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Little Tom Thumb among Cells:
Seeking the Cues of Life

G. Aletti, P. Causin, G. Naldi and M. Semplice

Abstract For a living being or a cell in a developing body, recognizingits peers
and locating food sources or other targets and moving towards them is of paramount
importance. In most cases this is achieved by detecting the presence of chemical
substances in the environment and moving towards the areas of their higher concen-
tration, a process known aschemotaxis. Despite its fundamental role for life, this
phenomenon is not yet fully understood in all its details andmathematical models
are proving very useful in guiding biological research. We address here two ex-
amples of chemotaxis occurring in the developing embryo: early formation of the
vascular plexus and axon navigation in the wiring of the nervous system.

1 Introduction

The ability of responding to chemical signals present in theenvironment is of up-
most importance for life, for example to recognize peers or locating food sources.
Chemical cues may also serve to mark pathways, which lead to atarget (attractive
cues) as well as repel from selected regions (repulsive cues). Pathfinding by chem-
ical cues is a key mechanism in the developing embryo, where sets of cells have
to organize and reach specific areas to form the different body tissues. Under this
aspect, cells behave like “Little Tom Thumbs” of the molecular world. At this scale,
cues are represented by single molecules, displaced from their release location by a
diffusion process, from higher concentration regions to lower concentration regions.
Cells crawl along the concentration gradient, towards (or away from) the direction
of increasing chemical signal, moving from the peripheriesto the source. This phe-
nomenon is known aschemotaxis.
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Migration of cells was detected from the early days of the development of mi-
croscopy, but it was not initially given great importance, since it was, erroneously,
not considered as a factor responsible of the patogenicity of microorganisms, which
was the main interest at that time. It toke almost a century when in 1881 the German
scientist Engelmann observed the movement of bacteria towards the chloroplasts in
a strand ofSpirogyra algae, in response to oxygen generated by the photosyntheti-
cally active chloroplasts in the algae. The significance of chemotaxis in biology and
clinical pathology was widely accepted in the 1930s, but it was in the 1960s and
1970s that the revolution of modern cell biology and biochemistry provided a series
of novel techniques which became available to investigate the migratory response
of cells. In particular, the pioneering work of Adler [13] represented a significant
turning point in understanding the whole process of intracellular signal transduction
of bacteria.

Chemotaxis is at the basis of the self-organization of endothelial cells that, ini-
tially born at random positions, will eventually gather to form the capillary network
of the embryo. Biologists have detected the presence of a a family of diffusible
molecules, named VEGF, that are secreted by endothelial cells and whose gradients
is an attractive cue for these same cells (in a so-called autocrine loop, [17]). A math-
ematical model of the motion of the cells subjected to the VEGF gradient shows that
the autocrine loop can be sufficient to explain the formationof a capillary network
with a mesh size adequate for the future vital perfusion of oxygen throughout all the
tissues.

The migration of neurons necessary to wire up the nervous system is another
process which relies on chemotaxis, both of attractive and repulsive type. Neurons
detect very small differences in molecule concentration across the tiny section of
their distal part, the growth cone, which also internally elaborates the directional
signal to perform trajectory decisions. A mathematical model of neuron migration
provides hints of the nature of the internal process, that isonly partially known
to biologists. In particular, it allows to characterize theconditions under which a
weak, but coherent, gradient signal can be extracted from the background noise,
highlighting the fact that cells work in a substantial balance between deterministic
decisions and stochastic behaviour.

2 Chemotaxis in vasculogenesis

The formation of the vascular system in vertebrates starts off in the embryo, when
cells initially at random positions differentiate into endothelial cells. Then, they
gather into a continuous uniform network of capillaries known as the vascular
plexus. This process is known asvasculogenesis. An in vitro experiment can be
used to reproduce the phases of vasculogenesis, as shown in the microscopy images
of Fig. 1. Vasculogenesis requires single endothelial cells to be able to “recognize”
their peers and self-organize into a coordinated structure, moving towards other sim-
ilar cells and connecting up into a network. Recent studies showed that the informa-
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Fig. 1 An in vitro vasculogenesis experiment. Endothelial cells are dispersed on a matrigel coated
plate (left) and self-organize into a network within few hours (right). Images from [18].

tion carrier during this process is a chemical substance of the VEGF family. In [18],
moving endothelial cells were tracked by videomicroscopy and their motion was
recognized to exhibit a certain degree of persistence in thedirection of motion and a
marked tendency to turn towards increasing VEGF gradients.Since not all details of
the vasculogenetic process are accessible to direct experimentation, it is important
to set up a mathematical model that can be used to run virtual experiments and help
biologists to focus on the important issues.

2.1 Mathematical model of vasculogenesis

The mathematical model we deal with concerns the formation of an early vascular
network. It is based on the multidimensional Burgers equation, which is a well–
known paradigm in the study of pattern formation. It gives a coarse–grained de-
scription of the motion of independent agents performing rectilinear motion and
interacting only at very short ranges. These equations havebeen utilized to de-
scribe the emergence of structured patterns in many different physical settings (see,
e.g., [19, 14]). In the early stages of the dynamics, each particle moves with a con-
stant velocity, assigned by a random statistical distribution. Particle trajectories in-
tersect and shock waves are formed, giving rise to local singularities. Regions of
high density grow and form a peculiar network–like structure, which main feature
is the existence of comparatively thin layers and filaments of high density that sep-
arate large low-density regions. In order to adapt this model to the study of blood
vessel formation, one has also to take into account the fact that cells do not behave
as independent agents, but rather exchange information in the form of soluble chem-
ical factors. This leads to the models proposed in [9, 18], ofwhich we consider a
modified version. We study the evolution of three variables:cell densityn(x,t), cell
velocityv(x,t) and VEGF concentrationc(x,t) at timet and positionx. Let us first
concentrate on the chemoattractant dynamics, which is responsible for signalling at
each endothelial cell where the others are gathering. VEGF is produced by endothe-
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lial cells themselves and spreads around diffusing in the extracellular environment
at a speed essentially controlled by its molecular weight. Its behaviour is very much
alike that of a metropolitan legend: it has a source (the origin of the piece of news,
or the endothelial cell emitting VEGF), diffuses (by the grapevine, or by Brownian
motion) and gets degraded exponentially (by the modification of the original news
introduced by each person, or by the extracellular environment). Mathematically,
this can be described by the evolution equation

∂c
∂ t

= D∆c + αn− c
τ
, (1a)

whereD is the diffusion constant,α is the source strength andτ the characteristic
time of degradation. Without considering in detail the biochemistry of endothelial
cells which leads to motion under a VEGF gradient, here we model this process by
the equation

∂v
∂ t

+v ·∇v = µ∇c−∇φ(n)−βv. (1b)

The left hand side is the total time derivative of the velocity, while the right hand
side describes the forces acting on cells: the chemotactic gradient∇c, a pressure and
a friction term. In order to close the model, we add a further equation enforcing the
principle of mass conservation of cells

∂n
∂ t

+ ∇ · (nv) = 0. (1c)

The three equations (1) constitute a system of partial differential equations. At the
heart of the model there is the autocrine loop described by the coupling of then and
c variables in equations (1b) and (1a): VEGF is produced by thevery same family
of cells that move around following its gradient. The parameters control the relative
importance of each term and should depend onc in order to get a realistic model. A
more detailed description of the model may be found in [7].

2.2 Fourier analysis

A significant insight in the dynamics predicted by the model can be gained simply
using Fourier analysis on system (1), upon settingβ = 0, φ(n) = 0 and assuming
constant coefficients. In steady-state conditions, Fourier transforming equation (1a)
by substituting the expansionc(x) = ∑ckeik·x (and similarly forn), one finds that

ck =
ατnk

1+ |k|2Dτ
. (2)

Thus the forcing term∇c entering (1b) reads
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1
l0

= 1√
Dτ

Fig. 2 Amplification factor f for nk as a function of the wave number|k|.

∇ck = |k| ατnk

1+ |k|2Dτ
= ατ f (|k|)nk , f (x) =

x
1+ Dτx2 . (3)

The functionf (|k|) is an amplification factor fornk . Its graph, reproduced in Fig. 2,
clearly indicates the net effect of the VEGF autocrine loop:it acts as a filter such
that concentration componentsnkeik·x with wave vectork are strengthened if|k| ∼
1/

√
Dτ and suppressed otherwise. This implies that the steady state solution should

be mainly described by its components with wavelengthl0 =
√

Dτ. Substituting the
experimental values ofD andτ for VEGF, one getsl0 ' 200µm, which is -not by
chance!- the distance that can be reached by oxygen when perfusing in the tissues
from capillaries.

2.3 Simulations and experiments

As observed in [7], realistic models cannot neglect the timederivative in (1a). They
should also include all the terms in (1b) and allow a dependence ofα, β andµ on
the concentrationc. Thus, it is not at all obvious that the conclusions of the previous
section are still valid in this more complex time-dependentand fully nonlinear set-
ting. This however can be assessed by numerically approximating the solutions of
the complete system, after choosing a suitable discretization for the model equations
and implementing a simulator in a parallel computing environment (due to the size
of the problem).

But what is the initial condition? How should we choosen(x,0), i.e. the initial
positions of the endothelial cells? It is unfortunately impossible to follow the em-
bryonal development with non-invasive techniques and thuswe cannot get the exact
initial positions of the cells. However, biologists know that the endothelial cells are
initially approximately randomly scattered in the embryo in the mesoderm germ
layer. Thus we setn(x,0) placing cells at randomly chosen positions, state that they
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Fig. 3 Initial (left), intermediate (middle) and final (right) cell density configuration from a simu-
lated vasculogenesis experiment. The red surface is an isosurface representing the vessels bound-
ary, while the cross-sections are color-coded representations of the cell concentration.

are initially at rest and that there is no chemoattractant (v(x,0) = 0, c(x,0) = 0).
This deployes the possibility of comparing the simulationswith any given experi-
mental image, since initial values are chosen at random. In order to assess the model
behaviour, we run many simulations with different initial data and look for quanti-
ties measurable on both the simulations and the experimental images. One of such
quantities is the ability of oxygen to perfuse from capillaries into the surrounding
tissues. For both the simulations and the experimental data, we mark places where
a capillary is present (see [6] for a detailed description).Convoluting the vascular
network with a sphere of radius 200µm, tells us whether each region of the embryo
can be reached by oxygen perfusing from one of the capillary.Strikingly, results
show that real vascular networks are able to oxygenate the whole embryo, while the
simulated networks can oxygenate only about 75% of the tissues. This value tells us
that the model is a reasonable approximation of the real situation, but also points out
its discrepancy. Most likely this is due to the remodelling of the network occurring
in later stages, which is not yet taken into account by our model.

3 Chemotaxis in neural development

Wiring up the brain during neural development is a task not sodissimilar from find-
ing (without a cell phone!) a friend who is calling us, lost among the people in
a crowd. Neurons extend their distal part, the axon, in search of their targets (the
friend, in the analogy), gaining their way through the surrounding tissues. Axon
migration can be guided by diffusible chemoattractant substances secreted by in-
termediate or final targets [22]; the role of chemorepulsionhas also been demon-
strated by the finding that axons can be repelled by diffusible factors [8]. Different
guidance molecules are known to be implicated in this process, including netrins,
semaphorins, neurotransmitters (see,e.g., [21, 20]). The growth cone (GC), located
at the axon tip, is a highly motile structure that mediates the detection and the trans-
duction of the navigational cues [12, 11]. Chemotropic gradients across the GC
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Fig. 4 Chemotactic assay in axon guidance: the pipette, located inthe right corner on the top of
the figures, establishes a graded field of a chemoattractant and the axon moves towards it (direction
of increasing gradient). Experiments record the final turning angleγ for several axon trajectories.

diameter are often quite small. Studies of culturedXenopus spinal neurons showed
that the GC can respond to a gradient of diffusible attractants of about 5− 10%
across its diameter [24, 20]. Despite these shallow gradients, a steeper internal po-
larization arises in the GC. During the last decade, severalstudies have focused on
deciphering portions of the internal signalling pathway (see,e.g., [20, 12]), which
leads to cytoskeleton rearrangement and, ultimately, directional motility [15]. Most
of these works are refer to the benchmarkin vitro chemotactic assay, which an-
alyzes the turning response of GCs exposed to steady graded concentrations of a
single attractive/repulsive diffusible cue released by a pipette (see,e.g., [24, 25] and
see Fig. 4). We will also consider the same setting.

3.1 Mathematical model of neuron migration

Can we build a model that reproduces the GC behaviour in the chemotactic assay?
Which are the most critical parameters? And, above all, is the model able to tell
us more about the features of this complex phenomenon, whichis still far to be
completely unveiled?

Different mathematical and computational models of axon guidance have been
developed in the last two decades. Due to the fact that gradient sensing and the
internal signal processing are inherently stocastic phenomena, several approaches
synthetically describe the GC trajectory using some kind ofpersistent random walk
model (see for example [5, 16]). Further models are investigated in [1, 10, 23], where
simple mechanisms are investigated, along with their mathematical properties, that
transduce the external signal into an internal signal and then a macroscopic response.
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Fig. 5 Functional tasks of the GC transduction cascade: Cue Detection, Intracellular Process and
Motor Actuator functions with respective input and output quantities. Characteristics time of each
process is indicated under the corresponding box.

To set up our model, we think to the turning process as the sequence of simpler
functional tasks. This representation does not reproducesdetailed intracellular bio-
chemistry, but it phenomenologically maps input/output signals of each unit (see
Fig. 5). Measures of concentration gradients in the environment are produced by the
Cue Dectection Subsystem, the Intracellular Process Subsystem receives the input
about concentration unbalancings, producing a signal which, through the Motor Ac-
tuator Subsystem, causes the deviation of the trajectory. Input and output quantities
we refer to in the following are specified in Fig. 5.

3.1.1 Cue detection: listening to our friend’s voice

Our friend is calling us: how can we recognize his voice amongthe others? That is,
how do axons “listen to” chemical cues (our friend’s voice, in the analogy)? Axons
most probably perceive chemotactic gradients using a spatial comparison of ligand
concentration across the GC diameter. The work of Berg and Purcell [4] on small
sensing devices is an useful theoretical framework to describe signal detection. The
sensing devices are represented here by specialized ligandreceptors distributed all
along the GC surface membrane. If each receptor is capable ofbinding one molecule
of ligand at a time, the probabilityp of the receptor to be bound is

p =
c

c + kD
, (4)

wherec is the local ligand concentration andkD its dissociation constant (i.e, the
concentration for whichp = 1/2). Suppose now thatN1 receptors are concentrated
on the side of the GC facing the ligand source andN2 receptors lie on the other side
(see Fig. 6). The history of thei-th site located on sidej = 1 or j = 2 is described

by a functionp(i)
j (t) that assumes value 1 when the site is occupied and 0 when it

is empty. The information about the surrounding concentration is then represented

by the processesp(i)
j (t) recorded for a sampling timeδ t. An approximation ofp on

each side of the GC is given by

p j =
1

Niδ t

N j

∑
i=1

∫ t+δ t

t
p(i)

j (t)dt, j = 1,2. (5)



Little Tom Thumb among Cells: Seeking the Cues of Life 9

∆̂ p

N1

N2

p1

p2

GC

Fig. 6 A graded field of chemoattractant is established across GC sides 1 and 2 by the pipette. The
binding statesp1 andp2 (time average occupation) of theN1 andN2 receptors provide an estimate
of the concentration differencê∆ p.

The difference in occupancŷ∆ p = p1 − p2 provides an estimate of the difference
of concentration across sides 1 and 2. We will come back to this this quantity at the
end of Sect. 3.1.2.

3.1.2 Climbing up the transduction chain

Hearing the voice of our friend is just the beginning of the process. A large amount
of work must then be performed to reach him. This work is for the most part hidden
from the experimental observation (we just observe the motion). However, some
insight can be gained from the mathematical model. We can characterize the degree
of organization of the signal through the hidden steps of thechain using descriptive
statistical indexes. Starting from the experimental measures of turning angles in the
chemotactic assay and using the mathematical model, we can proceed back and
compute indexes of the earlier compartments. As a statistical index, we use the
coefficient of variation, defined as the ratio between the standard deviation std(·)
and the expected value

�
(·) of a stochastic distribution. Its value allows to assess

the weight of the fluctuating over the deterministic part of the signal. Referring to
the data of [24] (comparable values are obtained from similar experiments by other
authors) for axon turning anglesγ (see Fig. 4 for the definition), we compute

CVγ =
std(γ)
�
(γ)

' 1.16,

where a time of 2h is considered for the observations. The model allows to re-
late CVγ to the coefficient of variation CVPt of the outputPt of the intracellular
process. The quantityPt represents an equivalent force vector that alters the me-
chanical balance of the GC trajectory. It is a stochastic variable composed of a de-
terministic partP̂, which is an “exact” (deterministic) response to the gradient, and
a random noise term, due to fluctuations and errors in the transduction process. We
get (see [2] for a detailed mathematical derivation)
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Fig. 7 Top row: time evolution ofP∗
t = Pt/|P̂| of a typical sample att = 40τ . The arrow in each

panel is the ideal forcêP∗ = P̂/|P̂| (scales in each panel are different, dimensionless units).Bottom
row: corresponding trajectories of 50 out of 10000 computersimulations (scales inµm).

CVPt ≈
√

t
2τ

CVγ ' 5, (6)

τ being the time parameter of the intracellular process. Since Eq. (6) leads to a value
of CVPt of the order of the unity, this suggests that stochastic and deterministic
effects act with comparable magnitude in the internal function. This mechanism
represents a “robust” process with respect to fluctuations:the underlying directional
message is functionally preserved, despite the significantpresence of noise.

It is interesting to use the model to study more in detail the effect of the value
of CVPt on the GC trajectory. We consider the regimes CVPt � 1, CVPt ≈ 1 and
CVPt � 1. In Fig. 7 (top row), we show the simulated processesPt due to a cue
directed along the positivex-axis at timet = 40τ (the system has fairly achieved
its steady state). The dimensionless quantityP∗

t = Pt/|P̂| is plotted for convenience.
When CVPt � 1, the process exponentially drifts to the target value (1,0) remainin-
ing confined in a narrow neighborhood of this latter so that a macroscopic motion
with a deterministic nature is expected. On the contrary, when CVPt � 1, we ex-
pect a totally random walk, since noise is dominating. When CVPt ≈ 1, the drift
and the volatility effects are in competition. In Fig. 7 (bottom row), we plot the
corresponding simulated macroscopic GC trajectories (50 trajectories out of 10000
simulations), which display a very different level of coherency depending on the
magnitude of CVPt . The central panel reproduces more faithfully the typical results
of laboratory experiments (see, e.g., [24]), supporting the idea that CVPt ≈ 1 is the
characteristic operational regime of the internal process. We can proceed further to
investigate the properties of first part of the chain, the cuedetection function. With
this aim, we introduce the quantitỳ, which is connected to the ratio between the
variability of the output of the intracellular process subsystem and of the cue de-
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tection subsystem. Letσ2
1 andσ2

2 be the variances of a typical sensing process on
side 1 or 2 of the GC. SettingN1 = N2 = N and using Eq. (6), we get (see [3] for
details)

` =

√
Nt
δ t

�
(∆̂ p)√

σ2
1 + σ2

2

CVγ , (7)

where
�
(·) is the expected value of a variable. Eq. (7) connects the firstand the last

part of the chain and can be used to predict (without enteringa laboratory!) the sta-
tistical indexes of different experimental settings. For example, we can study what
happens for a ligand concentrationx, with respect to the reference concentrationkD,
obtaining (see [3] for details)

CVγ |x
CVγ |kD

=

VarP̃|x
VarP̃|kD

+(`2
|kD

−1)

`2
|kD

�
(P̃|x)

�
(P̃|kD

)
, (8)

where Var̃Px
is the variance of the signal in output from the cue dectection box at

concentrationx. This allows to propose experimental settings that the biologist can
be interested to test and that otherwise could be disregarded.

4 Conclusions

Biological phenomena are often too complex to be directly observed. The environ-
ment where they take place is rich of concurring processes. Mathematical models
offer the possibility of performingin silico experimentations under controlled condi-
tions of graded complexity: their goal is not just to reproduce the laboratory results,
the “shape”, but, more usefully, to provide explanations ofthe “function”, offering
to the biologist real new insights. When deciding what is themost appropriate math-
ematical model, one must consider the fact that biological phenomena are inherently
stochastic, since, just to cite one reason, at the scale at which they take place thermal
fluctuations are relevant. It is however necessary to take into account what is the in-
formation we are looking for. On the one hand, a purely deterministic PDE approach
picks the main features of the process and computes average quantities, providing
a macroscopic information (for example, the diffusion length in the vasculogenesis
simulation), which may help in assessing biological hypotheses. On the other hand,
a purely stochastic model studies fluctuations around average behaviours. As such,
it might be more indicated if one wants, for example, to understand the reproducibil-
ity of a phenomenon and practically evaluate the number of experiments that must
be carried out to obtain significativity (see Eq. (8)). Models that combine both deter-
ministic and stochastic elements, here not extensively addressed, are more delicate
and represent an useful tool to study nonlinear phenomena, where fluctuations have
a strong impact. One problem of this kind, which will be the object of forthcoming
work, is amplification of weak chemotactic signals in axon guidance.
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