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Abstract: 

Agricultural intensification is a leading cause of global biodiversity loss, 
which can reduce the provisioning of ecosystem services in managed 
ecosystems. Organic farming and plant diversification are farm 
management schemes that may mitigate potential ecological harm by 
increasing species richness and boosting related ecosystem services to 
agroecosystems. What remains unclear is the extent to which farm 
management schemes affect biodiversity components other than species 
richness, and whether impacts differ across spatial scales and landscape 
contexts. Using a global meta-dataset, we quantified the effects of organic 
farming and plant diversification on abundance, local diversity 
(communities within fields), and regional diversity (communities across 
fields) of arthropod pollinators, predators, herbivores, and detritivores. 
Both organic farming and higher in-field plant diversity enhanced arthropod 
abundance, particularly for rare taxa. This resulted in increased richness 
but decreased evenness. While these responses were stronger at local 
relative to regional scales, richness and abundance increased at both 
scales, and richness on farms embedded in complex relative to simple 
landscapes. Overall, both organic farming and in-field plant diversification 
exerted the strongest effects on pollinators and predators, suggesting 
these management schemes can facilitate ecosystem service providers 
without augmenting herbivore (pest) populations. Our results suggest that 
organic farming and plant diversification promote diverse arthropod meta-
communities that may provide temporal and spatial stability of ecosystem 
service provisioning. Conserving diverse plant and arthropod communities 
in farming systems therefore requires sustainable practices that operate 
both within fields and across landscapes. 
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ABSTRACT 141 
 142 
Agricultural intensification is a leading cause of global biodiversity loss, which can reduce 143 

the provisioning of ecosystem services in managed ecosystems. Organic farming and plant 144 

diversification are farm management schemes that may mitigate potential ecological harm by 145 

increasing species richness and boosting related ecosystem services to agroecosystems. What 146 

remains unclear is the extent to which farm management schemes affect biodiversity 147 

components other than species richness, and whether impacts differ across spatial scales and 148 

landscape contexts. Using a global meta-dataset, we quantified the effects of organic farming 149 

and plant diversification on abundance, local diversity (communities within fields), and 150 

regional diversity (communities across fields) of arthropod pollinators, predators, herbivores, 151 

and detritivores. Both organic farming and higher in-field plant diversity enhanced arthropod 152 

abundance, particularly for rare taxa. This resulted in increased richness but decreased 153 

evenness. While these responses were stronger at local relative to regional scales, richness 154 

and abundance increased at both scales, and richness on farms embedded in complex relative 155 

to simple landscapes. Overall, both organic farming and in-field plant diversification exerted 156 

the strongest effects on pollinators and predators, suggesting these management schemes can 157 

facilitate ecosystem service providers without augmenting herbivore (pest) populations. Our 158 

results suggest that organic farming and plant diversification promote diverse arthropod 159 

meta-communities that may provide temporal and spatial stability of ecosystem service 160 

provisioning. Conserving diverse plant and arthropod communities in farming systems 161 

therefore requires sustainable practices that operate both within fields and across landscapes. 162 
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INTRODUCTION 163 

Simplification of agricultural landscapes, and increased use of fertilizers and 164 

pesticides, threaten arthropod communities worldwide (Matson et al., 1997; Tscharntke et al., 165 

2005; Potts et al., 2016). This could impair agricultural sustainability because declines in 166 

arthropod abundance and diversity are often associated with reduced provisioning of 167 

ecosystem services including pollination, pest control, and nutrient cycling (Kremen & Miles, 168 

2012; Oliver et al., 2015). Two strategies purported to mitigate this ecological harm are 169 

organic farming and in-field plant diversification (Table S1). We refer to these strategies as 170 

farm management schemes, both of which include a host of practices that promote biological 171 

diversification (Kremen & Miles, 2012; Puech et al., 2014). We refer to organic farming, 172 

conventional farming, high in-field plant diversification, and low in-field plant diversification 173 

as separate field types. Mounting evidence indicates that arthropod communities are more 174 

diverse and abundant in fields lacking synthetic fertilizers and pesticides, and in those with 175 

greater plant diversity (e.g., intercropped or having non-crop vegetation like hedgerows or 176 

floral strips) (Letourneau et al., 2011; Crowder et al., 2012; Kennedy et al., 2013; Garibaldi 177 

et al., 2014; Batáry et al., 2015; Fahrig et al., 2015). 178 

The benefits of diversified farming practices may manifest at different scales, such as 179 

within individual fields (local diversity) or across multiple fields in a landscape (regional 180 

diversity) (Table S1). One observational study of 205 farms across Europe and Africa, for 181 

example, found that although organic farming provided strong benefits for local richness of 182 

plants and pollinators, these benefits faded at regional scales (Schneider et al., 2014). This 183 

suggests that while farmers may promote local diversity on their field(s) by using organic 184 

practices, their efforts may not enhance biodiversity across multiple fields. Conversely, the 185 
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addition of hedgerows to crop fields has been shown to increase community heterogeneity 186 

and species turnover (measures of local diversity), which are important components of 187 

regional diversity (Ponisio et al., 2016). The effects of farm management for particularly 188 

mobile arthropods, such as pollinators, may also transcend individual fields if the improved 189 

quality of habitats on one field boosts abundance, with organisms spilling over to nearby 190 

fields (Tscharntke et al., 2012; Kennedy et al., 2013). While increases in local diversity have 191 

been shown to provide the strongest benefits to individual ecosystem services (i.e., 192 

pollination and biological control), regional diversity can support the simultaneous provision 193 

of multiple ecosystem services over space and time (Pasari et al., 2013). Thus, to mitigate the 194 

effects of biodiversity loss across agroecosystems, farm management schemes should ideally 195 

benefit both local and regional diversity. 196 

Research on the impacts of organic farming and in-field plant diversity has primarily 197 

focused on beneficial functional groups such as natural enemies and pollinators (Crowder et 198 

al., 2010; Kennedy et al., 2013) across intensively sampled regions of Europe and North 199 

America (Shackelford et al., 2013; De Palma et al., 2016). Moreover, almost all studies rely 200 

on richness (the number of taxa; Table S1) as a proxy for biodiversity but ignore metrics such 201 

as evenness (the relative abundances among species; Table S1) (e.g., Bengtsson et al., 2005; 202 

Tuck et al., 2014). Yet, richness poorly reflects overall community diversity (Duncan et al., 203 

2015; Loiseau & Gaertner, 2015), and its measurement is strongly confounded by abundance 204 

(Chao & Jost, 2012). Variation in richness has also been shown to have minimal impacts on 205 

ecosystem functioning when richness increases are driven primarily by rare species that 206 

contribute little to ecosystem services (Kleijn et al., 2015; Winfree et al., 2015). While 207 

common species may provide the majority of ecosystem services on some farms (Schwartz et 208 

Page 9 of 81 Global Change Biology



For Review
 O

nly

 8

al., 2000; Kleijn et al., 2015), rare species can provide redundancy (Kleijn et al., 2015) or 209 

support provisioning of multiple ecosystem services (Soliveres et al., 2016). Assessing 210 

evenness can help determine whether richness increases are driven by rare or common 211 

species. Richness, evenness, and abundance can also independently or interactively affect 212 

ecosystem function (Wilsey & Stirling, 2006; Wittebolle et al., 2009; Crowder et al., 2010; 213 

Northfield et al., 2010; Winfree et al., 2015). Thus, teasing apart the effects of farm 214 

management schemes on abundance and each diversity metric is critical. While existing 215 

studies find that organic farming and in-field plant diversification tend to boost abundance 216 

and richness of certain taxa, whether these effects are consistent for other biodiversity 217 

components such as evenness, for functional groups other than pollinators and natural 218 

enemies, and for less-well studied regions of the world (e.g., the tropics and Mediterranean) 219 

remains unclear. 220 

Here, we present a comprehensive synthesis of studies that explore how organic 221 

farming and in-field plant diversification influence arthropod communities across global 222 

agroecosystems. We determine whether community responses to these management schemes 223 

vary based on different metrics (abundance, local richness and evenness, regional richness 224 

and evenness) and arthropod functional groups (detritivores, herbivores, pollinators, and 225 

predators). We investigate if these responses depend on landscape complexity (i.e., the 226 

proportion of natural and semi-natural habitat surrounding the farm; Fig. S1, Table S1), 227 

because landscape heterogeneity has been shown to influence the effectiveness of farm 228 

management schemes (Batáry et al., 2011; Kleijn et al., 2011; Kennedy et al., 2013; Tuck et 229 

al., 2014). We also explore whether farm management schemes have similar impacts on 230 

relatively rare compared to common taxa. Our results demonstrate whether local and regional 231 
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diversity and abundance of different functional groups are similarly affected by on-farm 232 

management and landscape complexity, and the extent of covariance between biodiversity 233 

within and across fields in a landscape. Broadly, our findings further reveal the role of farm 234 

management in mitigating biodiversity loss and maintaining healthy arthropod communities 235 

in agroecosystems under global change. 236 

 237 

MATERIALS AND METHODS 238 

Literature survey 239 

We compiled data from studies on arthropod diversity in agroecosystems that 240 

compared one or both of the farm management schemes of interest: (1) organic vs. 241 

conventional farming and (2) high vs. low in-field plant diversity. We defined organic 242 

agriculture as fields that were organically certified or met local certification guidelines (Table 243 

S1). These guidelines involve, at minimum maintaining production systems free of synthetic 244 

pesticides and fertilizers. We defined conventional agriculture as fields or farms that used 245 

recommended rates of synthetic, or a mix of synthetic and organic, pesticides and fertilizers. 246 

Other types of farming systems, such as integrated, which fit neither category where excluded 247 

from the analysis. Fields were defined as having high in-field plant diversity if they had 248 

diverse crop vegetation or managed field margins to include non-crop vegetation (e.g., 249 

hedgerows, border plantings, flower strips) (Table S1). We also classified small (< 4 ha) 250 

fields as diverse because they yield small-scale crop diversity (across several fields) even if 251 

the target field is a monoculture (Pasher et al., 2013). Fields were defined as having low in-252 

field plant diversity if they had none of these features. Studies that compared these schemes 253 

were identified by (1) searching the reference lists of recent meta-analyses (Batáry et al., 254 
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2011; Chaplin-Kramer et al., 2011; Crowder et al., 2012; Garibaldi et al., 2013; Kennedy et 255 

al., 2013; Scheper et al., 2013; Shackelford et al., 2013), (2) searching ISI Web of 256 

Knowledge (April and May 2013) using the terms “evenness or richness” and “organic and 257 

conventional” or “local diversity”, and (3) directly contacting researchers who study 258 

arthropods in agricultural systems. 259 

We identified 235 relevant studies that we examined for inclusion based on five 260 

criteria: (1) sampling was performed in the same crop or crop type (e.g., cereals) for organic 261 

and conventional fields, or fields with high and low in-field plant diversity; (2) sampling was 262 

conducted at the scale of individual crop fields rather than using plots on experiment stations; 263 

(3) the study included at least two fields of each type; (4) all organisms collected were 264 

identified to a particular taxonomic level (i.e., order, family, genus, species, or 265 

morphospecies), such that no taxa were lumped into groups such as “other”; and (5) at least 266 

three unique taxa were collected. We use “taxon” to refer to a single biological type (e.g., 267 

species, morphospecies, genus, family), determined as the finest taxonomic resolution to 268 

which each organism was identified in a particular study (see examples in Table S1). A total 269 

of 60 studies met our criteria, representing 43 crops, 21 countries, and 5 regions (Asia, 270 

Europe, North and Central America, South America, Oceania) (Fig. S2, Table S2). For 271 

studies that investigated both management scheme comparisons, we included the data in both 272 

analyses only when the field types were independently assigned (Table S3); otherwise we 273 

selected the scheme that the authors indicated the study was designed to address (Table S2). 274 

Across these 60 studies, our meta-analysis included 110 unique data points: 81 comparing 275 

organic and conventional fields and 29 comparing fields with high vs. low in-field plant 276 

diversity (Fig. S2, Tables S2, S4, archived data). Among organic vs. conventional studies, the 277 
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number with high in-field plant diversity, low in-field plant diversity, and both levels of plant 278 

diversity was independent of organic vs. conventional management (χ2
2 = 0.47, p = 0.79). 279 

 280 

Calculation of effect sizes 281 

Unlike traditional meta-analyses that extract summary statistics from studies, we 282 

gathered and manipulated raw data, which enabled us to calculate evenness and classify taxa 283 

into functional groups. For each study, we compiled data on the abundance of all taxa in each 284 

field. For studies conducted across multiple years or crop types, separate values were 285 

compiled for each year and crop. To avoid pseudoreplication, for multi-year studies we 286 

selected a single year to analyze based on maximizing the number of (1) sites that met the 287 

evenness criterion (at least three taxa), (2) fields, or (3) individuals (in decreasing priority 288 

order; Garibaldi et al., 2013). Each collected taxon was classified into one of four functional 289 

groups: detritivore, herbivore, pollinator, or predator (see Supporting Methods for details). 290 

These taxon-level data were used to calculate effect sizes for abundance, local diversity, and 291 

regional diversity in paired organic vs. conventional or high vs. low in-field plant diversity 292 

systems. For local and regional calculations, we defined diversity as both richness and 293 

evenness, and treated each functional group separately (Fig. S1). 294 

Local diversity reflects the average diversity within each field, and was calculated 295 

using individual crop fields as the sampling unit (Fig. S1, Table S1). In studies with sub-296 

samples at a scale smaller than a field (i.e., plots within fields), values across these sub-297 

samples were averaged before calculating local diversity. Abundance was the number of 298 

arthropods, and richness the number of unique taxa, in a field. Evenness was calculated using 299 

the metric Evar, which ranges from 0 (one taxon dominant) to 1 (uniform abundance for all 300 
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taxa). This metric was chosen for its desirable statistical properties, particularly independence 301 

from richness, and its use in similar previous meta-analyses (Crowder et al., 2012). After 302 

calculating abundance, richness, and evenness for each field, we averaged values across all 303 

fields of a particular type in a study to obtain the values for effect size calculations. 304 

Regional diversity values were calculated based on individuals pooled across all fields 305 

in a study (Fig. S1, Table S1). Thus, regional richness and evenness are measures of diversity 306 

of meta-communities across fields in a landscape, while local diversity measures 307 

communities in a single field (Wang & Loreau, 2014). We note that regional diversity is not a 308 

direct indication of spatial scale, as the geographical extent of sampling varied among 309 

studies. Some studies were not designed to assess regional diversity specifically, and sampled 310 

unequal numbers of fields of each type. To correct for this sampling bias, we used sample-311 

based rarefaction with 1,000 random samples taken from the set of fields in a given study to 312 

determine pooled species assemblages (Gotelli & Colwell, 2011). For example, if a study had 313 

10 conventional and 6 organic fields, regional diversity values for the conventional 314 

management schemes would be based on the average pooled community taken from 1,000 315 

random draws of 6 field sites. Regional abundance is simply local abundance multiplied by 316 

the number of sites, thus we reported only one abundance value per study. 317 

To compare effects of farm management schemes on diversity and abundance, we 318 

used the log-response ratio as an effect size metric (Hedges et al., 1999). We used this metric, 319 

rather than a weighted effect size, for three reasons. First, weighted effect sizes could not be 320 

calculated for regional diversity because these calculations were based on a single value 321 

(without replication) from each study, such that there was no estimate of variability. Second, 322 

our studies classified arthropods at varying levels of taxonomic resolution. Studies classified 323 
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at the family level had less variability than studies classified at the species level, so using a 324 

weighted metric would give studies conducted at a coarser taxonomic resolution greater 325 

weight. Finally, preliminary analysis showed weighted and unweighted analyses of local 326 

diversity and abundance were qualitatively similar (Table S5). In the Results, we back-327 

transformed log response-ratio effect sizes to percentages. 328 

We assessed funnel plot asymmetry to test for publication bias. Because we used an 329 

unweighted effect size metric, we plotted effect sizes against sample sizes (i.e., number of 330 

fields; Figs. S3, S4) (Sterne & Egger, 2001), and visually assessed asymmetry since formal 331 

statistical tests require effect size variances (Jin et al., 2015) and measures of regional 332 

diversity had no variance component. Visual assessment looked for, and did not find, areas of 333 

missing non-significant results, a directional bias to effects, or a strong relationship between 334 

effect and sample sizes. We did not detect any sign of publication bias; funnel plots were 335 

sufficiently symmetrical. Finally, we ensured the sampling method (active versus passive 336 

sampling techniques) did not influence results (see Supporting Information, Table S6). We 337 

calculated abundance and diversity values with R v. 3.1.1 (R Core Team, 2014), using 338 

packages BiodiversityR (Kindt & Coe, 2005), doBy (Højsgaard & Halekoh, 2013), and 339 

reshape (Wickham, 2007). 340 

 341 

Study variables 342 

We gathered data on three categorical variables and assessed whether they mediated 343 

arthropod responses to farm management schemes: (1) landscape complexity (simple, 344 

complex), (2) biome (boreal, Mediterranean, temperate, tropical), and (3) crop cultivation 345 

period (annual, perennial). Landscape complexity (see Fig. S1, Table S1) was determined 346 
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from land cover data on the percentage of natural and semi-natural habitat within 1 km of 347 

sampled fields. Natural and semi-natural habitat was defined as areas dominated by forest, 348 

grassland, shrubland, wetlands, ruderal vegetation, or non-agricultural plantings (i.e., 349 

previously-cultivated areas where vegetation is regenerating, hedgerows, field margins, and 350 

vegetation along roadways or ditches). For each study, we calculated the mean percentage of 351 

natural habitats across fields using locally-relevant land cover databases. Landscapes were 352 

classified as simple if they averaged ≤ 20% natural habitat, and complex if they averaged > 353 

20% natural habitat, following Tscharntke et al. (2005) and common practice (e.g., Batáry et 354 

al., 2011; Scheper et al., 2013) (see Supporting Methods for additional details). Biome was 355 

based on the geographic location of the study. Crop cultivation periods were derived from 356 

several sources (FAO AGPC, 2000; Garibaldi et al., 2013). Table S4 shows the distribution 357 

of data points across each of these descriptive variables. 358 

 359 

Data analyses 360 

Table S7 summarizes specific questions we addressed and the approach we used to 361 

test each one. We first used one-sample t-tests (Crowder & Reganold, 2015) to determine if 362 

the mean effect sizes for abundance, local richness and evenness, and regional richness and 363 

evenness differed significantly from 0. For each management scheme comparison (organic 364 

vs. conventional or high vs. low in-field plant diversity), these analyses were conducted for 365 

the overall arthropod community and for each functional group separately. We also explored 366 

correlations between local and regional richness, and between local and regional evenness, to 367 

determine if these metrics responded similarly to each of the management schemes. We used 368 

α = 0.10, to describe effect sizes that appeared ecologically important but did not meet the 369 
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somewhat arbitrary α = 0.05. This accords with a recent policy statement by the American 370 

Statistical Association (Wasserstein & Lazar, 2016), which notes that reliance on arbitrary 371 

alpha values can lead to erroneous conclusions. 372 

In subsequent analyses, we used meta-regression to examine whether effect sizes 373 

were influenced by functional group and other study characteristics. We excluded studies 374 

lacking landscape complexity data (see archived data) from meta-regressions. For each 375 

management scheme and response, we ran a linear mixed model (lme4 package; Bates et al., 376 

2014) that included eight fixed effect variables: (1) functional group (detritivore, herbivore, 377 

predator, pollinator), (2) diversity scale (local, regional), (3) landscape complexity (simple, 378 

complex), (4) biome (boreal, Mediterranean, temperate, tropical), (5) crop cultivation period 379 

(annual, perennial), (6) functional group×diversity scale interaction; (7) functional 380 

group×landscape complexity interaction; and (8) diversity scale×landscape complexity 381 

interaction. These models included study ID as a random effect. We used information-382 

theoretic model selection to determine the set of best-fit models for each response variable 383 

(MuMIn package; Barton, 2014), which contained models with AICc values within 2 of the 384 

smallest value (Burnham & Anderson, 1998). We examined significance of the fixed effects 385 

in each model in the best-fit set (α = 0.10) with likelihood ratio tests, and used post-hoc 386 

planned contrasts (with p-values adjusted to control the overall Type I error rate using 387 

Holm’s sequential Bonferroni procedure; see Supporting Methods) (phia package; Rosario-388 

Martinez, 2013) to test for (1) differences in effect size among functional groups and biomes, 389 

(2) differences in effect size between the local and regional scales within each functional 390 

group, and (3) landscape complexity differences between each pair of functional groups. 391 
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We also tested whether abundance and richness effect sizes differed for rare and 392 

common taxa. Following Kleijn et al. (2015), within each study we classified taxa as 393 

common if their relative abundance was at least 5% of the total community; other species 394 

were categorized as rare. We then calculated local abundance and richness as well as regional 395 

abundance and richness separately for rare and common taxa. We used one-sample t-tests to 396 

determine if mean effect sizes differed significantly from zero, and paired t-tests to determine 397 

whether mean effect sizes differed between rare and common taxa. 398 

 399 

RESULTS 400 

Effects of management schemes on overall arthropod communities 401 

Organic farming increased arthropod abundance (45% change), local richness (19%), 402 

and regional richness (11%) (Fig. 1a, Table S8). These positive effects were stronger for local 403 

compared to regional richness (Fig. 1a, Tables S9, S10). Arthropod communities on organic 404 

farms had significantly but only moderately lower local evenness (-6%) and regional 405 

evenness (-8%) than on conventional farms (Fig. 1a, Table S8). Fields with high in-field plant 406 

diversity increased local richness (23%) and regional richness (19%), with similar magnitude 407 

(Fig. 1b, Tables S8, S11, S12). In-field plant diversity did not significantly affect abundance 408 

(27%), local evenness (-6%) or regional evenness (-13%) (Fig. 1b, Table S8). Overall, there 409 

were strong positive correlations between local and regional richness (r = 0.87), and between 410 

local and regional evenness (r = 0.57; Fig. S5). 411 
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 412 
 413 
Figure 1. Effects of farm management schemes on arthropod abundance, local diversity, and 414 
regional diversity. Values shown are for the entire arthropod community, and represent the 415 
mean log-response ratio (± SE) of (a) adopting organic farming and (b) promoting in-field 416 
plant diversity on abundance, richness, and evenness. A “*” (p < 0.05) or “+” (0.05 ≤ p < 0.1) 417 
above a mean denotes a significant difference from zero (determined via one-sample t-tests; 418 
statistical details in Table S8), while one below a pair of means indicates a significant 419 
difference between local and regional diversity (determined via linear mixed models; Tables 420 
S9-S12). 421 
 422 

Organic farming increased abundance and richness of both rare and common 423 

arthropods at the local and regional scales (Fig. S6a,c, Table S13). At the local scale, organic 424 

farming increased arthropod richness by promoting rare taxa (27% increase) more strongly 425 

than common taxa (14% increase) (Fig. S6c, Table S14). In-field plant diversification also 426 

had differential effects on rare and common taxa, increasing richness of both at the local 427 

scale, but only of rare taxa at the regional scale (Fig. S6d, Table S13). Fields with higher in-428 

field plant diversity increased abundance of common arthropods, but not of rare arthropods 429 

(Fig. S6b, Table S13). 430 

 431 

Effects of management schemes on arthropod functional groups 432 

Organic farming substantially increased the abundance (90%), local richness (55%), 433 

and regional richness (32%) of pollinator communities, but did not impact pollinator 434 

evenness (Fig. 2a, Table S15). For predator communities, organic farming increased 435 

abundance (38%) and local richness (14%), lowered local (-9%) and regional (-14%) 436 
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evenness (Fig. 2c, Table S16), but did not affect regional richness (Fig. 2c, Table S16). 437 

Organic farming also did not impact abundance, local or regional richness, or local or 438 

regional evenness for herbivore (Fig. 2e, Table S17) or detritivore (Fig. 2g, Table S18) 439 

communities. For all biodiversity components and functional groups, effect sizes in response 440 

to organic farming did not differ between the local and regional scales (Fig. 2a,c,e,f, Tables 441 

S9, S10). The diversity scale×landscape complexity interaction was never retained in a best-442 

fit model (Tables S9, S11). 443 

High in-field plant diversity promoted the abundance (45%), local richness (44%), 444 

and regional richness (29%) of pollinator communities, but decreased local pollinator 445 

evenness (-11%) (Fig. 2b, Table S15). In-field plant diversity did not affect regional 446 

pollinator evenness (Fig. 2b, Table S15). In addition, in-field plant diversity did not alter 447 

abundance, local or regional richness, or local or regional evenness for predator (Fig. 2d, 448 

Table S16) or herbivore (Fig. 2f, Table S17) communities. In-field plant diversity increased 449 

the regional richness (69%) of detritivores and lowered regional detritivore evenness (-65%), 450 

but did not impact detritivore abundance, local richness, or local evenness (Fig. 2h, Table 451 

S18). The low sample size for detritivores, however, limits our ability to make inferences 452 

about this group. 453 

 454 

Effects of landscape complexity, biome, and crop cultivation period on arthropod 455 

communities 456 

Landscape complexity did not mediate the influences of organic farming or in-field 457 

plant diversity on arthropod abundance or evenness (Fig. 3, Tables S9-S12). However, both 458 

management schemes had stronger positive effects on local and regional arthropod richness 459 
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in complex relative to simple landscapes: organic farming 26% vs. 9%, in-field plant 460 

diversification 29% vs. 11%, respectively (Fig. 3c,d, Tables S9-S12). The effects of 461 

landscape complexity were similar in both direction and magnitude for local and regional 462 

diversity (Fig. 3c-e, Tables S9-S12). Organic farming promoted herbivore richness to a 463 

greater extent in simple than complex landscapes (Table S10), but other effects of landscape 464 

complexity on abundance and diversity were similar across functional groups (Tables S9-465 

S12). 466 

Stronger richness gains in complex than simple landscapes were driven 467 

predominantly by rare taxa (Fig. 4). In complex landscapes, both organic farming and in-field 468 

plant diversification had stronger positive effects on local richness of rare (organic 44%, 469 

plant diversification 68%) than of common (organic 21%, plant diversification 18%) 470 

arthropod taxa (Fig. 4c,d, Table S19). Organic farming within complex landscapes also 471 

increased local abundance and regional richness of rare taxa (78% and 17%, respectively) to 472 

a greater extent than common taxa (33% and 4%, respectively) (Fig. 4a, Table S19). Neither 473 

management scheme differentially affected abundance or richness of rare and common taxa 474 

in simple landscapes (Fig. 4, Table S19). 475 

Biome mediated the impacts of in-field plant diversity on arthropod richness (pooled 476 

across local and regional scales) (Tables S11, S12). Post-hoc tests failed to indicate 477 

significant differences among biomes when considering all studies; but when the single 478 

boreal study was removed from the analysis, high in-field plant diversity more strongly 479 

promoted richness in Mediterranean (53%) than in temperate studies (-2%) (Table S12). 480 

Biome did not mediate the effects of organic farming or in-field plant diversification on 481 

arthropod abundance or evenness (Tables S9-S12). Organic farming increased arthropod 482 
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abundance to a greater extent in annual (70%) than in perennial (1%) crops (Tables S9, S10). 483 

The effects of in-field plant diversification on abundance and diversity were consistent across 484 

crop cultivation periods (Tables S11, S12). 485 

  486 
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 487 
 488 
Figure 2. Effects of farm management schemes on abundance, local diversity, and regional 489 
diversity of arthropod functional groups. Mean log-response ratios (± SE) of (left column) 490 
adopting organic farming and (right column) promoting in-field plant diversity for (a-b) 491 
pollinators, (c-d) predators, (e-f) herbivores, and (g-h) detritivores. A “*” (p < 0.05) or “+” 492 
(0.05 ≤ p < 0.1) above a mean denotes a significant difference from zero (determined via one-493 
sample t-tests; Tables S15-S18). Meta-regressions indicated that differences between local 494 
and regional values did not vary with functional group (Tables S9-S12). 495 
 496 
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 497 
 498 
Figure 3. Effects of landscape complexity on the entire arthropod community in organic vs. 499 
conventional farms (left column) and fields with high vs. low in-field plant diversity (right 500 
column). Each graph shows the mean log-response ratio (± SE) for studies in simple (≤ 20% 501 
natural habitat) or complex (>20% natural habitat) landscapes for (a,b) abundance, (c,d) 502 
richness, and (e,f) evenness. A “*” (p < 0.05) or “+” (0.05 ≤ p < 0.1) below a set of means 503 
indicates a significant difference between means at the habitat complexity levels (Tables S9-504 
S12). 505 
  506 
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 507 
 508 

Figure 4. Effects of farm management schemes on abundance (a, b) and richness (c, d) of 509 
common vs. rare taxa in simple and complex landscapes. Mean log-response ratios (±SE) of 510 
(left column) adopting organic farming and (right column) promoting in-field plant diversity. 511 
A “*” (p < 0.05) or “+” (0.05 ≤ p < 0.1) below a pair of means indicates a significant 512 
difference between rare and common taxa within a landscape complexity category 513 
(determined via paired t-tests; Table S19). 514 

 515 
 516 

DISCUSSION 517 

Our global meta-analysis showed that both organic farming and in-field plant 518 

diversification strongly increased arthropod abundance and richness, but had weaker effects 519 

on evenness. The minimal evenness decreases on diversified farms reflected the presence of 520 

more rare taxa. Emerging evidence suggests that rare taxa contribute to individual ecosystem 521 

services less than common taxa (Schwartz et al., 2000; Kleijn et al., 2015), although they 522 
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may be important for maintenance of multiple ecosystem services across time and space 523 

(Isbell et al., 2011; Soliveres et al., 2016). Thus, while organic farming and plant 524 

diversification promote arthropod biodiversity conservation goals, their impacts on 525 

ecosystem services may be nuanced. The positive effects of both organic farming and in-field 526 

plant diversification were greatest for two groups of beneficial arthropods: pollinators and 527 

predators. Thus, both schemes may increase agroecosystem sustainability by promoting key 528 

ecosystem service providers without boosting pest (herbivore) densities. 529 

Previous meta-analyses have investigated how organic farming and, to a lesser extent, 530 

in-field plant diversification, affect arthropod abundance and richness (e.g., Bengtsson et al., 531 

2005; Batáry et al., 2011; Chaplin-Kramer et al., 2011; Scheper et al., 2013; Shackelford et 532 

al., 2013; Tuck et al., 2014). Our study extends upon this work by (1) combining data on 533 

multiple arthropod functional groups (but see Shackelford et al., 2013), and (2) examining 534 

the type and scale of diversity across a variety of crop types. As such, we offer a more 535 

comprehensive understanding of when and how farm management schemes alter arthropod 536 

biodiversity. Our findings caution that the frequent use of richness as the sole proxy for 537 

biodiversity fails to reflect the full impacts of farming practices on biologic communities. 538 

While multiple studies have shown that organic farming boosts richness (e.g., Bengtsson et 539 

al., 2005; Tuck et al., 2014), we found that evenness decreased, an outcome that was due 540 

mainly to promotion of rare species. Species richness might be increased by conservation 541 

practices that target specific taxa, but the promotion of evenness requires practices that can 542 

simultaneously balance the abundances of many taxa (Crowder et al., 2010, 2012). Finally, 543 

our results highlight the necessity of targeting farm management within the context of local 544 

conditions (Cunningham et al., 2013; Saunders et al., 2016). For example, our results suggest 545 
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that farmers in Mediterranean biomes might see greater arthropod richness gains by 546 

increasing in-field plant diversity than by farming organically, while farmers growing annual 547 

crops may be more likely to boost arthropod abundance with organic farming. 548 

Disentangling relationships between biodiversity components at local and regional 549 

scales can inform patterns of community assembly and mechanisms that shape community 550 

structure (Gering & Crist, 2002; Wang & Loreau, 2014). We found that regional diversity 551 

positively correlated with local diversity under both management schemes. Further, organic 552 

farming increased richness at both scales, although local effects were stronger than regional 553 

ones. One possible explanation is that diversified farming practices increase the heterogeneity 554 

of local communities (e.g., Ponisio et al., 2016), which could lead to greater regional 555 

diversity. Another possibility is that diversified fields serve as source habitats within a matrix 556 

of crop and non-crop habitats across farming landscapes (M’Gonigle et al., 2015). Further, 557 

the benefits of diversification practices on local communities in fields can be strongly 558 

mediated by regional species pools across farming landscapes (Gering & Crist, 2002). 559 

Our results, in combination with another recent meta-analysis (Schneider et al., 2014), 560 

suggest that mobility of organisms can determine whether the benefits of farm diversification 561 

accrue at both local and regional scales. While we show that organic farming can boost 562 

arthropod diversity at local and regional scales, Schneider et al. (2014) found that organic 563 

farming increased plant, earthworm, and spider richness at field but not regional scales. 564 

These groups of organisms tend to have limited dispersal capacity, particularly plants and 565 

earthworms. Thus, their local communities may be structured more by competition than long-566 

distance dispersal (Gering & Crist, 2002), which would limit the similarity between 567 

communities within and across fields. At the same time, Schneider et al. (2014) found that 568 
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organic farming boosted the richness of bees, a more mobile group of organisms, by 569 

approximately 25% at the local scale and 15% at the regional scale. We likewise found that 570 

diversified farming increased abundance, and local and regional richness, of mobile 571 

pollinators, but had less impact on detritivores that tend to have lower mobility (Sattler et al., 572 

2010). 573 

Overall, our results are consistent with mounting evidence that farm management and 574 

landscape complexity interactively affect arthropod biodiversity (e.g., Rusch et al., 2010; 575 

Batáry et al., 2011; Kennedy et al., 2013; Tuck et al., 2014), although results across studies 576 

have found sometimes conflicting patterns (Kleijn et al., 2011; Tscharntke et al., 2012; Tuck 577 

et al., 2014). For example, agri-environment schemes that promote low input, low 578 

disturbance, and diverse farms are sometimes most effective in fostering biodiversity in 579 

structurally simple landscapes (Batáry et al., 2011; Scheper et al., 2013). This presumably 580 

occurs because simple landscapes fail to satisfy the resource needs of many species, such that 581 

these species may disperse into diverse farms to seek resources (Tscharntke et al., 2005; 582 

Kremen & Miles, 2012). In contrast, we found that impacts of organic farming and plant 583 

diversification on arthropod richness were heightened for fields embedded in complex 584 

landscapes. This could occur if complex landscapes support more diverse species pools that 585 

can respond positively to farm management (Duelli & Obrist, 2003; Hillebrand et al., 2008; 586 

Kennedy et al., 2013). Consistent with this hypothesis, we showed that organic farming in 587 

complex landscapes preferentially increased richness of rare taxa locally (i.e., in fields) and 588 

regionally (i.e., across landscapes). Importantly, the interactive effects of landscape 589 

complexity and on-farm management may differ across arthropod functional groups with 590 

varying capacity to move across landscapes (Tscharntke et al., 2005; Chaplin-Kramer et al., 591 
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2011). However, the only interaction between landscape complexity and management 592 

schemes we found was for richness of herbivores, a group with considerable variation in 593 

mobility among taxa (Sattler et al., 2010). 594 

Ideally, increases in abundance and diversity of arthropods on farms would enhance 595 

the provisioning of ecosystem services (Kremen & Miles, 2012). However, empirical studies 596 

have provided mixed evidence. In-field plant diversification and increased landscape 597 

complexity have been found to promote predator abundance and diversity with no change in 598 

pest control levels (Chaplin-Kramer et al., 2011; Rusch et al., 2016) or reduced crop damage 599 

(Letourneau et al., 2011). The relationship between biodiversity and ecosystem services on 600 

farms is thus likely strongly mediated by species’ abundances and functional roles. For 601 

example, Northfield et al. (2010) found that greater predator richness increased pest control, 602 

but only with high predator densities where complementarity among predator species was 603 

fully realized. Increases in pollinator richness can have minimal impacts on ecosystem 604 

services when richness gains are associated with rare species that contribute little to 605 

pollination (Kleijn et al., 2015; Winfree et al., 2015). Increasing wild pollinator richness on 606 

large farms (> 14 ha) only increases fruit set when wild pollinator density is also high 607 

(Garibaldi et al., 2016). Higher predator species evenness on organic farms has also been 608 

shown to translate to increased pest control, with the potential to reduce yield gaps compared 609 

with conventional agriculture (Crowder et al., 2010). However, models suggest that 610 

decreased evenness could also lead to greater ecosystem services when abundance of 611 

common species that are effective ecosystem services providers increases at the expense of 612 

rare species that are functionally less important (Crowder & Jabbour, 2014), a result seen 613 

with pollinators in agricultural systems (Kleijn et al., 2015; Winfree et al., 2015). The 614 
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combination of context-specific responses to farm management schemes shown by this study 615 

and biodiversity-ecosystem functioning relationships that depend on species’ abundances and 616 

functional traits suggest that the effects of diversified farming on ecosystem services are 617 

likely to depend on biome, landscape, and crop characteristics. 618 

By promoting biodiversity and abundance of arthropods, diversified agriculture could 619 

provide a multitude of other benefits (Oliver et al., 2015). Biodiversity can help maintain 620 

stability of ecosystem processes through mechanisms such as response diversity and 621 

functional redundancy (Cardinale et al., 2012; Mori et al., 2013). Arthropod richness gains in 622 

response to organic farming and plant diversification, such as those documented here, could 623 

guard against the loss of ecological function by supporting multiple species that occupy 624 

similar functional niches (functional redundancy) or that are functionally similar but respond 625 

differentially to environmental change (response diversity; Elmqvist et al., 2003). The 626 

abundance and richness increases we detected for pollinators and predators but not for 627 

herbivores suggest that the two former groups may benefit more from these stabilizing 628 

processes. Resilient systems must also exhibit multiple ecosystem functions 629 

(multifunctionality) as environmental conditions and arthropod populations fluctuate. 630 

Increases in rare taxa, as detected in this study, may be critical for multifunctionality (Isbell 631 

et al., 2011; Soliveres et al., 2016) and even for single ecosystem functions (Zavaleta & 632 

Hulvey, 2004; Mouillot et al., 2013). Thus, regional-scale refuges for rare species may ensure 633 

resilient agricultural systems. 634 

Overall, our results suggest that organic farming and in-field plant diversification both 635 

promote biodiversity on farms. Moreover, these two schemes might have interactive effects 636 

on farm productivity. Practices such as multi-cropping (plant diversification) and longer, 637 
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more diverse, crop rotations can reduce the yield gaps between organic and conventional 638 

agriculture (Ponisio et al., 2015), and increase the profitability of organic relative to 639 

conventional systems (Crowder & Reganold, 2015). Diversified small farms are increasingly 640 

being replaced by large, simplified, and intensive monoculture production systems 641 

(Tscharntke et al., 2005; Bennett et al., 2012). This is problematic because intensified 642 

farming reduces the long-term sustainability of agroecosystems, thereby threatening global 643 

food security (Ray et al., 2012). One of the greatest challenges of the 21st century is meeting 644 

the food, fiber, and energy needs of a growing human population while maintaining farm 645 

sustainability and ecosystem functioning (Tilman et al., 2011). Our study underscores that 646 

adopting organic farming or in-field plant diversification practices might aid society in 647 

attaining these goals.  648 
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SUPPORTING METHODS 1 

 2 

Functional group classifications 3 
Data providers determined the functional group of each taxon. When functional groups 4 

were non-defined or non-standard (e.g., saprophage), or when taxa filled multiple functional 5 

roles (e.g., species that serve as both pollinators and herbivores), we assigned taxa to a single 6 

functional role based on their most common description in the literature. To maximize data 7 

inclusion, we also (1) combined predators and parasitoids, (2) classified all carabids as predators 8 

since even the herbivorous species are thought to consume some animal material (e.g., 9 

Hengeveld, 1980; Jørgensen & Toft, 1997), and (3) classified a few pollinators as herbivores in 10 

studies with few pollinator taxa but many herbivores. 11 

 12 

Sampling methods 13 
 Studies used a broad range of sampling methods, which we categorized as active or 14 

passive. Active sampling methods included beating, netting bees seen at plants, hand-collecting 15 

individuals off plants, observational counting, washing plants, taking soil cores, sweep-netting, 16 

and vacuum sampling. Passive sampling methods were blue vane traps, light traps, visually-17 

attractive or scented lures, malaise traps, minnow traps, pan traps, pitfall traps, and sticky cards. 18 

However, we did not include sampling method in our meta-regressions because preliminary 19 

analyses indicated that sampling method negligibly affected effect sizes (Table S5). 20 

 21 

Landscape complexity 22 
 The “simple” landscape complexity category combined Tscharntke et al.’s (2005) 23 

“cleared” and “simple” categories because we had only two “cleared” studies. We were unable to 24 

categorize landscape complexity when we obtained data directly from published articles that 25 

lacked GPS coordinates of sampling locations or information on natural habitat surrounding 26 

fields (Study IDs drit01, febe01, hesl01, hokk01, and weib01). These five studies all compared 27 

organic and conventional farms. In a couple of cases we based landscape complexity on 28 

percentage of natural habitat within 500 m (bosq01), or the average of percentages at 500m and 29 

1.5 km (leto01; percentages at the two distances strongly correlated, with r = 0.8). 30 

 31 

 32 
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Table S2 is in a separate file. 47 
 48 

Table 1: Definitions and descriptions of key terms. 49 

 50 

   

Term Definition Notes 

Organic farming Organically certified, or meeting 

local certification guidelines. While 

guidelines vary by country, they 

typically involve, at minimum, 

maintaining production systems free 

of synthetic pesticides and 

fertilizers. 

Both organic and conventional 

farming include a broad range of 

management strategies and levels of 

intensity (e.g., pesticide application 

frequency, monoculture vs. 

polyculture) (Kremen & Miles, 

2012; Puech et al., 2014). 

Conventional 

farming 

Fields or farms that used 

recommended rates of synthetic, or 

synthetic and organic, pesticides and 

fertilizers. 

In-field plant 

diversification 

This includes various schemes that 

increase small-scale plant diversity, 

including intercropping, managing 

field margins to include non-crop 

vegetation (e.g., hedgerows, border 

plantings, flower strips), and use of 

small (< 4 ha) fields. 

 

Taxon A single biological type (e.g., 

species, morphospecies, genus, 

family), determined as the finest 

taxonomic resolution to which each 

organism was identified. 

Examples: Apis mellifera (species), 

Halictus sp. 1 (morphospecies), 

Lasioglossum spp. (genus), 

Formicidae (family). We assigned 

each taxon to a functional group 

(detritivore, herbivore, pollinator, 

predator), but calculated abundance 

and diversity from taxon-level data. 

Abundance The number of total individuals, of 

all taxa together, sampled. 

We calculated abundance, richness, 

and evenness separately for each 

field type (e.g., conventional 

farming), crop, year, and arthropod 

functional group within each study. 

Richness The number of taxa sampled. 

Evenness How individuals are distributed 

across taxa in the sample. The 

evenness measure that we used, Evar, 

range from 0 (completely uneven, 

one taxon dominates) to 1 

(completely even, with each taxon 

represented by an equal number of 

individuals. 

Region A large spatial extent that contains 

multiple communities and habitats. 

We defined each study’s region as 
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all of the fields sampled in the study. 

Rare taxon A taxon with relative abundance less 

than 5% of all individuals sampled 

across the region. 

We determined rarity separately for 

each management scheme 

comparison (organic vs. 

conventional, high vs. low in-field 

plant diversity), crop, year, and 

function within a study, but did not 

further separate by field type. 

Local diversity Diversity (here, richness and 

evenness) of a community within a 

field. 

We estimated local abundance and 

diversity by first calculating 

abundance and diversity values 

within each field, then averaging 

these values across fields. For 

example, assume species A, B, C, D, 

and E were found in field 1; species 

A, E, and F in field 2; species B, C, 

D, and E in field 3; and species A, 

B, E, F, G, and H in field 4. Each 

field’s richness would be 5, 3, 4, and 

6, respectively. Local richness 

would be 4.5, the average of each 

field’s richness value. 

Regional 

diversity 

Diversity (here, richness and 

evenness) of the meta-community 

that spans all fields in a region. 

We estimated regional diversity by 

pooling individuals sampled in all 

fields within a landscape, then 

calculating diversity of taxa in this 

one regional sample. In the above 

example, the regional species pool 

would include species A through H 

and regional richness would be 8. 

Landscape 

complexity 

The proportion of natural and semi-

natural habitat (areas dominated by 

forest, grassland, shrubland, 

wetlands, ruderal vegetation, or non-

agricultural plantings including 

previously-cultivated areas where 

vegetation is regenerating, 

hedgerows, field margins, and 

vegetation along roadways or 

ditches) surrounding a farm. 

We determined landscape 

complexity separately for each 

management scheme comparison, 

crop, and year within a study, by 

averaging proportions across fields. 
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Table S3. Fisher exact tests for studies with variation in both management (organic vs. 52 

conventional) and in-field plant diversity (high vs. low). These tests were used to determine 53 

whether sites were assigned independently to management types across the two management 54 

schemes. I-f=in-field plant diversity 55 

 56 

 Number of sites with:   

Study 

ID 

Organic 

& high 

i-f 

Organic 

& low i-

f 

Conventional 

& high i-f 

Conventional 

& low i-f 

p-value Management 

scheme(s) 

used 

bomm01 8 16 22 53 0.80 Both 

bosq01 7 10 10 10 0.74 Both 

clou01 15 6 10 11 0.21 Both 

danf01 2 0 3 5 0.44 Both 

eige01 3 0 0 3 0.10 Organic/ 

conventional 

ekro01 7 8 12 4 0.15 Both 

frei01 0 2 2 0 0.33 I-f 

frei02 2 0 0 2 0.33 I-f 

holz01 16 5 10 11 0.11 Both 

krem01 8 1 8 12 <0.0001 Organic/ 

conventional 

leto01 5 0 0 5 0.0080 Organic/ 

conventional 

ober01 3 2 0 3 0.20 Both 

otie01 4 1 5 2 1.00 Both 

rose01 0 12 9 0 <0.0001 Organic/ 

conventional 

saun01 5 0 0 10 0.0003 I-f 

weis01 1 6 3 22 1.00 Both 
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Table S4. Number of data points grouped by several categories used in the analysis. 58 

 59 

(a) Arthropod functional group 

Management scheme Detritivore Herbivore Pollinator Predator 

Organic/conventional 8 17 20 36 

In-field plant diversity 3 5 13 8 

(b) Landscape complexity 

Management scheme Simple Complex No data  

Organic/conventional 44 30 7  

In-field plant diversity 12 17 0  

(c) Biome 

Management scheme Boreal Mediterranean Temperate Tropical 

Organic/conventional 2 14 58 7 

In-field plant diversity 1 9 13 6 

(d) Cultivation period 

Management scheme Annual Perennial   

Organic/conventional 59 22   

In-field plant diversity 20 9   

  60 
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Table S5. Correlations between unweighted (log-response ratio) and weighted (Hedges’ d) effect 61 

sizes with various metrics. Weighted metrics could not be calculated at the regional scale (see 62 

Methods in main text) 63 

 64 

Management scheme Metric Pearson’s correlation 

coefficient 

t df p-value 

Organic vs. conventional Abundance 0.66 7.88 79 <0.0001 

Organic vs. conventional Local richness 0.77 10.7 77 <0.0001 

Organic vs. conventional Local evenness 0.70 7.99 66 <0.0001 

In-field plant diversity Abundance 0.90 10.7 27 <0.0001 

In-field plant diversity Local richness 0.81 7.26 27 <0.0001 

In-field plant diversity Local evenness 0.83 7.01 22 <0.0001 

 65 
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Table S6. Effects of sampling method on effect size (log-response ratio) estimates. ANOVAs testing whether sampling method 66 

affected effect sizes were significant in only 4% of cases, which is within the amount expected by chance. Means are average 67 

untransformed log-response ratios comparing organic to conventional, or high to low in-field plant diversity, data. Effect sizes 68 

transformed to percentage change are in parentheses. 69 
 70 

Organic vs. conventional 

Functional 

group Metric 

N 

active 

N 

passive 

N 

both 

Mean 

active 

Mean 

passive 

Mean 

both 

SE 

active 

SE 

passive 

SE 

both F 

p-

value 

All Abundance 32 39 10 

0.56 

(75%) 

0.19 

(21%) 

0.43 

(54%) 0.22 0.08 0.14 1.63 0.20 

All Local richness 32 39 10 

0.29 

(33%) 

0.14 

(15%) 

0.11 

(12%) 0.12 0.04 0.07 1.06 0.35 

All Local evenness 28 35 10 

-0.07  

(-6%) 

-0.04  

(-4%) 

-0.12  

(-12%) 0.07 0.05 0.05 0.22 0.80 

All 

Regional 

richness 32 39 10 

0.16 

(17%) 

0.08 

(9%) 

0.07 

(7%) 0.09 0.05 0.07 0.41 0.66 

All 

Regional 

evenness 32 39 10 

-0.22  

(-20%) 

-0.00  

(0%) 

0.04 

(5%) 0.08 0.05 0.06 3.62 0.031 

Detritivore Abundance 3 2 3 

-0.37  

(-31%) 

0.83 

(130%) 

0.43 

(54%) 0.51 0.63 0.29 1.70 0.27 

Detritivore Local richness 3 2 3 

0.00 

(0%) 

0.17 

(19%) 

-0.09  

(-9%) 0.14 0.17 0.07 1.00 0.43 

Detritivore Local evenness 3 1 3 

0.20 

(23%) 

-0.04  

(-4%) 

-0.21  

(-19%) 0.13 NA 0.07 4.15 0.11 

Detritivore 

Regional 

richness 3 2 3 

0.00 

(0%) 

-0.38  

(-32%) 

0.00 

(0%) 0.11 0.31 0.16 1.26 0.36 

Detritivore 

Regional 

evenness 3 2 3 

0.22 

(24%) 

0.66 

(94%) 

0.05 

(5%) 0.11 0.96 0.08 0.60 0.58 

Herbivore Abundance 8 6 3 

0.29 

(34%) 

0.09    

(10%) 

0.39 

(47%) 0.36 0.20 0.28 0.17 0.85 

Herbivore Local richness 8 6 3 

0.04 

(4%) 

0.16 

(17%) 

0.24 

(27%) 0.16 0.09 0.05 0.41 0.67 
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Herbivore Local evenness 7 4 3 

-0.23  

(-20%) 

-0.17  

(-15%) 

0.03 

(3%) 0.21 0.19 0.09 0.32 0.73 

Herbivore 

Regional 

richness 8 6 3 

-0.05  

(-5%) 

0.18 

(20%) 

0.19 

(21%) 0.11 0.10 0.05 1.53 0.25 

Herbivore 

Regional 

evenness 8 6 3 

-0.25  

(-22%) 

0.06 

(6%) 

0.12 

(13%) 0.14 0.07 0.13 2.42 0.13 

Pollinator Abundance 12 7 1 

0.98 

(166%) 

-0.10  

(-9%) 

1.06 

(187%) 0.45 0.26 NA 1.56 0.24 

Pollinator Local richness 12 7 1 

0.50 

(64%) 

0.28 

(32%) 

0.41 

(51%) 0.25 0.15 NA 0.20 0.82 

Pollinator Local evenness 10 6 1 

0.02 

(2%) 

0.18 

(20%) 

-0.39 (-

33%) 0.09 0.24 NA 0.90 0.43 

Pollinator 

Regional 

richness 12 7 1 

0.26 

(30%) 

0.25 

(29%) 

0.36 

(44%) 0.19 0.11 NA 0.02 0.98 

Pollinator 

Regional 

evenness 12 7 1 

-0.16 (-

15%) 

-0.11  

(-10%) 

-0.25 (-

22%) 0.15 0.11 NA 0.06 0.94 

Predator Abundance 9 24 3 

0.54 

(72%) 

0.24 

(28%) 

0.27 

(31%) 0.30 0.08 0.20 0.95 0.40 

Predator Local richness 9 24 3 

0.32 

(38%) 

0.09 

(10%) 

0.08 

(8%) 0.20 0.05 0.12 1.35 0.27 

Predator Local evenness 8 24 3 

-0.13 (-

12%) 

-0.08  

(-8%) 

-0.10 (-

9%) 0.11 0.04 0.06 0.17 0.85 

Predator 

Regional 

richness 9 24 3 

0.26 

(30%) 

0.04    

(5%) 

-0.07 (-

7%) 0.17 0.06 0.09 1.63 0.21 

Predator 

Regional 

evenness 9 24 3 

-0.42 (-

34%) 

-0.04  

(-4%) 

0.06 

(7%) 0.15 0.04 0.10 7.14 0.003 

In-field plant diversity 

Functional 

group Metric 

N 

active 

N 

passive 

N 

both 

Mean 

active 

Mean 

passive 

Mean 

both 

SE 

active 

SE 

passive 

SE 

both F 

p-

value 

All Abundance 13 11 5 

0.22 

(25%) 

0.20 

(22%) 

0.37 

(45%) 0.15 0.39 0.24 0.07 0.94 

All Local richness 13 11 5 

0.29 

(34%) 

0.09 

(10%) 

0.26 

(30%) 0.13 0.16 0.06 0.60 0.56 
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All Local evenness 12 9 5 

-0.03  

(-3%) 

-0.09  

(-9%) 

-0.11  

(-10%) 0.07 0.11 0.05 0.25 0.78 

All 

Regional 

richness 13 11 5 

0.25 

(28%) 

0.08 

(9%) 

0.19 

(20%) 0.13 0.14 0.09 0.44 0.65 

All 

Regional 

evenness 13 11 5 

-0.08  

(-8%) 

-0.25  

(-22%) 

-0.04  

(-4%) 0.13 0.17 0.16 0.44 0.65 

Detritivore Abundance 1 2 0 

0.03 

(3%) 

0.81 

(125%) NA NA 1.73 NA 0.07 0.84 

Detritivore Local richness 1 2 0 

-0.07  

(-7%) 

0.41 

(51%) NA NA 0.45 NA 0.39 0.65 

Detritivore Local evenness 0 1 0 NA 

-0.57  

(-44%) NA NA NA NA NA NA 

Detritivore 

Regional 

richness 1 2 0 

0.41 

(50%) 

0.58 

(79%) NA NA 0.06 NA 2.55 0.36 

Detritivore 

Regional 

evenness 1 2 0 

-0.84  

(-57%) 

-1.17  

(-69%) NA NA 0.33 NA 0.32 0.67 

Herbivore Abundance 1 3 1 

-0.04  

(-4%) 

0.30 

(35%) 

0.37 

(45%) NA 0.76 NA 0.03 0.97 

Herbivore Local richness 1 3 1 

0.12 

(13%) 

0.15 

(17%) 

0.24 

(27%) NA 0.45 NA 0.01 0.99 

Herbivore Local evenness 1 2 1 

0.21 

(23%) 

-0.17  

(-16%) 

0.00 

(0%) NA 0.19 NA 0.71 0.64 

Herbivore 

Regional 

richness 1 3 1 

-0.06  

(-6%) 

-0.10  

(-10%) 

0.15 

(16%) NA 0.40 NA 0.05 0.95 

Herbivore 

Regional 

evenness 1 3 1 

0.09 

(10%) 

-0.25  

(-22%) 

0.15 

(17%) NA 0.21 NA 0.61 0.62 

Pollinator Abundance 10 0 3 

0.37 

(46%) NA 

0.36 

(43%) 0.15 NA 0.44 0.00 0.96 

Pollinator Local richness 10 0 3 

0.40 

(49%) NA 

0.26 

(29%) 0.16 NA 0.12 0.22 0.65 

Pollinator Local evenness 10 0 3 

-0.09  

(-9%) NA 

-0.17  

(-16%) 0.07 NA 0.07 0.39 0.55 
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Pollinator 

Regional 

richness 10 0 3 

0.28 

(32%) NA 

0.17 

(18%) 0.16 NA 0.16 0.13 0.73 

Pollinator 

Regional 

evenness 10 0 3 

-0.05  

(-5%) NA 

-0.10  

(-10%) 0.15 NA 0.28 0.03 0.88 

Predator Abundance 1 6 1 

-0.87  

(-58%) 

-0.05  

(-5%) 

0.40 

(50%) NA 0.44 NA 0.37 0.71 

Predator Local richness 1 6 1 

-0.22  

(-20%) 

-0.05  

(-5%) 

0.30 

(36%) NA 0.16 NA 0.47 0.65 

Predator Local evenness 1 6 1 

0.40 

(49%) 

0.01 

(1%) 

-0.03  

(-3%) NA 0.13 NA 0.71 0.54 

Predator 

Regional 

richness 1 6 1 

0.08 

(8%) 

0.01 

(1%) 

0.27 

(31%) NA 0.13 NA 0.30 0.75 

Predator 

Regional 

evenness 1 6 1 

0.23 

(25%) 

0.06 

(6%) 

-0.04  

(-4%) NA 0.14 NA 0.17 0.85 
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Table S7: Questions investigated in this study, and statistical tests that addressed each one. Q2, 71 

Q4, Q7, and Q8 were tested with the same meta-regression. 72 

 73 

Question How tested 

(Q1) Does diversified farming differentially 

alter abundance, richness, and evenness? 

One sample t-tests: Does each metric’s mean 

effect size differ from zero? 

(Q2) Diversified farming differentially alters 

local and regional diversity (richness, 

evenness). 

(a) One-sample t-tests: Are patterns of 

difference from zero the same at the local and 

regional scales? 

(b) Meta-regression: Does scale affect mean 

effect size? 

(Q3) Diversified farming differentially alters 

abundance and diversity of arthropods in 

different functional groups 

One-sample t-tests: Within each functional 

group (detritivores, herbivores, pollinators, 

predators), does each metric’s mean effect size 

differ from zero? 

(Q4) Landscape complexity mediates 

responses of arthropod communities to 

diversified farming. 

Meta-regression: Do effect sizes differ in 

simple and complex landscapes? 

(Q5) Diversified farming differentially affects 

the abundance and diversity of relatively rare 

and relatively common taxa. 

(a) One-sample t-tests: Does each metric’s 

mean effect size for a given rarity category 

(rare, common) differ from zero? 

(b) Paired t-tests: Within a metric, do mean 

effect sizes for rare taxa differ from those of 

common taxa? 

(Q6) Landscape complexity mediates the 

degree to which diversified farming 

differentially affects the abundance and 

diversity of rare vs. common taxa. 

Paired t-tests: Within each metric and 

landscape complexity category (simple, 

complex), do mean effect sizes for rare taxa 

differ from those of common taxa? 

(Q7) A crop’s cultivation period (annual, 

perennial) mediates responses of arthropod 

communities to diversified farming. 

Meta-regression: Do effect sizes differ for 

crops grown as annuals and perennials? 

(Q8) Biome mediates responses of arthropod 

communities to diversified farming. 

Meta-regression: Do effect sizes differ among 

boreal, Mediterranean, temperate, and tropical 

biomes? 

 74 

  75 
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Table S8. Results of one-sample t-tests testing whether organic farming and in-field plant 76 

diversification impacted overall arthropod communities (pooled across functional groups). 77 

Means are average untransformed log-response ratios comparing organic to conventional, or high 78 

to low in-field plant diversity, data. Effect sizes transformed to percent change are in 79 

parentheses. 80 

 81 

Management scheme Metric N Mean SE t p-value 

Organic vs. conventional Abundance 81 0.36 

(45%) 

0.10 3.76 0.0003 

Organic vs. conventional Local richness 81 0.19 

(21%) 

0.05 3.75 0.0003 

Organic vs. conventional Local evenness 73 -0.06  

(-6%) 

0.04 -1.69 0.095 

Organic vs. conventional Regional richness 81 0.11 

(10%) 

0.04 2.52 0.014 

Organic vs. conventional Regional evenness 81 -0.08  

(-9%) 

0.04 -1.87 0.065 

In-field plant diversity Abundance 29 0.24 

(27%) 

0.16 1.48 0.15 

In-field plant diversity Local richness 29 0.21 

(23%) 

0.08 2.49 0.019 

In-field plant diversity Local evenness 26 -0.07  

(-6%) 

0.05 -1.31 0.20 

In-field plant diversity Regional richness 29 0.17 

(19%) 

0.08 2.24 0.033 

In-field plant diversity Regional evenness 29 -0.14  

(-13%) 

0.09 -1.51 0.14 

 82 

  83 
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Table S9. Best-fit models, with ∆AICc < 2, and global models explaining arthropod abundance, 84 

richness, and evenness in fields managed organically vs. conventionally. K is the number of 85 

estimated model parameters (fixed plus random effects). Parameters are: F=functional group, 86 

D=diversity scale (local, regional), LC=landscape complexity (simple, complex), A=cultivation 87 

period (annual, perennial), B=biome. A “*” indicates an interaction and both of its main effects. 88 

Detritivores were excluded from meta-regressions due to low sample size. 89 

 90 

Abundance 

Model ID Parameters K AICc ∆AICc weight 

2 A 4 178.1 0 0.40 

6 F + A 6 178.6 0.41 0.32 

14 F + A + LC 7 178.8 0.69 0.28 

Global F×D + F×LC + D×LC + A + B 12 191.4 13.26  

Richness 

Model ID Parameters K AICc ∆AICc weight 

61 D + F×LC 9 148.1 0 0.57 

45 F×LC 8 148.6 0.54 0.43 

Global F×D + F×LC + D×LC + A + B 16 163.2 15.1  

Evenness 

Model ID Parameters K AICc ∆AICc weight 

1 intercept only 3 82.5 0 0.52 

17 D 4 84.0 1.5 0.25 

2 A 4 84.0 1.5 0.24 

Global F×D + F×LC + D×LC + A + B 16 102.7 20.2  
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Table S10. Regression details for best-fit models listed in Table S7 that explain arthropod abundance, richness, and evenness in fields 91 

managed organically vs. conventionally. We significance of fixed effects with likelihood ratio tests (LRTs), and used post-hoc planned 92 

contrasts (with p-values adjusted via Holm’s sequential Bonferroni procedure) to test for (1) differences in effect size among 93 

functional groups, and (2) differences in effect size between the local and regional scales within each functional group. Parameters 94 

are: F=functional group (h=herbivore, po=pollinator, pr=predator), D=diversity scale (r=regional), LC= landscape complexity 95 

(c=complex, s=simple), A=cultivation period (p=perennial), B=biome (b=boreal, M=Mediterranean, te=temperate, tr=tropical). A “:” 96 

indicates an interaction. Detritivores were excluded from meta-regressions due to low sample size. 97 

 98 

Abundance (detritivores excluded) 

Model ID Parameter Coefficient 

(SE) 

LRT χ
2
 LRT df LRT p-

value 

Contrast Contrast 

χ
2
 

Contrast 

df 

Contrast 

p-value 

2 Intercept 0.54 (0.13) NA       

 A, p -0.50 (0.24) 4.48 1 0.034     

6 Intercept 0.41 (0.24) NA   F, h-po 2.96 1 0.18 

F, po 0.52 (0.30) 4.36 2 0.11 F, h-pr 0.01 1 0.91 

F, pr 0.03 (0.28) F, po-pr 3.51 1 0.18 

A, p -0.62 (0.24) 6.11 1 0.014     

14 Intercept 0.09 (0.33) NA   F, h-po 4.87 1 0.075 

F, po 0.75 (0.34) 6.41 2 0.041 F, h-pr 0.23 1 0.63 

F, pr 0.14 (0.28) F, po-pr 5.04 1 0.074 

LC, s 0.36 (0.25) 2.22 1 0.14     

A, p -0.57 (0.24) 5.68 1 0.017     

Richness (detritivores excluded) 

Model ID Parameter Coefficient 

(SE) 

LRT χ
2
 LRT df LRT p-

value 

Contrast Contrast 

χ
2
 

Contrast 

df 

Contrast 

p-value 

61 Intercept -0.46 (0.21) NA   F, h-po 10.23 1 0.004 

F, po 0.88 (0.20) 18.46 4 0.001 F, h-pr 8.14 1 0.009 

F, pr 0.68 (0.20) F, po-pr 1.81 1 0.18 

S, r -0.09 (0.06) 2.85 1 0.092 F:LC, c-s 

in h 

6.88 1 0.026 

LC, s 0.61 (0.23) 10.66 3 0.014 F:LC, c-s 

in po 

0.31 1 1 

F:LC, po -0.75 (0.32) 10.64 2 0.005 F:LC, c-s 0.42 1 1 
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in pr 

F:LC, pr -0.72 (0.22)     

45 Intercept -0.51 (0.21) NA   F, h-po 10.13 1 0.004 

F, po 0.88 (0.20) 17.95 4 0.001 F, h-pr 7.94 1 0.010 

F, pr 0.68 (0.21) F, po-pr 1.82 1 0.18 

LC, s 0.61 (0.24) 10.30 3 0.016 F:LC, c-s 

in h 

6.77 1 0.028 

F:LC, po:s -0.75 (0.32) 10.27 2 0.006 F:LC, c-s 

in po 

0.32 1 1 

F:LC, pr:s -0.72 (0.23) F:LC, c-s 

in pr 

0.41 1 1 

Evenness (detritivores excluded) 

Model ID Parameter Coefficient 

(SE) 

LRT χ
2
 LRT df LRT p-

value 

    

17 Intercept -0.08 (0.05) NA       

S, r -0.04 (0.05) 0.65 1 0.42     

2 Intercept -0.12 (0.06) NA       

A, p 0.07 (0.10) 0.61 1 0.43     

 99 
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Table S11. Best-fit models, with ∆AICc < 2, and global models explaining arthropod 100 

abundance, richness, and evenness in fields managed with high vs. low in-field plant diversity. K 101 

is the number of estimated model parameters (fixed plus random effects). Parameters are: 102 

F=functional group, D=diversity scale (local, regional), LC=landscape complexity (simple, 103 

complex), A=cultivation period (annual, perennial), B=biome. A “*” indicates an interaction and 104 

both of its main effects. 105 

 106 

Abundance 

Model ID Parameters K AICc ∆AICc weight 

1 intercept only 3 70.4 0 0.67 

2 A 4 71.7 1.4 0.33 

Global F×D + F×LC + D×LC + A + B 14 96.7 26.3  

Richness 

Model ID Parameters K AICc ∆AICc weight 

5 F 6 42.2 0 0.36 

45 F×LC 10 42.2 0.04 0.36 

7 F + B 9 42.7 0.5 0.28 

Global F×D + F×LC + D×LC + A + B 19 54.1 11.9  

Evenness 

Model ID Parameters K AICc ∆AICc weight 

85 F×D 10 21.8 0 1 

Global F×D + F×LC + D×LC + A + B 19 48.5 26.7  
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Table S12. Regression details for best-fit models listed in Table S9 that explain arthropod abundance, richness, and evenness in fields 107 

managed with high vs. low in-field plant diversity. We significance of fixed effects with likelihood ratio tests (LRTs), and used post-108 

hoc planned contrasts (with p-values adjusted via Holm’s sequential Bonferroni procedure) to test for (1) differences in effect size 109 

among functional groups, (2) differences in effect size between the local and regional scales within each functional group, and (3) 110 

landscape complexity differences among each pair of functional groups. Parameters are: F=functional group (d=detritivore, 111 

h=herbivore, po=pollinator, pr=predator), D=diversity scale (l=local, r=regional), LC= landscape complexity (c=complex, s=simple), 112 

A=cultivation period (p=perennial), B=biome (b=boreal, M=Mediterranean, te=temperate, tr=tropical). A “:” indicates an interaction. 113 

Abundance 

Model ID Parameter Coefficient 

(SE) 

LRT χ
2
 LRT df LRT p-

value 

    

2 Intercept 0.06 (0.20) NA       

A, p 0.40 (0.36) 1.33 1 0.25     

Richness 

Model ID Parameter Coefficient 

(SE) 

LRT χ
2
 LRT df LRT p-

value 

Contrast Contrast 

χ
2
 

Contrast 

df 

Contrast 

p-value 

5 Intercept 0.25 (0.16) NA   F, d-h 6.24 1 0.075 

F, h -0.30 (0.12) 9.57 3 0.023 F, d-po 0.10 1 1 

F, po 0.06 (0.19) F, d-pr 4.13 1 0.21 

F, pr -0.24 (0.12) F, h-po 4.02 1 0.21 

     F, h-pr 0.31 1 1 

     F, po-pr 3.17 1 0.23 

45 Intercept 0.19 (0.20) NA   F, d-h 10.37 1 0.008 

F, h -0.03 (0.14) 20.36 6 0.002 F, d-po 0.07 1 1 

F, po 0.19 (0.25) F, d-pr 7.16 1 0.037 

F, pr -0.21 (0.14) F, h-po 2.74 1 0.39 

LC, s 0.32 (0.34) 11.00 4 0.027 F, h-pr 0.43 1 1 

F:LC, h:s -0.67 (0.23) 10.57 3 0.014 F, po-pr 1.82 1 0.53 

F:LC, po:s -0.49 (0.40) F:LC, c-s 

in d 

0.93 1 1 

F:LC, pr:s -0.18 (0.23) F:LC, c-s 

in h 

1.28 1 1 

     F:LC, c-s 

in po 

0.52 1 1 
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     F:LC, c-s 

in pr 

0.24 1 1 

7 Intercept 0.30 (0.38) NA   F, d-h 6.54 1 0.064 

F, h -0.31 (0.12) 11.30 3 0.010 F, d-po 0.29 1 0.84 

F, po 0.10 (0.18) F, d-pr 3.49 1 0.19 

F, pr -0.23 (0.12) F, h-po 5.67 1 0.086 

B, M 0.17 (0.40) 7.61 3 0.054 F, h-pr 0.65 1 0.84 

B, te -0.28 (0.39) F, po-pr 3.93 1 0.19 

B, tr 0.09 (0.41) B, b-M 0.18 1 1 

     B, b-te 0.51 1 1 

     B, b-tr 0.05 1 1 

     B, M-te 5.54 1 1 

     B, M-tr 0.14 1 1 

     B, te-tr 3.56 1 1 

Richness, boreal data excluded 

Model ID Parameter Coefficient 

(SE) 

LRT χ
2
 LRT df LRT p-

value 

Contrast Contrast 

χ
2
 

Contrast 

df 

Contrast 

p-value 

7 Intercept 0.47 (0.20) NA   F, d-h 6.36 1 0.070 

F, h -0.31 (0.12) 10.90 3 0.012 F, d-po 0.29 1 0.85 

F, po 0.10 (0.19) F, d-pr 3.40 1 0.20 

F, pr -0.23 (0.12) F, h-po 5.45 1 0.087 

B, te -0.45 (0.19) 7.23 2 0.027 F, h-pr 0.64 1 0.85 

B, tr -0.08 (0.22) F, po-pr 3.92 1 0.19 

     B, M-te 5.54 1 0.056 

     B, M-tr 0.14 1 0.71 

     B, te-tr 3.56 1 0.12 

47 Intercept 0.41 (0.22) NA   F, d-h 10.56 1 0.007 

F, h -0.03 (0.14) 21.29 6 0.002 F, d-po 0.01 1 0.95 

F, po 0.18 (0.27) F, d-pr 6.55 1 0.052 

F, pr -0.19 (0.14) F, h-po 4.04 1 0.18 

LC, s 0.31 (0.36) 10.55 4 0.032 F, h-pr 0.68 1 0.82 

B, te -0.43 (0.21) 7.07 2 0.029 F, po-pr 2.55 1 0.33 
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B, tr -0.05 (0.29) B, M-te 4.39 1 0.11 

F:LC, h:s -0.69 (0.23) 10.30 3 0.016 B, M-tr 0.03 1 0.86 

F:LC, po:s -0.39 (0.47) B, te-tr 2.40 1 0.24 

F:LC, pr:s -0.22 (0.23) F:LC, c-s 

in d 

0.73 1 1 

     F:LC, c-s 

in h 

1.23 1 1 

     F:LC, c-s 

in po 

0.12 1 1 

     F:LC, c-s 

in pr 

0.08 1 1 

5 Intercept 0.24 (0.17) NA   F, d-h 6.04 1 0.084 

F, h -0.30 (0.12) 9.21 3 0.027 F, d-po 0.12 1 1 

F, po 0.07 (0.20) F, d-pr 4.02 1 0.22 

F, pr -0.25 (0.12) F, h-po 3.84 1 0.22 

     F, h-pr 0.29 1 1 

     F, po-pr 2.98 1 0.25 

Evenness          

Model ID Parameter Coefficient 

(SE) 

LRT χ
2
 LRT df LRT p-

value 

Contrast Contrast 

χ
2
 

Contrast 

df 

Contrast 

p-value 

85 Intercept -0.08 (0.21) NA   F, d-h 17.99 1 0.0001 

F, h 0.14 (0.21) 46.79 6 <0.0001 F, d-po 6.45 1 0.045 

F, po -0.04 (0.23) F, d-pr 21.60 1 <0.0001 

F, pr 0.13 (0.20) F, h-po 0.59 1 0.89 

S, r -0.88 (0.21) 16.44 4 0.003 F, h-pr 0.18 1 0.89 

F:S, h:r 0.79 (0.24) 16.13 3 0.001 F, po-pr 1.21 1 0.81 

F:S, po:r 0.92 (0.22) F:S, l-r in d 17.44 1 0.0001 

F:S, pr:r 0.89 (0.23) F:S, l-r in h 0.55 1 1 

     F:S, l-r in 

po 

0.44 1 1 

     F:S, l-r in 

pr 

0.01 1 1 
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Table S13. Results of one-sample t-tests testing whether organic farming and in-field plant 114 

diversification impacted overall arthropod communities (pooled across functional groups) for 115 

rare and common taxa. We classified taxa as common if their relative abundance was at least 5% 116 

of the total community; other species were categorized as rare. Means are average untransformed 117 

log-response ratios comparing organic to conventional, or high to low in-field plant diversity, 118 

data. Effect sizes transformed to percent change are in parentheses. 119 

 120 

Management scheme Metric 

Relative 

abundance 

category N Mean SE t p-value 

Organic vs. conventional Abundance Rare 77 

0.44 

(55%) 0.45 4.16 <0.0001 

Organic vs. conventional Abundance Common 82 

0.37 

(45%) 0.51 3.64 <0.0001 

Organic vs. conventional 

Local 

richness Rare 77 

0.24 

(27%) 0.38 3.29 0.002 

Organic vs. conventional 

Local 

richness Common 82 

0.13 

(14%) 0.31 2.75 0.007 

Organic vs. conventional 

Regional 

richness Rare 73 

0.12 

(12%) 0.31 2.52 0.014 

Organic vs. conventional 

Regional 

richness Common 78 

0.05 

(6%) 0.29 1.80 0.076 

In-field plant diversity Abundance Rare 25 

0.23 

(25%) 1.31 1.33 0.19 

In-field plant diversity Abundance Common 30 

0.31 

(37%) 1.10 1.79 0.084 

In-field plant diversity 

Local 

richness Rare 25 

0.33 

(39%) 0.68 2.24 0.035 

In-field plant diversity 

Local 

richness Common 30 

0.13 

(14%) 0.31 2.17 0.038 

In-field plant diversity 

Regional 

richness Rare 24 

0.24 

(28%) 0.69 1.89 0.071 

In-field plant diversity 

Regional 

richness Common 25 

0.04 

(4%) 0.18 1.45 0.16 

 121 
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Table S14. Results of paired t-tests testing whether organic farming and in-field plant diversification impacted arthropod abundance 122 

and richness differentially for rare and common taxa. Means are average untransformed log-response ratios comparing organic to 123 

conventional, or high to low in-field plant diversity, data. Effect sizes transformed to percent change are in parentheses. 124 

 125 

Management 

scheme Metric 

N common 

taxa 

Mean 

common taxa 

SE common 

taxa 

N rare 

taxa 

Mean 

rare taxa 

SE rare 

taxa t p-value 

Organic vs. 

conventional Abundance 82 0.37 (45%) 0.10 77 

0.44 

(55%) 0.11 -0.76 0.45 

Organic vs. 

conventional Local richness 82 0.13 (14%) 0.05 77 

0.24 

(27%) 0.07 -2.40 0.019 

Organic vs. 

conventional 

Regional 

richness 78 0.05 (6%) 0.03 73 

0.12 

(12%) 0.05 -1.63 0.11 

In-field plant 

diversity Abundance 30 0.31 (37%) 0.17 25 

0.23 

(25%) 0.17 1.02 0.32 

In-field plant 

diversity Local richness 30 0.13 (14%) 0.06 25 

0.33 

(39%) 0.15 -1.61 0.12 

In-field plant 

diversity 

Regional 

richness 25 0.04 (4%) 0.02 24 

0.24 

(28%) 0.13 -1.48 0.15 

 126 
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Table S15. Results of one-sample t-tests testing whether organic farming and in-field plant 127 

diversification impacted pollinator communities. Means are average untransformed log-response 128 

ratios comparing organic to conventional, or high to low in-field plant diversity, data. Effect 129 

sizes transformed to percent change are in parentheses. 130 

 131 

Management scheme Metric N Mean SE t p-value 

Organic vs. conventional Abundance 20 0.61 

(90%) 

0.30 2.01 0.058 

Organic vs. conventional Local richness 20 0.42 

(55%) 

0.16 2.68 0.015 

Organic vs. conventional Local evenness 17 0.05 

(5%) 

0.10 0.52 0.61 

Organic vs. conventional Regional 

richness 

20 0.27 

(32%) 

0.12 2.25 0.036 

Organic vs. conventional Regional 

evenness 

20 -0.15  

(-15%) 

0.10 -1.58 0.13 

In-field plant diversity Abundance 13 0.37 

(45%) 

0.14 2.62 0.023 

In-field plant diversity Local richness 13 0.36 

(44%) 

0.12 2.97 0.012 

In-field plant diversity Local evenness 13 -0.11  

(-11%) 

0.05 -2.07 0.061 

In-field plant diversity Regional 

richness 

13 0.25 

(29%) 

0.13 2.01 0.068 

In-field plant diversity Regional 

evenness 

13 -0.07  

(-6%) 

0.13 -0.51 0.62 

  132 
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Table S16. Results of one-sample t-tests testing whether organic farming and in-field plant 133 

diversification impacted predator communities. Means are average untransformed log-response 134 

ratios comparing organic to conventional, or high to low in-field plant diversity, data. Effect 135 

sizes transformed to percent change are in parentheses. 136 

 137 

Management scheme Metric N Mean SE t p-value 

Organic vs. conventional Abundance 36 0.32 

(39%) 

0.09 3.41 0.0020 

Organic vs. conventional Local richness 36 0.15 

(14%) 

0.06 2.42 0.021 

Organic vs. conventional Local evenness 35 -0.09    

(-9%) 

0.03 -2.69 0.011 

Organic vs. conventional Regional 

richness 

36 0.09 

(6%) 

0.06 1.50 0.14 

Organic vs. conventional Regional 

evenness 

36 -0.12    

(-14%) 

0.05 -2.35 0.024 

In-field plant diversity Abundance 8 -0.10    

(-10%) 

0.34 -0.29 0.78 

In-field plant diversity Local richness 8 -0.03    

(-3%) 

0.13 -0.19 0.85 

In-field plant diversity Local evenness 8 0.06 

(6%) 

0.10 0.54 0.61 

In-field plant diversity Regional 

richness 

8 0.05 

(5%) 

0.10 0.51 0.63 

In-field plant diversity Regional 

evenness 

8 0.07 

(7%) 

0.10 0.63 0.55 

  138 
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Table S17. Results of one-sample t-tests testing whether organic farming and in-field plant 139 

diversification impacted herbivore communities. Means are average untransformed log-response 140 

ratios comparing organic to conventional, or high to low in-field plant diversity, data. Effect 141 

sizes transformed to percent change are in parentheses. 142 

 143 

Management scheme Metric N Mean SE t p-value 

Organic vs. conventional Abundance 17 0.24 

(23%) 

0.18 1.30 0.21 

Organic vs. conventional Local richness 17 0.12 

(10%) 

0.08 1.44 0.17 

Organic vs. conventional Local evenness 14 -0.16  

(-14%) 

0.12 -1.33 0.21 

Organic vs. conventional Regional richness 17 0.07 

(5%) 

0.07 1.06 0.30 

Organic vs. conventional Regional 

evenness 

17 -0.07 (-

7%) 

0.08 -0.89 0.39 

In-field plant diversity Abundance 5 0.25 

(28%) 

0.42 0.58 0.59 

In-field plant diversity Local richness 5 0.17 

(18%) 

0.25 0.67 0.54 

In-field plant diversity Local evenness 4 -0.04  

(-4%) 

0.12 -0.30 0.78 

In-field plant diversity Regional richness 5 -0.04  

(-4%) 

0.23 -0.20 0.85 

In-field plant diversity Regional 

evenness 

5 -0.10  

(-10%) 

0.15 0.68 0.53 

  144 
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Table S18. Results of one-sample t-tests testing whether organic farming and in-field plant 145 

diversification impacted detritivore communities. Means are average untransformed log-response 146 

ratios comparing organic to conventional, or high to low in-field plant diversity, data. Effect 147 

sizes transformed to percent change are in parentheses. 148 

 149 

Management scheme Metric N Mean SE t p-value 

Organic vs. conventional Abundance 8 0.23 

(26%) 

0.29 0.79 0.46 

Organic vs. conventional Local richness 8 0.01 

(1%) 

0.07 0.15 0.89 

Organic vs. conventional Local evenness 7 -0.01    

(-1%) 

0.09 -0.06 0.95 

Organic vs. conventional Regional 

richness 

8 -0.10    

(-9%) 

0.11 -0.91 0.39 

Organic vs. conventional Regional 

evenness 

8 0.26 

(30%) 

0.21 1.28 0.24 

In-field plant diversity Abundance 3 0.55 

(74%) 

1.03 0.54 0.65 

In-field plant diversity Local richness 3 0.25 

(28%) 

0.31 0.82 0.50 

In-field plant diversity Local evenness 1 -0.57    

(-44%) 

NA NA NA 

In-field plant diversity Regional 

richness 

3 0.52 

(69%) 

0.07 7.51 0.017 

In-field plant diversity Regional 

evenness 

3 -1.06    

(-65%) 

0.22 -4.80 0.041 

 150 
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Table S19. Results of paired t-tests testing whether organic farming and in-field plant diversification impacted arthropod abundance 151 

and richness differentially for rare and common taxa, in simple and complex landscapes. Means are average untransformed log-152 

response ratios comparing organic to conventional, or high to low in-field plant diversity, data. Effect sizes transformed to percent 153 

change are in parentheses. 154 

 155 

Management 

scheme Metric 

Landscape 

complexity 

N 

common 

taxa 

Mean 

common 

taxa 

SE 

common 

taxa 

N rare 

taxa 

Mean 

rare taxa 

SE rare 

taxa t p-value 

Organic vs. 

conventional Abundance Simple 45 

0.45 

(57%) 0.12 43 

0.36 

(44%) 0.11 0.51 0.61 

Organic vs. 

conventional Abundance Complex 30 

0.28 

(33%) 0.21 28 

0.58 

(78%) 0.24 -1.90 0.068 

Organic vs. 

conventional 

Local 

richness Simple 45 

0.09 

(10%) 0.05 43 

0.15 

(16%) 0.07 -0.88 0.39 

Organic vs. 

conventional 

Local 

richness Complex 30 

0.19 

(21%) 0.10 28 

0.36 

(44%) 0.16 -2.35 0.027 

Organic vs. 

conventional 

Regional 

richness Simple 42 

0.05 

(6%) 0.04 41 

0.06 

(6%) 0.06 0.10 0.92 

Organic vs. 

conventional 

Regional 

richness Complex 29 

0.04 

(4%) 0.04 26 

0.16 

(17%) 0.07 -2.33 0.028 

In-field plant 

diversity Abundance Simple 13 

0.24 

(27%) 0.22 10 

0.08 

(8%) 0.07 1.58 0.15 

In-field plant 

diversity Abundance Complex 17 

0.37 

(45%) 0.27 15 

0.33 

(39%) 0.28 0.05 0.96 

In-field plant 

diversity 

Local 

richness Simple 13 

0.09 

(10%) 0.08 10 

0.05 

(5%) 0.10 1.00 0.35 

In-field plant 

diversity 

Local 

richness Complex 17 

0.16 

(18%) 0.09 15 

0.52 

(68%) 0.23 -2.22 0.044 

In-field plant 

diversity 

Regional 

richness Simple 10 

0.06 

(6%) 0.06 10 

0.02 

(2%) 0.09 -0.04 0.97 

In-field plant 

diversity 

Regional 

richness Complex 15 

0.02 

(2%) 0.01 14 

0.40 

(50%) 0.20 -1.59 0.14 
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Fig. S1. Data structure and major factors used in the meta-analysis. Each study consisted of a 157 

collection of fields (white rectangles, not to scale) situated in simple or complex landscapes. We 158 

classified each field as having low or high in-field plant diversity, or being managed organically 159 

or conventionally (not shown). Within each study, we divided sampled taxa by functional group 160 

(detritivore, herbivore, pollinator, predator). For each sub-group, we calculated local abundance 161 

and diversity from field-level taxon pools, and regional diversity from the regional pool. 162 
 163 

 164 
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Fig. S2. Map of study sites. 165 

 166 

 167 
  168 
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Figure S3. Funnel plots for studies assessing organic vs. conventional farming. All plots are 169 

sufficiently symmetrical about their mean (visually assessed) to indicate no publication bias. 170 

Effect sizes are log-response ratios. 171 

 172 

 173 
  174 
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Figure S4. Funnel plots for studies assessing in-field plant diversification. All plots are 175 

sufficiently symmetrical about their mean (visually assessed) to indicate no publication bias. 176 

Effect sizes are log-response ratios. 177 

 178 

 179 
  180 
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Figure S5. Diversity effects (log-response ratios) strongly correlated at the local and regional 181 

scales for both richness (Pearson’s correlation: r = 0.87, t108 = 18.41, p < 0.0001) and evenness (r 182 

= 0.81, t97 = 5.83, p < 0.0001).  183 

 184 

 185 
  186 
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Figure S6. Effects of farm management schemes on abundance (a, b) and richness (c, d) of 187 

common vs. rare taxa. Mean log-response ratios (±SE) of (left column) adopting organic farming 188 

and (right column) promoting in-field plant diversity. A “*” (p < 0.05) or “+” (0.05 ≤ p < 0.1) 189 

above a mean denotes a significant difference from zero (determined via one-sample t-tests), 190 

while one below a pair of means indicates a significant difference between rare and common 191 

taxa (determined via paired t-tests). 192 

 193 

 194 
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1 
 

Table S1. Data holders and studies participating. We were unable to categorize landscape complexity when we obtained data directly 
from published articles that lacked GPS coordinates of sampling locations or information on natural habitat surrounding fields (Study 
IDs drit01, febe01, hesl01, hokk01, and weib01). These studies were excluded from meta-regressions. 
 

Study 

ID 

Reference or 

data holder 
Crop(s) 

Study 

location 

Functional 

group(s) 

Management 

scheme(s) 

# sites 

(o=organic/ 
conventional, i-
f=in-field plant 
diversity) 

Year(s) 

arms01 (Armstrong, 
1995) 

potato Scotland predators organic/ 
conventional 

4 1992 

bata01 (Batáry et al., 
2012) 

wheat Germany predators organic/ 
conventional 

18 2008 

benj01 (Cariveau et al., 
2013) 

blueberry USA pollinators in-field plant 
diversity 

16 2012 

bere01 (Winqvist et al., 
2011) 

wheat Netherlands predators organic/ 
conventional 

35 2007 

bomm01 (Winqvist et al., 
2011) 

wheat Sweden predators organic/ 
conventional, 
in-field plant 
diversity 

95 2007 

bosq01 Bosque-Perez, 
Nilsa; Ramos, 
Mariangie 

coffee Costa Rica herbivores organic/ 
conventional, 
in-field plant 
diversity 

18 (o), 19 (i-f) 2005 

carv01 (Carvalheiro et 
al., 2010, 2012) 

mango South 
Africa 

herbivores, 
pollinators, 
predators 

organic/ 
conventional 

15 2009 
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chap01 (Chaplin-Kramer 
et al., 2013) 

broccoli USA detritivores, 
herbivores, 
predators 

in-field plant 
diversity 

17 2008 

clou01 (Clough et al., 
2005, 2007a, 
2007b) 

wheat Germany detritivores, 
herbivores, 
predators 

organic/ 
conventional, 
in-field plant 
diversity 

42 (o), 17 (i-f) 2003 

conn01 (Connelly et al., 
2015) 

strawberry USA pollinators organic/ 
conventional 

13 2012 

danf01 (Russo et al., 
2015) 

apple USA pollinators organic/ 
conventional, 
in-field plant 
diversity 

10 2009 

diek01 (Diekötter et al., 
2010) 

wheat Germany detritivores, 
herbivores, 
predators 

organic/ 
conventional 

12 2007 

drit01 (Dritschilo & 
Erwin, 1982) 

corn USA predators organic/ 
conventional 

8 late 
1970s? 

eige01 Eigenbrode, 
Sanford 

coffee Costa Rica predators organic/ 
conventional 

6 2001 

ekro01 (Ekroos et al., 
2010) 

various 
grains 
(combined) 

Finland predators organic/ 
conventional, 
in-field plant 
diversity 

28 (o), 29 (i-f) 1998 

febe01 (Feber et al., 
1998) 

wheat England predators organic/ 
conventional 

6 1995 

frei01 Freitas, Breno acerola Brazil pollinators in-field plant 
diversity 

4 2010 
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frei02 Freitas, Breno cotton Brazil pollinators in-field plant 
diversity 

4 2010 

fuku01 (Fukuda et al., 
2011) 

pasture New 
Zealand 

detritivores, 
herbivores, 
predators 

organic/ 
conventional 

20 2009 

gain01 Gaines, Hannah; 
Gratton, Claudio 

cranberry USA pollinators organic/ 
conventional 

15 2008 

hesl01 (Hesler et al., 
1993) 

rice USA herbivores, 
predators 

organic/ 
conventional 

6 1988 

hokk01 (Hokkanen & 
Holopainen, 
1986) 

cabbage Germany herbivores, 
predators 

organic/ 
conventional 

4 1982 

holz01 (Holzschuh et al., 
2007) 

wheat Germany pollinators organic/ 
conventional, 
in-field plant 
diversity 

42 2003 

isaa01 (Isaacs & Kirk, 
2010) 

blueberry USA pollinators in-field plant 
diversity 

12 2008 

isai01 (Isaia et al., 
2006) 

grape Italy predators organic/ 
conventional 

5 2003 

jha01 (Jha & 
Vandermeer, 
2010) 

coffee Mexico pollinators organic/ 
conventional 

7 2006 

jona01 (Jonason et al., 
2013) 

various 
grains 
(combined) 

Sweden herbivores, 
predators 

organic/ 
conventional 

36 2011 
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jone01 (Jones et al., In 
press, In pressb; 
Mills et al., In 
press) 

apple USA herbivores, 
pollinators, 
predators 

organic/ 
conventional 

8 2011 

klat01 Klatt, Björn; 
Tscharntke, Teja 

strawberry Germany pollinators in-field plant 
diversity 

8 2010 

klei01 Brittain, Claire; 
Klein, Alexandra 

almond USA pollinators organic/ 
conventional 

13 2009 

krau01 (Krauss et al., 
2011) 

triticale Germany pollinators organic/ 
conventional 

24 2008 

krem01 (Kremen et al., 
2002, 2004) 

watermelon USA pollinators organic/ 
conventional 

21 2000 

leto01 (Drinkwater et 
al., 1995; 
Letourneau & 
Goldstein, 2001; 
Letourneau & 
Bothwell, 2007; 
Letourneau et al., 
2012, 2015) 

broccoli, 
brussel 
sprouts 

USA predators organic/ 
conventional, 
in-field plant 
diversity 

10 2006 

mall01 (Mallinger et al., 
2015) 

apple USA pollinators organic/ 
conventional 

17 2012 

mart01 (Martin et al., 
2016) 

potato, 
daikon 
radish, rice, 
soybean 

South 
Korea 

predators organic/ 
conventional 

7 (radish), 8 
(other crops) 

2009 
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memm01 (Gibson et al., 
2007; Macfadyen 
et al., 2009a, 
2009b, 2011a, 
2011b) 

grains, 
brassicas, 
legumes 

England herbivores, 
predators 

organic/ 
conventional 

20 (grains), 5 
(brassicas), 10 
(legumes) 

2005 
(grains, 
legumes), 
2006 
(brassicas) 

mora01 (Morandin & 
Winston, 2005, 
2006) 

canola Canada pollinators organic/ 
conventional 

16 2002 

neam01 Elle, Elizabeth; 
Neame, Lisa 

winter 
squash 

Canada pollinators organic/ 
conventional 

9 2010 

ober01 (Öberg, 2007; 
Öberg et al., 
2007) 

various 
grains 
(combined) 

Sweden predators organic/ 
conventional, 
in-field plant 
diversity 

8 2003 (i-f), 
2004 (o) 

otie01 (Otieno et al., 
2015) 

pigeonpea Kenya pollinators organic/ 
conventional, 
in-field plant 
diversity 

12 2009 

pfif01 (Pfiffner & Luka, 
2003) 

various 
grains 
(combined) 

Switzerland predators organic/ 
conventional 

12 1996-8 

poco01 (Pocock & 
Jennings, 2008) 

various 
grains 
(combined) 

England detritivores, 
herbivores, 
predators 

organic/ 
conventional 

40 2003 

ponc01 (Ponce et al., 
2011) 

wheat, 
barley 

Spain detritivores, 
herbivores, 
predators 

organic/ 
conventional 

27 (wheat), 11 
(barley) 

2008 

pott01 (Carré et al., 
2009) 

field bean England pollinators in-field plant 
diversity 

10 2005 
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pove01 (Poveda et al., 
2012); Martinez, 
Eliana 

potato Colombia herbivores, 
predators 

in-field plant 
diversity 

11 2007 

rose01 (de Valpine & 
Rosenheim, 
2008) 

cotton USA herbivores, 
predators 

organic/ 
conventional 

15 1993 

rund01 (Bommarco et 
al., 2012) 

red clover Sweden pollinators in-field plant 
diversity 

17 2010 

sard01 (Sardiñas & 
Kremen, 2015) 

sunflower USA pollinators in-field plant 
diversity 

10 2011 

saun01 (Saunders & 
Luck, 2013) 

almond Australia detritivores, 
herbivores, 
predators 

in-field plant 
diversity 

15 2010 

scho01 (Schon et al., 
2011) 

pasture New 
Zealand 

detritivores, 
herbivores, 
predators 

organic/ 
conventional 

10 2007 

scil01 Sciligo, Amber strawberry USA pollinators in-field plant 
diversity 

17 2012 

sidh01 (Sidhu, 2013) squash USA pollinators organic/ 
conventional 

8 2011 

snyd01 Crowder, David; 
Snyder, William 

potato USA detritivores, 
herbivores, 
predators 

organic/ 
conventional 

20 2010 

vese01 (Veselý & 
Šarapatka, 2008) 

wheat, 
barley 

Czech 
Republic 

predators organic/ 
conventional 

4 (wheat), 4 
(barley) 

2001 
(wheat), 
2005 
(barley) 
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weib01 (Weibull et al., 
2000) 

cereals, 
clovers, 
grasses 
(combined) 

Sweden pollinators organic/ 
conventional 

16 1997-8 

weis01 (Winqvist et al., 
2011) 

wheat Germany predators organic/ 
conventional, 
in-field plant 
diversity 

30 (o), 31 (i-f) 2007 

will01 Williams, Neal watermelon USA pollinators in-field plant 
diversity 

10 2010 

wils01 (Tuell et al., 
2009) 

blueberry USA pollinators organic/ 
conventional 

15 2005 

winf01 (Winfree et al., 
2007, 2008; 
Lonsdorf et al., 
2009; Rader et 
al., 2013)  

watermelon USA pollinators organic/ 
conventional 

10 2010 

winf02 (Winfree et al., 
2008) 

pepper, 
tomato 

USA pollinators organic/ 
conventional 

22 (pepper), 13 
(tomato) 

2004 
(pepper), 
2005 
(tomato) 
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Effects of farm management schemes on arthropod abundance, local diversity, and regional diversity. Values 
shown are for the entire arthropod community, and represent the mean log-response ratio (± SE) of (a) 

adopting organic farming and (b) promoting in-field plant diversity on abundance, richness, and evenness. A 

“*” (p < 0.05) or “+” (0.05 ≤ p < 0.1) above a mean denotes a significant difference from zero (determined 
via one-sample t-tests; statistical details in Table S8), while one below a pair of means indicates a 

significant difference between local and regional diversity (determined via linear mixed models; Tables S9-
S12).  
Fig. 1  

44x12mm (300 x 300 DPI)  

 

 

Page 80 of 81Global Change Biology



For Review
 O

nly

  

 

 

Effects of farm management schemes on abundance, local diversity, and regional diversity of arthropod 
functional groups. Mean log-response ratios (± SE) of (left column) adopting organic farming and (right 

column) promoting in-field plant diversity for (a-b) pollinators, (c-d) predators, (e-f) herbivores, and (g-h) 
detritivores. A “*” (p < 0.05) or “+” (0.05 ≤ p < 0.1) above a mean denotes a significant difference from 
zero (determined via one-sample t-tests; Tables S15-S18). Meta-regressions indicated that differences 

between local and regional values did not vary with functional group (Tables S9-S12).  
Fig. 2  
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Effects of landscape complexity on the entire arthropod community in organic vs. conventional farms (left 
column) and fields with high vs. low in-field plant diversity (right column). Each graph shows the mean log-

response ratio (± SE) for studies in simple (≤ 20% natural habitat) or complex (>20% natural habitat) 

landscapes for (a,b) abundance, (c,d) richness, and (e,f) evenness. A “*” (p < 0.05) or “+” (0.05 ≤ p < 0.1) 
below a set of means indicates a significant difference between means at the habitat complexity levels 

(Tables S9-S12).  
Fig. 3  
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Effects of farm management schemes on abundance (a, b) and richness (c, d) of common vs. rare taxa in 
simple and complex landscapes. Mean log-response ratios (±SE) of (left column) adopting organic farming 
and (right column) promoting in-field plant diversity. A “*” (p < 0.05) or “+” (0.05 ≤ p < 0.1) below a pair 

of means indicates a significant difference between rare and common taxa within a landscape complexity 
category (determined via paired t-tests; Table S19).  

Fig. 4  
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