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Pure spinors, intrinsic torsion and curvature in even dimensions

Arman Taghavi-Chabert
Masaryk University, Faculty of Science, Department of Mathematics and Statistics,

Kotlářská 2, 611 37 Brno, Czech Republic

Abstract

We study the geometric properties of a 2m-dimensional complex manifold M admitting a holomorphic
reduction of the frame bundle to the structure group P ⊂ Spin(2m,C), the stabiliser of the line spanned
by a pure spinor at a point. Geometrically, M is endowed with a holomorphic metric g, a holomorphic
volume form, a spin structure compatible with g, and a holomorphic pure spinor field ξ up to scale. The
defining property of ξ is that it determines an almost null structure, ie an m-plane distribution Nξ along
which g is totally degenerate.

We develop a spinor calculus, by means of which we encode the geometric properties of Nξ corre-
sponding to the algebraic properties of the intrinsic torsion of the P -structure. This is the failure of the
Levi-Civita connection ∇ of g to be compatible with the P -structure. In a similar way, we examine the
algebraic properties of the curvature of ∇.

Applications to spinorial differential equations are given. In particular, we give necessary and sufficient
conditions for the almost null structure associated to a pure conformal Killing spinor to be integrable.
We also conjecture a Goldberg-Sachs-type theorem on the existence of a certain class of almost null
structures when (M, g) has prescribed curvature.

We discuss applications of this work to the study of real pseudo-Riemannian manifolds.

Keywords: complex Riemannian geometry; pure spinors; distributions; intrinsic torsion; curvature
prescription; spinorial equations

1 Introduction

LetM be a complex manifold of dimension n, and denote by TM and T∗M its holomorphic tangent and
cotangent bundles respectively, and by FM its holomorphic frame bundle. Following [LeB83], we define a
holomorphic metric on M to be a non-degenerate holomorphic section g of the bundle ⊙2T∗M — here ⊙
denotes the symmetric tensor product. We identify TM and T∗M by means of g. The pair (M, g) will be
referred to as a complex Riemannian manifold, and is characterised equivalently by a holomorphic reduction of
the structure group of FM to the complex orthogonal group O(n,C). Analogously to real pseudo-Riemannian
geometry, there is a unique torsion-free holomorphic affine connection ∇ preserving g, also referred to as the
Levi-Civita connection of g, with associated curvature tensors, which depend holomorphically onM. We shall
also assume the existence of a global holomorphic volume form ε ∈ Γ(∧nT∗M) normalised to g(ε, ε) = n! —
here, we have extended g to a non-degenerate bilinear form on the bundle ∧•TM of holomorphic differential
forms, and its dual. This induces a further holomorphic reduction of the structure group of FM to the
complex special orthogonal group SO(n,C). The pair (g, ε) can be used to define a holomorphic Hodge
duality operator ⋆ on ∧•T∗M. We shall henceforth assume n = 2m. Then ⋆ squares to plus or minus the
identity on ∧mT∗M, and thus splits ∧mT∗M as a direct sum of the two eigensubbundles ∧m±T∗M of ⋆.
Elements of ∧m±T∗M are referred to as holomorphic self-dual and anti-self-dual m-forms.

This article is concerned with the local geometric properties of an almost null structure on (M, g), i.e.
a holomorphic rank-m distribution N ⊂ TM totally null with respect to g, i.e g(v, w) = 0 for all v and w
in Np, and dimNp = m at any point p ofM. Being determined (ie annihilated) by a holomorphic m-form,
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an almost null structure may be either self-dual or anti-self-dual, and is also referred to as an α-plane or
β-plane distribution accordingly.

There is a slick way to describe an almost null structure if we assume in addition (M, g) to be spin, i.e.
it admits a holomorphic reduction to Spin(2m,C), the two-fold covering of SO(2m,C). In this case, (M, g)
is endowed with two irreducible spinor bundles S+ and S−. Sections of TM acts on sections of S± via
Clifford multiplication · : TM×S± → S∓. In particular, a holomorphic section ξ of S+ or S− determines
a distribution Nξ onM in the sense that

(Nξ)p := {v ∈ TpM : v · ξp} , at any point p inM.

The defining property of the Clifford multiplication tells us that Nξ is totally null. When Nξ has dimension
m at every point, ξ is said to be pure. If we refer to a pure spinor ξ defined up to scale as a projective pure
spinor [ξ], it is clear that a projective pure spinor field [ξ] determines a unique almost null structure Nξ.
Conversely, any almost null structure arises in this way. Whether ξ lies in S+ or S− corresponds to whether
Nξ is self-dual or anti-self-dual. All spinors in S± are pure in dimensions two, four and six, but when m > 3,
the property of being pure imposes non-trivial algebraic conditions on the components of a spinor.

The geometric properties of an almost null structure Nξ associated to a projective pure spinor [ξ] can be
expressed in terms of the covariant derivative of [ξ]. For instance, if Nξ is integrable, i.e. [Γ(Nξ),Γ(Nξ)] ⊂
Γ(Nξ), then one can show that the leaves of its foliation are totally geodetic, i.e. ∇XY ∈ Γ(Nξ) for any
holomorphic sections X , Y of Nξ. This condition can also be expressed as [HM88]

∇Xξ = λXξ , for any X ∈ Γ(Nξ), and some holomorphic function λX dependent on X , (1.1)

where, with a slight abuse of notation, ∇ denotes the spin connection induced from the Levi-Civita connec-
tion. Note that (1.1) is independent of the scale of ξ. Further, if ξ satisfies (1.1), then

C(X,Y, Z,W ) = 0 , for all X,Y, Z,W ∈ Γ(Nξ). (1.2)

where C denotes the Weyl tensor of ∇, i.e. the conformally invariant part of the Riemann tensor of ∇.
The investigation of conditions such as (1.1) and (1.2) will be the subject of this article. For this purpose,

we note that an almost null structureNξ on (M, g) associated to a projective pure spinor field [ξ] is equivalent
to a holomorphic reduction of the structure group of FM to the stabiliser P ⊂ G := Spin(2m,C) of [ξ] at a
point. This P is an instance of a parabolic subgroup, and is isomorphic to the semi-direct product G0 ⋉ P+

where part G0 is reductive, and P+ is nilpotent. The Lie algebras p ⊂ g ∼= so(2m,C) of P is isomorphic to
g0⊕ p+, where g0 ∼= gl(m,C) and p+ ∼= ∧2Cm are the Lie algebras of G0 and P+ respectively. Here, we have
identified (Nξ)p ∼= Cm at any point p.

Condition (1.1) is intimately connected to the notion of intrinsic torsion or structure function of a first-
order G-structure [Che53,Ber60, Sal89]. In the present context, where the structure group is P , this is an
invariant of Nξ, which, at any point, lies in the P -module W := V ⊗ g/p, where V ∼= C2m is the standard
representation of g. Geometrically, it is the obstruction to finding a unique torsion-free connection compatible
with Nξ. In other words, it measures the failure of the Levi-Civita connection to preserve Nξ. A number
of geometric properties of Nξ can be encoded as P -invariant algebraic conditions on its intrinsic torsion.
For instance, condition (1.1) can be shown to be equivalent to the intrinsic torsion belonging to a certain
proper P -submodule of W. Identifying all the possible P -submodules of W provides a systematic way of
‘classifying’ G-structures with structure group P . Such an approach was adopted to provide a classification
of almost Hermitian manifolds by Gray and Hervella in [GH80].

Dealing with condition (1.2) is similar. In general, if M is a finite G-module, P induces a filtration

{0} = Mℓ+1 ⊂Mℓ ⊂Mℓ−1 ⊂ . . . ⊂M−k+1 ⊂M−k := M (1.3)

of indecomposable P -modules Mi for some k and ℓ. The nilpotent part P+ acts trivially on each of the
associated quotients Mi/Mi+1, while the reductive part G0, and hence P , acts reducibly on these. This
applies in particular to the case where M is the space C of Weyl tensors at a point. We shall see, in this
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case, k = ℓ = 2 , and condition (1.2) tells us that the Weyl tensor belongs to the P -submodule C−1 := M−1

at a point. A precedent for this approach in almost Hermitian geometry can be found in [TV81,FFS94].
The aims of the paper are to

• give a P -invariant decomposition of the space W of intrinsic torsions;

• give P -invariant decompositions of the spaces of curvature tensors, in particular, the tracefree Ricci
tensors, Cotton-York tensors and Weyl tensors;

• apply these decompositions to the study of almost null structures and pure spinor fields on complex
Riemannian manifolds.

An integral part of this article will be the construction of a spinor calculus in relation to the P -structure
above. This essentially impinges on the remark [HM88,BT89] that if ξ ∈ Γ(S+) is pure, then any Z ∈ Γ(Nξ)
satisfies

g(Z,X) = 〈ζ,X · ξ〉 , for some ζ ∈ Γ((S−)∗) and for any X ∈ Γ(TM). (1.4)

Here 〈·, ·〉 is the natural pairing between S− and (S−)∗. This fact will allow us to construct maps whose
kernels can be used to define certain P -submodules of a given P - or G-module. This is a standard procedure
in representation theory where (irreducible) representations are described in terms of kernels of suitable
multilinear maps. For instance, the kernel of the symmetrisation map ⊗2

C
m → ⊙2

C
m is the irreducible

SL(m,C)-module ∧2Cm. The only difference here is that the maps will now depend on [ξ].
Before we proceed, it is important to note that there will be obstructions to the global existence of a

holomorphic metric or of a holomorphic volume form, not to say of a holomorphic spin structure on a complex
manifold. While these issues are interesting in their own right, we shall not be concerned with them in this
article, some of which are dealt with in [LeB83]. This being said, all our considerations will essentially be
local. In particular, we must emphasise that a spin structure can always be introduced locally, and our use
of spinors in this context arises essentially from practical considerations.

What is more, a complex manifold M can always be manufactured by complexifying a real-analytic
oriented manifoldM′ — see [WB59,Woo77,Eas84]. In this case,M is endowed with a reality structure that
singles outM′ as a real slice in M. Any real analytic structure on M′ can be extended to a holomorphic
one in a neighbourhood ofM′ inM. This will apply more particularly to a metric g′ and spin structure on
M′. We then obtain a spin complex Riemannian manifold (M, g) from (M′, g′). This approach is typically
exemplified by the study of real-analytic four-dimensional Lorentzian manifolds, which was central to the
development of twistor theory — see [PR84,PR86] and references therein.

In fact, it is instructive to recall how (1.1) and (1.2) look like when (M, g) is a four-dimensional complex
Riemannian manifold. First, Spin(4,C) is no longer simple, but isomorphic to SL(2,C)+ × SL(2,C)− where
SL(2,C)± are two copies of SL(2,C) acting on S±. Following [PR84], we adorn elements of S+ and S− with
abstract indices, eg ξA

′

and ζA respectively. Let us fix a projective spinor [ξA
′

] in PS+. Using the fact that
TM ∼= S− ⊗ S+ in dimension four, the relation (1.4) simply tells us that any vector ZAB

′

tangent to the
distribution defined by ξA

′

must be of the form ZAB
′

= ζAξB
′

for some ζA. Then, equation (1.1) can be
re-expressed as

ξB
′

ξA
′∇AA′ξB′ = 0 , (1.5)

where ∇AB′ is the Levi-Civita connection. Similarly, condition (1.2) can be shown to reduce to one on the
self-dual part of the Weyl tensor, which we identify with a totally symmetric spinor1 ΨA′B′C′D′ :

ΨA′B′C′D′ξA
′

ξB
′

ξC
′

ξD
′

= 0 . (1.6)

When (M, g) is the complexication of a real-analytic four-dimensional Lorentzian manifold, equation (1.5)
describes a real-analytic shearfree congruence of null geodesics, and any spinor ξA

′

satisfying (1.6) is referred

1This is often referred to as the Weyl spinor in the extant literature, but we shall avoid the term in this article.
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to as a (gravitational) principal spinor of ΨA′B′C′D′ . Both concepts play an important rôle in the study of
exact solutions of Einstein’s field equations.

Finally, while complexifying a smooth pseudo-Riemannian manifold will present difficulties in general,
the present work can be easily adapted to the setting of an oriented and time-oriented smooth real manifold
M equipped with a metric g of signature (m,m) and a spin structure, without the need of complexification.
One can then define smooth real almost null structures on (M, g) associated to smooth real pure spinor
fields.

An odd-dimensional analogue of the present paper is given in [TC13].

Structure of the paper: Section 2 contains a construction of a spinor calculus based on a choice of pure
spinor up to scale. Proposition 2.9 is a new algebraic characterisation of intersections of α- and β-planes.
Algebraic applications are then given in sections 3 and 4: Proposition 3.2 gives an invariant decomposition
of the space of intrinsic torsions, while Propositions 4.1, 4.2 and 4.3 give invariant decompositions of the
spaces of Ricci tensors, Cotton-York tensors and Weyl tensors respectively.

Geometric applications can be found in section 5: Proposition 5.4 is a direct consequence of Proposition
3.2, and characterises the intrinsic torsion of an almost null structure Nξ in terms of the covariant derivative
of its associated projective pure spinor [ξ]. Proposition 5.10 examines the conformal invariance of the
intrinsic torsion of Nξ. Integrability conditions for the existence of geodetic and recurrent pure spinors are
derived in Propositions 5.11 and 5.12 respectively. In section 5.2, we study the relation between solutions
to differential equations on pure spinor fields: Propositions 5.20 and 5.23 give necessary and sufficient
conditions on a pure conformal Killing spinor for its associated almost null structure to be integrable. Next,
we put forward Conjecture 5.27 generalising the complex Goldberg-Sachs theorem of [TC12]. Finally, in
section 5.3, we briefly discuss the extent to which the findings of the present article can be applied to real
pseudo-Riemannian manifolds.

We round up the paper with three appendices. We have collected in appendix A material describing the
g0- and p-submodules of the spaces of curvature tensors. Appendix B contains a brief discussion of spinor
calculus in dimensions four and six. In appendix C we give some concise background on conformal spin
geometry.

2 Spinor calculus

The aim of this section is to construct a spinor calculus given a preferred pure spinor, emphasising its relation
with representation theory. While we recall standard facts on the theory of spinors, which can be found in
one form or another in the literature [Car81,BT88,BT89,HS92], in particular the appendix of [PR86], our
approach, which extends the calculus of [HM88], is relatively novel. Details on the representation theory
aspect are given in [BE89,FH91, ČS09].

2.1 Clifford algebras and spinor representations

Let V be an n-dimensional complex vector space. We shall adopt the abstract index notation of [PR84] for
most of this paper. Standard index-free notation will be used on occasion. Elements ofV and its dual V∗ will
carry upstairs and downstairs lower-case Roman indices respectively, eg V a ∈ V and αa ∈ V∗. This notation
extends to tensor products of V and V∗, i.e. we write T c

ab d for an element of ⊗2V∗ ⊗V ⊗V∗. We equip
V with a non-degenerate symmetric bilinear form gab = g(ab) ∈ ⊙2V∗. Here, as elsewhere, symmetrisation
is denoted by round brackets, while skew-symmetrisation by square brackets, eg αabc = α[abc] ∈ ∧3V∗. The
metric tensor gab together with its inverse gab establishes an isomorphism between V and V∗, so that one
will lower or raise the indices of tensorial quantities as needed. We shall also make a choice of orientation,
i.e. an element of ∧nV, and denote the associated Hodge star operator on ∧•V by ⋆. Elements of the two
eigenspaces ∧m+V and ∧m−V of ⋆ on ∧mV are referred to as self-dual and anti-self-dual m-forms respectively.
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We shall be dealing with spinor representations, and for this reason, we shall essentially view any finite
representation of the complex special orthogonal group SO(2m,C) as finite representation of the spin group
G := Spin(2m,C), the two-fold covering of SO(2m,C).

The Clifford algebra Cℓ(V, g) of (V, g) is defined as the quotient algebra
⊗•

V/I where I is the ideal
generated by elements of the form v ⊗ v + g(v, v), where v ∈ V. This implies that Cℓ(V, g) is isomorphic
to the exterior algebra ∧•V as vector spaces, the wedge product of the latter being now replaced by the
Clifford product · : Cℓ(V, g)× Cℓ(V, g)→ Cℓ(V, g) defined by v · w := v ∧ w − g(v)yw for any v and w in V

viewed as elements of Cℓ(V, g).
From now on, we assume n = 2m. Let N ⊂ V be a totally null m-dimensional subspace, i.e. g|N = 0,

and fix a dual N∗ of N so that V ∼= N ⊕ N∗. Then the vector space S := ∧•N can be turned into a
Cℓ(V, g)-module by restricting the Clifford product to it: for any ξ ∈ ∧•S, (v, w) ∈ N⊕N∗ ∼= V, the action
of V ⊂ Cℓ(V, g) on S is given by (v, w) · ξ = v ∧ ξ −wyξ. The 2m-dimensional Cℓ(V, g)-module S is known
as the spinor space of (V, g). Further, S splits as S = S+ ⊕ S−, where S± are the ±-eigenspaces of the
orientation on V, viewed as an element of Cℓ(V, g), with

S+ ∼= ∧mN⊕ ∧m−2N⊕ . . . , S− ∼= ∧m−1N⊕ ∧m−3N⊕ . . . .

The 2m−1-dimensional complex vector spaces S+ and S− are called the positive and negative (chiral) spinor
spaces respectively, and can be shown to be irreducible representations of G = Spin(2m,C).

It turns out that the Clifford algebra can also be realised as the algebra of complex 2m×2m-matrices acting
on S = S+ ⊕ S−. Elements of S+, respectively S−, will carry upstairs primed, respectively unprimed,
upper-case Roman indices, eg ξA

′

, respectively αA, and similarly for their duals (S+)∗ and (S−)∗ with
downstairs indices, eg ηA′ and βA respectively. As we shall be working with S± rather than S, it will be
convenient to think of the generators of the Clifford algebra Cℓ(V, g) in terms of the (Van der Waerden)
γ-matrices γ B′

aA and γ B
aA′ , which satisfy the (reduced) Clifford property

γ C
(aA′ γ B′

b)C = −gabδB
′

A′ , γ C′

(aA γ B
b)C′ = −gabδBA , (2.1)

where δB
′

A′ and δBA are the identity elements on S+ and S− respectively. Thus, only skew-symmetrised
products of γ-matrices count, and we shall make use of the notational short hand

γ B′

a1a2...aqA
:= γ

C′

1

[a1A
γ C2

a2C
′

1
. . . γ B′

aq ]Cq−1
, γ B

a1a2...aqA′ := γ C1

[a1A′ γ
C′

2

a2C1
. . . γ B

aq ]C′

q−1
,

γ B
a1a2...apA

:= γ
C′

1

[a1A
γ C2

a2C
′

1
. . . γ B

ap]C′

p
, γ B′

a1a2...apA′ := γ C1

[a1A′ γ
C′

2

a2C1
. . . γ B′

ap]Cp−1
,

(2.2)

where p is even and q is odd. These matrices give us an explicit realisation of the isomorphism Cℓ(V, gab) ∼=∧•
V as vector spaces. Since ⋆ : ∧kV ∼=→ ∧2m−kV, it is enough to consider forms of degree from 0 to m.
The spinor space S and its dual S∗ are equipped with non-degenerate bilinear forms, which realise the

isomorphisms

γA′B′ , γAB : S± ∼=−→ (S±)∗ , when m even,

γA′B , γAB′ : S± ∼=−→ (S∓)∗ , when m odd,
(2.3)

by means of which we can raise or lower spinor indices. Thus, the γ-matrices (2.2) give rise to bilinear maps

γa1a2...apA′B′ , γa1a2...apAB , for p ≡ m (mod 2),

γa1a2...apA′B , γa1a2...apAB′ , for p ≡ m− 1 (mod 2),
(2.4)

from S±×S± or S±×S∓ to ∧•V. The spinor indices of the maps (2.3) and (2.4) are subject to symmetries
as explained in [PR86], and this allows us to prove the following technical lemma needed subsequently.

5



Lemma 2.1 When m− p is even,

γ B
aA′ γb1...bpBDγ

D
cC′ = (−1)m

(
γcab1...bpA′C′ + gcaγb1...bp−1bpA′C′

−2 p g[b1 |(a γ c)|b2... bp]A′C′ + p(p+ 1)ga[b1 g|c|b2γb3...bp−1 bp]A′C′

)

In particular,

γa B
A′ γb1...bpBDγ

D
aC′ = (−1)m2(m− p)γb1...bpA′C′ .

When m− p is odd,

γ B
aA′ γb1...bpBD′γ D′

cC = (−1)m−1
(
γcab1...bpA′C + gcaγb1...bp−1bpA′C

−2pg[b1 |(a γ c)|b2... bp]A′C + p(p+ 1)ga[b1 g|c|b2γb3...bp−1 bp]A′C

)

In particular,

γa B
A′ γb1...bpBD′γ D′

aC = (−1)m−12(m− p)γb1...bpA′C .

Our treatment will be overwhelmingly dimension independent, and for this reason, we shall avoid making
use of the bilinear forms (2.3) and (2.4). It suffices to say that when p = m, the bilinear forms (2.4) are
always symmetric, and yield injections from ∧m±V to ⊙2S±, and surjections from ⊙2S± to ∧m±V∗.

2.2 Null structures and pure spinors

Definition 2.2 A null structure on V is an m-dimensional vector subspace N ⊂ V that is totally null, i.e.
gabX

aY b = 0 for all Xa, Y a ∈ N. A self-dual, respectively anti-self-dual, null structure is called an α-plane,
respectively, a β-plane.

Let ξA
′

be a non-zero spinor in S+, and consider the map

ξAa := ξB
′

γ A
aB′ : V→ S− .

By (2.1), the kernel of ξAa : V→ S− is totally null.

Definition 2.3 A non-zero (positive) spinor ξA
′

is said to be pure if the kernel of ξAa : V → S− is m-
dimensional, and thus defines a null structure.

The projectivisation of the line 〈ξA′〉 spanned by a pure spinor ξA
′

will be referred to as a projective
(positive) pure spinor [ξA

′

] ∈ PS+.
The same definitions apply to a negative spinor.

Leaving the details aside, one can show

Proposition 2.4 ([Car81]) There is a one-to-one correspondence between projective pure spinors and null
structures on (V, g). Positive, respectively negative, pure spinors correspond to self-dual, respectively anti-
self-dual, null structures.

Henceforth, we shall assume m > 2 leaving the special case m = 2 to appendix B.1. For the remaining
of this section and sections 3 and 4, ξA

′

will denote a positive pure spinor. It goes without saying that our
statements apply analogously to negative pure spinors. We set

S
m
4 := 〈ξA′〉 , S

m−2
4 := im ξAa : V→ S− , V− 1

2 := V , V
1
2 := ker ξAa : V→ S− , (2.5)
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so that one can express the α-plane associated to ξA
′

as the filtration

{0} =: V
3
2 ⊂ V

1
2 ⊂ V− 1

2 . (2.6)

The full meaning of this notation, borrowed from [ČS09], will be explained in the course of this section. For
the moment, the reader should think of these numerical indices as homogeneity degrees. Thus, the map ξAa
yields an isomorphism between V− 1

2 /V
1
2 and S

m−2
4 , which we can write as

(
V− 1

2 /V
1
2

)
⊗S

m
4 ∼= S

m−2

4 . (2.7)

While the factor S
m
4 on the LHS of (2.7) may appear notationally redundant, it nonetheless balances the

degrees on each side of (2.7), i.e. − 1
2 +

m
4 = m−2

4 . From (2.7), it is also clear that S
m−2

4 is an m-dimensional
subspace of S−.

With a slight abuse of notation, we can also think of the map ξAa dually as ξAa : V∗ ← (S−)∗ so that the
dual counterpart of (2.7) is given by

V
1
2 ∼= S

m
4 ⊗

(
S−m−2

4 /S−m−6

4

)
, (2.8)

where we have defined

S−m−2

4 := (S−)∗ , S−m−6

4 := ker ξAa : V∗ ← (S−)∗ ,

and made use of V
1
2 ∼=

(
V− 1

2 /V
1
2

)∗
. Isomorphism (2.8) can be expressed concretely as follows.

Lemma 2.5 ([HM88,BT89]) A non-zero vector V a is an element of V
1
2 if and only if V a = ξaBvB for

some non-zero spinor vA in S−m−2

4 /S−m−6

4 .

Since V
1
2 is a totally null m-dimensional vector subspace, we can now conclude

Proposition 2.6 ([HM88]) A non-zero spinor ξA
′

is pure if and only if it satisfies

ξaAξBa = 0 . (2.9)

Applying Lemma 2.1 to Proposition 2.6, one recovers the following well-known characterisation of pure
spinors due to Cartan.

Proposition 2.7 ([Car81]) A non-zero spinor ξA
′

is pure if and only if it satisfies

γa1...apA′B′ ξA
′

ξB
′

= 0 , for all p < m, p ≡ m (mod 4),

γA′B′ ξA
′

ξB
′

= 0 , when m = 0 (mod 2),

γa1...amA′B′ ξA
′

ξB
′ 6= 0 .





(2.10)

In particular, all non-zero spinors are pure when m ≤ 3

We shall refer to both equations (2.9) and (2.10) as the purity conditions of a spinor ξA
′

.
Proposition 2.7 tells us that the only non-trivial irreducible component of the tensor product ξA

′

ξB
′

of
a pure spinor ξA

′

lies in ∧m+V. In fact, the self-dual m-form φa1...am := γa1...amA′B′ ξA
′

ξB
′

annihilates V
1
2 ,

i.e. ξa1Aφa1a2...am = 0. In particular, it must be null (or simple or decomposable), ie

φa1...am = ξA1

a1
. . . ξAm

am
εA1...Am

∈ ∧mV
1
2 , for some εA1...Am

∈ ∧m
(
S−m−2

4 /S−m−6

4

)
.

The next proposition generalises Proposition 2.7 in a certain sense.
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Proposition 2.8 ([Car81]) Let αA
′

and βA be two pure spinors of opposite chirality. Then the α-plane
associated to αA

′

intersects the β-plane associated to βA in a totally null k-plane where k ≡ m− 1 (mod 2)
and k ≤ m− 1 if and only if

γa1a2...apA′Bα
A′

βB = 0 , for all p < k, p ≡ k (mod 2),

γA′Bα
A′

βB = 0 , when m ≡ 1 (mod 2),

γa1a2...akA′Bα
A′

βB 6= 0 .





(2.11)

Let βB and ρA be any two negative pure spinors not proportional to each other. Then the β-planes
associated to βB and ρA intersect in a totally null k-plane where k ≡ m (mod 2) and k ≤ m− 2 if and only
if

γa1a2...apABβ
AρB = 0 , for all p < k, p ≡ k (mod 2),

γABβ
AρB = 0 , when m ≡ 0 (mod 2),

γa1a2...akABβ
AρB 6= 0 .





(2.12)

The same result holds for any two positive pure spinors not proportional to each other.

An application of Lemma 2.1 leads to the following reformulation of Proposition 2.8 when k = m− 1 and
k = m− 2.

Proposition 2.9 Let αA
′

and βA be two pure spinors of opposite chirality. Then the α-plane associated to
ξA

′

intersects the β-plane associated to βA in a totally null (m− 1)-plane if and only if

αaAβB
′

a = −2αB′

βA , (2.13)

where αaA := γa A
B′ αB

′

and βaA
′

:= γa A′

B βB.
Let βB and ρA be any two negative pure spinors not proportional to each other. Then the β-planes

associated to βB and ρA intersect in a totally null (m− 2)-plane if and only if

βa(A
′

ρB
′)

a = 0 , (2.14)

where βaA
′

:= γa A′

B βB and ρaA
′

:= γa A′

B ρB.
The same result holds for any two positive pure spinors not proportional to each other.

Finally, as a direct consequence of the previous propositions, we obtain

Corollary 2.10 Let ξA
′

be a pure spinor, and let V
1
2 and S

m−2

4 be defined as in (2.5). Then

• Any non-zero spinor in S
m−2

4 is a pure spinor.

• The β-plane associated to any non-zero spinor in S
m−2

4 intersects the α-plane V
1
2 in a totally null

(m− 1)-plane.

• The β-planes associated to any two non-proportional non-zero spinors in S
m−2

4 intersect in a totally
null (m− 2)-plane.

Proof. Let βA and ρA be a two non-zero spinors in S
m−2

4 so that βA = baξAa and ρA = ρaξAa for some ba

and ρa not V
1
2 . In particular, we can assume ba, ρa to lie in a complementary subspace of V

1
2 in V, so that

they are null, and thus annihilate βA and ρA respectively. Assume that β[AρB] 6= 0. We simply check:

• βaA′

βB
′

a = babbγ A′

aA γ B′

bB (ξcAξBc ) + 4baβ
(A′

a ξB
′) + 4bab

aξA
′

ξB
′

= 0;
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• ξaAβB′

a = ξaA
(
−bcξCa γ B′

cC − 2baξ
B′

)
= −2 βAξB′

;

• Finally, since S
m−2

4 is a vector space of pure spinors, the sum of βA and ρB is also a pure spinor, and

the result follows by polarisation, i.e. 0 =
(
βaA

′

+ ρaA
′

)(
βB

′

a + ρB
′

a

)
= 2 βa(A

′

ρ
B′)
a i.e. the algebraic

condition (2.14) is satisfied.

The result follows by Proposition 2.9. �

Remark 2.11 The last part of Corollary 2.10 is an articulation of a standard theorem [Che54,BT89] which
states that a sufficient and necessary condition for the sum of two pure spinors to be pure is that their
respective totally null m-planes intersect in a totally null (m− 2)-plane.

Splitting It is often more convenient to eliminate the quotient vector spaces in the isomorphisms (2.7)
and (2.8) in favour of splittings adapted to them. We split the filtration (2.6) as

V = V− 1
2
⊕V 1

2
, (2.15)

where V− 1
2
⊂ V− 1

2 is complementary to V 1
2
:= V

1
2 and is linearly isomorphic to V− 1

2 /V
1
2 . We note that

V− 1
2
is a totally null m-plane dual to V 1

2
:= V

1
2 by virtue of V ∼= V∗. In particular, there exists a pure

spinor ηA′ dual to ξA
′

such that V− 1
2
annihilates ηA′ , ie

V− 1
2
= ker ηaA : V→ (S−)∗ , (2.16)

Conversely, any choice of spinor dual to ξA
′

induces a splitting (2.15) of V.
With no loss, we normalise ξA

′

and ηA′ as ξA
′

ηA′ = − 1
2 . We set

S−m−2
4

:= im ηaA : V→ (S−)∗ ,

so that by Lemma 2.5, any vector V a in V− 1
2
takes the form V a = ηaAv

A for some spinor vA in Sm−2

4
:=

S
m−2

4 , dual to S−m−2
4

.

Finally, to make the pairing between S−m−2
4

and Sm−2

4
more explicit, we introduce the map

IAB := ηaBξ
aA : S− → S− . (2.17)

By the Clifford property (2.1), IAB is idempotent with trace IAA = m. Thus, IAB must be the identity on
Sm−2

4
, or dually, on S−m−2

4
.

2.3 The stabiliser of a projective pure spinor in so(2m,C) for m > 2

We now turn to the decomposition of the Lie algebra g := so(2m,C), which we shall identify with the space
∧2V∗ of 2-forms by means of gab. We remind the reader that we assume m > 2.

Filtration The filtration (2.6) on V induces a filtration of vector subspaces

{0} =: g2 ⊂ g1 ⊂ g0 ⊂ g−1 := g (2.18)

of g, where

g0 :=
{
φab ∈ g : ξaAξbBφab = 0

}
, g1 :=

{
φab ∈ g : ξbAφba = 0

}
. (2.19)

In fact, as can easily be checked from the definitions (2.19), g is a filtered Lie algebra, in the sense that the
Lie bracket [·, ·] : g × g → g is compatible with the filtration on g, i.e. [gi, gj] ⊂ gi+j , with the convention
gi = {0} for i ≥ 2, and gi = g for all i ≤ −1.
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Proposition 2.12 The Lie subalgebra p := g0 is the stabiliser of ξA
′

, ie

φabγ
ab A′

B′ ξB
′ ∝ ξA′

.

Proof. From the identity ξaAξbBφab = − 1
4φabξ

D′

γab C′

D′ γc A
C′ ξBc , it follows that the stabiliser of ξA

′

is

contained in g0, and, by rewriting φabγ
ab A′

B′ ξB
′

= φ ξA
′

for some φ, and using (2.9), in fact contains g0. �
The Lie subalgebra p is a Lie parabolic subalgebra of so(2m,C). From the Lie bracket commutation

relation of gi, each vector subspace gi is a p-module.

Splitting The splitting (2.15) of V adapted to the null structure associated to ξA
′

endows g with the
structure of a |1|-graded Lie algebra, ie

g = g−1 ⊕ g0 ⊕ g1 , [gi, gj] ⊂ gi+j . (2.20)

where gi ⊂ gi are complementary to gi+1, for each i = −1, 0, 1, and we set gi := {0} when |i| > 2 for
convenience. Explicitly, we have

g−1
∼= ∧2V− 1

2
, g0 ∼= V− 1

2
⊗V 1

2
, g1 ∼= ∧2V 1

2
.

In particular, g1 and g−1 are dual to one another, and g0 is isomorphic to gl(m,C), the Lie algebra of
the complex general linear group GL(m,C) with standard representation V 1

2
. If ηA′ is a pure spinor with

ηA′ξA
′

= − 1
2 so that (2.16) holds, then we can write

φab = ηaAηbBφ
AB + 2 ξA[a η b]Bφ

B
A + ξAa ξ

B
b φAB ∈ g−1 ⊕ g0 ⊕ g1 ,

where φAB = φ[AB] ∈ ∧2Sm−2

4
, φ B

A ∈ S−m−2

4
⊗Sm−2

4
, φAB = φ[AB] ∈ ∧2S−m−2

4
. Here, we emphasise that

spinor indices should not be raised nor lowered, i.e. φAB, φAB and φ B
A are independent of each other.

By the commutation relation, g1 is nilpotent. Further, since g0 is reductive, there is a direct sum
decomposition g0 = z0 ⊕ sl0 where z0 is the one-dimensional center of g0, and sl0 is the simple part of g0,
which is isomorphic to sl(m,C), the Lie algebra of the complex special linear group SL(m,C). The center
z0 can be seen to be spanned by the element

Eab := −ξA[a η b]A = −ξAa ηbA +
1

2
gab , (2.21)

with respect to which any φab ∈ sl0 is tracefree, i.e. Eabφab = 0. More generally, any φab ∈ g0 admits the
decomposition

φab = φωab + 2 ξA[a η b]Bφ
B

A ∈ g0 = z0 ⊕ sl0 ,

where φ ∈ C and φ B
A ∈ S−m−2

4
⊗ Sm−2

4
is tracefree in the sense that φ B

A IAB = 0 where we recall IBA =

ξaAηaB is the identity on Sm−2

4
(see (2.17)). Here, we have defined, for convenience, ωab := −2Eab so that

ω c
a ω

b
c = gba.

The element Eab has the property ξbAE a
b = 1

2ξ
aA and ηbAE

a
b = − 1

2η
a
A, i.e. Eab has eigenvalues ± 1

2 on
V± 1

2
. The action of Eab extends by derivation to any tensor product of V and V∗, and in particular Eab

has eigenvalues i on gi for i = −1, 0, 1. Now, the image of Eab in the Clifford algebra Cℓ(V, g) restricted to

End(S+) is E A′

B′ := − 1
4Eabγ

ab A′

B′ , and has eigenvalues m
4 on Sm

4
, and similarly for the action of Eab on

S− and their duals. For these reasons, Eab is referred to as the grading element of g.

Parabolic Lie subgroups Moving to the level of Lie groups, we denote by P the stabiliser of the pro-
jective pure spinor [ξ] in G = Spin(2m,C) so that P has Lie algebras p. More precisely, P admits a Levy
decomposition P = G0 ⋉ P+, where the image of G0 in SO(2m,C) under the covering map is the complex
general Lie group GL(m,C) while P+ has nilpotent Lie algebra g1. Any of the p-invariant structures, includ-
ing filtrations and associated graded vector spaces, considered in this article are also P -invariant and can be
regarded as finite representations of P . Similarly, we can view g0-modules as G0-modules.
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Associated graded vector space Associated to the filtration (2.18) is the graded p-module gr(g) =⊕1
i=−1 gri(g) where gri(g) := gi/gi+1. In fact, each gri(g) is a p-module since [g1, gi] ⊂ gi+1. Each gri(g) is

lineraly isomorphic to the g0-module gi of the splitting (2.20). There is a further direct sum decomposition

gr0(g)
∼= g00 ⊕ g10 , where g00 := (g1 + z0) /g1 , g10 := (g1 + sl0) /g1 ,

of p-modules, where g00
∼= z0 and g10

∼= sl0 as vector spaces. Let us set g0±1 := gr±1(g) for convenience. Then
we can represent gr(g) in the form of a directed graph

g00

%%❑
❑❑

❑❑
❑

g01

::✉✉✉✉✉✉

$$■
■■

■■
■ g0−1

g10

99ssssss

(2.22)

where the arrows are defined by the property

g
j
i −→ gki−1 ⇐⇒ ğ

j
i ⊂ g1 · ğki−1 , (2.23)

for any irreducible g0-module ğ
j
i linearly isomorphic to g

j
i . Here the · denotes the algebraic action of g on

any g-module.
Such a description can be made explicit by defining the maps, for any φab ∈ g,

g
ξΠ

0
−1(φ) := ξaAξbBφab ,

g
ξΠ

0
0(φ) := ξabA

′

φab ,
g
ξΠ

1
0(φ) := ξcAφcb +

1

n
γ A
bC′ ξcdC

′

φcd . (2.24)

where ξA
′

ab := ξB
′

γ A′

abB′ : ∧2V→ S+ and S
m−4

4 := im ξA
′

ab : ∧2V→ S+. Then the kernels of the maps g
ξΠ

j
i

correspond to the p-submodules of g, ie

g1 + z0 = {φab ∈ g : gξΠ
1
0(φ) = 0} , g1 + sl0 = {φab ∈ g : gξΠ

0
0(φ) = 0} ,

g0 = {φab ∈ g : gξΠ
0
−1(φ) = 0} , g1 = {φab ∈ g : gξΠ

0
0(φ) =

g
ξΠ

1
0(φ) = 0} .

The inclusions g1 ⊂ g1 + z0 ⊂ g0 and g1 ⊂ g1 + sl0 ⊂ g0 now follow from ker gξΠ
i
0 ⊂ ker gξΠ

0
−1. Passing now

to the associated graded module gr(g), we can express the irreducible p-modules gj0 in terms of g
ξΠ

j
i , eg.

g00 =
{
φab ∈ g0 : gξΠ

1
0(φ) = 0

}
/g1 , g10 =

{
φab ∈ g0 : g

ξΠ
0
0(φ) = 0

}
/g1 ,

and so on. The irreducibility of gji from the fact that the maps g
ξΠ

j
i are saturated with symmetries.

2.4 Generalisations

In more generality, for any arbitrary finite g-module M, the parabolic subalgebra p induces a filtration

{0} =: Mℓ+1 ⊂Mℓ ⊂Mℓ−1 ⊂ . . . ⊂M−k+1 ⊂M−k := M , (2.25)

for some k and ℓ, of p-modules, with associated graded p-module gr(M) =
⊕

gri(M), where gri(M) :=
Mi/Mi+1, on which the grading element E acts diagonalisably, with eigenvalues i. Each gri(M) splits
as a direct sum of irreducible p-modules gri(M) = M0

i ⊕M1
i ⊕ . . . ⊕Mℓ

i for some ℓ depending on i, and

each M
j
i is isomorphic to an irreducible g0-module M̆

j
i . It is in fact easier to obtain the irreducible g0-

modules of gr(M) by ‘branching’ from g to g0. Using ad hoc methods, one can construct suitable bases
for the irreducible g0-modules, and check that they add up to a basis for M. In particular, one must have
dimM =

∑
i,j dimM

j
i =

∑
i,j dim M̆

j
i .
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We can then construct a graph on gr(M) as follows: we let the nilpotent part g1 of p act on each M̆
j
i ,

and draw an arrow M
j
i →Mk

i−1 for some i, j, k, whenever M̆j
i ⊂ g1 · M̆k

i−1. This graph allows us to identify

the p-submodules of M obtained by letting p act on each M̆
j
i . Such p-submodules can be expressed in terms

of kernels of maps M
ξ Πji analogous to (2.24). From the irreducibilty of Mj

i , each
M
ξ Πji must be ‘saturated’

with symmetries in the sense of [PR84]. The main application of this procedure will be found in section 4,
where we shall take M to be the space of some irreducible (algebraic) curvature tensors.

If M is a tensor, as opposed to spinor, representation, then we can view it as a g-submodule of
⊗p

V.
The filtration (2.6) induces a filtration of p-modules on

⊗p
V, and thus on M in the obvious way: each Mi

in (2.25) is a p-submodule of
∑

i1+...+ip=j

Vi1 ⊗ . . .⊗Vip .

When M is one of the spinor modules S±, the description of the filtration of p-modules can be carried out
as follows. Define the maps

ξAa1...a2k−1
:= ξB

′

γ A
a1...a2k−1B′ : ∧2k−1V→ S− , ξA

′

a1...a2k
:= ξB

′

γ A′

a1...a2kB′ : ∧2kV→ S+ ,

for k = 1, . . . ,m. Then, using the Clifford property (2.1), one can see that S± admit p-invariant filtrations

S
m
4 ⊂ S

m−4
4 ⊂ . . . ⊂ S−m−4

4 ⊂ S−m
4 = S+

S
m−2

4 ⊂ S
m−6

4 ⊂ . . . ⊂ S−m−6

4 ⊂ S−m−2

4 = S−

}
when m is even,

S
m
4 ⊂ S

m−4

4 ⊂ . . . ⊂ S−m−6

4 ⊂ S−m−2

4 = S+

S
m−2

4 ⊂ S
m−6

4 ⊂ . . . ⊂ S−m−4

4 ⊂ S−m
4 = S−

}
when m is odd,

where we have defined S
m
4 := 〈ξA′〉 and

S
m−4k+2

4 := im ξAa1...a2k−1
: ∧2k−1V→ S− , S

m−4k
4 := im ξA

′

a1...a2k
: ∧2kV→ S+ ,

for k = 1, . . . ,m. Using the isomorphisms (2.3), the above filtrations are also filtrations on the dual spinor
spaces (S±)∗, where each of the p-modules can be identified with the kernels

S−m−4k−2

4 = ker ξBa1...a2k−1
: ∧2k−1V∗ ← (S−)∗ , S−m−4k−4

4 = ker ξB
′

a1...a2k
: ∧2kV∗ ← (S+)∗ ,

for k = 1, . . . ,m, and S−m−4
4 = ker ξA

′

: C← (S+)∗.
A choice of splitting (2.15) fixes g0-modules Si ⊂ Si such that Si = Si⊕Si+1 and thus induces gradings

Sm
4
⊕Sm−4

4
⊕ . . .⊕S−m−4

4
⊕S−m

4
= S+

Sm−2

4
⊕Sm−6

4
⊕ . . .⊕S−m−6

4
⊕S−m−2

4
= S−

}
when m is even,

Sm
4
⊕Sm−4

4
⊕ . . .⊕S−m−6

4
⊕S−m−2

4
= S+

Sm−2

4
⊕Sm−6

4
⊕ . . .⊕S−m−4

4
⊕S−m

4
= S−

}
when m is odd.

The grading element E of g defined by (2.21) has eigenvalues 2i−m
4 on S 2i−m

4
.

Finally generalising (2.8), one has isomorphisms

∧kV 1
2 ∼= S

m
4 ⊗

(
S−m−2k

4 /S−m−2k−4

4

)
, k = 0 , . . . ,m− 1 ,

∧mV
1
2 ∼= S

m
4 ⊗S

m
4 ,

the latter being the purity condition of Proposition 2.7. In particular, when k = 2, we have

g1 ∼= S
m
4 ⊗

(
S−m−4

4 /S−m−8

4

)
,

(
g−1/g0

)
⊗S

m
4 ∼= S

m−4

4 /S
m
4 .

We note that this description of S± is consistent with the identification of S with ∧•V 1
2 .
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2.5 Null Grassmannians

The space of all null structures in (V, g) splits into two connected components Gr+m(V, g) and Gr−m(V, g),
which we identify with the spaces of self-dual null structures (α-planes) and anti-self-dual null structures
(β-planes) in (V, g) respectively. These spaces are conventionally referred to as null (or isotropic) Grassman-
nians. Proposition 2.4 tells us that Gr+m(V, g) can be identified with the space of all projective pure positive
spinors, and must therefore be isomorphic to the homogeneous space G/P where as before G = Spin(2m,C)
and P is the stabiliser of a projective pure positive spinor. The description of Gr−m(V, g) is similar. In
particular, when m = 1, 2, 3, the absence of purity conditions means that each of Gr±m(V, g) is isomorphic

to the complex projective space CP
1
2
m(m−1), and when m > 3, each can be realised as compact complex

subvarieties of PS± of dimension 1
2m(m− 1) being the dimension of g−1

∼= g/p.

2.6 Real pure spinors

One can also consider a 2m-dimensional real vector space V equipped with a definite or indefinite non-
degenerate symmetric bilinear form g. In general, the spinor representations of (V, g) are complex vector
spaces equipped with a real or quaternionic structure. We then have a notion of pure spinor of real index
r, where r is the real dimension of the intersection of the associated totally null complex m-plane Nξ of the
complexification of (V, g) with its complex conjugate. The real index depends on the signature of g. For
instance, if g is positive definite, r is always zero: Nξ and its conjugate define a Hermitian signature on
(V, g). In Lorentzian signature, r is always 1, and the analogous structure is known as a Robinson structure
[NT02,Tra02,TC14]. We refer to [KT92] for details.

More relevant to the present article, however, is the case when g has signature (m,m). Then, r ≡ m
(mod 2) ≤ m, the spinor representations are spanned by real pure spinors (when r = m) associated to real
totally null m-planes in V. The algebraic setup of the previous sections carries over to this real setting with
no major change. The complex Lie algebra so(2m,C) is replaced by the real form so(m,m). The parabolic
Lie subalgebra stabilising a real pure spinor is a real form of the complex parabolic p, and is also described in
terms of a |1|-grading on so(m,m). The story is similar at the Lie group level, where Spin(2m,C) is replaced
by the connected identity component of the real Lie group Spin(m,m). The next two sections 3 and 4 can
also be translated into this real case with no important issue.

3 Decomposition of the intrinsic torsion

As before, we assume m > 2. Let us consider the p-module

W := V⊗ (g/p) , (3.1)

where, as usual, g := so(2m,C), with standard representation V, and p the parabolic Lie subalgebra of
g stabilising a projective pure spinor [ξA

′

]. In section 5, we shall give the module W the geometrical
interpretation of the space of intrinsic torsions of a G-structure with structure group P .

Notation 3.1 In the table of the following proposition, ‘p-module’ and ‘g0-module’ are abbreviated ‘p-mod’
and ‘g0-mod’ respecitvely. We also use the notation M⊚M′ for the Cartan product of two representations
M and M′ — see [Eas04]. This is the unique irreducible representation of highest dimension in the tensor
product M⊗M′. For gl(m,C)-modules, this is either the symmetric product ⊙, the tracefree tensor product
⊗◦, or a combination of both depending on M and M′. Finally, the algebraic action of g on any g-module
will be denoted by a dot ·.

Proposition 3.2 The p-module W admits a filtration

W− 1
2 ⊂W− 3

2 , (3.2)
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of p-modules on W, where W− 3
2 := V− 1

2 ⊗
(
g−1/g0

)
and W− 1

2 := V
1
2 ⊗

(
g−1/g0

)
.

The associated graded p-module

gr(W) = gr− 1
2
(W)⊕ gr− 3

2
(W) = W− 1

2 ⊕
(
W− 3

2 /W− 1
2

)
(3.3)

decomposes into a direct sum

gr− 1
2
(W) = W0

−1
2

⊕W1

− 1
2

, gr− 3
2
(W) = W0

− 3
2

⊕W1

−3
2

,

of irreducible p-modules as described below:

p-mod g0-mod Dimension

W0
− 3

2

∧3V− 1
2

1
3!
m(m−1)(m−2)

W1
− 3

2

V− 1
2
⊚

(
∧2V− 1

2

)
1
3m(m2 − 1)

p-mod g0-mod Dimension

W0
− 1

2

V− 1
2

m

W1
− 1

2

V 1
2
⊚

(
∧2V− 1

2

)
1
2
m(m+1)(m−2)

Further,

W
j
i = {ΓabcξbBξcC ∈Wi : Wξ Πki (Γ) = 0 , for all k 6= j}/Wi+1 , i = −3

2
,−1

2
, (3.4)

where

W
ξ Π0

− 3
2

(Γ) := Γabcξ
a[AξbBξcC] ,

W
ξ Π1

− 3
2

(Γ) := Γabcξ
a(AξbB)ξcC ,

W
ξ Π0

− 1
2

(Γ) := ξA
′

Γbcdξ
cdD′

γb B
D′ + ξbBΓbcdξ

cdA′

,

W
ξ Π1

− 1
2

(Γ) :=




Γabcξ

bBξcC − 1
2(m−1)

(
ξ
[B
a Γbcdξ

cdD′

γ
b C]
D′ + ξb[B Γbcdξ

cdD′

γ
C]

aD′

)
, m > 3 ,

Γabcξ
bBξcC − 1

4

(
ξ
[B |
a Γbcdξ

cd
D γ

bD|C] + ξb[B |Γbcdξ
cd
D γ

D|C]
a

)
+ 1

6ξ
bAΓbcdξ

cd
A γ

BC
a , m = 3 ,

where Γabc ∈ V ⊗ g. For m = 3, we have made use of the isomorphism S+ ∼= (S−)∗. Notationally, the
primed indices are eliminated, and the γ-matrices take the form γaAB and γaAB , and are skew-symmetric
in their spinor indices.

Finally, the p-module gr(W) can be expressed by means of the directed graph

W1
− 1

2

!!

// W1
− 3

2

W0
− 1

2

==④④④④④④④④
// W0

− 3
2

where the dotted arrow occurs only when m > 3. Here, an arrow from W
j
i to Wk

i−1 for some i, j, k implies

that W̆j
i ⊂ g1 · W̆k

i−1 for any choice of irreducible g0-modules W̆
j
i and W̆k

i−1 isomorphic to W
j
i and Wk

i−1

respectively, or equivalently that kerWξ Πji ⊂ kerWξ Πki−1.

Proof. Since W is not a g-module, one cannot strictly follow the argument of section 2.4. The idea is
nevertheless very similar. We first note that the filtration (2.6) on V induces the filtration (3.2) of p-
submodules of W. Now consider the associated graded p-module (3.3). To make the analysis more tractable,
we can work with the grading (2.15) so that we have linear isomorphisms

gr− 3
2
(W) ∼= V− 1

2
⊗
(
∧2V− 1

2

)
, gr− 1

2
(W) ∼= V 1

2
⊗
(
∧2V− 1

2

)
,
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between p-modules and g0-modules. That each of these g0-modules splits into irreducibles, i.e. W̆0

−3
2

⊕W̆1

−3
2

∼=

∧3V− 1
2
⊕
(
V− 1

2
⊚

(
∧2V− 1

2

))
and W̆0

− 1
2

⊕ W̆1

−1
2

∼= V− 1
2
⊕
(
V 1

2
⊚

(
∧2V− 1

2

))
respectively, is clear.

Let us be a bit more explicit by viewing an element of W− 3
2 as an element of V− 1

2 ⊗
(
∧2Sm−2

4

)
, i.e. of

the form Γabcξ
bBξcC or Γabcξ

bcB′

(mod αaξ
B′

) where Γabc = Γ
a[bc] lies in the g-module V⊗ g. This means

that W− 1
2 = {ΓabcξbBξcC ∈ W− 3

2 : Γabcξ
aAξbBξcC = 0}. To describe elements of the g0-modules W̆

j
i we

write

Γabcξ
bBξcC = ηaAΓ

ABC + ξAa Γ
BC

A ,

Γabcξ
bcD′

=
(
ηaAΓ

ABC + ξAa Γ
BC

A

)
ηcCγ

c D′

B + 2
(
ξAa Γ

C
AC + ηaAΓ

A C
C

)
ξD

′

,

γa A
D′ Γabcξ

bcD′

= ΓEBCηbBηcCγ
bc A
E + 4Γ CA

C + 2ΓA C
C ,

(3.5)

where Γ BC
A = Γ

[BC]
A , ΓABC = ΓA[BC], Γ C

AB and ΓA C
B are all elements of tensor products of Sm−2

4
and

S−m−2
4

— see appendix A.1. As before, ξA
′

and ηA′ satisfy ξA
′

ηA′ = − 1
2 , and we recall that IBA := ξaBηaA is

the identity map on Sm−2

4
. In particular, the irreducible g0-components of an element of W are determined

by

Γ[ABC] ∈ W̆0
− 3

2

, Γ(AB)C ∈ W̆1
− 3

2

,

Γ AC
A ∈ W̆0

− 1
2

, Γ BC
A − 2

m− 1
I
[B |
A Γ

D|C]
D ∈ W̆1

− 1
2

.
(3.6)

Using (3.5) and (3.6), it is then straightforward to check that the p-modules defined by the kernels of the
maps W

ξ Πki are related to W
j
i as shown by (3.4).

To obtain the diagram encoding the full p-invariance, we must also examine the action of the nilpotent
part g1 of p on each of these irreducible g0-modules. This can be checked by a direct computation or by
noting that kerWξ Πji ⊂ kerWξ Πki−1 for suitable i, j and k.

Finally, extra care must be taken when m = 3 where ∧3V± 1
2
are one-dimensional. We can realise g1 as

the pairing of V− 1
2 /V

1
2 and ∧3V 1

2
: any element of g1 can be written in the form φab = 1

2εabcφ
c for some

vector φc ∈ V− 1
2
, where εabc ∈ ∧3V 1

2
. It then follows that g1 · ∧3V− 1

2
⊂ V− 1

2
. This also explains why we

have distinguished the cases m = 3 and m > 3 in the definition of the map W
ξ Π1

− 1
2

. One may also use the

identity

ξa[AΓabcξ
bBξcC] = −2

3
ξaEΓabcξ

bc
E ε

ABC = −1

6
γaEF Γabcξ

bcEξFb ε
ABC ,

where εABC := 1
2γ

aABγ CD
a ξD is completely skew-symmetric. �

4 Decomposition of the curvature

As before, we assume m > 2. Consider the following g-modules:

g-mod Dimension Description

F (2m− 1)(m+ 1) {Φab ∈ ⊗2V∗ : Φab = Φ(ab) ,Φ
c
c = 0}

A 8
3m(m+ 1)(m− 1) {Aabc ∈ ⊗3V : Aabc = Aa[bc] , A[abc] = 0 , Aaac = 0}

C 1
3m(m+ 1)(2m+ 1)(2m− 3) {Cabcd ∈ ⊗4V : Cabcd = C[ab][cd] , C[abc]d = 0 , Cabad = 0}
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These modules are to be interpreted as the spaces of irreducible curvature tensors of the Levi-Civita con-
nection at a point, more precisely, of the tracefree Ricci tensors, Cotton-York tensors and Weyl tensors.

We shall give p-invariant decompositions of these modules, where p is the stabiliser of a projective pure
spinor [ξA

′

] in g. We state the results without proofs, which essentially follow from the discussion of section
2.4, and arguments similar to the proof of Proposition 3.2. Details can be worked out using the material
contained in appendix A, in particular, the bases for the g0-modules and the multilinear maps referred to in
the following propositions. Notation 3.1 applies.

4.1 Decomposition of the space of the tracefree Ricci tensors

Proposition 4.1 The space F of tensors of tracefree symmetric 2-tensors admits a filtration

{0} =: F2 ⊂ F1 ⊂ F0 ⊂ F−1 := F ,

of p-modules

Fi = {Φab ∈ F : FξΠ
0
i−1(Φ) = 0} , i = 0, 1,

where the maps F
ξΠ

0
i are defined in appendix A.2.

Further, each p-module Fi/Fi+1 is an irreducible p-module as described below:

p-mod g0-mod Dimension

F0
0 V 1

2
⊚V− 1

2
m2 − 1

p-mod g0-mod Dimension

F0
±1 V± 1

2
⊚V± 1

2

1
2m(m+ 1)

4.2 Decomposition of the space of Cotton-York tensors

Proposition 4.2 The space A of tensors with Cotton-York symmetries admits a filtration

{0} =: A
5
2 ⊂ A

3
2 ⊂ A

1
2 ⊂ A− 1

2 ⊂ A− 3
2 = A ,

of p-modules

Ai = {Aabc ∈ A : Aξ Π
k
i−1(A) = 0 , for all k} , i = −1

2
,
1

2
,
3

2
,

where the maps A
ξ Π

k
i are defined in appendix A.2.

The associated graded p-module gr(A) =
⊕ 3

2

i=− 3
2

gri(A), where gri(A) := Ai/Ai−1, splits into a direct
sum

gr± 3
2
(A) ∼= A0

± 3
2

, gr± 1
2
(A) ∼= A0

± 1
2

⊕ A1
± 1

2

⊕ A2
± 1

2

,

of irreducible p-modules as described below:

p-mod g0-mod Dimension

A0
± 3

2

V± 1
2
⊚ g±1

1
3m(m2 − 1)

A0
± 1

2

V± 1
2
⊚ z0 m

A1
± 1

2

V∓ 1
2
⊚ g±1

1
2m(m− 2)(m+ 1)

A2
± 1

2

V± 1
2
⊚ sl0

1
2m(m+ 2)(m− 1)
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Further,

A
j
i = {Aabc ∈ Ai : Aξ Π

k
i (A) = 0 , for all k 6= j}/Ai+1 , for |i| = 1

2 .

Finally, the p-module gr(A) can be expressed by means of the directed graph

A2
1
2

//

��❄
❄❄

❄❄
❄❄

❄❄
A2

− 1
2

  ❆
❆❆

❆❆
❆❆

❆

A0
3
2

@@✁✁✁✁✁✁✁✁
//

��❂
❂❂

❂❂
❂❂

❂
A1

1
2

??⑧⑧⑧⑧⑧⑧⑧⑧

��❄
❄❄

❄❄
❄❄

❄❄
A1

− 1
2

// A0
− 3

2

A0
1
2

//

??⑧⑧⑧⑧⑧⑧⑧⑧

A0
− 1

2

>>⑥⑥⑥⑥⑥⑥⑥⑥

where an arrow from A
j
i to Aki−1 for some i, j, k implies that Ă

j
i ⊂ g1 · Ăki−1 for any choice of irreducible

g0-modules Ă
j
i and Ăki−1 isomorphic to A

j
i and Aki−1 respectively, or equivalently that kerAξ Π

j
i ⊂ kerAξ Π

k
i−1.

4.3 Decomposition of the space of Weyl tensors

Proposition 4.3 The space C of tensors with Weyl symmetries admits of a filtration

{0} =: C3 ⊂ C2 ⊂ C1 ⊂ C0 ⊂ C−1 ⊂ C−2 := C , (4.1)

of p-modules

Ci = {C ∈ C : CξΠ
k
i−1(C) = 0 , for all k} , i = −1, 0, 1, 2,

where the maps C
ξΠ

k
i are defined in appendix A.2.

The associated graded p-module gr(C) =
⊕2

i=−2 gri(C), where gri(C) := Ci/Ci−1, splits into a direct sum

gr±2(C)
∼= C0

±2 , gr±1(C)
∼= C0

±1 ⊕ C1
±1 , gr0(C)

∼= C0
0 ⊕ C1

0 ⊕ C2
0 ⊕ C3

0 ,

of irreducible p-modules as described below:

p-mod g0-mod Dimension

C0
±2 g±1 ⊚ g±1

1
12m

2(m2 − 1)

C0
±1 g±1 ⊚ z0

1
2m(m− 1)

C1
±1 g±1 ⊚ sl0

1
3m

2(m2 − 4)

p-mod g0-mod Dimension

C0
0 z0 ⊚ z0 1

C1
0 sl0 ⊚ z0 m2 − 1

C2
0 g1 ⊚ g−1

1
4m

2(m+ 1)(m− 3)

C3
0 sl0 ⊚ sl0

1
4m

2(m− 1)(m+ 3)

with the proviso that C2
0 does not occur when m = 3. Further

C
j
i = {C ∈ Ci : CξΠ

k
i (C) = 0 , for all k 6= j}/Ci+1 , for |i| ≤ 1.
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Finally, the p-module gr(C) can be expressed by means of the directed graph

C3
0

��❄
❄❄

❄❄
❄❄

❄

C1
1

@@✁✁✁✁✁✁✁✁
//

��✻
✻✻

✻✻
✻✻

✻✻
✻

C2
0

//

��✽
✽✽

✽✽
✽✽

✽✽
✽

C1
−1

&&▲
▲▲

▲▲
▲

C0
2

::✉✉✉✉✉✉

$$■
■■

■■
■ C0

−2

C0
1

��❂
❂❂

❂❂
❂❂

❂
//

CC✟✟✟✟✟✟✟✟✟✟

C1
0

BB✝✝✝✝✝✝✝✝✝✝
// C0

−1

88rrrrrr

C0
0

??⑧⑧⑧⑧⑧⑧⑧⑧

where an arrow from C
j
i to Cki−1 for some i, j, k implies that C̆

j
i ⊂ g1 · C̆ki−1 for any choice of irreducible

g0-modules C̆
j
i and C̆ki−1 isomorphic to C

j
i and Cki−1 respectively, or equivalently that ker CξΠ

j
i ⊂ kerCξΠ

k
i−1.

5 Differential geometry of pure spinor fields

Throughout this section, (M, g) will denote an n-dimensional complex Riemannian manifold, where n = 2m,
i.e. a complex manifoldM equipped with a global non-degenerate holomorphic section gab of ⊙2T∗M, where
T∗M is the holomorphic cotangent bundle of M. We also assume that (M, g) is equipped with a global
holomorphic volume element and a spin structure. These data are equivalent to a holomorphic reduction of
the structure group of the frame bundle FM ofM to G := Spin(2m,C), with the Lie algebra g. Holomorphic
vector bundles overM can be constructed in terms of finite representations of G or g in the standard way
[Sal89, ČS09]. For instance, if V is the standard representation of G, then the holomorphic tangent bundle
is simply TM := FM×G V, and holomorphic sections of TM can be viewed as equivariant holomorphic
functions on FM taking values in V. Similarly, the spinor bundle, the chiral positive and negative spinor
bundles, S, S+ and S− arise from the spinor representations S, S+ and S− of section 2 respectively.

The unique torsion-free metric-compatible holomorphic Levi-Civita connection and its associated covari-
ant derivative onM will both be denoted by ∇a. Recall that for any other metric-compatible holomorphic
connection ∂a, the difference between ∇a and ∂a is given by

∇aV b = ∂aV
b + Γ b

ac V
c , (5.1)

for any holomorphic vector field V a, for some holomorphic tensor field Γabc = Γa[bc]. For instance, if
∂a preserves an orthonormal frame, then Γabc can be identified with the components of the Levi-Civita
connection 1-form in that frame. The torsion of ∂a equals 2 Γ c

[ab] . The Riemann tensor of ∇a is given by

2∇[a∇ b]V
d = R d

abc V
c ,

for any holomorphic vector field V a, and satisfies the Bianchi identity

∇[aRb c]de = 0 . (5.2)

The Riemann tensor splits into O(2m,C)-irreducible components as

Rabcd = Cabcd +
4

n− 2
Φ[c |[a g b]|d] +

2

n(n− 1)
Rgc[a g b]d . (5.3)
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where Cabcd is the Weyl tensor, Φab the tracefree part of the Ricci tensor Rab := R c
acb , and R := R a

a the
Ricci scalar. For m > 2, this decomposition is also SO(2m,C)- and G-irreducible. When m = 2, the Weyl
tensor splits into a self-dual part and an anti-self-dual part, each SL(2,C)-irreducible.

Sections of S+ and S− will be denoted in the obvious way by means of the abstract index notation of
section 2, eg by ξA

′

and ζA and similarly for their dual. The spin connection on S, S+ and S− can be
constructed canonically as a lift of the Levi-Civita connection, and will also be denoted ∇a. It has the
property of preserving the Clifford module structure of S in the sense that

∇a(V bγ B
bA′ ξA

′

) = (∇aV b)γ B′

bA + V bγ B
bA′ ∇aξA

′

,

for any holomorphic vector field V a and positive spinor field ξA
′

, and similarly for the other spinor bundles.
Lifting any other metric-compatible holomorphic connection ∂a to S, we have, with reference to (5.1),

∇aξA
′

= ∂aξ
A′ − 1

4
Γabcγ

bc A′

B′ ξB
′

, (5.4)

for any holomorphic spinor field ξA
′

. Finally, the curvature of the spin connection is given by

2∇[a∇ b]ξ
A′

= −1

4
Rabcdγ

cd A′

B′ ξB
′

,

for any holomorphic spinor field ξA
′

, and similarly for spinors of other types.

Notation 5.1 As in sections 2, 4 and 3, we shall use the short-hand notation

ξAa := ξB
′

γ A
aB′ , ξA

′

ab := ξB
′

γ A′

abB′ , ηaA := γ B′

aA ηB′ , ηabA′ := γ B′

abA′ ηB′ ,

ζA
′

a := ζBγ A′

aB , ζAab := ζBγ A
abB , . . .

and so on, for spinors ξA
′

, ηA′ , ζA.

Assumptions 5.2 Throughout this section, we shall assume that our tensor and spinor fields depend holo-
morphically on M, and Γ(·) will denote the space of holomorphic sections of a holomorphic fiber bundle.
The reader will sometimes be reminded of this assumption for clarity. The application of this work to real
pseudo-Riemannian manifolds is given in section 5.3.

Further, unless otherwise stated, we shall assume m > 2 for definiteness, although many of the results
here specialise to the case m = 2 too. Appendix B.1 contains a brief review of this case.

Finally, let us emphasize that our results will be essentially local.

5.1 Projective pure spinor fields

We first make the following definition.

Definition 5.3 An almost null structure N on (M, g) is a rank-m distribution that is totally null, i.e.
g(v, w) = 0 for all sections v, w of N . An almost null structure is (anti-)self-dual if it is annihilated by an
(anti-)self-dual m-form.

A self-dual, respectively, anti-self-dual, almost null structure will also be referred to as an α-plane, respec-
tively, β-plane, distribution. We shall denote the bundle of all self-dual, respectively, anti-self-dual, almost
null structures on (M, g) by Gr+m(TM, g), respectively Gr−m(TM, g). These bundles have fibers isomorphic
to the 1

2m(m − 1)-dimensional family Gr+m(TpM, g) of α-planes, respectively Gr−m(TpM, g) of β-planes, in
TpM at any point p.

The existence of an almost null structure does not require a spin structure. But the latter allows us to
identify almost null structures with pure spinor fields up to scale, i.e. spinor fields satisfying condition (2.9)
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or (2.10) at every point. For, by Proposition 2.4, a totally null m-dimensional vector subspace of the tangent
space at a point can be identified with a pure spinor up to scale. Thus, we shall also identify the bundles
Gr±m(TM, g) with the bundles of projective pure spinors of either chirality.

Now, let [ξA
′

] be a holomorphic projective pure spinor field, i.e. a holomorphic section of Gr+m(TM, g),
and denote by Nξ its associated almost null structure, which can also be assumed to be holomorphic. Then

the structure group of FM is reduced to the stabiliser P of [ξA
′

] as described in section 2, and we obtain
filtrations of vector bundles, together with their associated graded vector bundles, constructed from finite
representations of P or its Lie algebra p. For instance, the filtration p-modules {Ci} on the space C of tensors
with Weyl symmetries gives rise to a filtration of vector subbundles Ci overM, where Ci := FM×P Ci, and
so does the story go for the associated graded p-modules gri(C), its irreducible modules Cji and the graded
g0-modules Ci in the obvious way and notation [ČS09]. We shall then recycle the notation of sections 3
and 4, and appendix A in this curved setting as the need arises. We shall characterise the (local) algebraic
degeneracy of curvature tensors with respect to [ξA

′

] by means of the maps F
ξΠ

j
i ,

A
ξ Π

j
i and C

ξΠ
j
i .

5.1.1 Intrinsic torsion

Having singled out a holomorphic projective pure spinor field [ξA
′

] on M, it remains to characterise the
various degrees of ‘integrability’ of the P -structure it defines. Following [Sal89], the P -structure being inte-
grable to first order, i.e. there exists a torsion-free connection compatible with the P -structure, is essentially
equivalent to [ξA

′

] being parallel with respect to the Levi-Civita connection ∇a, ie

∇a[ξA
′

] = 0 , ie ∇aξB
′

= αaξ
B′

, (5.5)

for some 1-form αa. Equation (5.5) can be more conveniently expressed as

(∇aξbB)ξCb = 0 , or equivalently, (∇aξ[B
′

)ξC
′] = 0 . (5.6)

which is also equivalent to the Levi-Civita connection being p-valued.
The obstruction to (5.6) is known as the intrinsic torsion or structure function of the P -structure defined

by [ξA
′

] [Che53,Ber60,Sal89]. Measuring the extent to which (5.6) fails can be achieved by characterising

(∇aξbB)ξCb ∈ V− 1
2 ⊗ ∧2Sm−2

4 , (5.7)

as an element of a p-submodule of W = V⊗ (g/p). Here, we have made use of the fact that the connection
1-form is g-valued, and the pair of skew-symmetric spinor indices of (5.7) projects out the part of g not in
p. This can be made more explicit by choosing a connection ∂a that preserves [ξA

′

] so that (5.4) becomes

∇aξA
′

= −1

4
Γabcγ

bc A′

B′ ξB
′

(mod αaξ
A′

) . (5.8)

In fact, with no loss of generality, we could choose ∂a to preserve a chosen ξA
′

. This makes contact with
the description of elements of W given in section 3. The expression (5.8) allows us to express the algebraic
characterisation of the intrinsic torsion of the P -structure of Proposition 3.2 in terms of (5.7). This yields
the next proposition, and we leave the details of the proof the reader.

Proposition 5.4 Let [ξA
′

] be a holomorphic projective pure spinor field on (M, g), and let Γabcξ
bBξcC ∈W

be its associated intrinsic torsion. Then, pointwise,

• W
ξ Π0

− 3
2

(Γ) = 0 if and only if

(ξa[A∇aξbB)ξC]
b = 0 ; (5.9)

• W
ξ Π1

− 3
2

(Γ) = 0 if and only if

(ξa(A∇aξbB))ξCb = 0 ; (5.10)

20



• W
ξ Π0

− 1
2

(Γ) = 0 if and only if

ξA
′∇bξbB − ξbB∇bξA

′

= 0 ; (5.11)

• W
ξ Π1

− 1
2

(Γ) = 0 if and only if

(∇aξbB)ξCb +
2

m− 1

(
ξ[Ba ∇bξbC] + ξb[B∇bξC]

a

)
= 0 , m > 3 ; (5.12)

(∇aξbB)ξCb +
(
ξ[Ba ∇bξbC] + ξb[B∇bξC]

a

)
− 2

3
ξbA(∇bξA)γ BC

a = 0 , m = 3 ; (5.13)

where we have made use of the isomorphism S+ ∼= (S−)∗ when m = 3.

All of these statements are independent of the scaling of ξA
′

.

Remark 5.5 For the case m = 3, we refer to appendix B.2 where conditions (5.9), (5.10), (5.11) and (5.13)
are given as conditions (B.10), (B.11), (B.12) and (B.13).

5.1.2 Geometric properties

Definition 5.6 An almost null structureN is said to be totally geodetic if∇XY ∈ Γ(N ) for allX,Y ∈ Γ(N ).

Clearly, if N is totally geodetic, it is integrable as a distribution, i.e. [Γ(N ),Γ(N )] ⊂ Γ(N ). By the
Frobenius theorem, N is locally tangent to a foliation by m-dimensional complex submanifolds ofM, each
of which is a totally geodetic and totally null. In fact, the converse is also true [TC12].

Lemma 5.7 An almost null structure is integrable as a distribution if and only if it is totally geodetic.

We shall henceforth also refer to an integrable almost null structure as a totally geodetic null structure.

Proposition 5.8 ([HM88]) Let Nξ be an almost null structure with associated projective pure spinor field

[ξA
′

] on (M, g). Then Nξ is totally geodetic if and only if [ξA
′

] satisfies

(ξaA∇aξbB)ξCb = 0 , or equivalently, (ξaA∇aξ[B
′

)ξC
′] = 0 . (5.14)

Proof. Using the decomposition (3.5) together with (5.8), we find (ξaA∇aξbB)ξCb = ΓABC for some functions
ΓABC that we can identify with the components of the Levi-Civita connection with respect to a basis for Nξ.
But Nξ being totally geodetic is equivalent to gabX

aY c∇cZb = 0, for all Xa, Y a, Za as shown in [TC12].
Hence the result. �

Equation (5.14) also appears (in a slightly different form) in [LM89] in the almost Hermitian setting.

Definition 5.9 We shall refer to a projective pure spinor field [ξA
′

] satisfying (5.14) as geodetic.

Conformal invariance With reference to appendix C, one can prove

Proposition 5.10 Conditions (5.9), (5.10) and (5.12) are conformally invariant.
Suppose further that [ξA

′

] satisfies (5.12) and

ξA
′∇bξbB − ξbB∇bξA

′

= −(m− 1)ξA
′

ξbB∇bf , (5.15)

for some holomorphic function f . Then there exists a holomorphic conformal rescaling of the metric such
that [ξA

′

] is parallel, i.e. it satisfies (5.6).
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Curvature conditions

Proposition 5.11 ([HM88,TC11,TC12]) Let ξA
′

be a geodetic pure spinor on (M, g), i.e. ξA
′

satisfies
(5.14), i.e. its associated almost null structure Nξ is totally geodetic (or equivalently, integrable). Then

ξaAξbBξcCξdDCabcd = 0 , ie C
ξΠ

0
−2(C) = 0 . (5.16)

Proof. We first note that (5.14) can be rewritten as ξaA∇aξB
′

= αAξB
′

for some αA. Differentiating it along
Nξ yields

αAαBξC
′

+ ξaAξbB∇a∇bξC
′

= (ξaA∇aαB)ξC
′

+ αAαBξC
′

.

Commuting the derivatives leads to

−1

4
Rabcdξ

aAξbBγcd C′

D′ ξD
′

= 2 (ξa[A∇aαB])ξA
′

, (5.17)

which is equivalent to ξaAξbBξcCξdDRabcd = 0. The decomposition of the Riemann tensor together with the
purity condition concludes the proof. �

Closing this section, we give the integrability condition for the existence of a parallel projective pure
spinor.

Proposition 5.12 Let [ξA
′

] be a parallel projective pure spinor on (M, g), i.e. ξA
′

satisfies (5.6). Then

ξaAξbBRabcd = 0 , (5.18)

ξaAξbBΦab = 0 , ie F
ξΠ

0
−1(Φ) = 0 (5.19)

ξaAξbBξcCCabcd = 0 , ie C
ξΠ

0
−1(C) =

C
ξΠ

1
−1(C) = 0 (5.20)

and in addition, when m > 3,

C
ξΠ

2
0(C) = 0 . (5.21)

Further,

R = 0 ⇐⇒ C
ξΠ

0
0(C) = 0

(
ie ξabA

′

Cabcdξ
cdD′

= 0 ,
)

and in addition, when m > 2,

F
ξΠ

0
0(Φ) = 0

(
ie ξaAΦab = 0

)
⇐⇒ C

ξΠ
1
0(C) = 0 .

Proof. Taking a covariant derivative of equation (5.5) and commuting the derivatives yield

−1

4
Rabcdγ

cd A′

B′ ξB
′

= 2 (∇[aα b])ξ
A′

,

which is equivalent to equation (5.18). Contracting equation (5.18) with γab C
B yields the condition (5.19)

on the Ricci tensor. Conditions (5.20) and (5.21) are obtained from the decomposition (5.3). We find

ξaACa[bc]dξ
dD =

2

n− 2
ξ
[A
[b Φc]dξ

dD] +
1

n(n− 1)
R ξA[bξ

D
c] ,

ξaeC
′

Caedbξ
dD = 2

n− 4

n− 2
ξC

′

Φbdξ
dD + 2

n− 2

n(n− 1)
R ξDb ξ

C′

,

ξaeC
′

Caedf ξ
dfF ′

= −2 n− 2

n− 1
RξC

′

ξF
′

,

and the remaining statements follow immediately from the formulae for C
ξΠ

2
0,

C
ξΠ

1
0,

C
ξΠ

0
0 of appendix A.2. �

Remark 5.13 The purity condition is crucial in deducing conditions (5.20) and (5.21) on the Weyl tensor. A
study of pseudo-Riemannian manifolds admitting more general recurrent spinors was carried out in [Gal13].
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5.2 Spinorial differential equations

So far we have only considered spinorial differential equations on projective pure spinor fields, i.e. differential
equations that are invariant under rescalings of ξA

′

. In this section, we study spinorial differential equations
on pure spinors of fixed scales emphasing their relations to the intrinsic torsion of their associated P -
structures.

5.2.1 Scale-dependent geodetic spinors

A scale-dependent variation of the geodetic spinor equation (5.14) is given by

ξaA∇aξB
′

= 0 , (5.22)

on a holomorphic pure spinor field ξA
′

. Since ξ̂aB∇̂a
(
Ω−1ξA

′

)
= Ω−2

(
ξaB∇aξA

′

)
, equation (5.22) is

clearly conformally invariant if and only if the spinor field ξA
′

has conformal weight −1. Accordingly, the
integrability condition for (5.22) is expected to be conformally invariant. Indeed, a variation of the proof of
Proposition 5.11 with αa = 0 leads to

Proposition 5.14 Let ξA
′

be a holomorphic pure spinor field satisfying (5.22). Then C
ξΠ

0
−1(C) = 0, i.e.

Cabcdξ
aAξbBξcdC

′

= 0.

5.2.2 Parallel pure spinors

The integrability condition for the existence of a parallel spinor ξA
′

is clearly that it annihilates the Riemann
tensor, i.e. Rabcdγ

cd A′

B′ ξB
′

= 0. The assumption that ξA
′

is pure allows us to derive more information. To
prove the next proposition, set αa = 0 in the proof of Proposition 5.12.

Proposition 5.15 Let ξA
′

be a parallel pure spinor on (M, g), i.e. ξA
′

satisfies

∇aξB
′

= 0 . (5.23)

Then

Rabcdξ
cdD′

= 0 ,
F
ξΠ

0
0(Φ) = 0 , ie Φabξ

bB = 0 ,

R = 0 ,

C
ξΠ

0
1(C) = 0 , ie Cabcdξ

cdD′

= 0 .

5.2.3 Null zero-rest-mass fields

Conditions weaker than (5.23) can be obtained by decomposing the covariant derivative of a spinor field into
two irreducible parts under Spin(2m,C). The smaller of these is known as the (Weyl-)Dirac equation

γa B
A′ ∇aξA

′

= 0 , (5.24)

on a holomorphic spinor field ξA
′

. It admits a generalisation to irreducible symmetric spinor fields of higher
valence, i.e. spinor fields2 φA

′

1A
′

2...A
′

k = φ(A
′

1A
′

2...A
′

k) satisfying γa B
A′

1
γ C
aA′

2
φA

′

1A
′

2...A
′

k = 0, which is known as

the zero-rest-mass (zrm) field equation [HM88],

γa B
A′

1
∇aφA

′

1A
′

2...A
′

k = 0 . (5.25)

2From a representational theoretic viewpoint, φA′

1A
′

2...A
′

k lies in the k-fold Cartan product of S+.
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The case k = 2 corresponds to a closed, and thus coclosed, self-dual m-form. Equation (5.25) is conformally
invariant provided that its solutions φA

′

1A
′

2...A
′

k are of conformal weight −m − k + 1. For k > 2, there is a
strong integrability condition on φA

′

1A
′

2...A
′

k given by the following lemma.

Lemma 5.16 For k > 2, let φA
′

1A
′

2...A
′

k be a solution of the zrm field equation (5.25) on (M, g). Then

γa A
C′

1
γb B
C′

2
Cabcdγ

cd (C′

3

D′ φC
′

4...C
′

k)C
′

1C
′

2D
′

= 0 .

Proof. We compute

0 = 2 γ
a [A
C′

1

γ
b B]
C′

2

∇a∇bφC
′

1C
′

2...C
′

k

= −1

2
γa A
C′

1
γb B
C′

2
Rabcdγ

cd C′

1

D′ φC
′

2...C
′

kD
′ − k − 2

4
γa A
C′

1
γb B
C′

2
Rabcdγ

cd (C′

3

D′ φC
′

4...C
′

k)C
′

1C
′

2D
′

= Φbcγ
b [A
C′

2

γ
c B]
D′ φC

′

2...C
′

kD
′ − k − 2

4
γa A
C′

1
γb B
C′

2
Cabcdγ

cd (C′

3

D′ φC
′

4...C
′

k)C
′

1C
′

2D
′

.

The first term must vanish by symmetry consideration, which concludes the proof. �

A holomorphic irreducible symmetric spinor as above is said to be null if it takes the form

φA
′

1A
′

2...A
′

k = eψξA
′

1ξA
′

2 . . . ξA
′

k ,

for some holomorphic function ψ and holomorphic pure spinor field ξA
′

. In this case, the integrability
condition for the existence of a solution of equation (5.25) is given by the following

Corollary 5.17 For k > 2, suppose that φA
′

1A
′

2...A
′

k := eψξA
′

1ξA
′

2 . . . ξA
′

k is a solution of the zrm field equation
(5.25) on (M, g). Then

C
ξΠ

0
−1(C) = 0 , ie ξaAξbBCabcdξ

cdD′

= 0 . (5.26)

The relation between pure solutions to the zrm field equation and geodetic spinors was first established by
Robinson [Rob61] in four dimensions in his study of electromagnetism. It was later generalised by Hughston
and Mason [HM88] to even dimensions.

Theorem 5.18 ([Rob61,HM88]) Let ξA
′

be a holomorphic pure spinor field on (M, g) with almost null
structure Nξ.

Let ψ be a holomorphic function and suppose that φA
′

1...A
′

k := eψξA
′

1ξA
′

2 . . . ξA
′

k satisfies the zrm field
equation (5.25). Then ξA

′

locally satisfies (5.14), i.e. ξA
′

is geodetic, i.e. Nξ is totally geodetic.

Conversely, suppose that ξA
′

is geodetic, i.e. Nξ is totally geodetic. Then locally there exists a holomorphic

function ψ such that φA
′B′

:= eψξA
′

ξB
′

satisfies the zrm field equation (5.25). Suppose further that ξA
′

satisfies (5.26). Then locally, for every k > 2, there exists a holomorphic function ψ such that φA
′

1...A
′

k :=
eψξA

′

1ξA
′

2 . . . ξA
′

k satisfies the zrm field equation (5.25). In both cases, there is the freedom of adding to ψ a
holomorphic function constant along the leaves of Nξ.

5.2.4 Conformal Killing spinors

The larger irreducible part of the covariant derivative of a spinor field leads to the twistor equation

∇aξA
′

+
1√
2
γ A′

aB ζB = 0 , (5.27)

on a holomorphic spinor field ξA
′

– here, (5.27) determines ζB =
√
2
n
γa B
A′ ∇aξA

′

. We shall refer to a solution
of (5.27) as a conformal Killing spinor or twistor spinor. It is well-known that the twistor equation is
overdetermined, and for this reason, it is often more convenient to consider its prolongation [PR86,BJ10]

∇aζB +
1√
2
Pabγ

b B
A′ ξA

′

= 0 , (5.28)
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where Pab :=
1

2−nΦab−R 1
2n(n−1)gab is the Rho or Schouten tensor (see appendix C). We immediately deduce

∇bζbA
′

= − 1

2
√
2(n− 1)

RξA
′

. (5.29)

Equations (5.27) and (5.28) are conformally invariant, provided that under a conformal change of metric
ĝab = Ω2gab for some non-vanishing holomorphic function Ω, ξA

′

and ζA transform as

ξA
′ 7→ ξ̂A

′

= ξA
′

, ζA 7→ ζ̂A = Ω−1

(
ζA +

1√
2
Υaξ

aA

)
. (5.30)

The equivalence class of pairs of spinors (ξA
′

, ζA) ∼ (ξ̂A
′

, ζ̂A) is a section of what is known as the local
twistor bundle [PR86] or spin tractor bundle [HS11]. Such a pair of spinors will be referred to as a tractor
spinor. This bundle arises from a chiral spinor representation for Spin(2m+ 2,C).

We shall mostly be concerned with the case where the conformal Killing spinor ξA
′

is pure. We note
that the purity of ξA

′

does not in general entail the purity of ζA in dimensions greater than six. For future
reference, we record the integrability condition for a pure conformal Killing spinor.

Proposition 5.19 Let ξA
′

be a pure conformal Killing spinor on (M, g) with ζB =
√
2
n
γa B
A′ ∇aξA

′

. Then

Cabcdξ
cdB′

= 0 , ie C
ξΠ

0
1(C) = 0 , (5.31)

Cabcdζ
cdC − 2

√
2Acabξ

cC = 0 , (5.32)

Aabcξ
aAξbcB

′

= 0 , ie A
ξ Π

0
− 1

2

(A) = 0 . (5.33)

Here Aabc := 2∇[bPc]a is the Cotton-York tensor (see appendix C).

Proof. The LHS of (5.31) and (5.32) are the usual integrability conditions for a (not necessarily pure)
conformal Killing spinor (see eg [BJ10]), and the RHS of (5.31) is simply the interpretation in the case when
ξA

′

is pure. Condition (5.33) follows from (5.31) and (5.32). �

In four dimensions, a conformal Killing spinor is always geodetic [Pen67,PR86], but it is not so in general
in higher dimensions. We can nevertheless give necessary and sufficient conditions for this to happen.

Proposition 5.20 Let ξA
′

be a pure conformal Killing spinor on (M, g) with almost null structure Nξ. Set

ζB =
√
2
n
γa B
A′ ∇aξA

′

. Then ξA
′

satisfies

(ξa(A∇aξbB))ξCb = 0 . (5.10)

Further, ξA
′

is geodetic, i.e. Nξ is totally geodetic, if and only if

ζaA
′

ζB
′

a = 0 , ξaBζA
′

a = −2 ζBξA′

, (5.34)

i.e. ζA, if non-zero, is pure, and its almost null structure Nζ intersects Nξ in a totally null (m− 1)-plane at
any point.

Suppose that ξA
′

is geodetic so that ζA satisfies conditions (5.34). Then ζA satisfies

(
ζa[A

′∇aζbB
′

)
ζ
C′]
b = 0 . (5.35)

Proof. From the twistor equation (5.27) and assuming ξA
′

to be pure, we compute

(
ξaA∇aξbB

)
ξCb = − 1√

2
ξaAζD

′

a γb B
D′ ξCb = − 1√

2
ξaAζBabξ

bC .
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This expression is skew in BC and AB, which proves the first claim.
To prove the second statement, we consider the contraction of equation (5.27) with ξaB, ie

ξaB∇aξA
′

= − 1√
2
ξaBζA

′

a . (5.36)

Let us work at a point, and in line with the notation of section 2, set S
m
4 := 〈ξA′〉, S

m−2
4 := im ξAa ,

S
m−4

4 := im ξA
′

ab and S
m−6

4 := im ξA
′

abc. Generically, both sides of (5.36) lie in S
m−2

4 ⊗S
m−4

4 , which contains

S
m−2

4 ⊗S
m
4 . In fact, both sides of (5.36) will lie in S

m−2

4 ⊗S
m
4 if and only if ξaA∇aξB

′

= βAξB
′

for some

βA in S
m−2

4 if and only if ξA
′

is geodetic. In sum, the conformal Killing spinor ξA
′

is geodetic if and only if

βAξB
′

= − 1√
2
ξaBζA

′

a . (5.37)

The ‘if’ part of the statement is immediate already from (5.36), so we focus on the ‘only if’ part.

We know that generically, ζA lies in S
m−6

4 , which contains S
m−2

4 . One way to see this is to use (5.4)
where ∂a is so chosen as to preserve ξA

′

. Then

ζA = − 1

2
√
2n

(
Γabcξ

abcA + 2Γaabξ
bA

)
∈ S

m−6

4 .

Since the LHS of (5.37) is in S
m−2

4 ⊗S
m
4 , so must be the RHS. This tells us that ζA must be proportional to

βA and lie in S
m−2

4 too.3 By Corollary 2.10, we conclude that ζA satisfies (5.34) as claimed. The geometric
interpretation is given by Proposition 2.9.

Finally, if ξA
′

is geodetic, then ζA satisfies (5.34) by the above argument, and a computation leads to(
∇aζbB

′

)
ζC

′

b = −2 · 1√
2
Pabζ

b[B′

ξC
′] from which (5.35) can be deduced. �

Remark 5.21 The statements of Proposition 5.20 are conformally invariant. In fact, it is straightforward
to check that conditions (5.34) are invariant under the transformation (5.30).

Further, the conditions that ξA
′

be pure and ζA satisfy (5.34) is equivalent to the corresponding tractor
spinor (ξA

′

, ζA) being a pure section of the local twistor bundle, i.e. it is a pure spinor for Spin(2m+ 2,C)
as stated in [HM88] – for a proof, see [TC15].

Remark 5.22 Clearly, if ζ = 0 in Proposition 5.20, then ξ is parallel and Nξ is thus integrable. One can
show [HSŠ+16] that if ξ is a geodetic pure conformal Killing spinor then there exists a conformal rescaling
such that ξ is parallel.

The next result is a refinement of Proposition 5.20 in the case m = 3. A proof is given in appendix B.2.

Proposition 5.23 Let ξA be a conformal Killing spinor on (M, g) where M has dimension six. Then ξA
satisfies condition (5.13) (or (B.13)), and thus condition (5.10) (or (B.11)).

Example 5.24 It is shown in [Bry06] how one can associate to a generic 3-plane distribution N on a six-
dimensional manifoldM a conformal structure [g]. By generic, we mean that N is maximally non-integrable,
i.e. Γ(N )+ [Γ(N ),Γ(N )] = Γ(TM). The authors of [HS11] later characterised (M, [g]) in terms of a tractor
spinor (ξA, ζ

A) which is generic in the sense that (ξA, ζ
A) satisfy the non-degeneracy condition ξAζ

A 6= 0,
i.e. (ξA, ζ

A) is an ‘impure’ tractor spinor for the group Spin(4, 4). In this case, the conformal holonomy of
(M, [g]) being reduced to (a subgroup of) Spin(3, 4). This example clearly works in the category of complex
Riemannian manifold — see section 5.3. Note that in this case, the intrinsic torsion of the P -structure
defined by [ξA

′

] is not generic since (5.10) is satisfied.

3This can also be computed by applying Cartan’s criterion (2.11) of Proposition 2.8 to (5.37) with k = m−1 and αA′

= ξA
′

.
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5.2.5 Relation to the Goldberg-Sachs theorem in higher dimensions

The Goldberg-Sachs theorem [GS09] is a classical theorem of general relativity, which, in the context of the
present paper, can be interpreted in the following terms [GHN10,TC12].

Theorem 5.25 Let (M, g) be a four-dimensional non-conformally flat spin complex Riemannian manifold
satisfying the Einstein equations Rab = λgab for some constant λ. Let [ξA

′

] is a holomorphic projective pure
spinor, then locally

Cabcdξ
aAξbBξcC = 0 ⇐⇒ [ξA

′

] is geodetic. (5.38)

One can show that the condition on the Weyl tensor really restricts to its self-dual part – see appendix B.1.
There are other versions of the theorem, all of which are reviewed in [GHN10]. A conformally invariant
version [KT62, RS63, PR86] motivated the author’s partial generalisation, which we present in truncated
form in the language of pure spinors.

Theorem 5.26 ([TC12]) Assume m ≥ 2. Let [ξA
′

] be a holomorphic projective pure spinor field on a 2m-
dimensional spin complex Riemannian manifold (M, g) with associated almost null structure Nξ. Suppose
that the Weyl tensor and the Cotton-York tensor satisfy the algebraic degeneracy conditions

C
ξΠ

0
−1(C) =

C
ξΠ

1
−1(C) = 0 , ie Cabcdξ

aAξbBξcC = 0 ,

A
ξ Π

0
− 3

2

(A) = 0 , ie Aabcξ
aAξbBξcC = 0 .

(5.39)

Suppose further that the Weyl tensor is otherwise generic. Then locally, [ξA
′

] is geodetic, i.e. Nξ is totally
geodetic (or equivalently, integrable).

When m = 2, Theorem 5.26 agrees with parts of the generalisation [KT62, RS63, PR86]. If (M, g) is
assumed to be Einstein, one can dispense of the genericity assumption and recover the (⇒) part of (5.38).

However, when m > 2, even if we assume that (M, g) is Einstein, the proof of Theorem 5.26 does not
account for all the possible degeneracies of Cabcd and must depend on the genericity of Cabcd. In fact,
Proposition 5.20 invalidates the (⇒) part of (5.38): generically, a pure conformal Killing spinor ξA

′

is not
geodetic, but satisfies (5.10). On the other hand, by Proposition 5.19, conditions (5.39) are satisfied except
for the genericity assumption, since C

ξΠ
0
1(C) = 0. This is independent of whether (M, g) is Einstein or not,

and in fact, with reference to Example 5.24, Einstein solutions where ξA
′

is non-geodetic exist in dimension
six [HS11]. This suggests the following conjecture improving Theorem (5.26).

Conjecture 5.27 Suppose that [ξA
′

] is a projective pure spinor field on a 2m-dimensional non-conformally
flat Einstein spin complex Riemannian manifold such that the Weyl tensor satisfies Cabcdξ

aAξbBξcC = 0.
Then ξA

′

satisfies

(
ξa(A∇aξbB)

)
ξCb = 0 . (5.10)

When m = 2, this conjecture does agree with the (⇒) part of (5.38). Variants involving the Cotton-York
tensor and weaker conditions on the Weyl tensor such as Cabcdξ

aAξbBξcdC
′

= 0 may also be possible.

5.3 Application to real pseudo-Riemannian manifolds

Let (M′, g′) be a spin oriented 2m-dimensional real pseudo-Riemannian manifold where g′ has signature
(p, q) with p + q = 2m – we assume that (M′, g′) is also time-oriented when pq 6= 0. We then have a
reduction of the structure group of the frame bundle FM′ ofM′ to Spin0(p, q), the two-fold covering of the
identity component SO0(p, q) of SO(p, q).

With reference to section 2.6, we define an almost null structure on (M′, g′) to be a totally null complex
m-plane distribution N ⊂ TCM′. Here TC

pM′ := C ⊗ TpM′, and Np is totally null with respect to the
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complexification of g′p at any point p. A pure spinor field ξ up to scale determines an almost null structure

Nξ, and any almost null structure arises in this way. The complex conjugation on TCM′ that fixes g′ sends
Nξ to its complex conjugate N ξ̄, which we can associate to the conjugate spinor ξ̄ of ξ. We shall assume

that the real index r : M′ → Z≥0 : p 7→ rp := dim(Nξ)p ∩ (N ξ̄)p of ξ is constant on M′. The structure

group of FM′ is reduced to the stabiliser of both [ξ] and [ξ̄] in Spin0(p, q) at any point. One can then study
the geometric properties of the resulting G-structure on the basis of the algebraic properties of its intrinsinc
torsion. A notable example is when r = 0 and g is positive definite signature, so that (Nξ,N ξ̄) define an
almost Hermitian structure [GH80,TV81,FFS94].

Alternatively, if (M′, g′) is real-analytic, then we can complexify M′ to a complex manifold M, and
extend g′ analytically to a holomorphic metric g on M. Similar extensions apply to any real-analytic
structure on (M′, g′) such as spin structures and almost null structures [WB59,Woo77, Eas84]. We then
have a complex Riemannian manifold (M, g) just as before except that it is endowed with an additional
complex conjugation that fixes the real slice M′. In particular, TM|M′ = TCM′, and any real-analytic
conjugate pair of complex almost null structures (Nξ,N ξ̄) extends to two independent holomorphic almost

null structures (Nξ, Ñξ̃), say, on (M, g). In practice, it is enough to consider only one of these, and apply the
machinery of the present paper to it. The real geometry can then be recovered by applying reality conditions
on the tensor and spinor fields on restriction to the real sliceM′.

Finally, if (M′, g′) is smooth, then we cannot in general complexify (M′, g′) to a complex Riemannian
manifold (M, g). This is particularly problematic for almost null structures with r 6= 0,m, notably in relation
with the existence of local ‘complex’ foliations on (M′, g′), the difficulty being in applying the Frobenius
theorem to a formally integrable, i.e. involutive, smooth complex distribution. For instance, Theorem 5.18
will not work in general – see [Taf85] when m = 2, r = 1. Some of these issues are explained in [NT02,Tra02]
for the case r = 1. The reader should be warned of any pitfalls regarding the use of the results of the present
paper in the smooth category.

We can however distinguish the two special cases:

1. When r = 0, g′ must have signature (2k, 2ℓ), and Nξ and N ξ̄ can be identify with the ±i-eigenbundles
of an almost complex structure J compatible with g′, i.e. an endomorphism J of TM′ such that
J2 = −Id and g ◦ J = −J ◦ g. The Newlander-Niremberg theorem [NN57] tells us that even if (M′, g′)
is smooth, the formal integrability of Nξ (ie the vanishing of the Nijenhuis tensor of J) is equivalent
to its integrability.

2. When r = m, g′ must have signature (m,m), and there is a real span of Nξ where ξ can be taken
to be a real pure spinor. The stabiliser P ′ of [ξ] in Spin0(m,m) is parabolic, and Nξ thus defines a
smooth P ′-structure on (M′, g′). The representation theory of P ′ works in the same way as its complex
counterpart. In fact, the spinor representations are the real spans of pure spinors, and all the vector
bundles considered are real and smooth. In this case, we can reformulate all the results of section 5
in the smooth real category: M is a spin oriented and time-oriented 2m-dimensional smooth manifold
equipped with a smooth metric g of signature (m,m) with Levi-Civita connection ∇, and we can safely
substitute the word ‘smooth’ for ‘holomorphic’. In particular, the Frobenius theorem applies to prove
Theorem 5.18.
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fellowship GPB201/12/G028, and a GAČR (Czech Science Foundation) post-doctoral grant GP14-27885P.

A Spinorial description of curvature tensors

Throughout the appendix, V will denote a 2m-dimensional complex vector space equipped with a non-
degenerate symmetric bilinear form gab and a pure spinor ξA

′

as in section 2, to which the reader should
refer for the notation.

A.1 Elements of the g0-submodules of F, A and C

Let us fix a pure spinor ηA′ such that ξA
′

ηA′ = − 1
2 . Then we have a splitting (2.15) ofV where V 1

2
= ker ξaA

andV− 1
2
= ker ηaA andSm−2

4
= im ξaA andS−m−2

4
= im ηaA are g0-modules. This splitting induces a splitting

of any g-submodule M of ⊗kV into g0-submodules. We can then use ξaA and ηaA to project from M to any
of its g0-submodules, and dually, to inject any of its g0-submodules into M. In effect, we convert spinorial
quantities to tensorial ones, and vice versa. In fact, we can think of {ξaA, ηaA} as a basis for V 1

2
⊕V− 1

2
, and

these induce bases of g0-modules. The components of an element of M in this basis can then be interpreted
as a spinor. For instance, a spinor

σ D...F
A...C ∈ S−m−2

4
⊗ . . .⊗S−m−2

4
⊗Sm−2

4
⊗ . . .⊗Sm−2

4
,

will be sent to the tensor

σa...cd...f := ξaA . . . ξcC ηdD . . . η
f
F σ

D...F
A...C ∈ V⊗ . . .⊗V⊗V⊗ . . .⊗V .

If the g0-module is irreducible, then its elements (ie their indices) will be saturated with symmetries. This
clearly applies to g-modules too. In the following any spinor will be referred as (totally) tracefree if the
contraction of any pair of indices with the identity element IBA := ηaAξ

B
a (see definition (2.17)) vanishes, eg

σ B
A IAB = 0. On the other hand, the image of IBA in ∧2V will be denoted by the 2-form ωab := 2 ξA[aηb]A.

We apply this procedure to the irreducible g0-modules Fi Ă
j
i , C̆

j
i with reference to Propositions 4.1, 4.2

4.3 of section 4.

The tracefree Ricci tensor Let Φab ∈ F. Then

• Φab ∈ F0 if and only if Φab = 2 ξA(a η b)BΦ
B

A for some tracefree Φ B
A ;

• Φab ∈ F1 if and only if Φab = ξAa ξ
B
b ΦAB for some ΦAB = Φ(AB), and similarly for F−1

∼= (F1)
∗ by

substituting ηA′ for ξA
′

, and changing the index structure appropriately.

The Cotton-York tensor Let Aabc ∈ A. Then

• Aabc ∈ Ă0
1
2

if and only if Aabc = Aaωbc −A[bω c]a +
3

n−1 ga[b ω c]dA
d for some Ac = ξCc AC ;

• Aabc ∈ Ă1
1
2

if and only if Aabc = ξAb ξ
B
c ηaCA

C
AB − ξAa ξB[b η c]CA C

AB for some tracefree A C
AB = A C

[AB] ;

• Aabc ∈ Ă2
1
2

if and only if Aabc = 2 ξAa ξ
B
[b η c]CA

C
AB for some tracefree A C

AB = A C
(AB) ;

• Aabc ∈ Ă0
3
2

if and only if Aabc = ξAa ξ
B
b ξ

C
c AABC for some AABC = AA[BC] satisfying A[ABC] = 0.

Since (Ăji )
∗ ∼= Ă

j
−i, spinorial formulae for elements of Ăj−i for i > 0 can be obtained from those of Ăji by

simply interchanging ξA
′

and ηA′ and making appropriate changes of index structures.
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The Weyl tensor Let Cabcd ∈ C. Then

• Cabcd ∈ C̆0
0 if and only if Cabcd = c

(
2ωabωcd − 2ω

a[c ω d]b +
6

n−1ga[c g d]b

)
for some complex c;

• Cabcd ∈ C̆1
0 if and only if

Cabcd = ωabCcd + Cabωcd − 2ω[a |[cCd]| b] −
6

n− 2

(
g[a |[c ω

e
d] C| b]e + g[c |[a ω

e
b] C|d]e

)
.

where Ccd := 2 ξC[c ηd]DC
D

C for some tracefree C D
C ;

• when m > 3, Cabcd ∈ C̆2
0 if and only if

Cabcd = ξAa ξ
B
b ηcCηdDC

CD
AB + ξAc ξ

B
d ηaCηbDC

CD
AB − 2 ξA[a |ξ

C
[c ηd]|Dη b]BC

DB
AC ,

for some tracefree C DB
AC = C

[DB]
[AC] ;

• Cabcd ∈ C̆3
0 if and only if Cabcd = 4 ξA[a |ξ

C
[c ηd]|Dη b]BC

DB
AC for some tracefree C DB

AC = C
(DB)

(AC) ;

• Cabcd ∈ C̆0
1 if and only if Cabcd = ωabCcd + Cabωcd − 2ω[a |[cCd]| b] where Cab := ξAa ξ

B
b CAB for some

CCD = C[CD];

• Cabcd ∈ C̆1
1 if and only if Cabcd = 2 ξAa ξ

B
b ξ

C
[c ηd]DC

D
ABC + 2 ξAc ξ

B
d ξ

C
[a η b]DC

D
ABC for some tracefree

C D
ABC = C D

[AB]C satisfying C D
[ABC] = 0;

• Cabcd ∈ C̆0
2 if and only if Cabcd = ξAa ξ

B
b ξ

C
c ξ

D
d CABCD for some CABCD = C[AB][CD] satisfying C[ABC]D =

0.

Since (C̆ji )
∗ ∼= C̆

j
−i, spinorial formulae for elements of C̆j−i for i > 0 can be obtained from those of C̆ji by

simply interchanging ξA
′

and ηA′ and making appropriate changes of index structures.

A.2 Maps describing elements of p-submodules of F, A and C

The kernels of the following maps F
ξΠ

j
i ,

A
ξ Π

j
i and C

ξΠ
j
i are p-submodules of F, A and C. Their relations to

the irreducible p-modules F
j
i , A

j
i and C

j
i as stated in Propositions 4.1, 4.2 4.3 of section 4 can be verified

using arbitrary elements F̆ji , Ă
j
i and C̆

j
i as given in section A.1. This can also be seen from the fact they are

saturated with symmetries.

The tracefree Ricci tensor For Φab ∈ F, we define

F
ξΠ

0
−1(Φ) := ξaAξbBΦab ,

F
ξΠ

0
0(Φ) := ξaAΦab .
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The Cotton-York tensor For Aabc ∈ A, define

A
ξ Π

0
− 3

2

(A) := ξaAξbBξcCAabc ,

A
ξ Π

0
− 1

2

(A) := ξaAAabcξ
bcC′

,

A
ξ Π

1
− 1

2

(A) := ξbBξcCAabc +
1

n− 2
γ

[B
aD′ ξdC]ξbcD

′

Adbc ,

A
ξ Π

2
− 1

2

(A) := ξa(A ξbB)Aabc +
3

2(n+ 2)
γ

(A
cD′ ξdB)ξbaD

′

Adba ,

A
ξ Π

0
1
2

(A) := Aabcξ
bcA′

,

A
ξ Π

1
1
2

(A) := ξcAAcab −
1

n− 2
γ A
[aD′ A b]cdξ

cdD′

,

A
ξ Π

2
1
2

(A) := A(ab)cξ
cA − 3

2(n+ 2)
γ A
(aD′ A b)cdξ

cdD′

.

The Weyl tensor For Cabcd ∈ C, define

C
ξΠ

0
−2(C) := ξaAξbBξcCξdDCabcd ,

C
ξΠ

0
−1(C) := ξaAξbBξcdC

′

Cabcd ,

C
ξΠ

1
−1(C) := ξaAξbBξcCCabce +

1

n+ 2

(
ξaAξbBξcdD

′

Cabcdγ
C

eD′ − ξaCξb[A ξcdD′

Cabcdγ
B]

eD′

)
,

C
ξΠ

0
0(C) := ξabB

′

ξcdD
′

Cabcd ,

C
ξΠ

1
0(C) := ξabB

′

ξcDCabcd +
1

n
ξabB

′

ξceD
′

Cabceγ
D

dD′ ,

C
ξΠ

2
0(C) := ξaACa[bc]dξ

dD +
1

n− 4
ξaeC

′

Caed[b γ
[A

c]C′ ξdD] − 1

2(n− 2)(n− 4)
ξaeC

′

Caedf ξ
dfF ′

γ A
[bC′ γ D

c]F ′ ,

C
ξΠ

3
0(C) := ξaACa(bc)dξ

dD − 3

n+ 4
ξaeC

′

Caed(b γ
(A

c)C′
ξdD)

− 3

2(n+ 2)(n+ 4)
ξaeC

′

Caedf ξ
dfF ′

γ A
(bC′ γ D

c)F ′ ,

C
ξΠ

0
1(C) := ξabB

′

Cabcd ,

C
ξΠ

1
1(C) := ξaBCabcd +

1

n+ 2

(
ξaeC

′

γ B
bC′ Caecd − ξaeC

′

Caeb[c γ
B

d]C′

)
,

with the proviso that C
ξΠ

2
0 does not occur when m = 3.

B Spinor calculus in four and six dimensions

We briefly sketch the spinor calculus in dimensions four and six. Details for the former can be found in
[PR84,PR86] and references therein, and for the latter in [Hug95,MHK95]. Our notation will be consistent
with the one introduced in section 2. For definiteness, we work over C, but the real case is completely
analogous.

B.1 Four dimensions

Let (M, g) be a four-dimensional complex Riemannian manifold equipped with a holomorphic volume form
and a holomorphic spin structure. We first work at a point. The spin group G := Spin(4,C) is isomorphic to
+G× −G, where ±G := SL(2,C)± are two distinct copies of SL(2,C), acting on the two-dimensional chiral
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spinor representations S±. All spinors in S± are pure. The spaces S± are equipped with volume forms
εA′B′ and εAB, which will be assumed to satisfy εACε

BC = δBA . These identify S± with their dual (S±)∗.
Any irreducible representation of ±G is isomorphic to a k-symmetric power ⊙kS± of S± for some k ≥ 0 –
here ⊙0S± ∼= C. By extension, any irreducible representation of G is isomorphic to

(
⊙kS+

)
⊗
(
⊙ℓS−) for

some k, ℓ ≥ 0. In particular, if V is the standard representation of SO(4,C), then V ∼= S+ ⊗ S−, and we
shall convert tensorial indices into spinorial ones by means of the γ-matrices γaAA′ , which satisfy

gabγ
a
AA′γbBB′ = 2 εA′B′εAB . (B.1)

Thus, for any vector V a, we have V AB
′

= 1√
2
γ AB′

a V a.

The Lie algebra g of G splits into two irreducible parts ±g ∼= sl(2,C)±, the Lie algebras of ±G. These are
isomorphic to the spaces of self-dual and anti-self-dual 2-forms ∧2±V. Correspondingly, a 2-form Fab splits
into self-dual and anti-self-dual parts represented by symmetric spinors φA′B′ and φAB respectively, ie

Fab = φA′B′εAB + φABεA′B′ ∈ ⊙2S+ ⊕⊙2S− ∼= ∧2+V⊕ ∧2−V ∼= +g⊕ −g .

Accordingly, the space A of tensors with Cotton-York symmetries and the space C of tensors with Weyl
symmetries split into self-dual and anti-self-dual parts A± ∼= S∓ ⊗

(
⊙3S±) and C± ∼= ⊙4S± respectively.

Further, we have F ∼=
(
⊙2S+

)
⊗
(
⊙2S−). Thus, the tracefree Ricci tensor, the Cotton-York tensor and the

Weyl tensor can be expressed as

Φab = ΦABA′B′ , Aabc = AAA′B′C′εBC +AA′ABCεB′C′ , Cabcd = ΨA′B′C′D′εABεCD +ΨABCDεA′B′εC′D′ ,

respectively, where ΨA′B′C′D′ and ΨABCD are the self-dual and anti-self-dual parts of Cabcd respectively,
and AAA′B′C′ and AA′ABC are the self-dual and anti-self-dual parts of Aabc respectively.

B.1.1 Projective spinor fields

Let [ξA
′

] be a holomorphic projective spinor field on (M, g), so that the structure group is the frame bundle
is reduced to P , the stabiliser of [ξA

′

] in G at a point, with Lie algebra p. As in the higher-dimensional case,
P is also a parabolic Lie subgroup of G, and p induces a |1|-grading g = g1 ⊕ g0 ⊕ g−1. The only difference
now comes from the semi-simplicity of g: if z0 and sl0 denote the center and simple part of g0, we have that
+p := p ∩ +g ∼= z0 ⊕ g1 and p ∩ −g = −g ∼= sl0. Then −G ∩ P = −G and +P := +G ∩ P is a parabolic
Lie subgroup of +G. In effect, we can write P = +P × −G. This means that for any irreducible G-module
M := ⊙kS+ ⊗ ⊙ℓS− for k, ℓ ≥ 0, we have a filtration of P -submodules of M induced from a filtration of
+P -submodules of the +G-module ⊙kS+. Following section 2, set

S
1
2 := 〈ξA′〉 , S− 1

2 := S+ , S0 := S− .

As a consequence of the two-dimensionality of S+, we can characterise S
1
2 as

S
1
2 = {αA′ ∈ S+ : ξA

′

αA′ = 0} . (B.2)

More generally, any irreducible +G-module S−k
2 := ⊙kS− 1

2 admits a filtration

S
k
2 ⊂ S

k
2
−1 ⊂ S

k
2
−2 ⊂ . . . ⊂ S−k

2
+1 ⊂ S− k

2 . (B.3)

of +P -modules

S
k−2ℓ+2

2 := {φA′

1A
′

2...A
′

k
∈ S−k

2 : φA′

1A
′

2...A
′

ℓ
A′

ℓ+1
...A′

k
ξA

′

1ξA
′

2 . . . ξA
′

ℓ = 0} , for ℓ = 1, . . . , k.

For any integer k, each summand S
k−2ℓ+2

2 /S
k−2ℓ+4

2 in the associated graded module of (B.3) is a one-
dimensional +P -module isomorphic to a C-module S k−2ℓ+2

2

, on which the grading element ξ(A′ηB′) has

eigenvalue k−2ℓ+2
2 – here ξA

′

ηA′ = 1.
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Intrinsic torsion The intrinsic torsion of the P -structure can be identified as an element of the P -module
W := V ⊗ g/p at a point. In fact, since −g acts trivially on [ξA

′

], it is enough to consider the P -module
+W := V ⊗ +g/+p. This is in fact consistent with the fact that the spin connection on S+ takes value in
+g. We obtain a filtration of P -modules +W− 1

2 ⊂ +W− 3
2 = +W, where both +W− 1

2 and +W− 3
2 /+W− 1

2 are

one-dimensional. Details are left to the reader. The intrinsic torsion generically lies in +W− 3
2 and whether

it degenerates to an element of +W− 1
2 or vanishes can be expressed by

ξA
′

ξB
′∇AA′ξB′ = 0 , ξB

′∇AA′ξB′ = 0 ,

respectively. Here ∇AB′ stands for the Levi-Civita connection ∇a. These are precisely the geodetic spinor
equation (5.14) and the recurrent spinor equation (5.6) respectively.

Many of the results of section 5 can easily be adapted to the four-dimensional setting. For instance,
equation (5.10) can be rewritten as

ξB
′∇AA′ξB′ = ξA′ξB

′∇AB′f .

We refer to the literature, notably [PR84,PR86] for a detailed study of these spinorial equations and others.

Curvature tensors To describe irreducible P -submodules of
(
⊙kS+

)
⊗

(
⊙ℓS−) for non-negative k and

ℓ, it suffices to tensor the +P -invariant filtration on ⊙kS+ with ⊙ℓS−. Thus, for the space F, we have a
filtration {0} =: F2 ⊂ F1 ⊂ F0 ⊂ F−1 := F of indecomposable P -modules. For the spaces A±, we obtain two
distinct filtrations

+A
3
2 ⊂ +A

1
2 ⊂ +A− 1

2 ⊂ +A− 3
2 = +A , −A

1
2 ⊂ −A− 1

2 = −A .

Finally, since P induces no non-trivial filtration on −C, we are left with a filtration

+C2 ⊂ +C1 ⊂ +C0 ⊂ +C−1 ⊂ +C−2 = +C , (B.4)

of +P -submodules of the space +C of self-dual Weyl tensors. Defining

+C
ξΠ

0
−2(Ψ

′) = ξA
′

ξB
′

ξC
′

ξD
′

ΨA′B′C′D′ ,
+C
ξΠ

0
−1(Ψ

′) = ξA
′

ξB
′

ξC
′

ΨA′B′C′D′ ,
+C
ξΠ

0
0(Ψ

′) = ξA
′

ξB
′

ΨA′B′C′D′ ,
+C
ξΠ

0
1(Ψ

′) = ξA
′

ΨA′B′C′D′ ,
(B.5)

we see that +Ci := ker
+C
ξΠ

0
i−1 for all i = −1, 0, 1, 2.

It is instructive to compare these maps with the maps C
ξΠ

j
i defined in appendix A.2, which can also be

used in dimension four. It is relatively straightforward to show that, in four dimensions,

C
ξΠ

1
±1(C) =

C
ξΠ

1
0(C) = 0 ,

C
ξΠ

0
i (C) =

+C
ξΠ

0
i (Ψ

′) , for i = −1, 0, 1, 2,
C
ξΠ

3
0(C) = ξA′ξB′ΨABCD .

while C
ξΠ

2
0 is not defined. Since ξA

′

is always assumed to be non-zero, one can interpret C
ξΠ

3
0 as the projection

from C to −C, and expect it to replace the self-duality condition in higher dimensions.

B.1.2 Principal spinors and the Petrov-Penrose classification

For comparison, we recall some of the related notions given in [PR84,PR86]. We say that ξA
′

is a (k− ℓ+1)-
fold principal spinor of an irreducible spinor φA′

1...A
′

k
if

φA′

1A
′

2...A
′

ℓ
A′

ℓ+1
...A′

k
ξA

′

1ξA
′

2 . . . ξA
′

ℓ = 0 . (B.6)
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In the case k = 4, we have a notion of (5− ℓ)-fold principal spinor of the self-dual Weyl tensor, which is itself
intimately connected to the Petrov-Penrose classification of the self-dual Weyl tensor [Pet00,Wit59,Pen60]:
at a point p, ΨA′B′C′D′ defines a homogeneous quartic polynomial Ψ′(π) := ΨA′B′C′D′πA

′

πB
′

πC
′

πD
′

= 0,
where [πA

′

] are homogeneous coordinates on CP
1, the fiber of the projective spinor bundle over p. This

polynomial has four roots, and the multiplicities of these roots define the various Petrov types {1111},
{211}, {31}, {22}, {4} and {−} of ΨA′B′C′D′ . In the generic case {1111}, Ψ′(π) has four distinct roots, and
thus four distinct principal spinors at p. Type {211} consists of a double root and two distinct simple roots,
and thus a 2-fold principal spinors and two distinct 1-fold principal spinors, and so on. Type {−} simply
means ΨA′B′C′D′ = 0.

It must be emphasised that in sharp contract with the main ideas of the present paper, the Petrov-Penrose
classification makes no assumption on the existence of a preferred (projective) spinor field on (M, g). In
fact, one could single out any spinor field ξA

′

on (M, g). One would have a filtration (B.4) of +P -modules

on +C. Then ξA
′

would be a principal spinor for ΨA′B′C′D′ if and only if
+C
ξΠ

0
−2(Ψ

′) = 0, which is already a
non-trivial condition from the viewpoint of the P -structure. More generally, comparison of the maps (B.5)
and the definition (B.6) of principal spinors, one has

• ΨA′B′C′D′ is of type {1111} with 1-fold principal spinor ξA
′

if and only if
+C
ξΠ

0
−2(Ψ

′) = 0,

• ΨA′B′C′D′ is of types {211} or {22} with 2-fold principal spinor ξA
′

if and only if
+C
ξΠ

0
−1(Ψ

′) = 0,

• ΨA′B′C′D′ is of type {31} with 3-fold principal spinor ξA
′

if and only if
+C
ξΠ

0
0(Ψ

′) = 0,

• ΨA′B′C′D′ is of type {4} with 4-fold principal spinor ξA
′

if and only if
+C
ξΠ

0
1(Ψ

′) = 0.

On the other hand, any principal spinor field ξA
′

of ΨA′B′C′D′ on (M, g) defines a holomorphic reduction
to the structure group P , the stabiliser of [ξA

′

] at a point in G, and one can relate the Petrov types with
(B.4) as we have just done.

B.2 Six dimensions

Let (M, g) be a six-dimensional complex Riemannian manifold equipped with a holomorphic volume form
and a holomorphic spin structure. We first work at a point. The chiral spinor spaces are dual to each other,
i.e. (S±)∗ ∼= S∓, and can be identified with the four-dimensional standard and dual representations of the
spin group G = Spin(6,C) ∼= SL(4,C). All spinors in S± are pure. One can then eliminate the use of primed
indices in favour of the unprimed ones, so we shall write S for S− and S∗ for S+. We can also convert
tensor indices into a skew-symmetrised pair of indices by means of the skew-symmetric γ-matrices 1

2γ
a
AB

and 1
2γ

aAB, which satisfy the identity

gabγ
a
ABγ

b
CD = 2 εABCD , gabγ

aABγbCD = 2 εABCD , gabγ
a
ABγ

bCD = 4 δC[A δ
D
B] , (B.7)

where εABCD = ε[ABCD] and ε
ABCD = ε[ABCD] are volume forms on S and S∗ respectively satisfying the

normalisation

εABCDε
EFGH = 24 δE[A δ

F
Bδ

G
C δ

H
D] .

Skew-symmetrised pairs of spinor indices can be raised and lowered by means of 1
2εABCD and 1

2ε
ABCD, eg

VAB = 1
2εABCDV

CD. The isomorphism ∧2S ∼= ∧2S∗ is the spinorial counterpart of the metric isomorphism
between the standard representation V of SO(4,C) and its dual V∗. More generally, we identify

V ∼= ∧2S , ∧2V ∼= S⊗◦ S
∗ , ∧3+V ∼= ⊙2S∗ , ∧3−V ∼= ⊙2S .

In addition, the tracefree Ricci tensor, the Weyl tensor, and the Cotton-York take the spinorial forms

Φab = ΦABCD , C b d
a c = 8 δ

[C
[A C

D][G
B][E δ

H]
F ] , A c

ab = 4A
[E

AB[C δ
F ]
D] ,

where ΦABCD = Φ[AB][CD] satisfies Φ[ABC]D = 0, CCDAB = C
(CD)
(AB) is tracefree, and A D

ABC = A D
[AB]C

satisfies A D
[ABC] = 0 and A A

ABC = 0.
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B.2.1 Projective spinor fields

Let [ξA] be a holomorphic projective spinor field on (M, g) so that the structure group of the frame bundle
is reduced to P , the stabiliser of [ξA] at a point in G. As in section 2, P induces filtrations

〈ξA〉 = S
3
4 ⊂ S− 1

4 = S∗ , {βA ∈ S : βAξA = 0} = S
1
4 ⊂ S− 3

4 = S ,

of P -submodules. We can also re-express S
3
4 = {αA ∈ S∗ : ξ[AαB] = 0}. We can extend this argument to

spinors of any valence, and play the same game with V and g. In particular, the maps (2.24) defining the
irreducible p-modules gji of gr(g) can then simply be expressed as

g
ξΠ

0
−1(φ) := ξ[Aφ

C
B] ξC ,

g
ξΠ

0
0(φ) := φ B

A ξB ,
g
ξΠ

1
0(φ) := ξ[Aφ

C
B] −

1

3
δC[Aφ

D
B] ξD .

Intrinsic torsion The intrinsic torsion of the P -structure at point viewed as an element of the module
W := V⊗ g/p was already described in section 3, and its description in terms of the Levi-Civita connection
in section 5.1.1. We have already noted the slight differences between six dimensions and higher dimensions.
These can be more clearly expressed in the present calculus. Thus, denoting by ∇AB the Levi-Civita
connection, the geodetic spinor equation (5.14) and the recurrent spinor equation (5.6) read as

(
ξD∇DAξ[B

)
ξC] = 0 , (B.8)

(
∇ABξ[C

)
ξD] = 0 , (B.9)

Taking the irreducible parts of these equations yield

ξA∇ABξB = 0 , (B.10)

(
ξD∇DAξ[B

)
ξC] −

1

3

(
ξD∇DEξE

)
δA[B ξC] = 0 , (B.11)

ξA∇BCξC + ξC∇CBξA = 0 , (B.12)

(
∇ABξ[C

)
ξD] −

(
∇[A |EξE

)
δ
|B]
[C ξD] −

(
ξE∇[A |Eξ[C

)
δ
|B]
D] −

1

3

(
ξE∇EF ξF

)
δC[A δ

D
B] = 0 , (B.13)

which are equivalent to (5.9), (5.10) (5.11) and (5.13) respectively.

Proof of Proposition 5.23 Consider a conformal Killing spinor ξA on (M, g), i.e. a solution of

∇ABξC +
2

3
δ
[A
C ∇B]EξE = 0 .

A little algebra yields

(
∇ABξ[C

)
ξD] −

2

3
ξ[C δ

[A
D]∇B]EξE = 0 ,

ξE

(
∇E[Aξ[C

)
δ
B]
D] −

1

3
ξ[C δ

[A
D]

(
∇B]EξE

)
− 1

3
δA[Cδ

B
D]

(
ξE∇EF ξF

)
= 0 ,

from which we deduce that ξA satisfies equations (B.13) and (B.11). This proves Proposition 5.23.

Curvature tensors Finally, we record the maps given in appendix A.2 characterising the P -submodules
of the spaces of curvature tensors in this spinor calculus:

• for F ∼= (∧2S)⊙ (∧2S),

F
ξΠ

0
−1(Φ) := ξ[AΦBC][DEξF ] ,

F
ξΠ

0
0(Φ) := ξ[AΦBC]DE ,
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• for A ∼= (∧2S)⊙S⊗◦ S∗,

A
ξ Π

0
− 3

2

(A) := ξ[AA
F

BC][D ξE]ξF

A
ξ Π

0
− 1

2

(A) := ξ[AA
E

BC]D ξE ,

A
ξ Π

1
− 1

2

(A) := A E
AB[C ξD]ξE + A E

CD[A ξB]ξE ,

A
ξ Π

2
− 1

2

(A) := ξ[AA
F

BC][D ξE] −
1

4
δF[AA

G
BC][D ξE]ξG −

1

4
ξ[AA

G
BC][D δFE]ξG ,

A
ξ Π

0
1
2

(A) := A D
ABC ξD ,

A
ξ Π

1
1
2

(A) := ξ[AA
E

BC]D − 1

2
δE[AA

F
BC]D ξF ,

A
ξ Π

2
1
2

(A) := A E
AB[C ξD] +A E

CD[A ξB] −
2

5

(
A F
AB[C δED]ξF +A F

CD[A δEB]ξF

)
,

• for C ∼= (⊙2S)⊗◦ (⊙2S∗),

C
ξΠ

0
−2(C) := ξ[A C

EF
B][C ξD]ξE ξF ,

C
ξΠ

0
−1(C) := ξ[A C

DE
B]CξDξE ,

C
ξΠ

1
−1(C) := ξ[A C

EF
B][C ξD]ξF −

1

4
δE[AC

FG
B][C ξD]ξF ξG −

1

4
δE[C C

FG
D][A ξB]ξF ξG ,

C
ξΠ

0
0(C) := CCDAB ξC ξD ,

C
ξΠ

1
0(C) := ξ[A C

DE
B]CξE −

1

3
δD[AC

EF
B]CξE ξF ,

C
ξΠ

3
0(C) := ξ[A C

EF
B][C ξD] −

2

5
δ
(E
[A C

F )G
B][C ξD]ξG −

2

5
δ
(E
[C C

F )G
D][A ξB]ξG +

1

10
δ
(E |
[A CGHB][C δ

|F )
D] ξGξH ,

C
ξΠ

0
1(C) := CCDAB ξD ,

C
ξΠ

1
1(C) := ξ[A C

DE
B]C −

1

2
δ
(D
[A C

E)F
B]C ξF .

Remark B.1 ‘Coarser’ versions of some of the maps C
ξΠ

j
i were already given by Jeffryes [Jef95,MHK95] in

his investigation of the ‘principal spinors’ of the Weyl tensor in dimension six. The maps C
ξΠ

j
i are saturated

with symmetries, and are thus more tightly connected to the representation theory of P on C.

C Conformal structures

We collect a few facts and conventions pertaining to conformal geometry. We roughly follow [BEG94],
although our staggering of indices differs from theirs. For specificity, we work in the holomorphic category.

A holomorphic conformal structure on a complex manifold M is an equivalence class of holomorphic
metrics [gab] onM, whereby two metrics ĝab and gab belong to the same class if and only if

ĝab = Ω2gab , (C.1)

for some non-vanishing holomorphic function Ω onM. The respective Levi-Civita connections ∇a and ∇̂a
of gab and ĝab are then related by

∇̂aV b = ∇aV b +Q b
ac V

c , Qabc := Q d
ab gdc = 2Υ(a g b)c −Υcgab ,

for any holomorphic vector field V a, where Υa := Ω−1∇aΩ.
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Spinor bundles We first note that under a rescaling (C.1), the γ-matrices can be chosen to transform as

γ B′

aA 7→ γ̂ B′

aA = Ωγ B′

aA , γ A
aB′ 7→ γ̂ A

aB′ = Ωγ A
aB′ ,

where γ̂ B′

aA and γ̂ A
aB′ denote the γ-matrices for the metric ĝab. In addition, we can choose the Spin(2m,C)-

invariant bilinear forms on S to rescale with a conformal weight of 1, and their dual with a conformal weight
of −1. For instance, γA′B′ 7→ γ̂A′B′ = ΩγA′B′ when m is even, γA

′B 7→ γ̂A
′B = Ω−1γA

′B when m is odd, and
so on. This means in particular that the quantities γ AB′

a and γaAB′ when m is even, and γ A′B′

a and γaA′B′ ,

and their unprimed counterparts, when m is odd, have conformal weight 0. Then the spin connection ∇̂a is
related to ∇a by

∇̂aξB
′

= ∇aξB
′ − 1

2
Υbγ

b D
C′ γ B′

aD ξC
′

, (C.2)

for any holomorphic spinor field ξA
′

, and similarly for unprimed and dual spinors. This connection can be
seen to preserve the hatted γ-matrices and the hatted bilinear forms on S. This agrees with the convention
of [PR84] but differs from the more standard convention, used in [LM89] for instance.

Now assuming that ξA
′

is pure, and setting ξ̂Aa := ξB
′

γ̂ A
aB′ , we derive further

(
∇̂aξ̂bB

)
ξ̂Cb =

(
∇aξbB

)
ξCb − 2Υbξ

b[B ξC]
a ,

ξA
′∇̂bξ̂bB − ξ̂bB∇̂bξA

′

= Ω−1
(
ξA

′∇bξbB − ξbB∇bξA
′

+ (m− 1)Υaξ
aBξA

′

)
,

(
ξ̂bA∇̂aξ̂bB

)
ξ̂Cb = Ω−1

(
ξaA∇aξbB

)
ξCb .

The first two equations can be combined to yield

(∇̂aξ̂bB)ξ̂Cb +
2

m− 1

(
ξ̂[Ba ∇̂bξ̂bC] + ξ̂b[B ∇̂bξ̂C]

a

)
= (∇aξbB)ξCb +

2

m− 1

(
ξ[Ba ∇bξbC] + ξb[B∇bξC]

a

)
.

Curvature In conformal geometry, it is more convenient to use the alternative decomposition to (5.3)

Rabcd = Cabcd − 4g[c |[aP b]|d] , Pab :=
1

2− nΦab −R
1

2n(n− 1)
gab . (C.3)

where the Weyl tensor C d
abc is conformally invariant, and the Schouten or Rho tensor Pab transforms as

P̂ab = Pab −∇aΥb +ΥaΥb −
1

2
ΥcΥ

cgab , P̂ = Ω−2

(
P−∇cΥc −

n− 2

2
ΥcΥc

)
, (C.4)

where P := P a
a . Finally, the Cotton-York tensor Aabc := 2∇[bP c]a = −(n−3)∇dCdabc, where the expression

on the RHS follows from the contracted Bianchi identity, transforms as Âabc = Aabc −ΥdCdabc.
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