Example [5.24] Einstein solutions where £4” is non-geodetic exist in dimension
six [HS11]. This suggests the following conjecture improving Theorem (B.26]).

Conjecture 5.27 Suppose that [§AI] s a projective pure spinor field on a 2m-dimensional non-conformally
flat Einstein spin complex Riemannian manifold such that the Weyl tensor satisfies Capeal®€PBEC = 0.
Then €4 satisfies

(e7Avae™) & = 0. ()

When m = 2, this conjecture does agree with the (=) part of (E38]). Variants involving the Cotton-York
tensor and weaker conditions on the Weyl tensor such as Cypeq®A€PB€°9C" = 0 may also be possible.

5.3 Application to real pseudo-Riemannian manifolds

Let (M’,g’') be a spin oriented 2m-dimensional real pseudo-Riemannian manifold where ¢’ has signature
(p,q) with p + ¢ = 2m — we assume that (M’,¢’) is also time-oriented when pg # 0. We then have a
reduction of the structure group of the frame bundle FM’ of M’ to Sping(p, ¢), the two-fold covering of the
identity component SOg(p, ¢) of SO(p, q).

With reference to section [2.6] we define an almost null structure on (M’, ¢’) to be a totally null complex
m-plane distribution N ¢ TCM’. Here TEM’ = C® T,M’', and N, is totally null with respect to the
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complexification of 91/0 at any point p. A pure spinor field £ up to scale determines an almost null structure
N, and any almost null structure arises in this way. The complex conjugation on 'I:CM’ that fixes ¢’ sends
N to its complex conjugate N, &> which we can associate to the conjugate spinor £ of {. We shall assume

that the real index r : M" — Zxo : p = 1, := dim(Ne), N (Ng), of € is constant on M. The structure
group of FM’ is reduced to the stabiliser of both [¢] and [¢] in Spiny(p, q) at any point. One can then study
the geometric properties of the resulting G-structure on the basis of the algebraic properties of its intrinsinc
torsion. A notable example is when r = 0 and g is positive definite signature, so that (N, N ¢) define an
almost Hermitian structure [GHS0,[TVSIL[FFS94].

Alternatively, if (M’,g") is real-analytic, then we can complexify M’ to a complex manifold M, and
extend ¢’ analytically to a holomorphic metric g on M. Similar extensions apply to any real-analytic
structure on (M, ¢’) such as spin structures and almost null structures [WB59,[Woo77|[Eas84]. We then
have a complex Riemannian manifold (M, g) just as before except that it is endowed with an additional
complex conjugation that fixes the real slice M’. In particular, TM|,,, = TCM’, and any real-analytic
conjugate pair of complex almost null structures (Ng, N ¢) extends to two independent holomorphic almost

null structures (./\/5,./\/5), say, on (M, g). In practice, it is enough to consider only one of these, and apply the
machinery of the present paper to it. The real geometry can then be recovered by applying reality conditions
on the tensor and spinor fields on restriction to the real slice M’.

Finally, if (M’,g’) is smooth, then we cannot in general complexify (M’, g') to a complex Riemannian
manifold (M, g). This is particularly problematic for almost null structures with r # 0, m, notably in relation
with the existence of local ‘complex’ foliations on (M’, ¢’), the difficulty being in applying the Frobenius
theorem to a formally integrable, i.e. involutive, smooth complex distribution. For instance, Theorem (.18
will not work in general — see [Taf85] when m = 2, r = 1. Some of these issues are explained in [NT02[Tra02]
for the case r = 1. The reader should be warned of any pitfalls regarding the use of the results of the present
paper in the smooth category.

We can however distinguish the two special cases:

1. When r = 0, ¢’ must have signature (2k, 2¢), and NV and N ¢ can be identify with the +i-eigenbundles
of an almost complex structure J compatible with ¢’, i.e. an endomorphism J of TM’ such that
J? = —Id and go J = —J o g. The Newlander-Niremberg theorem [NN57] tells us that even if (M’, ¢’)
is smooth, the formal integrability of Ne (ie the vanishing of the Nijenhuis tensor of J) is equivalent
to its integrability.

2. When r = m, ¢’ must have signature (m,m), and there is a real span of N¢ where £ can be taken
to be a real pure spinor. The stabiliser P’ of [£] in Sping(m,m) is parabolic, and Ng thus defines a
smooth P’-structure on (M’, ¢’). The representation theory of P’ works in the same way as its complex
counterpart. In fact, the spinor representations are the real spans of pure spinors, and all the vector
bundles considered are real and smooth. In this case, we can reformulate all the results of section
in the smooth real category: M is a spin oriented and time-oriented 2m-dimensional smooth manifold
equipped with a smooth metric g of signature (m, m) with Levi-Civita connection V, and we can safely
substitute the word ‘smooth’ for ‘holomorphic’. In particular, the Frobenius theorem applies to prove
Theorem B.18

Acknowlegments The author wishes to thank Jan Slovdk (Masaryk), Lionel Mason (Oxford), Thomas
Leistner (Adelaide) and Dennis The (Australian National University) for their hospitality and helpful discus-
sions, and the organisers of the workshop ‘The interaction of geometry and representation theory. Exploring
new frontiers’ at the Erwin Schrédinger Institute, Vienna in September 10-14, 2012, where parts of this
work were carried out. Finally, he is particularly grateful to Michael Eastwood (Adelaide, ANU) and the
anonymous referee for making useful suggestions to improve this article.

This work was funded by a SoMoPro (South Moravian Programme) Fellowship: it has received a financial
contribution from the European Union within the Seventh Framework Programme (FP/2007-2013) under
Grant Agreement No. 229603, and is also co-financed by the South Moravian Region.

28



Revision of this paper was carried out while the author was on an Eduard Cech Institute postdoctoral
fellowship GPB201/12/G028, and a GACR (Czech Science Foundation) post-doctoral grant GP14-27885P.

A Spinorial description of curvature tensors

Throughout the appendix, U will denote a 2m-dimensional complex vector space equipped with a non-
degenerate symmetric bilinear form g¢q, and a pure spinor £ as in section @ to which the reader should
refer for the notation.

A.1 Elements of the gy-submodules of §, 2 and ¢

Let us fix a pure spinor 74/ such that €45, = —2. Then we have a splitting (2I5) of U where Uy = ker gal

and ‘U _ 1= kerng and & moz = im & and &_ moz = imn4 are go-modules. This splitting induces a splitting
of any g-submodule 90 of ®* into go-submodules. We can then use £*4 and n% to project from 9 to any
of its go-submodules, and dually, to inject any of its gg-submodules into 9. In effect, we convert spinorial
quantities to tensorial ones, and vice versa. In fact, we can think of {§“A, n%} as a basis for U1 @ Y_1, and
these induce bases of gg-modules. The components of an element of 91 in this basis can then be interpreted
as a spinor. For instance, a spinor

- DFel ne2®.. 96 n20Cmn2Q...0 Sm-2,
A..C 1 4 4

- 1

will be sent to the tensor

gcdef ::5“‘4...{ccn%...n{,aA__cD'”F6%@...@%@‘5@...@%.

If the go-module is irreducible, then its elements (ie their indices) will be saturated with symmetries. This
clearly applies to g-modules too. In the following any spinor will be referred as (totally) tracefree if the
contraction of any pair of indices with the identity element I§ := n4¢8 (see definition ([2.17)) vanishes, eg
0,814 = 0. On the other hand, the image of I§ in A2 will be denoted by the 2-form wgy, := 25[‘2%}14.

We apply this procedure to the irreducible go-modules §; ilf , Qvﬁf with reference to Propositions E]
of section [l

The tracefree Ricci tensor Let ®,, € §. Then

e &, € Fp if and only if ®,p = 2{{(‘1%)3@143 for some tracefree fIJAB;

e &, € F; if and only if &, = 5{1455(1),43 for some ®4p = ®(4p), and similarly for 1 = (F1)* by
substituting 7, for §A/, and changing the index structure appropriately.

The Cotton-York tensor Let Ay € 2A. Then
o Ay € 9“13 if and only if A, = A, w,, — A[bwc]a + % ga[bwc]dAd for some A. = ¢C Ag;
2

o Aupe € Qvlll if and only if Agpe = &8N, cALRE — §f§£nC]CAABC for some tracefree A,z = A[AB]C;
2
o Ay € 5[2% if and only if Agpe = 255145[]2)770]0141430 for some tracefree A 5 = A(AB)C;
e Ay € Qvl% if and only if Ay = §f§f§ccAABc for some Aapc = A satistying Ajxpc) = 0.
2
Since (A)* = A’

—1

spinorial formulae for elements of 27 , for i > 0 can be obtained from those of QVlf by
simply interchanging §A/ and 74/ and making appropriate changes of index structures.
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The Weyl tensor Let Cypeq € €. Then
o Cupeq € ég if and only if C ., = ¢ (2 WopWeg — 2wa[cwd]b + %ga[c gd]b) for some complex c;

e Cuped € é(l) if and only if

6

Caped = Wap Cea + Capweq = 2w 11 C gy — — (g[a\[cwd]ec\ sle T 9icia@p) C d]e) .

)

where C,; 1= 2§[€nd]DCCD for some tracefree C,7;
e when m > 3, Cupeq € ég if and only if

A A A
Cabed = &4 5577cc77dDOABCD + & 5577ac77bDCABCD - 2§[a|§[€77d]\p77b]BOAcDB )

for some tracefree C 4 P8 = C[AC] [DB];

e Cuped € ég if and only if Cypeq = 4§£|§gnd]‘Dnb]BCACDB for some tracefree CACDB = C(AC)(DB);

o Cupea € é(l) if and Only if Cabcd = wachd + Oabwcd - 2w[a|[c C'd]|b] where Cqp := gl?gbBCAB for some
Cep = Clopy;
o Cuped € é% if and only if Cypeq = 253451?5[27751][)0143013 + 2524555[2%][)0143013 for some tracefree

CABCD = C[AB]CD Satisfying C[ABC]D = 07

° Cabcd S 6:(2) if and only if Oabcd = 53“555555’0,430[) for some OABCD = C[AB][CD] satisfying O[ABC]D =
0.

Since (€7)* =~ ¢/
simply interchanging §A, and n4 and making appropriate changes of index structures.

spinorial formulae for elements of ¢/ ; for ¢ > 0 can be obtained from those of Qvﬁf by

77

A.2 Maps describing elements of p-submodules of §, 2l and €

The kernels of the following maps gHg, ?Hf and gﬂf are p-submodules of §, 2 and €. Their relations to

the irreducible p-modules §, A/ and ¢/ as stated in Propositions BT} of section [ can be verified
using arbitrary elements §7, 2} and €/ as given in section [AJ] This can also be seen from the fact they are
saturated with symmetries.

The tracefree Ricci tensor For ¢ , € §, we define

SO, (@) = 4¢P, SIS (@) := ¢4,
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The Cotton-York tensor For A, € 2, define

BI04 (4) 1= €4 PEC Ay,
?Ho—l (A) = gaAAabcgbCC/ ’
?Hlf (A) = €"PeC Ay + n—2 laD’ B gdClebeD’ 4,
3 /
A2 . ca(A ¢bB) (A +d B) ¢baD
3 H—% (A) . 5 5 Aabc + 2(7’L 4 2)/YCD’ 5 5 Adba ’
BTG (A4) = Ay
(& 1 C 4
?HI%(A) =¢ AAcab - mV[aD/AAb]cdf aw )
3 /
A72 L cA A cdD
111 (A) = A £ — m%ﬂ:ﬂ Apyea™

The Weyl tensor For C,, , € €, define

A
Tver

1125(C) i= MM Cpeg
QHO 1(0) = é-aAgngch abed
a C 1 a C a Ci 4
l(C) :g Agng Ccabce + ? (5 Agng b’ C'u,bcd/YeD’C _5 Cgb[Ag b Cabcd’YeD/ B]) ’
gH (O) = éﬂbB €CdD, abcd )
gH (C) gabBlé-CDCabcd + EgabB,gceD,Cabce’YdD’D )
1 , , -
¢r72 ._ ¢aA dD aeC [AsdD aeC df F
5H0(C) = Ca[bc]df + mf Caed[b e 3 - mf Caedff s
a ae ’ A
EIG(C) == ¢ Aca(bc)dde - mf “ Cocaw %)c/( ¢io)
3 c’ dfF' A D
- =, ~~7 . ae O j ’ ’
2(TL+2)(TL+4)€ aedfé. ’Y(bc FYC)F )
gH?(C) = gabB/Cabcd ’
gH}(O) =P Crped + — N2 (faec Y0+ P Coeed — €2 Cocvlc Vajc ) ;

with the proviso that SH% does not occur when m = 3.

B Spinor calculus in four and six dimensions

We briefly sketch the spinor calculus in dimensions four and six. Details for the former can be found in

[PR84|[PRR6] and references therein, and for the latter in [Hug95[MHK95]. Our notation will be consistent
with the one introduced in section For definiteness, we work over C, but the real case is completely

analogous.

B.1 Four dimensions

Let (M, g) be a four-dimensional complex Riemannian manifold equipped with a holomorphic volume form
and a holomorphic spin structure. We first work at a point. The spin group G := Spin(4, C) is isomorphic to
are two distinct copies of SL(2,C), acting on the two-dimensional chiral

+G x ~G, where *G := SL(2,C)*
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spinor representations &*. All spinors in &* are pure. The spaces &% are equipped with volume forms
eap and €45, which will be assumed to satisfy € 40e8¢ = 55 These identify &* with their dual (Gi)*.
Any irreducible representation of *@ is isomorphic to a k-symmetric power ®*&* of &+ for some k > 0 —
here ©®°&* = C. By extension, any irreducible representation of G is isomorphic to (®k6+) ® (QEG’) for
some k,¢ > 0. In particular, if %7 is the standard representation of SO(4,C), then ¥ = &1 @ &, and we
shall convert tensorial indices into spinorial ones by means of the y-matrices v*, 4,, which satisfy

gabWaAA/WbBBf =2e pcap- (B.1)

Thus, for any vector V¢, we have VAB' — \%%AB/V“.
The Lie algebra g of G splits into two irreducible parts *g 2 sl(2, C)*, the Lie algebras of *G. These are
isomorphic to the spaces of self-dual and anti-self-dual 2-forms AZ2. Correspondingly, a 2-form Fy, splits

into self-dual and anti-self-dual parts represented by symmetric spinors ¢ 45 and ¢ ap respectively, ie
Fuy=¢apeap +dapean € O*6T00?’6™ XAV A2UV=Tgo g.

Accordingly, the space 2 of tensors with Cotton-York symmetries and the space € of tensors with Weyl
symmetries split into self-dual and anti-self-dual parts A+ = 6T @ (@36i) and ¢+ = ©*G&T respectively.
Further, we have § = (@26+) ® (@2(‘5_). Thus, the tracefree Ricci tensor, the Cotton-York tensor and the
Weyl tensor can be expressed as

Doy =Pupap s Awe=Apap e+ Apapcepc, Caved =Yapopeapecp +Yapepeapecp ,
respectively, where ¥ 4 p/crpr and Wyupop are the self-dual and anti-self-dual parts of Cgpeq respectively,
and Ay 4 g and Ay, 4o are the self-dual and anti-self-dual parts of Agy. respectively.

B.1.1 Projective spinor fields

Let [¢ Al] be a holomorphic projective spinor field on (M, g), so that the structure group is the frame bundle
is reduced to P, the stabiliser of [§Al] in G at a point, with Lie algebra p. As in the higher-dimensional case,
P is also a parabolic Lie subgroup of G, and p induces a |1|-grading g = g1 ® go ® g—1. The only difference
now comes from the semi-simplicity of g: if 30 and sly denote the center and simple part of go, we have that
Tpi=pNTg=j30@grand pN—g="g =slp. Then " GNP ="G and TP := TGN P is a parabolic
Lie subgroup of TG. In effect, we can write P = TP x ~G. This means that for any irreducible G-module
M= OFST ® @S~ for k, £ > 0, we have a filtration of P-submodules of M induced from a filtration of
* P-submodules of the *G-module ®*&*. Following section B} set

&% = (£"), 6% =6t &=
As a consequence of the two-dimensionality of &, we can characterise G2 as
67 ={a" et :tMay =0}, (B.2)

More generally, any irreducible ™G-module G~ % := ©*G 2 admits a filtration

k k k k k
G:cG2lcer?c...ce e e, (B.3)
of T P-modules
k—20+42 L _k . A/ A/ A/ . -
= =Py 4, €672 0aray gy A 8800 =0F fort=1,....k
k—2042 k—2044

For any integer k, each summand & 2z /& 2z  in the associated graded module of (B.3) is a one-
dimensional T P-module isomorphic to a C-module & k_2012, on which the grading element §ampry has
2

. . ’
eigenvalue 2222 here ¢4y = 1.
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Intrinsic torsion The intrinsic torsion of the P-structure can be identified as an element of the P-module
20 := VY @ g/p at a point. In fact, since ~g acts trivially on [€4], it is enough to consider the P-module
T ;= Y ® Tg/Tp. This is in fact consistent with the fact that the spin connection on ST takes value in

*+g. We obtain a filtration of P-modules 190~2 C T20~% = *90, where both T2~ 2 and "0~ % /*20 2 are
one-dimensional. Details are left to the reader. The intrinsic torsion generically lies in +90-% and whether
. 1 .

it degenerates to an element of T2~ 2 or vanishes can be expressed by

VBV =0, BV antp =0,

respectively. Here V 4p/ stands for the Levi-Civita connection V,. These are precisely the geodetic spinor
equation (BI4]) and the recurrent spinor equation (5.6l respectively.

Many of the results of section [l can easily be adapted to the four-dimensional setting. For instance,
equation (BI0) can be rewritten as

8 Vantp =Ent® Vapf.

We refer to the literature, notably [PR84.[PR8G] for a detailed study of these spinorial equations and others.
Curvature tensors To describe irreducible P-submodules of (®k6+) ® (QZG*) for non-negative k and
¢, it suffices to tensor the T P-invariant filtration on ®*&* with ®‘&~. Thus, for the space §, we have a

filtration {0} =: F2 c 3 c 3 c g !:=F of indecomposable P-modules. For the spaces A~ we obtain two
distinct filtrations

TR c A AT ctaTE =ty T CTATE =
Finally, since P induces no non-trivial filtration on ~€, we are left with a filtration
te2ctelcte ctetcte?=">e, (B.4)
of T P-submodules of the space T€ of self-dual Weyl tensors. Defining
N0 () = NP Vo EI (W) = €MV o ©.5)
"I = € EF W pponny ") = Vg |

we see that T¢ := ker+§H?71 for all i = —1,0,1, 2.
It is instructive to compare these maps with the maps ng defined in appendix [A:2] which can also be
used in dimension four. It is relatively straightforward to show that, in four dimensions,

€111, (C) = £115(C) = 0,
fY(C) = TS (v), for i =—1,0,1,2,
fI5(C) = €arép Vanen -

while gl‘[g is not defined. Since §A/ is always assumed to be non-zero, one can interpret gl‘[g as the projection
from € to ~¢€, and expect it to replace the self-duality condition in higher dimensions.

B.1.2 Principal spinors and the Petrov-Penrose classification

For comparison, we recall some of the related notions given in [PR84[PRS6]. We say that ¢4 is a (k—£+1)-
fold principal spinor of an irreducible spinor ¢ ALLAL if

Garay..apay .4 £ g =0. (B.6)

41"
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In the case k = 4, we have a notion of (5 — ¢£)-fold principal spinor of the self-dual Weyl tensor, which is itself
intimately connected to the Petrov-Penrose classification of the self-dual Weyl tensor :
at a point p, U4 prcrpr defines a homogeneous quartic polynomial ¥/(7) := U popmd w8 7 7P =0,
where [ﬂ'Al] are homogeneous coordinates on CP', the fiber of the projective spinor bundle over p. This
polynomial has four roots, and the multiplicities of these roots define the various Petrov types {1111},
{211}, {31}, {22}, {4} and {—} of ¥ a/p/c/p/. In the generic case {1111}, ¥’(7) has four distinct roots, and
thus four distinet principal spinors at p. Type {211} consists of a double root and two distinct simple roots,
and thus a 2-fold principal spinors and two distinct 1-fold principal spinors, and so on. Type {—} simply
means \IJA’B/C’D' =0.

It must be emphasised that in sharp contract with the main ideas of the present paper, the Petrov-Penrose
classification makes no assumption on the existence of a preferred (projective) spinor field on (M, g). In
fact, one could single out any spinor field £€4" on (M, g). One would have a filtration (B4) of T P-modules
on t€. Then ¢4 would be a principal spinor for ¥ 4/ /v pr if and only if +gHO_2(\III) = 0, which is already a
non-trivial condition from the viewpoint of the P-structure. More generally, comparison of the maps (B.5)
and the definition (B.6]) of principal spinors, one has

o U, piorp is of type {1111} with 1-fold principal spinor ¢4 if and only if +51_1(12(\11’) =0,

o U picip is of types {211} or {22} with 2-fold principal spinor €4 if and only if +gl’[(ll(\ll’) =0,
o U picip is of type {31} with 3-fold principal spinor €4 if and only if +gl‘[g(\lﬂ) =0,

o U picip is of type {4} with 4-fold principal spinor €4 if and only if +gl‘[?(\ll’) =0.

On the other hand, any principal spinor field €4 of W 4/ picvpr on (M, g) defines a holomorphic reduction
to the structure group P, the stabiliser of [{Al] at a point in G, and one can relate the Petrov types with
(B4) as we have just done.

B.2 Six dimensions

Let (M, g) be a six-dimensional complex Riemannian manifold equipped with a holomorphic volume form
and a holomorphic spin structure. We first work at a point. The chiral spinor spaces are dual to each other,
ie. (6%)* = &F, and can be identified with the four-dimensional standard and dual representations of the
spin group G = Spin(6, C) = SL(4, C). All spinors in &% are pure. One can then eliminate the use of primed
indices in favour of the unprimed ones, so we shall write & for &~ and &* for &*. We can also convert
tensor indices into a skew-symmetrised pair of indices by means of the skew-symmetric y-matrices %*y“ AB

and %”yaAB, which satisfy the identity

gawaAB”chD =2¢e40D gab”YaAB’YbCD =2¢4B0D ) gab’YaAB”YbCD = 45[?4 5% ) (B-7)

ABCD _ _[ABCD]

where eapcp = €apcp) and € are volume forms on G and G* respectively satisfying the

normalisation
EFGH E sFcGsH
EABCDE :246[A53606D]
Skew-symmetrised pairs of spinor indices can be raised and lowered by means of %a Apcp and %EABCD , eg
Vap = %EABCDVCD. The isomorphism A?G& 22 A2G* is the spinorial counterpart of the metric isomorphism
between the standard representation U of SO(4,C) and its dual U*. More generally, we identify

DIE=YRICH AU =6 @, 6, N UE=NoRCAN N Y~

In addition, the tracefree Ricci tensor, the Weyl tensor, and the Cotton-York take the spinorial forms

C ~DJ|G ¢H c E F
Qo = Papeop Oabcd = 85[[A OB]][[E 5F]] ’ Aw” = 4AAB[C[ 5D% ’
where ®apcp = Papjcp) satisfies Qupeyp = 0, C4F = O((Sg)) is tracefree, and A,pc” = Ajyp "

satisfies A[ABC]D =0and A,z =0.
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B.2.1 Projective spinor fields

Let [£4] be a holomorphic projective spinor field on (M, g) so that the structure group of the frame bundle
is reduced to P, the stabiliser of [£4] at a point in G. As in section 2l P induces filtrations

() =6icei=6", (fre6:pla=0}=6icei=6,

of P-submodules. We can also re-express 61 = {aa € & : {aap = 0}. We can extend this argument to
spinors of any valence, and play the same game with U and g. In particular, the maps (Z24) defining the
irreducible p-modules g/ of gr(g) can then simply be expressed as

2, (0) =€adp 6. I(0) =04 ¢n, S(6) = 64 6 5 — 500 6D

Intrinsic torsion The intrinsic torsion of the P-structure at point viewed as an element of the module
0 =V ® g/p was already described in section Bl and its description in terms of the Levi-Civita connection
in section 5.I.]] We have already noted the slight differences between six dimensions and higher dimensions.
These can be more clearly expressed in the present calculus. Thus, denoting by V4p the Levi-Civita
connection, the geodetic spinor equation (5I4]) and the recurrent spinor equation (B.0]) read as

(€pVPAB) €y =0, B.8
(VAP ) € =0, (B.9)

—~
~—

Taking the irreducible parts of these equations yield

€AV Pep =0, (B.10)

(ﬁDvDAﬁ[B) Sy — % (€pVPPeR) 5{}350] =0, (B.11)

EaVP9lo + V9PN =0, (B.12)

(V4260) €0y — (VA1P85) 6516 ) — (607150 ) 130 — 3 (€977 6r) 6605 =0, (B3)

which are equivalent to (5.9)), (510) (E11)) and (EI3) respectively.

Proof of Proposition Consider a conformal Killing spinor {4 on (M, g), i.e. a solution of
2
VABE, + génglEgE =0.
A little algebra yields

2 A
(VABﬁ[c) §p) — §§[c5£)]VB]E§E =0,

1

1
301000 (€5 VP ER) =0,

A
3 (VE[Af[C) o)~ 55[05[D] (VB]EgE) _
from which we deduce that &, satisfies equations (BI3) and (B.II). This proves Proposition [(5.23

Curvature tensors Finally, we record the maps given in appendix characterising the P-submodules
of the spaces of curvature tensors in this spinor calculus:

o for § = (A?6) © (A?6),

gﬂ‘ll(‘l’) =8P b §H8(‘1>) =& PpcipE

35



o for A= (A26) 0 6 ®, 6%,
?Ho,g(A) = E&udpop’ Emér
?HQ%(A) =& dpop EE
e (A) = Ao "Epjée + Acpia " piée
1 1
?HQ,%(A) =& dpoyp Em — 1554 Ap ey “émée — 15[,4 Agoyp “mta s
?H% (4) = Aupc’ép
1
?H%(A) =€ Ao - 5554 Apcip'Er

2
FII3(A) := Aupc " p) + Acpia ") — 5 (AAB[CF(S%]&’ + ACD[AFag]§F> ;

SN

o for € X (0%6) ®, (26*),

gng(C) = 5[,4 Cgﬁcfp] Eeér )
§12,(C) 1= €4 OBttt »
ST, (C) = € Ol oy — (0B CBicEpiErta — 10 Chatmtrte.
¢15(C) = CipEctn ,
)

125 B]C§E 5D CB]cfEfF )

— F)G 2 (B ~F)G (E| gt | F)
§3(C) = Ea CBfioép) — 36[,4 Chicéniée — 59c Cojaémée + 106[A Chlle 0 €cén
gH(l)(O) CAB D>

1 CBF
EI1(C) = &4 OB — 5004 Crlebr

Remark B.1 ‘Coarser’ versions of some of the maps ¢ QHj were already given by Jeffryes [Jef95[MHK95] in

his investigation of the ‘principal spinors’ of the Weyl tensor in dimension six. The maps ¢ QHJ are saturated
with symmetries, and are thus more tightly connected to the representation theory of P on Qf
C Conformal structures

We collect a few facts and conventions pertaining to conformal geometry. We roughly follow [BEG94],
although our staggering of indices differs from theirs. For specificity, we work in the holomorphic category.

A holomorphic conformal structure on a complex manifold M is an equivalence class of holomorphic
metrics [gqp] on M, whereby two metrics gqp and gqp belong to the same class if and only if

gab = ngab ’ (Cl)

for some non-vanishing holomorphic function 2 on M. The respective Levi-Civita connections V, and Va
of gup and gup are then related by

@avb = vavb + Qacbvcv Qabc = Qabdgdc = 2T(agb)c - Tcgab )

for any holomorphic vector field V@, where Y, := Q71V,Q.
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Spinor bundles We first note that under a rescaling (C.), the y-matrices can be chosen to transform as
B’ ~ B B’ A A A
YaA = Yaa = Q/YaA ) YaB' T YaB' = Q/YaB’ ’

where 4, AB/ and 4, B,A denote the y-matrices for the metric 5. In addition, we can choose the Spin(2m, C)-
invariant bilinear forms on S to rescale with a conformal weight of 1, and their dual with a conformal weight
of —1. For instance, yarp — Y45’ = Qv g when m is even, ”yA,B — ‘yA,B = 9717,4’3 when m is odd, and
so on. This means in particular that the quantities 'yaABl and v, 5, when m is even, and ”yaAlBl and v 4/ g/,

and their unprimed counterparts, when m is odd, have conformal weight 0. Then the spin connection V, is
related to V, by

2 ’ ’ 1 ’ ’
VagB = vafB - ETbFYbC/D’YaDB §C ) (02)

for any holomorphic spinor field 5‘4/, and similarly for unprimed and dual spinors. This connection can be
seen to preserve the hatted y-matrices and the hatted bilinear forms on §. This agrees with the convention
of but differs from the more standard convention, used in [LM89] for instance.

Now assuming that §A/ is pure, and setting é{;‘ = 53/% B,A, we derive further
(Va€P) &5 = (7,67 & — 2,610 LT,
VT —@EVEN = 71 (7,8 — @PVEN + (m - DT, 67N )
(4V,€7) & = a7t (47,6 &
The first two equations can be combined to yield

A~ ~ 2 ~ A~ ~ A A 2
\V4 bB\ +C [B \v4 bC] b[B \V4 C] = (V bB\ +C (B v bC] b[B v C]
( a§ )gb +m_1 ( a b§ +€ bga ) ( a§ )gb +m_1 ( a b§ +€ bga ) .

Curvature In conformal geometry, it is more convenient to use the alternative decomposition to (53]

1 1
Rabcd = Oabcd - 49[CI[anHd] ) Puwi=——Pu—R

2—n 2n(n — 1)gab ' (C-3)

where the Weyl tensor C’abcd is conformally invariant, and the Schouten or Rho tensor P, transforms as

Pub = Pap — Vo Xy + T Ty — %TcTcgab, P=q2 (P — VY, — ”T_2T0L> : (C.4)

where P := P_®. Finally, the Cotton-York tensor Agp. := 2V[bP e = —(n— 3)V?Cqpe, where the expression

on the RHS follows from the contracted Bianchi identity, transforms as Aabc =A — YICabe-

la
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