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Graphical abstract 

Blue desert rose-like gold nanoparticles (DR-GNPs) were synthesized, characterized and applied as 

label for the ImmunoChromatographic Strip Test (ICST) technique, in which red spherical GNPs (s-

GNPs) are usually employed. The combined use of the blue DR-GNP and red s-GNPs allowed 

developing of an intuitive multicolor ICST for the simultaneous detection of Aflatoxin B1 and 

Fumonisins in maize flour. 
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Abstract 

Desert rose-like gold nanoparticles (DR-GNPs) that exhibited a blue color due to the plasmon 

resonance band at 620 nm were prepared. The blue DR-GNPs were obtained through a seeding 

growth approach and characterized by UV-vis spectroscopy, transmission electron microscopy and 

dynamic light scattering.  The DR-GNPs had a hydrodynamic diameter of ~72 nm and were used as 

labels for the antibody in an immunochromatographic strip test (ICST). Although the  particular 

shape of DR-GNPs and their higher surface area with respect to spherical GNPs, they demonstrated 

to be effective as antibody labels. A multicolor ICST for aflatoxin B1 and fumonisins was 

developed  that employs both blue DR- and red spherical GNPs.  The multicolor ICST allows for 

simultaneous rapid determination of the two mycotoxins in maize flour, with visual cut-off levels at 

2 µg kg-1 for aflatoxin B1 and 1000 µg kg-1 for fumonisins. 

 

 

Keywords: Non-spherical gold nanoparticles, Labels for Immunoassay, Lateral flow Assay, 

Aflatoxin B1, Fumonisins, Maize 

 

Introduction 

During the last decades, noble metal nanoparticles (NPs) have increased the breadth of their impact 

and are now becoming a backbone of modern technology. Their applications range from 

biomedical, electronics, catalysis, sensing of organic and inorganic molecules, to optical devices 

and many others [1]. 

Gold nanoparticles (GNPs) are one of the most popular [2] and widely used NPs as sensitive probes 

for colorimetric sensors thanks to the strong surface plasmon resonance (SPR) in the visible 

spectroscopy region, and to their high extinction coefficients. Moreover, since the SPR band is very 

sensitive to changes in refractive index and dispersion state of GNPs, most of GNPs-based 

colorimetric assays rely on the color change from red to purple-blue when GNPs aggregate [3-5]. 

The immunochromatographic strip test (ICST), also known as Lateral Flow Immunoassay, is one of 

the most successful colorimetric assay because of the advantages of simplicity, rapidity, cost-

effectiveness and no requirement of equipment or technical expertise for operation. The ICST is 

based on immunoassays in which the sample and a suitable labeled probe flow by capillary forces 

along an analytical porous membrane that contains immobilized reagents with molecular 

recognition properties. These are placed in specific areas of the membrane, that are usually defines 

as Test and Control lines, where the former gives information about the target analyte, while the 

latter ensures the correct functioning of the test. The occurring of immunoreactions leads to the 
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development of detectable bands in correspondence of the Test and Control lines, due to the 

accumulation of the label in such zones. 

Typically, colorimetric ICSTs employ spherical GNPs (s-GNPs), with diameter comprises between 

20 and 40 nm, as labels. These nanoparticles exhibit a deep-red color, which reflects their SPR band 

around 525 nm [6-9] and allow for the naked-eye detection of ICST result when accumulated on the 

lines. Usually, the visual inspection of the color of the lines provides a qualitative result (“yes/no” 

response, fig. 1); even if semi-quantitative tests can be designed, as well [8-9]. 

 

 

Fig. 1. Exemplification of a multiplex ICST employing s-GNP (a) in cassette format. (b) in dipstick format 

 

Besides common spherical GNPs, some authors reported the use of non-spherical [10-11] and 

multilayer GNPs [12-13] as labels for ICSTs with the aim of improving the assay sensitivity  

More specifically, Ji et al. used multi-branched GNPs as labels for developing an ICST for the 

detection of Aflatoxin B1, and reported higher optical brightness, better colloidal stability and better 

sensitivity than using s-GNPs [11]. These multi-branched GNPs exhibited a blue color instead of 

the red color of s-GNPs, because the size and shape of GNPs have significant influences on the SPR 

band. 

In order to exploit the blue color of the multi-branched GNPs for the development of an intuitive 

ICST designed for multianalyte analysis (fig. 2),  the present study  reports the synthesis of desert 

rose-like GNPs (DR-GNPs), their characterization by means of UV-vis absorption spectroscopy, 

transmission electron microscopy (TEM) and dynamic light scattering (DLS) and their use as labels 

for ICST.  Although other ligands have been reported, such as for example aptamers [14-15], the 

large majority of GNP-based ICSTs reported in the literature and commercially available use 

antibodies as recognition elements [16-17] and most frequently the labeling of antibodies with 
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GNPs is achieved through passive adsorption of proteins on their surfaces. Therefore, a preliminary 

study on the passive adsorption of antibodies on DR-GNPs as a function of the pH and the amount 

of antibody (Ab) used for conjugation with DR-GNP was conducted. Both the stability of the sol 

and the performance of the labeled antibodies in a model ICST, in terms of signal intensities and 

analytical sensitivity, were considered.  

 

 

 

Fig. 2. (a) Scheme of the multicolor-ICST in dipstick format, based on the simultaneous use of s- and DR-GNPs.  (b) 

Scheme of the naked-eye interpretation of the results: when the red (blue) intensity of the Test line is significantly 

weaker than that of the negative reference, the sample is assigned as positive for FMB1 (AFB1) contamination 

 

 

Furthermore, the peculiar spectral properties of the DR nanoparticles allowed for  designing a 

multiplexed ICST for the simultaneous detection of two food contaminants. The multiplex analysis 

is highly desirable in screening system for food safety assessment since it allows the on-site 

detection of several targets within a single analysis, providing significant savings in terms of time 

and operating costs [18]. The ICST technique offers easy implementation of multiplex analysis, 

thus allowing producing very attractive cost-effective screening tools. In multiplex ICST two or 

more Test lines are dispensed on the membrane, allowing the simultaneous detection of respective 

targets in a single test. Usually, multiplex ICST are enclosed in a plastic cassette on which reference 

to the targets is provided in correspondence to the position of each Test line (fig. 1a). Otherwise, 

multiplex ICSTs in dipstick format cannot provide any indication about lines positioning (fig. 1b) 

that makes their interpretation confusing, and strongly limits their applicability.  

However, ICSTs in dipstick format are largely preferred with respect to the cassette format, because 

their production is more simple and cheaper. In this context, assigning different colors to different 

analytes would make easier and more intuitive the visual interpretation of the results provided by a 

multiplex dipstick ICST. Color-encoded ICSTs in the multiplex format have been described, which 
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exploit the unique spectral characteristics of quantum dots (QDs) [19-20]. These inorganic 

nanocrystals are capable of emitting fluorescent light at different wavelengths depending on their 

size and composition, when excited by the same source. Therefore, Taranova et al. used QDs 

emitting at different wavelengths for labeling three antibodies and simultaneously determining three 

classes of antibiotics by a multiplex ICST [19]. Similarly, Foubert et al. used three differently 

emitting QDs for labeling as many antibodies and to set an ICST for the multiple determinations of 

four mycotoxins [20]. Although QDs are particularly suited for multiplexing because of the tunable 

color of the emitted fluorescence, still they require a light source for excitation, thus limiting the 

portability and cost-effectiveness of QD-based ICSTs. Metal nanoparticles also offer the 

opportunity of tailoring the SPR band (and thus the color) by varying NP dimension and shape [21-

22]. In fact, the advantage of using differently shaped and therefore differently colored silver 

nanoparticles as labels for multiplex ICST has been demonstrated by Yen et al. [23]. The authors 

reported an ICST for the simultaneous detection of three viruses, which was easily interpreted by 

the naked-eye through color-encoding and without needing any supplementary equipment.  

Here  the first multicolor  ICST based on the use of gold nanoparticles with different colors and, 

namely  blue DR-GNP and red s-GNPs, is described and typified by the simultaneous detection of 

aflatoxin B1 (AFB1) and Fumonisins (FMs) as a model system. AFB1 is a mycotoxin mainly 

produced by Aspergillus species, toxigenic fungi growing on several agricultural products, 

including maize; it has been classified as human carcinogens (Group 1) by the International Agency 

for Research on Cancer (IARC) [24]. Due to adverse effects of AFB1 and to its incidence in food, 

the European Union has set a 2 µg Kg-1 maximum allowed level for AFB1 for all cereals and all 

products derived from cereals, including processed cereals products [25]. FMs are mycotoxins 

mainly produced by Fusarium fungi, which also grow on agricultural commodities in the field, at 

the harvest or during the storage [26]. FMs contamination is endemic in the central Europe and has 

been assessed mainly in maize [27]. These mycotoxins have been classified as possible human 

carcinogens (Group 2B) by the IARC [28] and, as for the AFB1, principal FMs (namely, fumonisin 

B1, FMB1, and fumonisin B2, FMB2) are regulated by European Union [29] and their monitoring 

is mandatory for food safety assessment. AFB1 and FMs are found in several commodities, 

including cereals, and their co-occurrence has already been demonstrated [30-31]. Furthermore, the 

possible synergistic effect of different mycotoxins on human and animal health has been underlined 

[30-31]. Therefore, the availability of analytical devices aimed at detecting co-occurring 

mycotoxins are strongly demanded for monitoring the entire production chain, according to the 

Hazard Analysis and Critical Control Points (HACCP) procedures. 
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Experimental 

 

Preparation of DR-GNPs 

Non-spherical GNPs were synthesized through a seeding growth approach, as described by Li et al. 

[21] and Ji et al. [11] with slight modification. Small s-GNPs (SPR band at 518 nm corresponding 

to a mean diameter of approximately 11 nm) were used as the seeds and a mixture of HAuCl4, 

sodium citrate and hydroquinone as the growth solution. It is somewhat unclear if the growth of the 

branch is dominated by the epitaxial mechanism or by the random attachment of the small GNPs on 

the seeds surface [22], however, the hypothesis is the occurring stepwise reduction of AuIII to AuI 

by citrate and AuI to Au0 by hydroquinone [21].  

DR-GNPs with a SPR band at 620 nm and a hydrodynamic diameter of about 72 nm were prepared 

as follow: in ultrapure water, 1.9 * 10-8 mol of tetrachloroauric acid was mixed with 9.3 * 10-13 mol 

of s-GNP seeds (mean diameter of 11 nm) at room temperature. Then, 7.5 * 10-9 mol of sodium 

citrate was added to the mixture, which was stirred for 2 min for homogenization. Finally, 3.0 * 10-5 

mol of hydroquinone was rapidly added to the solution under vigorous stirring. The solution was 

kept under stirring at room temperature for further 20 min and the sol exhibits a blue color, which is 

consistent with the SPR band observed. The sol was adjusted to the desired pH with carbonate 

buffer (sodium carbonate-sodium bicarbonate 50 mM, pH 9.6). 

 

Preparation of s-GNP-labeled antibodies 

The antibodies were labeled with s-GNPs as previously described [32] through the adsorption of 

proteins onto GNPs surface. The s-GNPs were adjusted to the desired pH with carbonate buffer  and 

the amount of Ab defined from the titration was added to 1 mL of s-GNPs. After 30 min at 37°C, 

100 µL of borate buffer (20 mM pH 8.0) supplemented with 1% w/v BSA was added and the 

solution kept at 37°C for further 10 min. The mixture was centrifuged for 10 min at 25°C (18400 x 

g) and the pellet was washed twice by re-suspension in borate buffer with 0.1%BSA added and 

borate buffer with 1% w/v BSA, 2% w/v sucrose, 0.25% v/v Tween 20, and 0.02 % sodium azide. 

Finally, the pellets were pooled and stored at 4°C until use. 

 

Preparation of DR-GNP-labeled polyclonal antibodies 

Also the DR-GNP-labeled antibodies were prepared through adsorption by adding the amount of 

Ab defined from the titration to 1 mL of pH-adjusted DR-GNPs. However, the conjugation protocol 

was modified as follows: borate buffer supplemented with 10% BSA was used, the centrifugation 
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was conducted for 15 min at 4°C and 6800 x g and the pellet was directly re-suspended in borate 

buffer with 1% BSA added without washings.  

 

Assay procedure 

The s-GNPs-, DR-GNPs- and multicolor-ICST in dipstick format were carried out at room 

temperature. 60 µL of sample extracts (or AFB1 and FMB1 standards) were transferred into wells 

of a 96-well microtiter plate (VWR International, Milan, Italy, https://it.vwr.com/store/). The strip 

was dipped in the well to start the capillary migration process (fig. 2a). Strips were composed of - 

from bottom to top - a glass fiber pad, which acted as the reservoir for GNPs conjugated to 

antibodies and also as the sample pad; the nitrocellulose membrane, which comprised two Test lines 

(T1 responsive to FMs and T2 to AFB1, respectively) and a Control line; and a cellulose fiber pad 

as the adsorbent pad. After 10 min, test results were qualitatively estimated by the naked-eye and, if 

necessary, quantitatively evaluated by acquiring strip images  in order to obtain the optical 

intensities of the lines. In this case, images were processed with QuantiScan 3.0 software (Biosoft, 

Cambridge, UK, www.biosoft.com/).  

Result evaluation was based on the comparison of the color intensities of Test lines with those 

furnished by a negative sample (fig. 2b), while the Control line  ensured the validity of the test. 

 

Analytical performances of the multicolor-ICST  

The multicolor ICST was designed as an intuitive visual ICST for multianalyte detection; therefore 

its analytical performances as a qualitative test were calculated. The visual limit of detection 

(vLOD) of the test was determined by analyzing standard solutions of each target mycotoxin diluted 

in the running buffer (phosphate buffer containing 1% BSA and 0.1% Tween 20) or in blank maize 

extract. The vLOD was defined as the lowest AFB1 and FMB1 concentrations resulting in a Test 

line color significantly weaker than that of the respective line given by a negative sample. Each 

standard was measured at least in triplicate and the visual observation was conducted by three 

different subjects. The vLOD obtained in maize extract was also established as the cut-off level to 

distinguish positive samples from negative samples. The precision and the accuracy of the test were 

evaluated on fortified samples, verifying that the Test lines of eight replicates were similar to each 

other, but different from the Test line of the negative sample. The cut-off levels, defined as above 

described, were used as fortification levels. The accuracy of the multicolor ICST was also evaluated 

by analyzing real samples and verifying the capability of the test to distinguish between negative (< 

cut-off level) and positive samples (≥ cut-off level). Validity of the multicolor ICST was checked 



10 

 

on 18 naturally contaminated maize flour samples by calculating the diagnostic sensitivity, 

specificity, and efficiency, and the positive and negative predictive values. 

 

Analysis of maize flour samples 

Maize flour samples were obtained directly from producers or mills and were stored at -20°C. Their 

content in fumonisins (intended as the sum of fumonisins B1, FMB1 and fumonisins B2, FMB2) 

was determined by the LC-MS/MS, as previously described [32], while the AFB1 contamination 

was assessed by a commercial ELISA kit (EuroClone SpA, Milano, Italy, 

http://www.euroclonegroup.it/). A methanol-water solution (50:50, v/v) was used to extract 

mycotoxins form maize flour (5 mL of extracting solution per 1 g of sample). After a 2 min manual 

shaking, the suspension was allowed to settle for 5 min and the supernatant was analyzed or used to 

prepare FMB1 and AFB1 calibrators. Matrix interference and the high methanol content caused a 

significant decrease of lines intensities, affecting the visual interpretation of the result. In order to 

minimize this effect, we diluted the extracts 1+1 with the running buffer  prior to analysis. 

Calibrators were prepared daily by diluting the reference AFB1 and FMB1 solutions with the 

extract of blank maize flour, i.e.: which FMs and AFB1 content resulted undetectable according 

with the reference measurements. 

 

Results and discussion 

 

GNPs characterization 

Spherical gold nanoparticle of putative diameter comprised between 20 and 40 nm (s-GNPs) were 

synthesized using the citrate reduction method [32], while multi-branched desert rose-like gold 

nanoparticles  (DR-GNPs) were prepared using a seeding growth approach adapted from that 

previously reported by Ji et al. [11]. TEM analysis allowed to visualize GNP morphology: s-GNPs 

showed the expected spherical shape (Fig. 3 b), while DR-GNPs showed a central core decorated 

with several branches (fig. 3 d). The size of the s-GNPs was calculated from TEM micrographs 

resulting in a mean diameter of 25 nm (fig. S1). 

Given the non-spherical shape of the DR-GNPs, their dimension was measured by DLS that showed 

a unimodal size distribution, with a mode hydrodynamic diameter of ~ 72 nm (60 nm corresponded 

to the 10th percentile and 87 nm to the 90th percentile, data not shown). 

UV-vis spectra of s- and DR- GNPs showed strong SPR bands, with λmax at 525 and 620 nm, 

respectively (fig. 3 a, c). According to Khlebstov [33], is also possible to estimate the diameter of 
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spherical GNP directly from their  λmax. The model furnished a mean diameter of 30.5 nm for the s-

GNP with λmax of 525 nm, which slightly differs from the value obtained from TEM micrographs.  

 

 

Fig. 1. (a) Visible spectrum of s-GNPs. Inset: picture of the s-GNP solution. (b) TEM micrograph of s-GNPs obtained at 

500000 x magnification. (c) Visible spectrum of DR-GNPs. Inset: picture of the DR-GNP solution. (d) TEM micrograph of 

DR-GNPs obtained at 200000 x magnification 

 

S- and –DR-GNPs behavior during conjugation with antibodies 

Regardless of their dimension and shape, both s- and DR-GNPs were obtained from synthetic routes 

that produced metal NPs capped with citrate, so a similar interaction mechanism for the adsorption 

of antibodies on their surfaces was supposed. Proteins (and particularly, immunoglobulins) 

spontaneously adhere to the surface of colloidal gold nanoparticles capped with citrate through 

several types of non-covalent interactions such as the attraction between hydrophobic parts of the 

protein and the metal surface and the electrostatic interactions between positively charged amino 
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acids and N-terminus of the protein and the negatively charged surface of the citrate-capped 

particles [34].   

The labeling of antibodies with GNPs for developing GNP-based ICST requires to define the 

minimum amount of the antibody to be adsorbed by nanoparticles in order to stabilize the 

nanoparticles themselves, which depends on the specific antibody used [7, 34-35].  

Usually, the optimum amount of antibody (Ab) for labeling with GNPs is defined as the minimum 

amount preventing GNP aggregation upon addition of a concentrated salt (e.g. 10% sodium 

chloride) and is established by visually inspecting the color of GNP-Ab solutions after salt addition. 

In fact, GNPs aggregation determines a shift of the SPR band from red towards purple or even blue-

grey for highly aggregated GNPs.  

To investigate the influence of  the morphology  of the DR-GNPs on its colloidal stability, also as 

compared to s-GNP, a polyclonal rabbit antibody directed towards aflatoxin B1 was used as a 

model system for being conjugated to both kinds of nanoparticles. As expected, a higher amount of 

Ab was needed to prevent GNP flocculation in the case of DR-GNPs because of their higher surface 

area: 2 µg of antibodies was sufficient to stabilize 0.5 ml of s-GNPs while 8 µg were needed for 

shielding the same amount of DR-GNPs. For DR-GNPs the flocculation induced by salt addition 

shifted the SPR band over the UV-vis range, causing the blue color of the sol turning to colorless 

with a gradual decrease of the OD (Fig. S2). TEM images confirmed that the colorless sol obtained 

for insufficient amount of antibodies adsorbed corresponded to aggregated DR-GNPs (inset figure 

S2 b). 

Using the respective stabilizing amounts of the protein, two conjugates of the anti-AFB1 antibody 

were prepared with s-GNPs and DR-GNPs, respectively. UV–vis measurements were used to 

confirm the effective adsorption of antibodies onto s- and DR-GNPs, since the formation of a layer 

of protein on the GNP surface causes the modification of the refractive index and a shift of the SPR 

band. Accordingly, a λmax shifts from 525 nm to 530 nm for s-GNPs and from 620 nm to 630 nm for 

DR-GNPs were recorded and were considered as indicating successful conjugation. 

Conjugation of DR-GNPs with antibodies required some minor modifications of the usual protocol 

employed for s-GNPs-Ab conjugation. In details, a higher amount of BSA was requested  to block 

any unreacted sites on the DR-GNPs after coating with the antibody due to the increased superficial 

area of the DR-GNP compared to s-GNP. Furthermore,  lower temperature and lower centrifugal 

force should be employed in order to avoid aggregation phenomena. This finding apparently 

indicated that DR-GNPs were more prone to aggregation compared to s-GNPs. However, it should 

be noted that colloidal s-GNPs of diameter comparable to that of DR-GNP are decidedly less stable 

[11], so, conversely, the particular shape of the DR-GNPs contributes in stabilizing the colloid.  
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 As a general rule, it is considered that for maximizing the interaction of a protein with GNPs, 

conjugation should be conducted adjusting the pH at approximately 0.5 pH unit above the 

isoelectric point of the protein to be conjugated [36]. However, a fine-tuning of the system is 

recommended by determining the optimal pH value for conjugation for each specific antibody to 

each GNP preparation in order to maximize the sensitivity of the resulting assay [35, 37].  

Accordingly, GNPs were conjugated to the stabilizing amounts of antibody (as previously 

determined) while varying the pH of the sol from 5 to 8. The GNP-Ab conjugates were used to set a 

preliminary immunochromatographic test for measuring AFB1. ICSTs were carried out by 

quantitatively measuring the color intensity of the Test and Control lines for three levels of AFB1 

(0-1-10 ng ml-1); furthermore, for each pH value, three different concentrations of the GNP-Ab 

conjugate were employed, reported as OD values (0.5-1-2). 

Because AFB1 is a small molecule characterized only by one epitope, the competitive format was 

applied for its detection. In the competitive assay, the free antigen in solution and the antigen 

immobilized on the Test line compete for binding to the GNP-labeled antibody. In the presence of 

the target AFB1 in the sample, GNP-labeled antibodies bind to it while the binding to the reagent 

on the Test line is inhibited proportionally. Thus, the color intensity due to GNP accumulation on 

the Test line is lower compared to that observed for a blank sample, where all DR-GNP-labeled 

antibodies are bound to the reagent forming the Test line. In conclusion, the more AFB1 presents in 

the sample, the lower the intensity of the color of the Test line.  

For DR-GNPs the best compromise in terms of sensitivity and signal intensities was achieved by 

using pH 5 for conjugation to antibodies and OD 2 as the DR-GNP-Ab amount (fig. S3 and S4). 

Comparing the two GNP labels, no evident differences were highlighted in terms of the behavior as 

a function of the pH of conjugation, provided that the same antibody was employed (fig. S5). No 

advantages in terms of ICST sensitivity was achieved by employing the DR-GNP label instead of 

the s-GNP contrarily to previous observations [11]. Moreover, the coefficients of variation of 

replicate measurements ranged from 0.3 to 10.8 % for the DR-GNP label and from 2.9 to 12.2 % for 

the s-GNP label. In conclusion, at least for the model system investigated, DR-GNPs demonstrated 

very similar performance compared to s-GNPs. 

 

The multicolor GNP-ICST 

Once demonstrated that DR-GNPs can be employed as labels for ICST development, these blue 

labels were exploited in combination with red GNP for establishing a multicolor ICST for the 

simultaneous detection of two major food contaminants that can co-occur in crops. Mycotoxins 
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detection is a relevant issue for food safety assessment and the need of multiplex analytical platform 

for their simultaneous detection has been widely highlighted [18, 20, 30-31].  

Preliminary, unwanted interactions between the two different GNP labels were excluded by TEM 

analysis (fig. 4 a) and by assessing that SPR bands of s- and DR-GNPs  did not vary upon mixing 

(fig. 4 b) compared to the individual GNP spectra. Moreover, each GNP-Ab conjugate was able to 

selectively bind to the respective Test line when applied to immunochromatographic strips in the 

multiplex format (i.e.: including two Test lines, each responsive for one target mycotoxin 

separately, fig. 4 c). The test was designed as follows: the first Test line (T1) interacted with s-

GNP-labeled antibodies (red label) and was responsive to the presence of FMs, while the second 

Test line (T2) interacted with DR-GNP-labeled antibodies (blue label) and was responsive to the 

presence of AFB1.  

 

Fig. 4. (a) TEM micrograph of the s- and DR-GNPs mixture, obtained at 80000 x magnification. (b)  Visible spectrum 

of the mixed s- and DR-GNPs-Ab conjugates. Inset: picture of the mixture (c) ICST results obtained by running the Ab 

directed towards FMB1 conjugated to the red s-GNPs (strip on the left) and the Ab directed towards AFB1 conjugated 

to the blue DR-GNPs (strip on the right), separately on a strip including two Test lines (T1 and T2) and a Control line 

(C). 

 

Therefore,  the blue DR-GNP conjugated to anti-AFB1 antibodies and the red s-GNP conjugated to 

anti-FMB1 antibodies were mixed and used in combination to set the multicolor ICST in the 

multiplex format (fig. 2). The increase of each of the target in the sample determined the decrease 

of the color on the corresponding line, so that a fading of the red line was attributed to a sample 

containing FMs above a certain value (the cut-off level) and the fading of the blue line had the same 

meaning but referred to the content of AFB1.   

To determine the visual limit of detection (vLOD) of the multicolor ICST, AFB1 and FMB1 

standard solutions (in the range 0-10 ng ml-1 and 0-500 ng mL-1, respectively) were analyzed. 

Intensities of Test lines were observed by three operators. All subjects reported signals significantly 
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weaker than that of a blank sample at 0.25 ng mL-1 for AFB1 and at 10 ng mL-1 for FMB1 (figure 

5).  

 

 

Fig. 5. Inhibition curve for AFB1 and FMB1. The strip corresponding to the vLODs is highlighted in black 

 

The vLODs in maize were obtained also, by analyzing a blank sample extract fortified at four levels 

for each mycotoxin (0-0.2-0.4-1 ng mL-1 for AFB1 and 0-50-100-200 ng mL-1 for FMB1, 

respectively) and sorted to be  0.4 ng mL-1 and  200 ng mL-1 for AFB1 and FMB1 (fig. S6 and S7), 

corresponding to 2 µg kg-1 and 1000 µg kg-1 respectively in the maize flour. 

The vLODs obtained in maize were set as the cut-off levels of the test. The AFB1 cut-off level 

corresponded to the regulatory limit decided by European Union for cereals and products derived 

from cereals [25]. The FMB1 cut-off level corresponded to the regulatory limit set by European 

Union for maize and maize-based food intended for direct human consumption [29]. Therefore, the 

multicolor ICST allows the simultaneous detection of AFB1 and FMB1, also fulfilling the EU legal 

requirements.  

It is worthwhile noting that the two cut-off levels are in very different range, however the negligible 

cross-reactivity between AFB1 and FMB1 systems allows their correct and accurate detection. 

The assay precision and accuracy were evaluated on fortified samples, prepared by adding AFB1 

and FMB1 to the extract of a blank maize flour at each cut-off level separately. Fortified samples 

were analyzed in eight replicates and compared to the blank sample. Colors on Test lines of the 
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replicates were quite similar to each other and clearly differed from that produced by the blank (fig. 

6). 

 

 

 

Fig. 6. Replicate measurements of a blank maize sample fortified with FMB1 (200 ng mL-1, left) and AFB1 (0.4 ng mL-

1, right) in comparison to the raw negative sample (center). Four replicates for each sample are shown.  

 

Analysis of maize flour samples 

To evaluate further the accuracy of the method, 18 naturally contaminated maize flour samples 

obtained from producers or mills were qualitatively analyzed through the multicolor ICST and 

results were compared to those obtained by reference methods. 

According to the cut-off levels defined as above described, samples containing FMs were classified 

as negative /positive for contamination levels below/above 1000 µg kg-1, samples containing AFB1 

were classified as negative /positive for contamination levels below/ above 2 µg kg-1. Based on 

contamination measured by the reference methods, the 18 samples were classified as follow: 8 

samples were negative both for FMs and AFB1, 4 samples were positive for FMs and negative for 

AFB1, and 6 samples were positive for AFB1 and negative for FMs. 

Each sample was analyzed in triplicate by the multicolor ICST and judged qualitatively by the 

naked eye by three operators (Table S1). . 

A good agreement with the reference values was obtained for all samples, except  for one sample 

(contaminated by FMs at 980 µg kg-1) that was  judged differently by the three subjects involved in 
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the study. Since two out of three subjects judged the sample as positive; the sample was classified 

as false positive. 

The diagnostic sensitivity and specificity were, therefore, calculated as 100% and 96.3%, 

respectively; the efficiency of the analytical method was 97.3%, while the positive and negative 

predictive values were 90.9% and 100%, respectively [38]. 

 

Conclusion 

Due to the growing use of the immunochromatographic technique and its expanding application in 

diverse fields, amelioration of its performance is strongly advisable and widely pursued. This effort 

is testified also by the number of papers reporting new materials to be used as labels [10-12, 39-40], 

sometimes in combination with innovative detection technologies [13, 41], and of enhancement 

strategies aimed at increasing the sensitivity of the ICST compared to using traditional gold 

nanoparticles [42-43], as also summarized in two comprehensive reviews [44-45]. Within the 

number of novel materials for labeling antibodies in ICTS, the request for analytical devices with 

multiplexing capability is prompting towards using labels easily distinguishable from each other, 

such as nanoparticles with different colors [19-20, 23]. Gold nanoparticles are widely employed as 

labels for ICST, thanks to well-recognized advantages, such as easy preparation, stability, easy 

conjugation to antibodies, brilliant and tunable color [6-8, 45]. In this paper, two kinds of GNP 

differing for the color were prepared and used in combination to set a simple and rapid ICST for 

determining two mycotoxins simultaneously. Although more sensitive assays based on the same 

technology have been reported for the determination of each mycotoxin separately [46], their 

determination in a single ICST device has not been described [47], except in a  previous work of 

our group based on using an enzyme as the label coupled to chemiluminescent (CL) detection [48]. 

The CL-ICST was more sensitive and allowed for accurate and precise mycotoxin quantification, 

also thanks to the instrumental apparatus used for measuring and elaborating the signal. The test 

required 30 minutes to achieve completion (not including sample preparation) and several 

subsequent operations. The multicolor ICST based on GNPs is more rapid (total assay time 10 

minutes) and still sufficiently sensitive and accurate for its use as a first screening tool in the food 

safety assessment.                
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