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Modeling the Impact of Privacy on Information
Diffusion in Social Networks

Livio Bioglio and Ruggero G. Pensa

University of Turin - Dept. of Computer Science, Turin, Italy
{livio.bioglio,ruggero.pensa}@unito.it

Abstract. Humans like to disseminate ideas and news, as proved by
the huge success of online social networking platforms such as Face-
book or Twitter. On the other hand, these platforms have emphasized
the dark side of information spreading, such as the diffusion of private
facts and rumors in the society. Fortunately, in some cases, online social
network users can set a level of privacy and decide to whom to show
their information. However, they cannot control how their friends will
use this information. The behavior of each user depends on her attitude
toward privacy, that has a crucial role in the way information propa-
gates across the network. With the aim of providing a mathematical tool
for measuring the exposure of networks to privacy leakage risks, we ex-
tend the classic Susceptible-Infectious-Recovered (SIR) epidemic model
in order to take the privacy attitude of users into account. We leverage
such model to measure the contribution of the privacy attitude of each
individual to the robustness of the whole network to the spread of per-
sonal information, depending on its structure and degree distribution.
We study experimentally our model by means of stochastic simulations
on four synthetic networks generated with classical algorithms.

Keywords: complex networks, modeling, information diffusion, privacy

1 Introduction

Humans are social animals that love to disseminate ideas and news, as proved by
the huge success of social networking websites such as Facebook or Twitter. On
the other hand, these platforms have emphasized the dark side of information
spreading such as the diffusion of private facts and rumors that may additionally
foster slander and cyberbullying acts [21]. As a consequence, the users of online
social networks are acquiring a new awareness of the importance of their own
privacy on the Web. However, although most users do not disclose very sensitive
facts (private life events, diseases, political ideas, sexual preferences, and so on),
they are simply not aware of the risks due to the disclosure of less sensitive infor-
mation, such as GPS tags, photos taken during a vacation period, page likes, or
comments on news. Some social media provide advanced tools for controlling the
privacy settings of the user’s profile [26]. However, yet a large part of Facebook
content is shared with the default privacy settings and exposed to more users



than expected [17]. According to Facebook CTO Bret Taylor, even though most
people have modified their privacy settings1, in 2012, still “13 million users [in
the United States] said they had never set, or didn’t know about, Facebook’s
privacy tools2”. Moreover, even though the users of these social networks can
usually set a level of privacy, and specify which of their contacts are allowed
to see their notifications, they do not have any control on how these contacts
will use the information: friends could spread the rumor through other social
networks, blogs, websites, medias or simply with face-to-face communication.

The behavior of an individual in these situations highly depends on her level
of privacy awareness: an aware user tends not to share her private information,
or the private information of her friends on social networks, while an unaware
user could not recognize an information as private, and could share it without
care to her contacts, even to untrusted ones, putting at risk her privacy or the
privacy of her friends. Users’ privacy awareness then turns into the so-called
“privacy attitude”, i.e., the users’ willingness to disclose their own personal data
to other users, that can be measured by leveraging the way users customize their
privacy settings in social networking platforms [16, 24].

The privacy attitude of each actor in a social network heavily influences the
effects of information propagation, not only for posts that are clearly private
[30]. In fact, it is a well-known fact that by leveraging Facebook user’s activity
(such as ”Likes” to posts or fan pages) it is possible to “guess” some very pri-
vate traits of the user’s personality [15]. For instance, a public comment on news
posts may reveal the political ideas of the individual. However, the privacy at-
titude alone is not a good measure of the user’s objective privacy leakage, since
the latter depends also on other users’ attitude to privacy and the way they
contribute in the information propagation process. With the aim of providing
a mathematical tool for measuring the exposure of networks to privacy leakage
risks, in this paper we study the effects of privacy attitude on information propa-
gation by extending the classic Susceptible-Infectious-Recovered (SIR) epidemic
model. In this model, an individual may be susceptible, infectious or recovered:
a susceptible individual in contact with an infectious one can become infectious
with a transmission probability, while an infectious individual naturally recovers
from infection with a recovery rate, turning into a recovered individual. The SIR
model can be adopted for modeling the spread of information in a social network
[12]: susceptible individuals do not know the information, then are susceptible to
be informed; infectious individuals know and spread the information, while re-
covered individuals already know the information but do not spread it anymore.
We extend this compartmental model in order to represent privacy attitude. In
our model, each individual belongs to a privacy attitude class that tunes the
parameters of the model. The privacy attitude of users has an influence on the
way information spreads across the network that additionally unveil its realis-

1 http://www.zdnet.com/article/facebook-cto-most-people-have-modified-

their-privacy-settings/
2 http://www.consumerreports.org/cro/magazine/2012/06/facebook-your-

privacy/index.htm



tic robustness to information leakage as the effects of information propagation
within this model. We use our model, by means of stochastic simulations, for
studying the role of privacy on the information diffusion in several synthetic net-
works, generated from classic algorithms, with different distributions of attitude
on privacy of their nodes.

The remainder of the paper is organized as follows: we briefly review the
related literature in Section 2; the privacy-aware propagation model is presented
in Section 3; Section 4 provides the report of our experimental research; Section
5 shows how to infer the privacy attitude of a social network user from her profile
settings; finally, we draw some conclusions in Section 6.

2 Related work

In epidemiology, the Susceptible-Infectious-Recovered (SIR) epidemic model [13]
is employed for modeling infectious diseases that confer lifelong (or long-term)
immunity, such as measles, rubella or chickenpox. In this model a susceptible
node can become infected, because of the presence of infectious nodes, and an
infectious node can naturally recover after few time, gaining immunity to the
disease.

The SIR model has been applied to information spreading since early years,
even if these applications slightly differ from the common model: in [9] when a
spreader meets another infectious node, that already knows the rumor, both lose
interest in spreading it any further, and become recovered, while in [18] when
two infectious nodes meet, only one node turns into recovered, and the other one
remains unchanged. This last version of SIR model for rumor spreading has been
widely studied: in [22] the author found that in a complete random network, i.e.,
a homogeneous network, a rumor can only spread to around the 80% of the total
population; more recently in [27] it has been calculated that such percentage is
lower than 80% in small-world networks. In [29] the authors found that the num-
ber of nodes reached by the rumor depends on the topological structure of the
network, decreasing when it changes from random to scale-free network, and on
the mean degree of the network, increasing when the mean degree increases; the
same happens for the probability of a single node to be informed, that increases
when the degree of node increases. Such behavior happens because large hubs
are rapidly reached by the rumor, but they easily turn into recovered, prevent-
ing the spreading of the rumor to their huge neighborhood. This is confirmed
by the observation, in [19], that the density of susceptible nodes at the end of
the process decays exponentially with the value of their degree. An extension of
this model also allows spontaneous recovery, justified as forgetting mechanism:
an infectious node should also turn into recovered spontaneously after a random
time. In this case, the model behave more similarly to the classical SIR model,
as observed in [20].

In our work, we focus on rumor spreading in presence of a sort of “immuniza-
tion parameter” that models the privacy attitude of users, i.e., their willingness
to disclose their own personal data to other users directly or indirectly. At the



best of our knowledge, this is the first attempt of modeling and measuring the
robustness of networks to privacy leakage risks by means of a classic epidemic
models in social networks. Indeed, a large part of research works on privacy is-
sues in online social networks focus on the anonymization of networked data [28].
Differently from those studies, our work can be positioned in another branch of
research that focuses on modeling, measuring and preventing privacy leakage in
online social networks. In this regard, one of the most prominent work is [16]
where Liu and Terzi propose a framework to compute a privacy score measuring
the users’ potential risk caused by their participation in the network. This score
takes into account the sensitivity and the visibility of the disclosed information
and leverages the item response theory as theoretical basis for the mathemat-
ical formulation of the score. In [24], the authors define a privacy index that
leverages the privacy settings of users to measure their privacy exposure in an
online social network according to predefined sensitivity values for users’ items.
[7] presents a tool to detect unintended information loss in online social networks
by quantifying the privacy risk attributed to friend relationships in Facebook.
The authors show that a majority of users’ personal attributes can be inferred
from social circles. In [23] the authors measure the inference probability of sen-
sitive attributes from friendship links. In [3, 2], the authors define a measure of
how much it might be risky to have interactions with them, in terms of disclosure
of private information. Among all these research contributions, [16] is the only
one that also consider the privacy attitude of users in disclosing their personal
data and provide a mathematical formulation for it. This formal definition can
be used to tune our information-propagation model according to the attitude
towards privacy of the users involved in the social network.

3 A privacy-aware model for information spreading

In this section, we introduce the the Susceptible-Infectious-Recovered (SIR) epi-
demic model for modeling the contribution of privacy on information spreading in
a social network. Before providing the details of our privacy-aware information-
propagation model, we introduce the notation required to formalize the problem.

We consider a social graph G involving a set of n vertices {v1, . . . , vn} that are
the users participating in G. In this work, the social network is then a represented
as a directed graph G(V,E), where V is a set of n vertices and E is a set of
directed edges E = {(vi, vj)}. Given a pair of vertices vi, vj ∈ U , (vi, vj) ∈ E
iif there exists a link from vi to vj (e.g., users vi is in the friend list/circle of
vj or vj follows vi). For any given vertex vi ∈ V we define the neighborhood
N (vi) as the set of vertices vk which vertex vi is directly connected to, i.e.,
N (vi) = {vk ∈ V | (vi, vk) ∈ E}. Conversationally speaking, N (vi) is the set
of followers of user vi. Furthermore, we assume that each user vi belongs to a
privacy class p ∈ P , which is defined as the propensity of an user of the class
to disclose her own or other’s personal information, directly or indirectly. In
practical terms, in online social networks (such as Facebook, Twitter, Instagram



Fig. 1. Transmission model. Each index of compartments S and I represents a privacy
class

or Google+) the privacy class may be unveiled by the way users configure their
privacy settings, or the way they post or share/comment other users’ posts.

3.1 Information spreading model

In the SIR model, at any time step an individual vi belongs to one compart-
ment among susceptible (S), infectious (I) and recovered (R). An infectious (I)
individual vi may spontaneously recovers from infection with a probability µ,
called recovery probability, entering the recovered (R) compartment, or it may
spread the disease to a susceptible (S) individual with which it is in contact with
a probability λ, called infection probability: the infected susceptible (S) individ-
ual immediately becomes infectious (I). We denote with c(vi, t) ∈ {S, I,R} the
compartment of user vi at time t.

The SIR model can be also applied for the spread of information in a popu-
lation: susceptible individuals are those who not already know the information,
and then they are susceptible to be informed; infectious individuals know the
information and actively spread it; finally, recovered individuals are the ones
who know the information but do not spread it anymore. The recovery process
models a mechanism of aging of the information, that after few time loses its
interest or its novelty for an individual and stops to be spread by him. In our
formulation, the population is the set of n users V = {v1, . . . , vn}, while the
information may only spread from a user vi to a user vj if there exists an edge
(vi, vj) connecting vi to vj

3.
Here we propose an extension of this model that takes into account the ex-

plicit or implicit privacy policies of individuals during the spread of information.
A set of privacy classes P = {p0, p1, . . . , pN} is assigned to Susceptible and In-
fectious compartments, representing the privacy class of an individual belonging
to the compartment, and consequently her behavior on information spreading,
from less aware (p0) to more aware (pN ). A graphic representation of our model

3 Thus, in our model, the edges are directed from the source of the information to its
target.



Fig. 2. Degree distribution for each synthetic network

is given in Figure 1. Moreover we insert a novel parameter βp ∈ [0, 1] to the SIR
transmission model, that is the interest of users in privacy class p in information.
Each privacy class differs for the values assigned to the three parameters (β, λ
and µ) of the transmission model. Hence, given the privacy class p, parameters
βp, λp and µp are completely defined.

The evolution of the spread follows the Reed-Frost chain-binomial model [1]:
it consists in a stochastic approach, where time is measured in discrete units
and infection occurs because of direct contacts. The evolution probabilities are
obtained as follows. Let p(vi) = p ∈ P be the privacy class of an individual vi.
If it belongs to the susceptible compartment, it may be infected at time t + 1
with probability:

Pinf (vi, t+ 1) = βp · (1−
∏
p′∈P

(1− λp′)nI(vj ,t)) (1)

where nI(vj , t) = |{vj ∈ N (vi) | c(vj , t) = I ∧ p(vj) = p′}| is the number of
individuals in compartment I (infectious) and privacy class p′ at time t among
the neighbors of individual vi. Otherwise, if the individual vi of privacy class p
belongs to the infectious compartment I at time t, it may recover with probability
µp at time t+ 1.

4 Experiments and results

In this section we provide the results of our experiments performed over several
types of synthetic networks. In a nutshell, we generate four networks, each one
with a different structure and degree distribution. On each one, we observe the
number of nodes reached by the information for three different assignments of
privacy classes to the nodes, representing the global attitude on privacy of the
network.

4.1 Contact networks

The information spreads on a contact network, in which nodes represent individ-
uals, and edges between nodes represent contacts between two individuals. Since
our objective is to study and characterize the dynamic behavior of the model,



Table 1. Values of the parameters for the three privacy classes

Classes
Parameter 0 1 2

β 0.9 0.5 0.1
µ 0.1 0.3 0.5
λ 0.9 0.5 0.1

here we employ four types of networks, generated with standard algorithms. In
all networks, the links between nodes are always considered as reciprocal, i.e.,
all the graph considered in these experiments are undirected.

The four synthetic networks have approximately the same number of nodes,
75,000, and the same number of edges, around 2,700,000. The first synthetic
network is a random graph, also known as an Erdös-Rényi graph [10], generated
by means of the fast algorithm in [6]. The second one is a scale-free graph
generated with the Barabasi-Albert algorithm [4] where new nodes are attached
with 36 edges to existing nodes with high degree. The third one is a small-world
network generated through the Watts-Strogatz mechanism [25] where each node
is joined with its 72 nearest neighbors in a ring topology, and each edge has a
probability of rewiring equal to 0.15. The fourth one is a Facebook-like network
generated using LDBC–SNB Data Generator4 which produces graphs that mimic
the characteristics of real Facebook networks [11]: in particular, we generate a
network with 80,000 nodes, but here we consider only the greatest connected
component of such network. The degree distributions of these networks are given
in Figure 2

4.2 Privacy class distributions

In our experiments, we select three privacy classes, numbered from 0 to 2, repre-
senting users from unaware (class 0) to more aware on privacy (class 2), in order
to provide a few grades of awareness. The values assigned to the parameters of
the information spreading model for each class are reported in Table 1. Users in
class 0 have a high probability of being interested in information and spreading
it over the network for a long period of time (1/µ is the average duration of
the infection). On the contrary, users in class 2 have a very low probability of
being interested in information: even if they are reached by information, they
spread it only for few time steps. Consequently, the probability of diffusing the
information is very low for such users. Finally, class 1 represents average users,
then its parameters have been tuned accordingly.

For each network in Section 4.1, we randomly assign to each node a privacy
class, according to three probability distributions: a safer assignment, where the
majority of nodes are in class 2, the most aware one; a medium assignment,
where the majority of nodes are in class 1; an unsafer assignment, where the
majority of nodes are in the less aware class 0. The number of nodes in each

4 https://github.com/ldbc/ldbc_snb_datagen



Fig. 3. Class distribution in the three kinds of class assignments

Fig. 4. Prevalence and incidence of informed individuals (ratio) in the scale-free net-
work for each class distribution

privacy class of these three class distributions are graphically summarized in
Figure 3.

4.3 Experimental settings

Our experiments are conducted as follows. For each contact network in Sec-
tion 4.1, and for each class distribution in Section 4.2, we perform 100 stochastic
simulations of information spreading on a completely susceptible population, ex-
cept for one infectious node. These simulations are repeated for 9 different initial
spreaders, randomly chosen among all the nodes, 3 for each privacy class. For
each set of simulations we observe the number of informed individuals over time,
that is the number of nodes in compartments infectious or recovered, and we cal-
culate the proportion of cases at each time step (prevalence) and the proportion
of new cases at each time step (incidence). The results on the same network and
class distribution are aggregated.

4.4 Results

We study the impact of the distribution of individuals having different awareness
on privacy on the spread of an information in all the synthetic networks described



Fig. 5. Prevalence and incidence of informed individuals (ratio) in each network model
and class distribution

in Section 4.1. Figure 4 shows our results for the scale-free network. From the
curves of prevalence in Figure 4(a) we can notice that the number of informed
individuals over time greatly depends on the distribution of privacy classes of the
network: where the majority of node is unaware, the information immediately
spreads over almost the entire population, while where the network is full of
aware individuals the information spreads slowly, and reaches a smaller part of
the population. The speed of diffusion is more evident in the curves of incidences,
in Figure 4(b), which depicts the proportion of new cases of informed individuals
in each time step: under the least safe distribution, the information immediately
reaches more than half of population, while for safer distributions this peak is
lower, and it is reached few steps later.

In order to compare the behavior of all networks in Section 4.1, we collect
some key features of the prevalence and the incidence curves: for the prevalence
ones, we collect the proportion of informed individuals at the end of simulations,
that is when there are no more infectious individuals who can spread information,
and the step where simulation ends, in order to obtain the duration of the spread
and its diffusion among the population; for the incidence curves, we collect the
information on the peak of new cases of informed individuals, and the step
where the peak is reached, for obtaining a snapshot of the speed of the diffusion
of information. These data for all the networks are graphically summarized in
Figure 5.

We can notice that the behavior observed for random graph network hap-
pens similarly for all the other networks. Under the safest class distribution,
the information reaches a smaller proportion of the population. Furthermore,
it stops to be diffused much later than in less safer distributions. Interestingly,
even in case of safer distribution an information reaches a huge portion of the
population, and such proportion is always smaller for the Facebook-like network:
apparently such kind of network is the worst one for spreading an information,
especially in case of safer class distribution. As regards the diffusion speed, the
small-world network is the last one reaching the peak, while on the other side the



Facebook-like network is the faster one. However, even if the peak value is really
different among the distributions, the steps where peak is reached are not so far:
in any case an information reaches almost immediately the maximum number of
uninformed individuals. It is worth noting that the contribution of privacy atti-
tude on incidence is significant: this means that this parameter should be taken
into account in viral campaigns where the goal is to maximize the number of
informed nodes in the shortest possible time. On the other hand, the substantial
differences given by the network structure and their degree distribution cannot
be ignored when measuring the privacy leakage risk of users.

5 Privacy attitude estimation

In Section 3 we have created privacy classes, tuning the characteristic parameters
of propagation model, according to the privacy attitude of users. Such attitude,
however, involves several psychological, cultural and contextual factors, and it
may be indeed difficult to model in real cybersocial systems. In this section
we briefly show how to infer it for generic users using some information about
their profile settings or disclosing behavior5. Our attitude estimation, inspired
by the framework defined by Liu and Terzi [16], measures the user’s potential
risk caused by her participation in the network by assigning to each user a
privacy score according to her privacy settings. A n ×m response matrix R is
associated to the set of n users and a set of m profile items (e.g., age, gender,
education, political views, and so on). Each element rij of R contains a privacy
level that determines the willingness of user i to disclose information associated
with profile item j. In [16], the Item Response Theory (IRT) model is adopted
to measure the privacy attitude of the users, the sensitivity of the questions,
and the probability of a user deciding a given level of visibility to a given profile
property. In a binomial case, the probability that a user i sets item j visible to
everyone is computed as:

Pij = Prob{rij = 1} =
1

1 + e−αj(θi−σj)
(2)

where αj is the discrimination power of item j, σj is the sensitivity of j and θi
is the privacy attitude of user i. In [16], the authors provide an Expectation-
Maximization algorithm to estimate parameters αj and σj by only leveraging
the response matrix R.

When parameters σj and αj (∀j ∈ {1 . . .m}) are known, each θi can be
computed by maximizing the following log-likelihood function:

L =

m∑
j=1

[rij logPij + (1− rij) log (1− Pij)] (3)

derived from the likelihood
∏m
k=1 P

rij
ij (1− Pij)1−rij . The solutions can be com-

puted using the Newton-Raphson method, an iterative algorithm that estimates
the value of θi at iteration t starting from the value of θi at iteration t− 1 [16].

5 Such information is known by social network providers.



6 Conclusions

In this paper we have proposed an information propagation model that considers
the role of privacy awareness on information spreading inspired by the classical
SIR epidemic model. We have assigned different privacy classes to the nodes of
networks, depending on their attitude on privacy, in order to model populations
more or less interested on diffusing an information. Through stochastic simu-
lations we have studied the impact of the attitude on privacy of a connected
population on the proportion of individuals reached by an information diffused
by an unique spreader on a random, a scale-free, a small-world and Facebook-like
network.

Our results show that the attitude on privacy can really have an impact on
the diffusion of an information, by reducing or increasing the portion of popu-
lation which receives the information according to safer or less aware attitude
on privacy of the individuals on the network. The same behavior happens in all
the structures under study, but the Facebook-like network seems to be the most
robust to information diffusion.

Our study shows the importance of considering privacy attitude of users
in modeling the spreading of rumors, with direct and indirect implications on
all applications that involve the dynamics of information spreading, such as
influence maximization [14] and community detection [5], as well as on privacy
enforcement models and techniques for online social networks, thus inspiring the
design of privacy-preserving social networking components for Privacy by Design
compliant software [8].
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