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2+1 quantum gravity for high genus 

J E Nelsontt and T Regget 
tDipartimento di FisieaTeorieadell'Universit~ di Torino, Via Pietro Giuria 1,1-10125 
Torino, Italy 

T ~ ~ ~ ~ . ~ ~ . ~ ~ . . ~ . . ~ . ~ ~ - . ~ ~ ~ ~ ~ _ I ~ ~ ~ ~ ~ I I . ~ L I . : . ~ I .  ~ ~ 1 1  1 - ~ - 1 1 ~  ~ ~ ~ ~ r . ~ m n ~ - - ~ ~ , , . . . ~ : . ~  
1 wwn CO review some recem resubs ooxamea In coiiaoorauon wicn I negge ~ i j  wiiicii 
concern quantum gravity in 2 + 1 (2 space, 1 time) dimensions. 

In 2 +  1 dimensions the Einstein-Hilbert first order action with cosmological con- 
stant A [2] 

can be written aa a Chern-Simons action 

a, b ,c  = 0,1 ,2 ,3  (1) 
2 
3 

a(dwab - -U: A w t b )  A wCdrabsd/B 

and is equal t o  the scalar curvature plus cosmological term: provided we identify the 
de Sitter spin connections w"' with the variables e A , w A B  in the following way. 

For the triads e A  = awA3,  tABC3 = -tABC and the cosmological constant A = 
Skol-'. In the sequel &means unambiguously +1 for k = 1 and +i for k = -1, and 
the tangent Minkowski metric k = +1 for de Sitter, 
k = -1 for anti-de Sitter space. The Riemannian curvature is: 

has signature (-l,l ,  l , k ) ,  

Rub = dw"' - W O '  A w,! 

and has components RA' + l i eA A e B ,  RA3 = l R A ,  with RAE, RA given by RAB = 
dwAB -wAT h w ? ,  RA = deA -uAB A e  - B .  

= 6 and impiy ihai space-time 
is everywhere locally de Sitter. 

-. ' rne  variationai equations derived irom (i  j are 

The action (1) leads to the standard C C R  

[ W : ~ ( Z ) , W ; ~ ( ~ ) ]  = ka-'rijr"'cdS2(z - y )  

$ Speaker at the conference 
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where z,y E C' are generic points on the z" = const. surface E a ,  i ,  j = 1,2  are spatid 
vector indices on E a ,  cij = -eij, fl2 = 1. 

Since we wish to use flat, gauge-invariant connections (31 we must satisfy the 
constraints Rob = 0. This is done by considering an SO(3,l)  matrix $Ob which is a 
zero-form, given by 

J E Nelson and T Regge 

d$Ob = wnc $,". (3) 

If Ca is a Riemann surface 141 of genus g, and y a path in Cz from a point P to  
a point Q, then a solution of (3) $Pb(P, Q ,  {y}) depends only on the end points and 
the homotopy clags {y] of y. Setting P = Q we obtain the subset I,P'(P, {y]) which 
forms a representation of the fundamental group r1(C2) for 7cnl. 

Recall that  the fundamental group of a Riemann surface has 29 generators 
U,, VI, . . U#, 5, satisfying 

1 1 1  v u-1v;l.. . . . . . . . . . . u9vgu;1v;1 = 1 

The brackets (2) can he integrated along intersecting paths p , o  in Ca t o  find, from 
(3), the brackets of the matrices Q'' [2]. 

It  is actually more convenient t o  use the spinor groups. The spinor group of 
SO(2,2)  is SL(2,W) 8 SL(2,W), that  of SO(3,l) is SL(Z,C), with 6 real parameters 
in both cases. 

The SL(2,W) or SL(2 ,C)  matrices S are related to the S O ( 3 , l )  matrices rY by 

@ya = S-ly'S 

The result is 

[S+(p)!,s-(4;1= 0 o , p ,  . . .  = 1 , 2  

where the f refer to the upper/lower spinor components and 8 = s ( u , p )  defines the 
orientation of the intersection of p and U. A few comments are in order: 
(i) Formula (4) is valid only when the paths p ,  U have a single intersection. If they have 
no intersection then the brackets are trivially zero. If they have m > 1 intersections 
then one can express one of the paths, say p ,  as p = p 1 p z p 3  '. . pm where each p i ,  i = 
1 . . . m, has a single intersection and formula (4) can be applied. Alternatively one can 
give a direct geometrical derivation extending the one we have given here for m = 1. 
(ii) Formula (4) is also valid for closed paths, but it is necessary to keep the base 
points separate to avoid false or ambiguous contributions from a common base point 
i.e. (4) is not gauge invariant since gauge invariance corresponds to a shift of base 
point (if it were gauge invariant we could always make the base points coincide which 
would lead to ambiguous contributions). 
(iii) Formula (4) are Poisson brackets, not gauge invariant, and therefore do not respect 
the constraints R"' = 0 which generate gauge transformations. One should either use 
Dirac brackets or use gauge invariant quantities (observables) for which Dirac and 
Poisson brackets coincide. 
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However, for a generic closed path U the traces: 

are gauge invariant quantities since c*(r) = c * ( u ~ - ~ )  for any open path U. This 
corresponds to a shift of base point along U. If 6 = oF1p1 denotes the open path from 
E to  E', then a and p' = 6p6- I  identify elements of the homotopy group r1 (EZ,B')  
based on the common base point E'. The algebra of these traces is then 

[c*(u),c*(u)l= (* is/~o&)(-c*(u)c*(u) + c*(uu)) 
[c+(u),c-(u)] = 0 

( 5 )  

or alternatively' 

[c*(U),c*(u)] = (*is/4odX)(c*(uu) - &(uu-1)) 

since for 2 x 2 matrices the identity holds: 

(6) 
1 
2 C*(")C*(U) = -(c*(uu) + cf(uu-1)) 

thus we have an infinite Lie algebra subject to non-linear constraints. Note that for 
k = -1 c* are real and independent whereas for k = +1 they are complex conjugates. 

Set &(U) = z*, c*(u) = y*, c*(uu) = c*(uu) = z* and consider (5) .  

(Z* - z*yf)  [zf,y'] = -- 
2odZ 
is 

and cyclical permutations of 2, y, z .  
For simplicity we omit the + sign when there is no ambiguity. 
We set (z,~) = z y  - yz = ih[z,y] and symmetrise the z y  product to find 

Set sh/(Zo&) = 2itan(6'/2) to find 

e(l'z)iezy - e-('")"yz = isin B z and cyclical (7) 

where in (7) we have replaced z , y , z  with 2/ cos(6'/2) etc. This resealing is irrelevant 
in the h + 0 limit as it corresponds to changes of the order of ti2. 

The algebra (7) is trivially related to the Lie algebra of the quantum groups 

It admits the central element: 
SUP) [51. 

1 
2 

p = cos2 -0 + 2e'fszyz - e- ie(z2 + .2) - ,-(e Y 2 

' Compare with the contributiom to this conference by A Ashcekar and C Rovelli 
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which is cyclically symmetric and whose classical limit 

J E Nelson and T Regge 

F Z - t O = l + 2 x y z - x  2 2 2  - y  - 2 .  

defines a cubic surface 0 = constant whose values are related to the representations 

The situation for genus 2 is rather more complicated, and corresponds to a subal- 

The subgroup of r1 generated by Ul,Vl,U2,Vz, i.e. the paths around any 2 holes 

of SO(3, l )  or SO(2,2).  

I.-!--.- -C *I.- ..l--h-e -$ -C - -I . :~-s- . ,  rn _..- (jr;u,a Y I  U.lC O,&r"&'. "L n U"L.( .CT Y L  a,u'LL' . 'LJ b F 1 L " " .  

has traces of products of these paths of the form: 

shere no,"i,"2,"3 = O,! ..d 

n = no + 2n, + 4nZ t a n ,  

= 1 . . . 1 5  . 

Any other trace can be reduced to a polynomial in the A, by repeated use of SL(2,R) 
identities such as (6). There are only two exceptions to  this rule: 
A, = -e(U,Vl) + 2c(U,)c(Vl) = c(UIVrl),  A,, = -c(U,V,) + 2c(U,)c(V2). Some 
examples of the general rule are A, = c(Uz), A, = c(U,V2), A,, = c(U,V,V,). 

The 105 brackets of these 15 elements were calculated by direct geometrical meth- 
ods. We do not report all the details but t r y  to explain our reasoning and method. 
We made ample use of (4) and of the representation of a compact surface of genus g 
by means of a polygon of 49 sides suitably identified (see Fig. 1). 

Figure 1. Octagon with identified sides showing two holes of LI surface of arbitrary 
genus. The black square is an obstruction leading into the remainder of the surface. 
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After calculation of each bracket, using (4), the paths are reassembled, then we 
trace and simplify using the trace properties of SL(2,R)  matrices. The final result 
is best displayed by the complete hexagon appearing in Fig. 2 .  Also we omit the 
factor -1/2a. To each element Ai we associate the ith line of the hexagon. If the 
lines i , j  have no point in common then the corresponding paths are homotopic to 
non-intersecting paths and: 

[ A i , A j ]  = 0 (30 brackets) (9) 

for example 

If the sequence of lines i ,  k,j forms a triangle and runs clockwise around its perime- 
ter, then the corresponding paths intersect once and: 

[ A i , A x ]  = AiAk - A j  

There are 20 of such triangles, for example 

[ A l , A 2 ]  = & 4 ,  - A , .  

Finally there are pairs of diagonal lines, say n,p, which intersect at one point P 
inside the hexagon. These correspond to  traces of paths which have 2 intersections. 
Let n have end points P,, P3 and p have end points P,, P, and let i,, = i,, the 
line connecting the points P,, and Ps. If we connect the points Pa, a = 1 ,  " 4  in all 
possible ways we obtain a quadrilateral with diagonals n,p. We may always choose a 
convention such that the triples i12, i,,, i,, = n and i,, = p, &,is run clockwise (see 
Fig. 3). We have then: 

[A"'A,] = 2Ai,*Ai,. - 2Ai2*Ai,, (11) 

The six elements A,, A,, A,,  A14 A,, A,, generate a subalgebra of the full algebra. 
There are 15 such subalgebras corresponding to  the 15 quadrilaterals contained in 
Fig. 2. For example: 

[A5, A,,] = 2 4 4  - 2A3A12 

One can show that it is impossible to  eliminate completely the double intersections 
by considering traces of the form (8) and reversing the sign of any ni ,  that is, one can 
only change the intersection number by *2. 

The algebra of these 15 elements A,, has a hierarchy of nested subalgebras with 
an interesting geometrical interpretation. If any clockwise triangle (3 oriented lines) 
of the hexagon can instead be thought of as 3 oriented points on one line, then any 
4 triangles, namely a quadrilateral like Fig. 3, correspond to 6 oriented points on 4 
lines (see e.g. Fig. 4) and so on. Any 10 triangles (pentagon) with 5 points and 10 
lines corresponds to a Desargues diagram with 10 lines and 10 points (Fig. 5). The 
full algebra (hexagon, Fig. 2) corresponds to 4 lines through each point, in total 20 
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Figure 2. Diagram showing the combinatorial d e s  for the Poisson brackets used 
in the text. 

Figure 3. Diagram used for double intersections. 
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lines and 15 points. In general, if there are n lines through each point, there are 
n(n + l ) (n  + 2 ) / 6  lines and (n + l ) (n  + 2)/2 points of the generalised Desargues 
diagram, alternately represented by a complete (n + 2)-gon. 

Now, the full algebra (hexagon) is highly symmetric. 
For instance, each element A,, i = 1 . . . 15 generates an infinitesimal canonical 

transformation which can be exponentiated to give an automorphism of the algebra. 
As an example, the transformation generated by A, = chB on A, and A, can be 

displayed as follows: 

A m  sh(B(1 - t ) )  sh(Bt) 
( A , ( t ) )  = & ( -sh(Ot) sh(B(l+ t ) ) )  (2) 

where for t integer, the transformation is polynomial (otherwise a transcendental func- 
tion). In fact n(n) = Q(1)" so it is sufficient t o  take t = 1. 

The transformations from double intersections are more complicated but are re- 
ported in full in [l], and are still polynomial in the A's. Define D(n) to be the 
transformation generated by A,, with t = 1. The algebra is invariant under all the 
D(n) ,  n = 1 ' .  .15. These Dehn transformations form an infinite discrete group D 
isomorphic to the original algebra. 

The same hexagon appearing in Fig. 2 can be used to classify the identities satisfied 
by the D(n) just as we did for the A,,. In particular if the lines i , j  do not intersect 
we have: 

[ijiij,o(jj] = o (iZ) 

If the lines i, k, j run clockwise around a triangle of Fig. 2 we have: 

D(i )D( j )D( i )  = D ( j ) D ( i ) D ( j )  and cyclical 

D ( i ) D ( j )  = D ( j ) D ( k )  = D ( k ) D ( i )  (13) 

For doubly intersecting paths we find more complicated relations which follow 
directly from the ones quoted above and will not be quoted here. By using these 
identities we can express all D(n) in terms of a subset of 5 elements only, say 
D(8),D(S),D(l),D(2),D(9), i.e. the sides of the hexagon with the 6th missing. The 
exclusion of D(4) is purely conventional and does not reflect any breaking of the 

We set cl = D(8) ,  c2 = D(6),  e, = D(1), C4 = D(2) ,  C6 = D(9) and verify from 
hexagonr?! symmetry: 

(E!), (13) that: 

(,ej = cjC, 
c,c;+1ci = ci+1cici+1 1 < i < 4  

if li - jl 2 2 1 < i, j < 5 

which are satisfied by the elements of B(6),  the braid group of order 6. In particular 
the element C, corresponds to the element of B(6) which exchanges the braids i, i+ 1. 
It  follows that D yields a representation of B(6) [SI. 

From this identification the symmetries of the braid group B(6) can be described 
by symmetries of the hexagon (Fig. 2). For example, a clockwise rotation of the 
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Figure 4. Quadrilateral Subalgebra 

Figure 5. Desarguea Diagram 
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hexagon by s /3  corresponds, at the level of the traces A,, to a transformation whose 
cube simply exchanges the labelling of the holes 1 and 2. At the level of B(6) it is the 
transformation 

Ci-+ci+l i = 1 . , . 5 ,  m o d 5  

Another example is a reflection of the hexagon around the dashed line. Clearly its 
square is the identity; it corresponds to replacing C1, C2, C3, C4, Cs by Cs, C4, C3, C z ,  Cl 
in order (think of looking at the six strings of B(6) from behind, or wrapping them 
around a cylinder and looking from inside). 

Both of these transformations can be generated by the group D which, recall, acts 
on the traces A, defined by (8). 

The Dehn group D can be lifted to the level of the homotopy group sl(Cz). As 
an example, define. 

H(1) = {vl - Cl;1v1} 

H(2) = (U1 - W l }  

These maps H(i) , i  = 1 ,2 ,6 ,8 ,9  satisfy the same identities (la), (13) as the D(n)  
and generate a group H of homomorphisms of ?rl, which is induced by the mapping 
class group. They reduce to the D(n) on the A,. We thus have a minimal represen- 
tation of the mapping class group rS,+ for g 

The extension to g > 2 is very promising. Consider the algebras A(n) associated 
to complete n-gons formed by n points joined by n(n - 1)/2 lines and including 
n(n - l)(n - 2)/6 triangles and where the brackets are defined as a straightforward 
generalisation of (9)-(11). For n < 6 these algebras are isomorphic to subalgebras of 
the full algebra and in particular A(3) contains the triple associated with a triangle 
(genus 1). 

The quantisation of this classical theory is highly non-trivial. We have found a 
quantum ordering which reproduces the classical algebra. There are many quantum 
Casimirs (polynomials in the A,) which should annihilate the physical states. The 
Dehn maps can be implemented as unitary operators an the physical states. This will 
appear elsewhere [SI. 

2 [7]. 
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