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Abstract 
 
Publicly available multi-omic databases, in particular if associated with medical annotations, are rich 
resources with the potential to lead a rapid transition from high-throughput molecular biology 
experiments to better clinical outcomes for patients. In this work, we propose a model for multi-omic 
data integration (i.e. genetic variations, gene expression, genome conformation and epigenetic 
patterns), which exploits a multi-layer network approach to analyse, visualize and obtain insights from 
such biological information, in order to use achieved results at a macroscopic level. 
 
Using this representation, we can describe how driver and passenger mutations accumulate during the 
development of diseases providing, for example, a tool able to characterise the evolution of cancer. 
Indeed, our test case concerns the MCF-7 breast cancer cell line, before and after the stimulation with 
estrogen, since many datasets are available for this case study. In particular, the integration of data 
about cancer mutations, gene functional annotations, genome conformation, epigenetic patterns, gene 
expression and metabolic pathways in our multi-layer representation will allow a better interpretation 
of the mechanisms behind a complex disease such as cancer.  
 
Thanks to this multi-layer approach, we focus on the interplay of chromatin conformation and cancer 
mutations in different pathways, such as metabolic processes, that are very important for tumour 
development. Working on this model, a variance analysis can be implemented to identify normal 
variations within each omics and to characterize, by contrast, variations that can be accounted to 
pathological samples compared to normal ones. This integrative model can be used to identify novel 
biomarkers and to provide innovative omic-based guidelines for treating many diseases, improving the 
efficacy of decision trees currently used in clinic.  
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1. Introduction 
 
The application of high-throughput genomic, proteomic and transcriptomic experiments has gradually 
become an inevitable component for biomedical science. The reason is that omic data helps the 
interpretation of the mechanisms that cause the onset of complex diseases. In particular, these data help 
in cracking the immense complexity of the cancer genome, improving our comprehension of the 
striking heterogeneity also in histologically similar tumours [1].  
 
Our approach moves from the consideration that during the disease progression some omic processes 
come before others: typically, mutations are the early factors that influence the onset of the pathology. 
For example, we are now able to create phylogenetic trees of cancers, describing the accumulation of 
mutations during time, which transform cells impairing growth constraints and allowing their 
invasiveness.  
 
But cells can become pathological also in consequence of alterations in the surrounding 
microenvironment, rather than for mutations in their own DNA, and epigenetics changes reflect these 
cellular interactions [2]. Recent evidences in cancer development point to a crosstalk between these 
two mechanisms, suggesting that gene mutations have the potential of disrupting several epigenetic 
patterns and that epigenetic modifications can drive genomic instability and mutagenesis. For example, 
whole exome sequencing of thousands of human cancer cells revealed unexpected mutations in genes 
involved in epigenetic mechanisms, and those mutations have the potential to disrupt DNA methylation 
patterns, histone modifications and nucleosome positioning [3]. 
 
Beside having direct effects on gene expression, therefore influencing metabolic pathways, all these 
pathogenic mechanisms play a role in reshaping the 3D chromatin conformation, modifying long-range 
interactions in the genome. Indeed, there are evidences that DNA topological changes occurring during 
the disease development support the conversion of cells to a pathological state [4,5]. Considering 
cancer, although chromatin conformation changes are poorly understood during the tumour 
development, it is possible to demonstrate that oncogenic transcription-factors overexpression is 
associated with global, reproducible, and functionally coherent changes in the chromatin organization 
[6,7]. A better comprehension of chromatin conformation modifications can be achieved by integrating 
data concerning genetic variations, genome conformation, gene expression, epigenetic patterns, gene 
functional regulation and metabolic pathways (see Figure 1). 
 
Evidences of the 3D genome conformation role in regulating and maintaining cellular functions are 
continuously emerging [8-18]. For example, pathological genome organizations can be associated with 
many diseases, such as muscular dystrophy [19] and Rett syndrome [20]. The genome folding plays a 
critical role also in chromosomal rearrangements that occur during the creation of the antibody 
repertoire as part of the immunological development [21-22]. Moreover, insertion sites selected by 
retroviruses (and retroviral vectors in gene therapy) to inject their exogenous genomic material in the 
host genome are largely influenced by the 3D organization of chromosomes [23].  
 



 
 

 
Figure 1 - Chromatin conformation as an integrator of omic signals. Cancer can evolve by accumulating many mutations, which impact on the expression 
profile of cells, but also collecting from the microenvironment stimuli that boost cell transition to tumour, causing genomic instability. Beside having direct 
effects on gene expression, therefore influencing metabolic pathways, all these signals are integrated by the conformation of the DNA in the nucleus. 
During the development of the disease, changes in long-range genome interactions impact on cell’s regulatory patterns. By combining all these effects, the 
expression profile of cells acquires the typical hallmarks of cancer, changing its metabolic characteristics and modifying its molecular pathways. 
 
 
For example, Genome-Wide Association Studies (GWAS) have identified more than 70 common 
single nucleotide polymorphisms (SNPs) that are associated with the breast cancer risk [24]. However, 
the vast majority of these SNPs lie in noncoding regions of the genome and their interpretation is 
difficult [25,26]. To test whether SNPs regulate their target genes through long-range chromatin 
interactions, capture-based sequencing technology have been used to investigate possible cis-
interactions at different cancer risk loci [4,5], finding very interesting results in this sense. More 
generally, the association between chromosome conformation and epigenetic patterns is under 
investigation, by comparing normal and cancer tissues. The organization of the chromatin in the 
nucleus can be itself a biomarker [27], since specific reorganizations of the genome in the nucleus can 
characterize the early onset of tumours, as it has been demonstrated for breast cancer [28].  
 
In the past, researchers were able to study the position of the DNA in the nucleus through microscopy, 
using light reflecting antibodies able to recognize specific genes. However, since 2002, a technology 
called Chromosome Conformation Capture (3C) permits to stabilize the DNA conformation before 
sequencing the genome, allowing the identification of sequences that are close to each other in the 3D 
space of the nucleus. 3C techniques are producing a huge amount of data concerning the conformation 
of our genome and important studies have already been accomplished to investigate how the chromatin 
is organized into domains of co-ordinately regulated enhancers and promoters [29]. However, while 
there is a rapid growth in data production and improvements in experimental protocols [30], suitable 
computational approaches are still required to turn these data into real clinical knowledge. 
 



Experimentally, 3C consists in stabilizing protein-mediated DNA interactions through formaldehyde. 
The cross-linked genome is enzymatically digested and the resulting pieces of genomic DNA are 
ligated. This approach generates new binary connections, relying on the spatial proximity of 
chromosomes in the nucleus, which can be sequenced as paired-end reads. Coupling 3C with massive 
parallel sequencing allows the study of the genome folding in the nucleus at unprecedented resolution. 
High Throughput 3C methods (HT-3C), such as Hi-C and chromatin interaction analysis by paired-end 
tag sequencing (ChIA-PET), have made it possible to generate genome-wide data about interactions 
between chromatin segments at Kb–Mb resolutions, thus opening the way for studying the 3D genome 
conformation at these scales.  
 
Although HT-3C can provide very interesting results, this experimental procedure is far from being 
perfect: not all the established contacts are real and not all the effective contacts are identified. Even 
more complex is to interpret data, which means to understand why a contact is there, trying to explain 
the association between two pieces of chromatin (and their corresponding genomic features) that are 
near each other inside the nucleus. Are these genes co-localized because they are involved in the same 
metabolic pathway? Are they controlled by the same genetic and epigenetic regulation? How mutations 
impact on the conformation of the DNA in the nucleus? How do epigenetic factors modulate the 
genome conformation? Why are these genes close to each other in some cells, while they are distant in 
others? Is the activity of these genes effectively correlated to their positions? And, the more important: 
how do changes in the genome conformation correlate with cancer? 
 
To answer these questions, there are few computational and statistical solutions at the moment. The 
most popular approach to HT-3C data analysis relies on contact maps, which are matrices of pairwise 
contact frequencies in the genome. This representation, despite being simple from a mathematical point 
of view, makes difficult to capture the complexity of the nuclear organization, since it only provides a 
description of binary interactions, preventing the creation of a metric about the distances of different 
genomic segments. To improve the analysis of HT-3C data, graph-based approaches have been 
proposed, such as CytoHi-C [31] and Homer [32], which both rely on Cytoscape for network analysis. 
 
In a previous work we developed NuChart [33-34], an R package that elaborates Hi-C information to 
provide a systems biology oriented, gene-centric view of the three-dimensional organization of the 
DNA in the nucleus. In this paper, we want to improve the graph representation of Hi-C data discussed 
in previous works, proposing a multi-level approach able to integrate different omics using multi-level 
networks. This representation can describe in a single model the topology of the DNA in the nucleus, 
epigenetic profiles, cancer mutations, gene functional relations, gene expression and metabolic 
pathways, creating an integrative environment that is still lacking in multi-omic data analysis. 
 
We will show how this modelling approach is able to characterize the correlation between the function 
of some genes, their spatial distribution and the progression of complex diseases, such as cancer. 
Extending gene network representations to multi-layer models will improve their descriptive power, in 
order to identify the mechanisms behind gene co-localization, co-expression and co-regulation. Ideally, 
by defining appropriate confidence intervals for each different biological feature, we will be able to 
introduce the concept of variance analysis for omic sciences, allowing multi-omic data to be really 
translational, since this information can be used to improve decisions in the treatment of patients and 
also to ameliorate the predictive power of survival curves. In particular, we will test this framework on 
data from a breast cancer cell line, to describe the spatial, functional and regulatory differences in two 
distinct conditions. 
 
 
 



2. Materials and Methods 
 
This paper shows how a multi-layer approach for the integration of different omic datasets, 
representing multiple aspects of the pathology evolution, can be used to model and analyse 
heterogeneous data, improving medical treatments and achieving better predictions about the disease 
outcomes. Several bioinformatic tools and network theory concepts have been combined in a unique 
framework to achieve an integrative multi-layer representation of multi-omic data, which are presented 
below.  

2.1 Biological layers 
 
Although different combinations of networks and scalar data are possible, the framework we propose is 
three-layered. The first layer is composed by data about mutations, mapped on networks representing 
gene-to-gene functional similarities, relying on the Biological Process (BP) domain of the Gene 
Ontology (GO) [35]. In this way, we want to verify if disease related genomic variations are correlated 
with specific biological functions, with a particular interest in metabolism, in order to characterize 
critical genes.  
 
The second layer models the genome conformation, since it represents Hi-C data processed with 
NuChart [33-34], on which epigenetic profiles are mapped as features of the vertices. The choice of 
mapping epigenetic patterns on nuclear maps is oriented at studying specific chromatin profiles 
influence the final conformation of the DNA in the nucleus, highlighting regulatory patterns.  
 
The third layer is created mapping gene expression profiles on protein-protein interaction data, as 
reported in STRING [36]. Therefore, this layer is mainly devoted at identifying up and down regulated 
pathways in different experimental conditions. To achieve the multi-layer model we use MuxViz [37], 
which allows to integrate these three layers and to apply inter-layer clustering algorithms (see Figure 2) 
as well as other diagnostics and modelling tools. 

2.1.1 Mutations and functional information 
 
The GO initiative provides rich information and a convenient way to study gene functional similarity, 
which has been successfully used in various applications. However, the existing GO-based gene 
function similarity measurements are quite difficult to use and only few tools are able to compute 
metrics taking into account the whole ontology structure. To define a gene functional topology 
according to GO, a novel integrative measure (and the related analysis tool) called InteGO2 has been 
used, which automatically selects the appropriate seed measures and then integrates them using a meta-
heuristic search method [35]. By using this approach, we obtain the first layer of our representation that 
describes the functional similarity of genes, on which information about mutations of disease 
associated genes can be mapped. 
 
Many different databases are available to download data about SNPs involved in specific diseases. For 
example, one of the most used databases for genomic variations involved in tumours is COSMIC, the 
Catalogue Of Somatic Mutations In Cancer [38], because it is the largest and most comprehensive 
resource for exploring the impact of driver and passenger mutations in human cancers. The latest 
release describes two millions of manually curated point mutations in over one million tumour samples 
and across most of the human genes. 
  



2.1.2 Hi-C and Epigenetics data 
 
The second layer of our model describes the genome conformation and mostly relies on Hi-C data. As 
introduced, this method combines Next-Generation Sequencing (NGS) and 3C, a technique in which 
DNA (together with the proteins that coordinate the chromatin conformation) is cross-linked with 
formaldehyde, enzymatically fragmented, and re-ligated relying on its physical proximity in the 
nucleus. From the bioinformatics point of view, chromatin conformation data have been analysed using 
NuChart [33-34], a complete suite of tools for the analysis of Hi–C experiments using a gene-centric 
point of view, to provide a map on which other omic information can be mapped.  
 
In order to complete the Hi-C layer, it can be desired to map epigenetic data on the neighbourhood 
graph of a gene, such as methylation and histone modification. Typically, the experiments used to study 
these epigenetic patterns rely on chromatin immunoprecipitation sequencing (ChIP-seq), a method used 
to analyse protein interactions with DNA. A possible choice is to used data achieved through 
Methylated DNA immunoprecipitation sequencing (MeDIP-seq), a large-scale purification technique 
used to enrich for methylated DNA sequences, which relies on isolating methylated DNA fragments 
via an antibody raised against 5-methylcytosine followed by massive parallel sequencing. 
 

2.1.3 Interaction and Expression data 
 
Protein-protein interaction networks are an important ingredient for the system-level understanding of 
cellular processes, and omic data analysis heavily depends on high quality knowledge-base of pathway 
maps. A very useful database in this context is STRING (Search Tool for the Retrieval of Interacting 
Genes/Proteins) [36]. The STRING database contains information from numerous sources, including 
experimental data, computational prediction methods and public text collections. 
 
We use the information available in STRING to define the topology of the third layer of our model, 
which represents the phenotype, in terms of gene expression and metabolic pathways, achieved by 
pathological cells according to the modifications of the genome conformation. To this end, the obvious 
choice is to map on this layer the expression of genes, in order to highlight possible correlations 
between gene co-expression, co-localization and co-regulations in cancer cells. 
 
2.1.4 Bioinformatics pipeline 
 
From the bioinformatic point of view, the multi-layer model is the result of a pipeline that encompasses 
a number of steps in which the tools highlighted above have been employed. The whole process starts 
by identifying some genes of interest, called seed genes.  
 
We start by computing the neighbourhood graph for the seed genes using NuChart, working on the raw 
sequencing data, usually downloaded from the the NCBI Short Read Archive (SRA) database, of the 
appropriate Hi-C experiment (since, in our example, we need raw sequencing data to create our 
neighbourhood graphs). Once the Hi-C graph has been constructed (considering a user defined distance 
from the seed gene), we skim the edges list, taking only edges with weight (i.e., probability of 
existence) greater than a specific threshold (default p-value < 0.05). From this list of edges, we retrieve 
all unique genes that play a part in the current network, and use this list as input for the InteGO2 web 
application. With InteGO2 we can compute the gene-to-gene functional similarity, which is returned as 
a network that links genes that are functionally similar. At the same way, we build the protein-protein 
interaction network for the seed genes using the STRING search tool (considering a user defined 
distance from the seed gene). 
 



The next step is to map genomic data on the achieved layers: as already explained, we map epigenetic 
data on the Hi-C layer, expression data on the STRING layer, and gene mutations on the InteGO2 
layer, although other combinations are possible.  
 
Concerning epigenetics, experimental results can be typically downloaded from the NCBI Gene 
Expression Omnibus (GEO) database, where pre-processed ChIP-Seq data are publicly available (in 
our example, MeDIP-seq data were accessible for the same cells of the selected Hi-C experiments). 
The pre-processed output can be usually downloaded as text files, which contain enriched peaks 
(default p-value < 0.05), usually called using MACS [37]. While rendering graphs, we use the average 
value of the considered epigenetic mark, taking into account all the genes playing a role in the Hi-C 
layer, as a threshold to differentiate the graphical look of the nodes and colouring the vertices 
accordingly. Moreover, the logarithm of the normalized epigenetic values is used to determine the 
graphical size of the node. 
 
A rather similar approach has been used for mapping expression data and mutations on the STRING 
and InteGO2 layers, respectively. Pre-processed expression data can be freely downloaded both from 
the EMBL-EBI ArrayExpress database (in our example, gene expression data were accessible for cells 
in the same conditions and at the same time points of the selected Hi-C experiments) as text files, 
which contains differential expressed genes (default p-value < 0.05). When rendering the graph, we 
compute the average expression value of all the genes in the STRING layer, and we then use this value 
as a threshold for choosing the colour of the vertices, as explained in the previous paragraph, while the 
logarithm of the expression value determines the graphical size of the node.  
 
At the same way, mutations are mapped on the InteGO2 layer: the mutation dataset is downloaded 
from a reference database (in our example, from the COSMIC catalogue), according to the pathology in 
analysis, which typically describes, for each gene, the number of analysed samples carrying mutations 
in relation to the number of tested samples. We use this number for determining both colour and size of 
the nodes in the GO-based layer, according to the protocol described above. 

2.2 Multi-layer integration 
 
A network representation is useful for describing the structure of a large variety of complex systems, 
although most real frameworks have multiple subsystems and layers of connectivity. Achieving a deep 
understanding of such systems necessitates the generalization of the traditional network theory, and the 
huge amount of data generated by NGS is a very interesting ground to test increasingly complex 
frameworks for network analysis [38]. 

2.2.1 Multi-layer formalization 
 
When we refer to multi-layer networks we adhere to the definition provided in [39], where 
interconnected systems are described as networks where many, or even all the actors of the system 
have a counterpart in each layer, so that one can associate a vector of states to each actor. Multi-layer 
networks can encode much richer information than the individual layers separately. This, in turn, 
provides a suitable framework for versatile analyses that are widely used to reveal multi-layer 
community structures, to identify node clusters, and to compute correlation statistics between them. 



  
 
Figure 2 - Multi-layer approach to multi-omic data integration. Our approach consists of a three-layered model to compare cells in different conditions: the 
first layer represents the functional similarity of genes (according to the BP domain of GO) on which mutation data from the COSMIC database are 
mapped; the second layer represents the conformation of the chromatin in the nucleus (according to Hi-C data analysed with NuChart) on which epigenetic 
information of cells are mapped, relying on MeDIP-seq experiments; the third layer represents a protein-protein interaction network (according to the 
STRING database) on which gene expression data are mapped.  
 
From the mathematical point of view, adjacency matrices are useful to describe traditional single-layer 
networks, but such representations are insufficient for the analysis and description of interconnected 
networks. One must therefore develop a more general mathematical framework to cope with the 
challenges posed by multi-layer complex systems. The principal theoretical foundations for a wide 
variety of multi-layer networks have been laid out in Kivelä et al. [39], in an attempt to present a 
unifying framework to treat both traditional single-layer networks and a variety of complex networks 
successfully. 
 
In particular, a graph (i.e. a single-layer network) is a tuple G = (V, E, w), where V is the set of nodes 
(or vertices) and E ⊆ V×V is the set of edges that connect pairs of nodes according to some type of 
relationship. w is a function w: E ⟶ ℝ + that assigns a weight to the edge, thus qualifying the relation 
between two nodes. We can thus define ei,j as the edge that connects node i to node j, with wi,j being the 
weight of the edge that connects node i and node j. If there is an edge between a pair of nodes (ei,j, eE), 
then those nodes are adjacent to each other. This edge is incident to each of the two nodes, and two 
edges that are incident to the same node are also said to be incident to each other.  
 



In multi-layer networks, we will use the term adjacency to describe a connection between a pair of 
node-layers, and the term incidence to describe two (or more) edges that connect a node-layer pair. 
Follows that two edges that are incident to the same node-layer pair are also incident to each other. By 
assembling a set of layers L using a Cartesian product L1×⋯ ×Ld, we can indicate whether a node is 
present in a given layer. To do so, we first construct a set V×L1×⋯ ×Ld of all the combinations of a node 
and a layer, and then define a subset VM ⊆ V×L1×⋯ ×Ld that contains only the node-layer combinations 
in which a node is present in the corresponding layer. In multi-layer networks we also need to specify 
the starting and ending layers for each edge: in this perspective, EM is the set of pairs of all possible 
combinations of nodes and layers: EM ⊆ VM×VM. Using the components set up above, a multi-layer 
network is defined as a quadruplet M = (VM, EM, V, L).  
 

2.2.2 Multi-layer representation  
 
MuxViz is a framework designed for the analysis and visualization of multi-layer networks. It allows 
an interactive visualization and exploration of graphs where nodes exhibit multiple relationships 
simultaneously, on different layers [40]. By combining two standard force-directed algorithms, it 
determines the positions of nodes in each layer, and project them to an aggregated network obtained by 
summing the corresponding entries of the adjacency matrices of the individual layers. Specifically, first 
the Fruchterman–Reingold algorithm is applied to the aggregated network, and then the output of this 
algorithm is used as a seed layout for the Kamada–Kawai algorithm to achieve a better spatial 
separation of nodes in the final layout [40].  
 
MuxViz provides a generalization of several important network descriptors — including degree 
centrality, clustering coefficients, eigenvector centrality, etc. — by means of tensor formalisms and 
higher-order tensor algebra. Tensors provide a convenient mathematical representation for generalizing 
ordinary static networks, and permit to encapsulate complicated sets of relationships that can also 
change in time. MuxViz can also derive the aggregated network from the interconnected structure, 
where the edges between two actors are summed up across all layers. The aggregated layer puts in 
evidence how topological descriptors of interconnected networks differ from the ones corresponding to 
their aggregated graphs. 
 
 
2.2.3 Centrality measures and Correlations 
 
We defined above our single-layer network as tuples G = (V, E, w), resulting in undirected weighted 
graphs. The identification of the most “important” nodes in a system has great importance in network 
characterization. The most intuitive topological measure of centrality is given by the degree of the 
nodes: more connected nodes are more central. The degree of a node di is defined as the sum of its 
incident edges: 
 
 
 

𝑑" = 𝛴%	  𝑒",%, 𝑒 ∈ 𝐸, (𝑖, 𝑗) ∈ 𝑉 
 
 
 
 
 
 



We can take into account the degree of each node in each layer L of our multi-layer model, as well as 
the degree of the nodes in the aggregate layer. However, more is not necessarily better: the weights of 
the edges differentiate them according to the relationship that ties the nodes. In our case, nodes 
relationships vary according to the information encoded in the graph — functional similarity, spatial 
proximity and physical interaction, respectively. Taking into account the weight of the edges we are 
able to analyse the strength of each node si, that is defined as the sum of weights attached to the edges 
belonging to a node: 
 
 

𝑠" = 𝛴%	  𝑒",%𝑤",%, 𝑒 ∈ 𝐸, (𝑖, 𝑗) ∈ 𝑉 
 
 
This quantity measures the strength of vertices in terms of the total weight of their connections. In each 
layer L of our multi-layer model, connections reflect a particular relationship quantified with values 
ranging between 0 and 1, thus reporting the probability for that relationship to exist. With MuxViz we 
can compute the strength of each node in each layer, separately, plus the strength of the nodes in the 
aggregate layer, resulting in a natural measure of the importance of a vertex i in our model. 
 
Working on the resulting graphs we can apply some centrality statistics to identify those “important” 
vertices that are likely to be highly influential for the dynamics of the described mode, such as cancer 
super-spreaders. By using the tensorial calculation introduced above, MuxViz permits to extend well 
known statistics for centrality analysis in multi-layer networks. Among the others, the HITS centrality 
(Hyperlink-Induced Topic Search) is a link analysis algorithm that was introduced to rank websites in 
relation to their importance for users. This approach considers two different descriptors for each node, 
namely hub and authority: in the context of the World Wide Web, certain web pages that point to an 
important page, generally also point to other important pages, building a structure similar to a bipartite 
topology where relevant pages — i.e., authorities — are pointed by special web pages — i.e, hubs — 
which are not actually authoritative in the information that they held, but directly connect to many 
other authoritative pages. Follows that nodes with high authority centrality are linked by nodes with 
high hub centrality, while very influential hubs point to nodes which are very authoritative. 
 
With MuxViz we can also calculate a measure of correlation (e.g. Pearson or Spearman correlation) 
between each pair of descriptors, to obtain a set of pairwise distances and measure the similarity 
between layers. The inter-layer assortativity module computes the Pearson correlation between the 
degree (and strength) of nodes and their counterparts in other layers, for all pairs of layers, so as to 
measure the linear correlation between two variables, X and Y, returning a value in the range [+1, −1], 
where 1 is total positive correlation, 0 is no correlation, and −1 is total negative correlation. An 
alternative correlation analysis is the Spearman correlation, that is again a nonparametric measure of 
statistical dependence between two variables, but is recommended when the assumptions underlying a 
Pearson test are not satisfied. This is another measure of similarity between layers. 

3. The breast cancer case study 
 
To discuss our approach on a specific test case for the characterization of damage spreading in cancer, 
we used data from the MCF-7 breast cancer cell line, for which many different omic experiments are 
available. MCF-7 is a breast cancer cell line isolated in 1970 from a 69-year-old Caucasian woman, 
which retained several characteristics of differentiated mammary epithelium, including the ability to 
process estradiol via cytoplasmic estrogen receptors and the capability of forming domes.  
 



Our primary data source is the work of Mourad et al. [41], in which a time series Hi-C experiment has 
been discussed as a promising methodology for a better understanding of the chromatin conformation 
global dynamics and its link with gene regulation (GEO:GSE51687). This time series corresponds to 
different sampling performed after cell treatment with 17β-estradiol (E2), the primary female sex 
hormone, which is responsible for the development and regulation of the female reproductive system 
and secondary sex characteristics. Estrogen stimulation is an important factor in human breast cancer 
cell growth and development, since it leads to genome structure reconfiguration, thereby disrupting the 
originally chromatin structures [42]. 
 
More precisely, we considered MCF-7 chromatin conformation experiments performed by Mourad et 
al. [41] at time point 0h and 4h after 7x10-8 M E2 stimulation. These data have been analysed with 
NuChart and only edges having high statistical significance (p-value < 0.05) have been retained in the 
graphs. For gene expression, we used MCF-7 time-series data after E2 stimulation from Ciccatiello et 
al. [43], considering time points 0h and 4h after 5x10-8 E2 stimulation. These time points are shared 
between Hi-C and gene expression experiments (AE:E-TABM-742) and only differential transcribed 
genes (p-value < 0.05) have been considered. From the epigenetic point of view, many different aspects 
play an important role in cancer evolution. Taking into account publicly available datasets, we decided 
to integrate MeDIP-seq data concerning methylation in MCF-7 from Hsu et al. [44]. These data are 
from MCF-7 cells that were not stimulated with E2, since methylation patterns are mostly static in 
response to E2 within the 24 h [45-47], and only peaks identified with high confidence (p-value < 0.05) 
have been considered in the model (GEO:GSE21068). 
 
In Figure 3 and Figure 4 we present two multi-layer graphs, as achieved with MuxViz, for the breast 
cancer cell line MCF-7 at time point 0h and 4h after E2 stimulation (see Supplementary Table 1 and 
Supplementary Table 2 for the full gene lists). In particular, these graphs have been generated using the 
Estrogen Receptor 1 (ESR1) as seed gene, which a key regulator for the physiological growth and 
differentiation of the mammary gland, but also a key element for the malignant progression of breast 
cancer. Once activated by estrogen, the ESR1 is able to translocate into the nucleus and bind to DNA to 
regulate the activity of different genes, which makes this protein particularly interesting from the 
chromosome conformation point of view. Using ESR1 as input, we identified its neighbourhood genes, 
according to the available Hi-C experiments. At the same time, we generated the other layers using 
InteGO2 and STRING. The fourth level in Figure 3 and Figure 4 represents the aggregate layer, which 
shows the whole gene set staged in the other three layers (since, as discussed above, they can present 
different genes, due to the different connections that can be generated using the seed genes as input of 
the different tools). The colours and dimensions of vertices are plotted according to the scalar values 
assigned to each node, representing the different multi-omic features, reported in log scale (see the 
method section for details). In particular, on the Hi-C layer we mapped gene methylation, on the 
STRING layer we mapped gene expression, and on the gene functional layer we mapped mutations as 
retrieved from the COSMIC database.  
 
As it can be seen from the comparison between Figure 3 and Figure 4, after the E2 stimulation the 
genes inside the nucleus achieve a closer conformation, becoming denser around the seed gene ESR1. 
This gene also changes its expression, since after stimulation it expression doubles, which is somehow 
expected considering its role in the malignant progression of breast cancer.   However, the most evident 
variation is the number of mutations that appear in the network after the stimulation, which testify for 
the amount of mutated genes activated by E2. This evidence highlights how variations can diffuse 
around few critical mutations, increasing damage spreading in cancer cells. 
 
 
 
 

 
 



 
Figure 3 - Multi-layer graph for the breast cancer cell line MCF-7 at time point 0h, before E2 stimulation, considering ESR1 as seed gene. Panel A 
represents the stacked multilayer (interlayer edges have been removed for readability), while panel B shows each single layer separately. In both panels, 
from left to right, the first layer represents the functional similarity of genes relying on the BP domain of GO, as computed by InteGO2. On this network, 
breast cancer mutation data are mapped, according to the COSMIC database (colours and dimensions of nodes indicate the number of samples with 
mutations in the COSMIC dataset for each gene). The second layer represents the conformation of the chromatin in the nucleus, according to Hi-C 
experiments analysed using NuChart. Vertices are coloured according to the methylation of genes, relying on MeDIP-seq experiments. The third layer 
represents a protein-protein interaction network according to the data reported in the STRING database. Gene expression data have been mapped on this 
graph and vertices are represented accordingly. Please note that in each layer genes are mapped always in the same positions, according to the 
representation achieved in the fourth level of panel A, in which all genes are aggregated and the Fruchterman–Reingold is performed to achieve the optimal 
distribution of vertices. 
 
 
More generally, relying on the results achieved genome wide, this study demonstrates the role of the 
estrogen on the global organization of the genome and its link with gene regulation in cancer. After E2 
stimulation the network shows a more centralized configuration, and methylation patterns seems anti-
correlated to active genes, as expected. Beside augmenting the number of long-range interactions, E2 
induces a dynamic mechanism of global chromatin reorganization. More specifically, gene-rich 
chromosomes as well as areas of open and highly transcribed chromatins are rearranged to a greater 
spatial proximity.  
 
On the other hand, we see a substantial independence between gene expression and gene co-
localization, which can be partially explained with a general deregulation of physiological pathways. 
The impression is that after the E2 stimulation cells are forced to increase their activity, which results 
in a generalized growth of gene expression. From these results, we can conclude that E2 induces a 
higher spatial compartmentalization of genes, with a wide activation of genes in open chromatin 
regions.  



 
 
Figure 4 - Multi-layer graph for the breast cancer cell line MCF-7 at time point 4h after E2 stimulation, considering ESR1 as seed gene. Panel A represents 
the stacked multilayer (interlayer edges have been removed for readability), while panel B shows each single layer separately. In both panels, from left to 
right, the first layer represents the functional similarity of genes relying on the BP domain of GO, as computed by InteGO2. On this network, breast cancer 
mutation data are mapped, according to the COSMIC database (colours and dimensions of nodes indicate the number of samples with mutations in the 
COSMIC dataset for each gene). The second layer represents the conformation of the chromatin in the nucleus, according to Hi-C experiments analysed 
using NuChart. Vertices are coloured according to the methylayion of genes, relying on MeDIP-seq experiments. The third layer represents a protein-
protein interaction network according to the data reported in the STRING database. Gene expression data have been mapped on this graph and vertices are 
represented accordingly. Please note that in each layer genes are mapped always in the same positions, according to the representation achieved in the 
fourth level of panel A, in which all genes are aggregated and the Fruchterman–Reingold is performed to achieve the optimal distribution of vertices. 

4. Results 
The first analysis we performed on the achieved multi-layer graphs was to compute the distribution of 
the strength and degree of the graph nodes — which identify genes or proteins, depending on the 
considered layer — in order to identify the most important genomic players before and after the E2 
stimulation. To this end, Figure 5 proposes four charts displaying the top 20 genes in function of node 
strength and degree. Stacked bars represent each single layer separately (GO functional annotations, 
chromosome conformation and protein-protein interactions), the aggregate layer (the layer with all the 
nodes represented in the other layers) and the whole multi-layer model.  
 
 



In particular, looking at Figure 5, panel A shows the top 20 genes considering the strength of the nodes 
in the graph before the stimulation, which should be compared to panel B, showing the top 20 genes 
considering the strength of the nodes in the graph after the stimulation. At the same way, panel C 
shows the top 20 genes considering the degree of the nodes in the graph before the stimulation, which 
should be compared to panel D, showing the top 20 genes considering the degree of the nodes in the 
graphs after the stimulation. 
 

 
Figure 5 - Stacked histogram plots of centrality measures. This figure shows the top 20 genes considering the strength and degree of the nodes in the 
graphs before and after E2 stimulation. Each grouped histogram represents each single layer separately, the aggregate layer (the layer with all the nodes 
represented in the other layers) and the whole multi-layer model. In particular, panel A shows the top 20 genes considering the strength of the nodes in the 
graphs before the stimulation; panel B shows the top 20 genes considering the strength of the nodes in the graphs after the stimulation; panel C shows the 
top 20 genes considering the degree of the nodes in the graphs before the stimulation; panel D shows the top 20 genes considering the degree of the nodes 
in the graphs after the stimulation. 
 
 
CADPS is the gene showing the highest strength and degree before E2 the stimulation, with a 
considerable margin on the other nodes. This gene encodes an endocrine-specific cytosolic and 
peripheral membrane protein required for the Ca2+-regulated exocytosis of secretory vesicles. CADPS 
is down-regulated in many types of tumours, although it has not been reported as associated to breast 
cancer [48]. In the pre-stimulus multi-layer model, we can see a similar distribution of genes in the top 
list of node strength and degree, since 18 out of 20 genes are shared between the two lists.  
 



According to COSMIC [38], other interesting cancer related genes are present in these top lists, such as 
EPHA5, which belongs to the ephrin receptor subfamily of the protein-tyrosine kinase family and 
PIP4K2B, an enzyme that catalyses phosphorylation, showing kinase activities. More precisely, 
EPHA5 is implicated in mediating developmental events and plays a critical role in the regulation of 
carcinogenesis, since it has been demonstrated to be a promoter of methylation in breast cancer [49]. 
PIP4K2B has been linked to the regulation of gene transcription, to TP53 and AKT activation, and to 
the regulation of cellular reactive oxygen accumulation. Low PIP4K2B expression associates with 
increased tumour size and distant metastasis, whereas high PIP4K2B expression strongly associates 
with ERBB2 expression [50]. 
 
Considering pathways, we can see genes related to DNA replication, such as POLA1 RPA1, RPA2, 
RAP3, SMC6 (p-value < 4.1e-8), which all share a high number of edges in the protein-protein 
interaction layer and belong to the neighbourhood of ESR1, although they do not present many 
mutations. Moreover, we can see proteins from the protein phosphorylation pathway, GUCY2C, 
GUCY2F, PRKG1, RET, TEX14 (p-value <1.5e-3), which are involved in AKT regulation and 
signalling during tumorigenesis [51]. 
 
After the E2 stimulation, at the top of both the node degree and strength lists we find IMMP2L. This 
gene encodes an inner mitochondrial membrane protease-like protein, which is required for processing 
cytochromes inside mitochondria. Numerous studies reported that IMMP2L may act as risk factor for 
neurological disease [52] and it has been associated with breast cancer [48], although its role is not 
clear. Interestingly, we can see that ESR1 appears in both the lists, which provides an indication of its 
increasing role in responding to the estrogen stimulation.  
 
Considering cancer related genes, we find very important oncogenes such as AKT, a serine/threonine-
specific protein kinase that plays a key role in multiple cellular processes such as glucose metabolism, 
apoptosis, cell proliferation, transcription and cell migration [53], and PTK2, a focal adhesion-
associated protein kinase involved in cellular adhesion and spreading processes [54]. It has been shown 
that when PTK2 is blocked, breast cancer cells became less metastatic due to decreased mobility [54]. 
Another interesting gene is PTPRK, a member of the protein tyrosine phosphatase (PTP) family, 
known to be a signalling molecule that regulate a variety of cellular processes including cell growth, 
differentiation, mitotic cycle, and oncogenic transformation [55]. Moreover, FYN is a Proto-oncogene 
tyrosine-protein kinase of the Src family of kinases, typically associated with T-cell and neuronal 
signalling in development and normal cell physiology. Disruptions FYN signalling pathways often 
have implications in the formation of a variety of cancers [56].  
 
From the pathways point of view, after E2 stimulation, we can see that enriched processes are signal 
transduction, in which AKT1 CSF1R ESR1 MAP2K6 PTPRK RPS6KB1 are involved (p-value < 8.1e-
3), and platelet activation, in regards of the genes AKT1, FYN, DGKB and DGKI (p-value < 2.9e-4). 
 
More generally, the analysis of the histograms shows that after the stimulation there are more breast 
cancer related genes, able to accumulate more mutations, as it emerges from comparing left and right 
panels (please note that they have different scales). After the stimulation there are more connections in 
the layer representing cancer mutations, according to the GO functional annotation network. This is 
interesting because it shows how mutated genes can be activated by the E2 stimulation, including cell 
cycle related genes, such as SYNE1, NEK7 and RPS6KB1 [49]. 
 
A similar situation is described by the centrality plots reported in Figure 6, which represent the hub 
centrality against node degree and strength, before and after E2 stimulation. All the scatter plots 
represent each single layer separately, the aggregate layer (the layer with all the nodes represented in 
the other layers) and the whole multi-layer model. In particular, panel A shows the scatter plot of hub 



centrality against node degree before the stimulation, which should be compared with panel B, showing 
the scatter plot of hub centrality against node degree after the stimulation. On the other hand, panel C 
shows the scatter plot of hub centrality against node strength before the stimulation and should be 
compared with panel D, showing the scatter plot of hub centrality against node strength after the 
stimulation. 
 
Similarly to what happens in Figure 5, also in this case we can clearly see that the multi-layer graph 
become more complex after the E2 stimulation, in particular due to the layer representing cancer 
mutations. Following the orange dots in the scatter plots, we can see that many cancer related genes 
turn into the network, carrying a lot of different mutations. Moreover, we can see that the chromosome 
conformation layer becomes more connected, in function both of the degree and strength of the node, 
as discussed above. On the other hand, this do not correspond to an increase of the protein-protein 
interactions at the gene expression level, which shows a different trend compared to the other two 
layers. For a full description of the centrality measures computed with MuxViz on the 0h and 4h multi-
layer models see Supplementary Table 1 and Supplementary Table 2, respectively. 
 

 
Figure 6 - Scatter plots of hub centrality. This figure shows the trend of the hub centrality against node degree and strength, before and after E2 
stimulation. All scatter plots represent each single layer separately, the aggregate layer (the layer with all the nodes represented in the other layers) and the 
whole multi-layer model. In particular: panel A shows the scatter plot of hub centrality against node degree before the stimulation; panel B shows the 
scatter plot of hub centrality against node degree after the stimulation; panel C shows the scatter plot of hub centrality against node strength before the 
stimulation; panel D shows the scatter plot of hub centrality against node strength after the stimulation. 
 
The same association between the functional gene level and the chromosome conformation level, as 
well as the differences of these two layers with the protein-protein interaction level, can be also seen in 
Figure 7. These plots show the correlation between each pair of layers, before and after the stimulation, 



calculated using the Spearman correlation, which uses ranks to compare non-linear relationship, 
between the node strength of each level and their counterparts in the other layers. In particular, panel A 
shows the inter-layer Spearman correlation before the stimulation, while panel B shows the inter-layer 
Spearman correlation after stimulation. 
 
This multi-layer correlation is very important, since it highlights the progression of the E2 signal from 
one layer to the other. In particular, we can see that after the stimulation the folding of the genome 
changes, due to a general condensation of the chromatin, which brings many genes in the 
neighbourhood of the seed gene ESR1, although the impact on gene expression is still limited, as 
reported also in previous works [42-43]. On the other hand, the anti-correlated profile of methylation 
and gene expression appears quite clearly, also presenting an increasing trend after E2 stimulation. It is 
predictable that many hours after the E2 stimulation the impact of these genome rearrangements will be 
more effective in modifying the gene expression and the metabolic profile of cells. 

 
 

Figure 7 - Multi-layer correlation. This figure shows the correlation between each pair of layers, before and after the stimulation, calculated as the Pearson 
correlation (Spearman correlation is reported in brackets) between the strength of nodes and their counterparts in the other layers. In particular: panel A 
shows the inter-layer Pearson correlation (Spearman correlation is reported in brackets) before the stimulation: panel B shows the inter-layer Pearson 
correlation (Spearman correlation is reported in brackets) after the stimulation. 
 
The power of this multi-layer approach is in the capability of providing a global view of cancer 
evolution from a multi-omic point of view. For this reason, we further investigated the achieved results, 
in order to verify the type of mutations in the genes of the two graphs, before and after the stimulation. 
In particular, we are interested in verifying if accumulated mutations are drivers or passengers and 
their correlation with the genome conformation.  



Moreover, we annotated all the SNPs through a score describing their pathogenic potential. Although 
there are many computational prediction algorithms capable of analysing the functional consequences 
of SNPs, we employed the Functional Analysis through Hidden Markov Models (FATHMM) 
algorithm [57], a sequence-based method that combines evolutionary conservation in homologous 
sequences with pathogenicity weights, representing the overall tolerance of proteins to mutations. We 
adopted this solution because the FATHMM algorithm has a cancer specific weighting schema, which 
substantially improves its predictive performances in relation to other tools. 
 
Table 1 provides a statistical description of the mutations included in the model, before and after the 
stimulation. In particular, according to the the FATHMM algorithm, mutations with a score above the 
0.7 threshold are classified as drivers, while mutations below this threshold are considered passengers. 
As shown in Table 1, before the stimulation our multi-layer model consists of 114 genes, potentially 
carrying 15611 mutations, 10952 of which having pathogenic potential. After the stimulation, the 
number of genes increases to 353 (due to the changes in the chromosome conformation), and the total 
number of potential mutations reaches 63689, of which 44678 with a pathogenic impact.  
 
Considering that metabolic activities are altered in cancer cells and that these alterations support the 
acquisition and maintenance of malignant properties [58], we also analysed how many SNPs belong to 
metabolic genes. Using HumanMine [59], we identified genes and mutations involved in metabolic 
pathways: as reported in Table 1, after the stimulation we can see that the number of SNPs playing a 
role in metabolic processes increases, both considering driver and passenger mutations. Moreover, 
looking at the mean and median values of the scores distribution, we can see that there is an average 
increase of the pathogenic potential after the stimulation, taking into account both driver and passenger 
mutations. 
 
In order to test the significance of the changes occurred after the E2 stimulation, we tested the 
enrichment of SNPs associated to breast cancer using a hypergeometric test. In particular, we 
considered all the human genes as reference and the genes belonging to the graph as sample, using the 
COSMIC database to identify SNPs related to breast cancer. As expected, considering that the seed 
gene ESR1 is related to breast cancer, both at 0h and 4h the graphs are enriched in SNPs associated to 
breast cancer, with p-value < 9.3e-20 and p-value < 1.74e-27 respectively. It is worthy to note that after 
the E2 stimulation the enrichment is more evident than at the beginning of the experiment, which 
highlights a correlation between spatially related genes and functional related genes. 
 
Table 1 - Statistical description of SNPs pathogenicity before and after E2 stimulation. SNPs are annotated as DRIVER or PASSENGER according to 
their FATHMM score (threshold = 0.7). The third column shows the number of SNPs for each class, while the fourth column reports the number of 
metabolic SNPs for each class. In the following columns descriptive statistics about the FATHMM scores of the identified SNPs are reported. 
 

Time Type Number of 
SNPs 

Number of SNPs in 
Metabolic Pathways 

FATHMM 
Mean 

FATHMM 
Median 

FATHMM 
Variance 

0h Passenger 4659 422 0.190490 0.16433 0.019447 

0h Driver 10952 869 0.956110 0.97762 0.003345 

0h All 15611 1662 0.834172 0.96973 0.07913 

4h Passenger 19011 1848 0.210717 0.21949 0.018901 

4h Driver 44678 5707 0.965158  0.98166 0.002377 

4h All 63689 9693 0.881392 0.974510 0.057060 



5. DISCUSSION 
 
Multi-omic approaches can provide very much desirable progresses in non-invasive diagnostic 
methods, to enable early diagnosis, in pre- and post-operative staging, and to assist in selecting the 
most suitable therapeutic methods and post-treatment decisions. In this sense, chromosome 
conformation can help in identifying novel biomarkers [24], which are absent in healthy persons and 
present in cancer, especially at early developmental stage of the disease, in order to use them in 
screening tests [25]. 
 
To improve our understanding of the disease progression and to assist biologists in the interpretation of 
the results, mathematical models can be designed to encompass the modifications of the 3D genome 
conformation in cancer cells, in order to predict the survival probabilities of patients with different 
genetic expression and epigenetic patterns. In particular, using multi-omic data, it will be possible to 
select the best medical treatment for each patient and follow the results of drugs administration with 
more awareness. Moreover, survival probabilities generated with these models will be useful to identify 
the presence of hidden markers currently not considered, proving a full implementation of the 
translational medicine paradigm. 
 
Although many different approaches can be used for multi-omic data integration, some basic 
assumption should be made a priori. First, we must decide whether or not to use graphs for modelling 
the interactions among variables [60]. Our choice was to use a graph-based approach in order to exploit 
the power of the topological description provided by Hi-C data, completing this information with other 
scalar characterization of vertices. Although this approach is not applicable in all cases, mainly because 
Hi-C data are not yet widely available, we think that this representation can be very useful, in particular 
when it is possible to include it in a multi-level model like the one presented.  
 
The second criterion is whether the approach should Bayesian [61] or not, which depends on the 
possibility of creating a priori reasonable assumptions about the data probability distribution, 
parametric or non-parametric, and to compute the posterior probability distribution making use of the 
Bayes’ rule as data becomes available. Although this is a very interesting option, our knowledge of the 
multi-level interactions, which can occur in co-expression, co-regulation and co-localization, are still 
very difficult to model.  
 
Although modelling a priori can be prohibitive, we can suggest the application of some modelling 
techniques to interpret, a posteriori, multi-layer representations like the one we presented in this work. 
The idea is to go beyond the descriptive analysis (such as node degree, node strength, walks, paths, 
distances, centrality measures, cluster coefficients, inter-layer diagnostics, communicability [62]), by 
creating randomized network ensembles that can help in the comprehension of the network model. 
 
More precisely, approaches used for knowledge representation can be employed to stochastically 
model multi-omic data, such as the Exponential-family Random Graph Models (ERGM) [63], scale-
free network models (Barabási–Albert model) [64] and Multi-layer graph entropy [65]. In particular, 
ERGM are extremely useful for network analysis, since they allow the creation of probability 
distributions by which some peculiarities of the graph can be extrapolated. The use of this approach 
will allow the probabilities to be tested, for example, to verify if edges are functions of specific 
genomic features or to measure the significance of having edges in relation to the specific properties of 
nodes. Considering that the organization of the chromatin inside the nucleus can be itself a disease 
biomarker, since specific reorganizations of the genome can be used for the early identification of some 
diseases, scale-free approaches to network modelling will be extremely useful to capture the ’fold of 
folds’ pattern of the genome. Moreover, clustering approaches, ontology annotations, and deep learning 



techniques can be applied to multi-layer graphs, in order to capture the impact of gene co-localization 
on biochemical pathways’ regulation, in a systems biology perspective. 
 
The combination of integration models, such as the one presented here, with variance analysis on 
expression and epigenetic experiments, achieved through the integration of publicly available 
databases, as well as on the topology of the networks, can be the winning strategy for translational 
medicine (see Figure 8). It is very important to establish which variations are normal inside a specific 
experiment and which variations are able to distinguish between normal and pathological samples (the 
bench part of the translational medicine schema). Moreover, variations in the omic profiles can 
characterize the progression of the disease during time, describing its temporal evolution according to 
the provided therapies. These confidence intervals will be then compared with the patient data, in order 
to better characterize the pathology (the bed part of the translational medicine schema). In this context, 
resources like METABRIC [66] (Molecular Taxonomy of Breast Cancer International Consortium) 
will be very important to identify cancer mutations able to drive genome conformational changes.  
 
Providing a better characterization of the disease, we will achieve better treatment definitions.  
Expanding this idea, it will be possible to use confidence intervals for the diagnosis of disease co-
morbidity by identifying specific patterns in multi-omic variability. At the same time, this multi-omic 
approach will be useful to improve the prediction of the survival possibility of patients, as the 
integration of more information about the disease can make estimators such as the Kaplan-Meier curve 
more precise. 
 
 

 
 
 
Figure 8 - Multi-layer based representation of multi-omic data to implement the translational medicine model. In the upper-left panel the “bench” part of 
the model is represented, in which statistics are used to define confidence intervals for multi-omic data, in order to classify physiological and pathological 
behaviours. This information is the core of the multi-layer graph representation, since it allows to define confidence intervals for vertices and edges, which 
describe normal variations inside the experiments and variations that are symptomatic of the different disease stages. In the lower-left part of the Figure, 
the “bed” part of the model is represented, in which the omic information of the patient are reported in the electronic health record. This data will be 
integrated in the multi-layer model, in order to profile and interpret the specific patient, taking into account all the available multi-omics. In the right part of 
the figure the “community” part of the translational medicine model is represented, where inferred information is used to improve the current decision trees 
for treatment identification and to perform better predictions about patient survival possibilities. 



6. Conclusions 
 
It is now clear that cancer is a multi-step process, resulting from the accumulation of both genetic and 
epigenetic alterations of the genome. Gene mutations and epigenetic modifications have been initially 
viewed as two separate mechanisms participating in carcinogenesis. This is the reason why the study of 
tumours should be performed using different profiling strategies, including mutation analyses, 
phylogenetic trees, copy number variations, DNA methylations, histone modifications, transcriptomic 
experiments and chromatin conformation capture technologies, which may collectively be defined as 
omics. Through multi-omic analysis, researchers want to identify genes and pathways deregulated in 
cancer and to reveal biomarkers that may be useful for the detection and the management of the 
disease. Such analysis will enhance our understanding of the biology of cancer, leading to the 
discovery of novel diagnostic, prognostic, and therapeutic approaches that will ultimately improve the 
disease outcomes. An integrative model of these omic data will improve the predictive power of 
survival curves, allowing the definition of novel biomarker, and will provide novel multi-omic based 
guidelines for cancer, favouring the identification of the best treatment for each patient. 
 
In this work we presented an approach for multi-omic data modelling using multi-layer networks, 
which allows the integration of graph-based representations and scalar genomic data. We tested this 
framework for the analysis of multi-omic data from the MCF-7 cell line, a well known breast cancer 
model. At first, our chromatin conformation data analysis revealed that gene-rich genomic regions tend 
to interact more with each other after E2 stimulation. Second, we were able to show correlations 
between changes in the inter-chromosomal conformation and other omic actors, such as mutation 
profiles and variations of the epigenetics patterns. Moreover, using our model, we were able to 
characterize the accumulation of driver and passenger mutations in breast cancer, allowing a better 
description of the damage spreading during the evolution of the disease. This mutation enrichment can 
be also characterised focusing on specific pathway, as represented by the GO-based network, looking 
for example at metabolic processes that are so important for cancer development.  
 
This is in line with the idea that the organization of the DNA in the nucleus represents an integrating 
factor for many omic signals. Although challenges about the comprehension of 3C data must still be 
addressed, such as the management of genetic variants in order to distinguish the conformations of the 
two homologous chromosomes, the possibility of studying long-range DNA interactions opens new 
perspectives for cancer research. Researches about genome 3D organization, and related epigenetic 
patterns in the nucleus, will be very important to understand cancer progression, providing novel 
biomarkers to identify the early onset of the disease. This can be achieved by integrating variance 
analyses of multi-omic data in this model, relying on statistics about physiological and pathological 
molecular patterns, improving both treatment decision trees and survival estimators, such as the 
Kaplan-Meier curves. 
 
In our vision, different cancer omics — mutations, chromatin conformation, epigenetics, gene 
expression, variations in the metabolic pathways — will be calibrated performing a quality assessment 
of the data on the basis of the mutual consistence, in order to achieve a model for interpreting patient 
data. In other words, omic data from patients should be considered in terms of variances, which will be 
used to take decisions by comparing results with well-established network models of cancer, describing 
the temporal evolution of the disease along with the appropriate therapies. The open problem is to 
create suitable genomic and bioinformatic tools for these clinical applications. 
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