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Abstract

Clustering or co-clustering techniques have been proved useful in many
application domains. A weakness of these techniques remains the poor
support for grouping characterization. As a result, interpreting cluster-
ing results and discovering knowledge from them can be quite hard. We
consider potentially large Boolean data sets which record properties of
objects and we assume the availability of a bi-partition which has to be
characterized by means of a symbolic description. Our generic approach
exploits collections of local patterns which satisfy some user-defined con-
straints in the data, and a measure of the accuracy of a given local pattern
as a bi-cluster characterization pattern. We consider local patterns which
are bi-sets, i.e., sets of objects associated to sets of properties. Two con-
crete examples are formal concepts (i.e., associated closed sets) and the
so-called δ-bi-sets (i.e., an extension of formal concepts towards fault-
tolerance). We introduce the idea of characterizing query which can be
used by experts to support knowledge discovery from bi-partitions thanks
to available local patterns. The added-value is illustrated on benchmark
data and three real data sets: a medical data set and two gene expression
data sets.

1 Introduction

Exploratory data analysis processes are often based on clustering techniques
to get insights about global patterns within the data. Clustering has been
studied extensively, including for the special case of Boolean data which record
properties of objects (see a toy example in Tab. 1). Its main goal is to identify
a partition of objects and/or properties such that an objective function which
specifies its quality is optimized (e.g., maximizing intra-cluster similarity and
inter-cluster dissimilarity) [16]. Looking for optimal solutions is intractable but

1



heuristic local search optimizations can be performed. As a result, many efficient
algorithms which compute good partitions are available and widely used. In this
paper, we assume that clustering results are available and we are interested in
knowledge discovery from such results. For example, in our running example r,
we could get {{{o1, o3, o4}, {o2, o5, o6, o7}} as a partition on objects.

Table 1: A Boolean context r

p1 p2 p3 p4 p5

o1 1 0 1 1 0
o2 0 1 0 0 1
o3 1 0 1 1 0
o4 0 0 1 1 0
o5 1 1 0 0 1
o6 0 1 0 0 1
o7 0 0 0 0 1

Our thesis is that expert users need symbolic descriptions to characterize
the computed groups. Indeed, it is well-known that using various settings
for a given clustering algorithm and/or using different algorithms can pro-
vide quite different clustering results. The interpretation phase is then tedious.
In fact, many clustering approaches suffer from the lack of an explicit cluster
characterization. It has motivated the research on conceptual clustering [12].
Among others, it has been studied in the context of co-clustering (see [19] for
a survey), including for the special case of categorical or Boolean data. The
goal is to identify bi-clusters or bi-partitions in the data, i.e., a mapping be-
tween a partition of objects and a partition of properties. For instance, an
algorithm like Cocluster [11] can compute in r the interesting bi-partition
{{{o1, o3, o4}, {p1, p3, p4}}, {{o2, o5, o6, o7}, {p2, p5}}}. The first bi-cluster indi-
cates that the characterization for objects from {o1, o3, o4} is that they almost
always share properties {p1, p3, p4}. Also, properties {p2, p5} are characteristics
for objects {o2, o5, o6, o7}.

Our experience is that this first step towards characterization is not suf-
ficient, especially in high dimensional data sets in which global patterns like
bi-partitions do not reflect unexpected but strong local associations between
some sets of objects and some sets of properties. Our proposal is to combine bi-
clustering with a characterization phase based on collections of local patterns.
We assume that a bi-partition on a Boolean data set is available (e.g., computed
using Cocluster [11]). Our contribution to bi-partition characterization is as
follows. First, we introduce an original and generic cluster characterization tech-
nique which is based on constraint-based bi-set mining, i.e., mining bi-sets whose
set components satisfy some constraints. We show how to measure that a given
bi-set is an accurate characterization pattern for a given bi-cluster. Thanks to
such accuracy measures, it is possible to consider characterizing queries which
can support knowledge discovery from co-clustering results. The method is illus-
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trated on two kinds of bi-sets, the well-known formal concepts (i.e., associated
closed sets [25]) and a new class, the so-called δ-bi-sets. This later pattern type
is new and it is based on a previous work about approximate condensed repre-
sentations for frequent patterns [7]. Intuitively, a formal concept is a maximal
rectangle of true values modulo arbitrary permutations of rows and columns.
Following that perspective, a δ-bi-set is a fault-tolerant extension of a formal
concept for which a bounded number of exceptions (i.e., 0 values) is accepted
per column.

The added-value of our characterizing method is illustrated not only on a
benchmark data set but also on three real-life data sets. The obtained char-
acterizations are consistent with the available knowledge. This paper extends
the preliminary version [21] by further developments on the motivation and
the possible applications of the method, the study of some δ-bi-set properties,
and further experiments. Indeed, we added the application of our approach to
a gene expression data analysis task for which Cocluster provides unstable
bi-partitions.

Section 2 formally defines the characterizing framework. Section 3 discusses
which type of local pattern can be used. Section 4 is dedicated to our empirical
validation of the proposed method. Finally, Section 5 concludes.

2 Bi-cluster characterization using bi-sets

Let us consider a set of objects O = {o1, . . . , om} and a set of Boolean properties
P = {p1, . . . , pn}. The Boolean context to be mined is r ⊆ O × P, where
rij = 1 if the property pj is true for object oi. We assume that a co-clustering
algorithm, e.g., [11], provides a bijective mapping between K clusters of objects
and K clusters of properties forming K bi-clusters {(Co

1 , C
p
1 ) . . . (C

o
K , C

p
K)} with

Co
k ⊂ O and Cp

k ⊂ P. A first characterization comes from this mapping.
Our goal is to support each bi-cluster interpretation by collections of bi-sets

which are locally pointing out interesting associations between groups of objects
and groups of properties. Formally, a bi-set is an element of 2O×2P . Therefore,
we assume that a collection of N bi-sets B = b1, . . . , bN has been extracted from
the data. First, we associate each of them to one of the K bi-clusters. Each
bi-set characterizes the bi-cluster to which it is associated with some degree
of accuracy. We can now define a similarity measure between a bi-set (T,G)
(T ⊆ O, G ⊆ P) and a bi-cluster (Co

k , C
p
k) as follows:

sim ((T,G), (Co
k , C

p
k)) =

|T ∩ Co
k | · |G ∩ C

p
k |

|T ∪ Co
k | · |G ∪ C

p
k |

Intuitively, (T,G) and (Co
k , C

p
k) denote rectangles in the matrix (modulo per-

mutations over the lines and the columns) and we measure the area of the
intersection of the two rectangles normalized by the area of their union.

Each bi-set b which is a candidate characterization pattern can now be as-
signed to the bi-cluster (Co

k , C
p
k) for which sim(b, (Co

k , C
p
k)) is maximal. Doing

so, we get K groups of potentially characterizing bi-sets.

3



Example 1 In r from Tab. 1, a possible bi-partition is

{(Co
1 , C

p
1 ), (C

o
2 , C

p
2 )} = {({o1, o3, o4}, {p1, p3, p4}), ({o2, o5, o6, o7}, {p2, p5})}

If we consider the bi-set b1 = ({o1, o3, o5}, {p1}), its similarity measures
w.r.t. (Co

1 , C
p
1 ) and (Co

2 , C
p
2 ) are:

sim(b1, (C
o
1 , C

p
1 )) =

2 · 1

3 · 1 + 3 · 3− 2 · 1
= 0.2

sim(b1, (C
o
2 , C

p
2 )) =

1 · 0

3 · 1 + 4 · 2− 1 · 0
= 0

The bi-set b1 is then associated to the first bi-cluster. If we consider now the
bi-set b2 = ({o5}, {p1, p2, p5}), we get:

sim(b2, (C
o
1 , C

p
1 )) =

0 · 1

1 · 3 + 3 · 3− 0 · 1
= 0

sim(b2, (C
o
2 , C

p
2 )) =

1 · 2

1 · 3 + 4 · 2− 1 · 2
= 0.22

This bi-set b2 is thus associated to the second bi-cluster.

Finally, we can use an accuracy measure to select the most relevant bi-sets.
For that purpose, we propose to measure the exception ratios for the two set
components of the bi-sets. Given a bi-set (T,G) and a bi-cluster (Co

k , C
p
k), it

can be computed as follows:

εo(T,C
o
k) =

|{oi ∈ T | oi 6∈ C
o
k}|

|T |

εp(G,C
p
k) =

|{pi ∈ G| pi 6∈ C
p
k}|

|G|

Example 2 In our toy example from Tab. 1, the bi-set b1 = ({o1, o3, o5}, {p1})
contains the object o5 which does not belong to Co

1 : we have the exception ratio
εo({o1, o3, o5}, C

o
1 ) = 1

3 = 0.33. The bi-set b2 contains property p1 which does
not belong to Cp

2 : we have εp({p1, p2, p5}, C
p
2 ) =

1
3 = 0.33.

It is then possible to consider thresholds to select only the bi-sets that have
small exception ratios, i.e., εo < εo and εp < εp where εo, εp ∈ [0, 1]. There
are several possible interpretations for these measures. If we are interested in
characterizing a cluster of objects (resp. properties), we can look for all the sets
of properties (resp. objects) for which the εo (resp. εp) values of the related
bi-sets are less than a threshold εo (resp. εp). Alternatively, we can consider
the whole bi-cluster and characterize it with all the bi-sets for which the two
exception ratios εo and εp are less than two thresholds εo and εp.
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3 Choosing a bi-set type for characterization

We now discuss the type of bi-sets which will be post-processed for bi-cluster
characterization. It is clear that bi-clusters are, by construction, interesting
characterizing bi-sets but they only support a global interpretation. We are in-
terested in strong associations between sets of objects and sets of properties that
can locally explain the global behavior. Clearly, formal concepts are candidates.

3.1 Using formal concepts

Definition 1 (formal concept [25]) If T ⊆ O and G ⊆ P, assume φ(T, r) =
{p ∈ P | ∀o ∈ T, (o, p) ∈ r} and ψ(G, r) = {o ∈ O | ∀p ∈ G, (o, p) ∈ r}. A
bi-set (T,G) is a formal concept in r when T = ψ(G, r) and G = φ(T, r). By
construction, G and T are closed sets, i.e., G = φ◦ψ(G, r) and T = ψ ◦φ(T, r).

Formal concepts are maximal association of sets of objects and sets of prop-
erties: if one adds a property (resp. an object) one might remove at least an
object (resp. a property) to get only true values in the encoded Boolean relation.

Example 3 Eight formal concepts hold in r from Tab. 1. ({o1, o3}, {p1, p3, p4}),
({o1, o3, o4}, {p3, p4}), and ({o5, o6}, {p2, p5}) are among them.

Efficient algorithms have been developed to extract complete collections of
formal concepts which satisfy also user-defined constraints (e.g., minimal size
constraint on set components) [24, 3]. Indeed, the popular frequent closed set
mining task for a frequency threshold ν fundamentally computes each formal
concept (T,G) such that |T | ≥ ν.

A major problem with formal concepts is that the Galois connection (φ, ψ)
is, in some sense, a too strong one: we have to capture every maximal set of
objects and its maximal set of associated properties. As a result, the number
of formal concepts even in small matrices can be huge. It is indeed common
to get several millions of formal concepts even from rather small matrices. A
solution is to look for “dense” rectangles in the matrix, i.e., bi-sets with mainly
true values but also a bounded (and small) number of false values or exceptions.
Some approaches for dense bi-set mining have been recently discussed (see, e.g.,
[4] for a starting point). We now propose a new type of bi-set which can be
efficiently computed and which is an extension of formal concepts towards fault-
tolerance.

3.2 Mining δ-bi-sets

We want to compute efficiently smaller collections of bi-sets which still capture
strong associations. We recall some definitions about the association rule mining
task [1] since it is used for both the definition of the δ-bi-set pattern type and
for bi-cluster characterization.
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Definition 2 (association rule) An association rule in r is an expression of
the form X ⇒ Y , where X,Y ⊆ P, Y 6= ∅ and X∩Y = ∅. Its absolute frequency
is |ψ(X ∪ Y, r)| and its confidence is |ψ(X ∪ Y, r)|/|ψ(X, r)|.

In an association rule X ⇒ Y with high confidence, the properties in Y are
almost always true for an object when the properties in X are true. Intuitively,
X ∪ Y associated to ψ(X, r) is then a dense bi-set: it contains few false val-
ues. We now consider our technique for computing association rules with high
confidence, the so-called δ-strong rules [6, 7].

Definition 3 (δ-strong rule) Given an integer δ, a δ-strong rule in r is an
association rule X ⇒ Y (X,Y ⊂ P) s.t. |ψ(X, r)| − |ψ(X ∪ Y, r)| ≤ δ, i.e., the
rule is violated in no more than δ objects.

Interesting collections of δ-strong rules with minimal left-hand side can be
computed efficiently from the so-called δ-free-sets [6, 7, 10] and their δ-closures.

Definition 4 (δ-free set, δ-closure) Let δ be an integer and X ⊂ P, X is a
δ-free-set in r iff there is no δ-strong rule which holds between two of its own
proper subsets. The δ-closure of X in r, hδ(X, r), is the maximal superset Y of
X s.t. ∀p ∈ Y \X, |ψ(X ∪ {p})| ≥ |ψ(X, r)| − δ.

In other terms, the frequency of the δ-closure of X in r is almost the same
than the frequency of X when δ << |O| and X is frequent. Moreover, ∀p ∈
hδ(X) \X, X ⇒ p is a δ-strong rule.

Example 4 In the data from Tab. 1, the 1-free itemsets are {p1}, {p2}, {p3},
{p4}, {p5}, {p1, p2}, and {p1, p5}. An example of 1-closure for {p1} is {p3, p4}.
The association rules {p1} ⇒ {p3} and {p1} ⇒ {p4} have only one exception.

δ-freeness is an anti-monotonic property such that it is possible to compute
δ-free sets (eventually combined with a minimal frequency constraint) in very
large data sets. Notice that h0 ≡ φ ◦ ψ, i.e., the classical closure operator.
Looking for a 0-free-set, say X, and its 0-closure, say Y , provides the closed set
X ∪ Y and thus the formal concept (ψ(X ∪ Y, r), X ∪ Y ).

Definition 5 (δ-bi-set) A δ-γ-bi-set (T,G) in r is built on each δ-free-set X ⊂
P with T = ψ(X, r) and G = hγ(X, r). When δ = γ we call them δ-bi-sets.

Example 5 In the data from Tab. 1, the 1-bi-sets derived from the 1-free-sets
{p3} and {p5} are ({o1, o3, o4}, {p1, p3, p4}) and ({o2, o5, o6, o7}, {p2, p5}).

When δ << |T |, δ-bi-sets are dense bi-sets with a small number of excep-
tions per column. In order to experiment, we implemented a straightforward
extension of AC-Miner [7] which provides the supporting set for each extracted
δ-free-set. Let us now discuss some properties of δ-bi-sets. It is clear that 0-bi-
sets are formal concepts. However, some important properties of formal concepts
do not hold for δ-bi-sets when δ > 0. In particular we lack of a function which
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associates the set G to the set T and vice-versa. As a result, we do not have
a Galois connection anymore. For example, in Tab. 1, ({o2, o5, o6, o7}, {p2, p5})
(the δ-bi-set generated by the δ-free set {p5}), and ({o2, o5, o6}, {p2, p5}) (the
δ-bi-set generated by the δ-fee set {p2}) have the same property set, while the
first set of objects includes the second one. Among others, it makes the inter-
pretation process (in terms of characterization) less natural. We now consider
how the parameters δ and γ influence the properties of the δ-γ-bi-set collection.

Property 1 Given a Boolean context r, two positive integers µ and δ such that
µ < δ. Let us denote Freeδ(r) the collection of the δ-free sets on r, and Freeµ(r)
the collection of the µ-free sets on r, we have: Freeδ(γ, r) ⊆ Freeµ(γ, r).

Proof 1 X is a δ-free-set iff ∀Y ⊂ X |ψ(Y, r)|−|ψ(X, r)| > δ. Thus |ψ(Y, r)|−
|ψ(X, r)| > µ and X is also a µ-free-set.

As a consequence, any collection of δ-free sets (δ > 0) is included in the collection
of 0-free sets.

p1 p2 p3 p4

o1 0 1 1 1

o2 0 1 1 0

o3 1 0 0 0

o4 1 1 1 0

o5 1 1 1 1

o6 1 0 1 0

o7 0 0 1 0

Table 2: Boolean context r′

Example 6 Let us consider the Boolean data set given in Tab. 2. The set of
properties A = {p1, p3} is 0-free (see Tab. 3), but not 1-free with (see Tab. 4). Its
1-closure is {p1, p2, p3}. The corresponding δ-bi-set is bA = ({o4, o5, o6}, {p1, p2, p3})
with one exception on p2. Since A is not in the collection of 1-free sets, this
bi-set can not be built using A, and we have neither another 1-free set which can
generate bA nor any other bi-set covering bA (see Tab. 4).

Property 2 Given a Boolean context r and two positive integers ρ and γ such
that ρ ≤ γ. Given a set X ⊆ P we have: hρ(X) ⊆ hγ(X).

When the parameter γ increases, then the size of the attribute component
of the γ-δ-bi-set increases too.

Property 3 Given a δ-free set X, ∀Y ⊂ X, then X 6⊆ hδ(Y, r), i.e., X is not
included in the δ-closure of any of its own proper subsets.
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X h1(X, r′) ψ(X, r′)

{∅} {p3} {o1, o2, o3, o4, o5, o6, o7}

{p1} {p1, p3} {o3, o4, o5, o6}

{p2} {p2, p3} {o1, o2, o4, o5}

{p3} {p3} {o1, o2, o4, o5, o6, o7}

{p4} {p1, p2, p3, p4} {o1, o5}

{p1, p2} {p1, p2, p3, p4} {o4, o5}

{p1, p3} {p1, p2, p3} {o4, o5, o6}

{p1, p4} {p1, p2, p3, p4} {o5}

Table 3: 0-free sets, 1-closures and supporting sets of objects in r′

Proof 2 If Y ⊂ X, and X ⊆ hδ(Y, r), then there exists Z ⊂ X, Z ∩Y = ∅, s.t.
Y ⇒ Z is a δ-strong rule, i.e., there exists a δ-strong rule which holds between
two own proper subsets of X (Y and Z), but this contradicts that X is a δ-free
set.

As a consequence, when γ > δ, a set X can belong to the γ-closure of one
of its subsets which is not the case when γ ≤ δ.

X h1(X, r′) ψ(X, r′)

{∅} {p3} {o1, o2, o3, o4, o5, o6, o7}

{p1} {p1, p3} {o3, o4, o5, o6}

{p2} {p2, p3} {o1, o2, o4, o5}

{p4} {p1, p2, p3, p4} {o1, o5}

{p1, p2} {p1, p2, p3, p4} {o4, o5}

Table 4: 1-free sets, 1-closures and supporting sets of objects in r′

Example 7 In the data from Tab. 1, we have eight 1-free sets: {∅}, {p1}, {p2},
{p3}, {p4}, {p5}, {p1, p2}, and {p1, p5}. The collection of 0-free sets contains
two more sets {p1, p3} and {p1, p4} which are contained in the 1-closures of {p1}
(i.e., {p1, p3, p4} which is also the 1-closure of {p3} and {p4}). The supporting
set of objects for both {p1, p3} and {p1, p4} is {o1, o3} and it is a subset of the
supporting set of objects for {p1} (i.e., {o1, o3, o5}), and the supporting set of
objects for {p3} and {p4} as well. Indeed, the two 0-δ-bi-sets are already included
in larger bi-sets obtained from 1-free sets.

We have considered several settings for computing δ-bi-sets. As the γ-closure
of a 0-free setX is equal to the γ-closure of h0(X, r), by computing 0-δ-bi-sets we
get either formal concepts (0-closure of a 0-free set) or their extension towards
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fault-tolerance (number of exceptions bounded per column). Computing formal
concepts by extracting the free sets and their closure, may become intractable
in some data sets, while δ-free set mining for δ > 0 remains quite feasible at
the price of missing some associations. On the other hand, using a value of δ
greater than γ may result in a further loss in information, even if the size of
collection of produced bi-sets could be reduced. Our answer to the previously
given question, is that using the same δ value for computing the free sets and
their closure is a good trade-off to preserve information and to reduce both the
search space and the size of the extracted bi-set collection.

3.3 Formal concepts vs. δ-bi-sets

To study the relevancy of δ-bi-sets w.r.t. formal concepts, we have considered
the addition of noise to a synthetical data set. Hereafter, r denotes a reference
data set from which we generate noisy data sets by adding a given quantity
of uniform random noise. Then, we compare the collection of formal concepts
which are “built-in” within r with various collections of formal concepts and
δ-bi-sets extracted from the noised matrices. To measure the relevancy of each
extracted collection w.r.t the reference one, we look for subsets of the reference
collection in each of them. Since both set components of each formal concept
can be changed when adding noise, we identify those having the largest area in
common with the reference ones, and we compute the σ measure which takes
into account the common area:

σ(Cr, Ce) =
ρ(Cr, Ce) + ρ(Ce, Cr)

2

ρ is defined as follows:

ρ(C1, C2) =
1

|C1|

∑

(Xi,Yi)∈C1

max
(Xj ,Yj)∈C2

|Xi ∩Xj | · |Yi ∩ Yj |

|Xi ∪Xj | · |Yi ∪ Yj |

Cr is the collection of formal concepts computed on the reference dataset, Ce is
a collection of patterns in a noised dataset. When σ(Cr, Ce) = 1, all the bi-sets
∈ Cr have identical instances in Ce.

In the experiment, r has 30 objects and 15 properties and it contains 3
formal concepts of the same size which are pair-wise disjoints: the built-in for-
mal concepts are ({o1, . . . , o10}, {p1, . . . , p5}), ({o11, . . . , o20}, {p6, . . . , p10}), and
({o21, . . . , o30}, {p11, . . . , p15}). We generated 40 different data sets by adding
to r increasing quantities of noise (from 1% to 40% of the matrix). Then, for
each data set, we have extracted a collection of formal concepts and different
collections of δ-bi-sets with increasing values of δ (from 1 to 6). Finally, we
looked for the occurrence of the 3 formal concepts in each of these extracted
collections by using our σ measure. Results are in Fig. 1.

The σ measure decreases when the noise level increases. Interestingly, its
values for δ-bi-set collections are always greater or similar to the values for the
collections of formal concepts. The collections of δ-bi-sets contain always less
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Figure 1: Size of different collections of bi-sets (top) and related values of σ
(bottom) depending on noise level

patterns than the collections of formal concepts (for a noise level greater than
7%). For δ = 2, the size is halved. For greater values of δ, noise does not
influence the size of the collections of δ-bi-sets. This experiment confirms that
δ-bi-sets are more robust to noise than formal concepts. Furthermore, it enables
to reduce significantly the size of the extracted collections and this is important
to support the interpretation process.

3.4 Using association rules

Association rules can be derived from extracted bi-sets and used for bi-cluster
characterization. For characterization but also classification, heuristics have
been studied which select relevant association rules based on their frequency
and confidence values [18, 17, 10, 23]. In our case, we propose to use exception
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ratios on the extracted bi-sets to provide characterization rules. They have the
form X ⇒ k where X is a set of properties (resp. objects) and k is a property
denoting a cluster of objects (resp. an object denoting a cluster of properties).
When considering formal concepts, deriving characterization rules from them is
straightforward.

Property 4 Given a bi-cluster (Co
k , C

p
k), if (T,G) is a formal concept, then

G⇒ k (resp. T ⇒ k) is a rule with frequency equal to |T | · (1− εo(T,C
o
k)) (resp.

|G| · (1− εp(G,C
p
k)) and confidence equal to 1− εo(T,C

o
k) (resp. 1− εp(G,C

p
k)).

Table 5: A Boolean context r1

p1 p2 p3 p4 p5 co1 co2
o1 1 0 1 1 0 1 0
o2 0 1 0 0 1 0 1
o3 1 0 1 1 0 1 0
o4 0 0 1 1 0 1 0
o5 1 1 0 0 1 0 1
o6 0 1 0 0 1 0 1
o7 0 0 0 0 1 0 1

c
p

1
1 0 1 1 0

c
p

2
0 1 0 0 1

Example 8 Consider the toy example from Tab. 1 with two new columns (resp.
rows) to denote the values of the object cluster variable vo ∈ {co1, c

o
2} (resp.

the property cluster variable vp ∈ {c
p
1, c

p
2}). For each object belonging to Co

1

(resp. Co
2), we have co1 = 1 and co2 = 0 (resp. co1 = 0 and co2 = 1). We

obtain the Boolean data in Tab. 5. Bi-set b1 = (T1, G1) = ({o1, o3, o5}, {p1})
is a formal concept that can be used to form the association rule p1 ⇒ co1.
Its relative frequency is |T1| · (1 − εo(T1, C

o
1 ))/|O| = 3 · (1 − 1/3)/7 = 29%,

its confidence is (1 − εo(T1, C
o
1 )) = (1 − 1/3) = 67%. The formal concept

b2 = (T2, G2) = ({o5}, {p1, p2, p5}) forms the association rule o5 ⇒ cp2. Its
relative frequency is |G2| · (1 − εp(G2, C

p
2 ))/|P| = 3 · (1 − 1/3)/5 = 40%, its

confidence is (1− εp(G2, C
p
2 )) = (1− 1/3) = 67%

When we use δ-bi-sets instead of formal concepts, Property 4 does not hold
because |ψ(G, r)| < |T |. However, if we are interested in characterizing a cluster
of objects, we can use the following property.

Property 5 Given a cluster Co
k, if (T,G) is a δ-bi-set, and X ⊆ G is a δ-

free-set then X ⇒ k is a rule with frequency equal to |T | · (1 − εo(T,C
o
k)) and

confidence equal to 1− εo(T,C
o
k).

Example 9 Consider our toy example in Tab. 1, and its extension (Tab. 5).
Bi-set bδ = (Tδ, Gδ) = ({o1, o3, o4}, {p1, p3, p4}) is a 1-bi-set generated by the
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1-free set Xδ = {p3}. It is associated with (Co
1 , C

p
1 ) since sim(bδ, (C

o
1 , C

p
1 )) = 0,

and εo(Tδ, C
o
1 ) = 0. Indeed, Xδ forms an association rule p3 ⇒ co1 with relative

frequency |Tδ| · (1− 0)/|O| = 43% and confidence 100%.

Such rules are interesting in practice because X is often a rather small set
such that its interpretation is easier. However, this approach can not be applied
to data sets with large numbers of properties (e.g., for gene expression data sets
where we can have thousands of properties). In such cases, we propose to use
the εo and εp measures. Notice however that a recent work studies δ-free set
mining for very large numbers of properties [15].

4 Experimental validation

4.1 Mining a benchmark data set

First, we applied our characterization method to the well-known benchmark
voting-records [5]. It contains 435 objects and 48 Boolean attributes (removing
class variables). We used Cocluster [11] to get 2 bi-clusters:

bi-cluster |τ | rep. dem. |γ|
bi-cluster1 193 153 40 16
bi-cluster2 242 15 227 32
total 435 168 267 48

To characterize each bi-cluster, we used D-Miner [3] to extract all formal
concepts, and our slight extension of AcMiner to extract two collections δ-
bi-sets (δ=1,2). We obtained 227 031 formal concepts, 130 313 1-bi-sets and
66 908 2-bi-sets. The collections have been post-processed by looking for rules
with increasing values of the relative minimal frequency (15% up to 40%) and
confidence (90% up to 100%). Results for the first bi-cluster are in Fig. 2.
Results for the second one look similar. The number of characterizing rules de-
creases when we increase the frequency and confidence thresholds. When we use
δ-bi-sets, we have to process significantly smaller collections. Two examples of
characterizing rules which are consistent with the domain knowledge associated
to voting-records are now given. The first one (resp. the second) has a 42%
relative frequency (resp. 31%) and both have a 100% confidence, i.e., we have
εo = 0.

el-salvador-aid = yes ∧ anti-satellite-test-ban = yes

∧ aid-to-nicaraguan-contras = yes ⇒ bi-cluster2

handicapped-infants = no ∧ physician-fee-freeze = yes

∧ el-salvador-aid = yes ⇒ bi-cluster1

4.2 Mining a medical data set

We applied the method to the real world medical data set meningitis already
used in [23]. It has been gathered from children hospitalized for acute meningi-
tis. The pre-processed Boolean data set is composed of 329 examples described
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Figure 2: Characterizing patterns for bi-cluster1 in voting-records w.r.t. different
values of minimal frequency and confidence.

by 60 Boolean attributes encoding clinical signs (hemodynamic troubles, con-
sciousness troubles, . . . ), cytochemical analysis of the cerebrospinal fluid (C.S.F
proteins, C.S.F glucose, . . . ), and blood analysis (sedimentation rate, white
blood cell count, . . . ). In meningitis, the majority of the cases are known to
be viral infections whereas about one quarter are are known to be caused by
bacteria. Furthermore, medical knowledge is available which can be used to
assess characterization relevancy. Using Cocluster, we got two bi-clusters:

bi-cluster |τ | bact. vir. |γ|
bi-cluster1 100 81 19 21
bi-cluster2 229 3 226 39
total 329 84 245 60

The first bi-cluster contains a majority of bacterial cases while the second one
contains almost only viral cases. We selected characterization rules based on a
collection of formal concepts and 2 collections of δ-bi-sets (δ=1,2). We obtained
the results in Fig. 3. Here again, using δ-bi-sets leads to smaller collections of
candidate characterization patterns. The number of characterization rules for
the first bi-cluster is always very low and it does not significantly change when
using δ-bi-sets instead of formal concepts. If we select the rules with a minimal
body, a 10% frequency threshold, a 98% confidence threshold, and for which the
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Figure 3: Characterizing patterns for the bi-cluster2 in meningitis w.r.t. different
values of minimal frequency and confidence.

property exception ratio εp is zero, we obtain only 9 rules which are consistent
with the medical knowledge (see [23] for details). Examples of rules are:

presence of bacteria in C.S.F. analysis = yes ⇒ bi-cluster1

polynuclear percent > 80 ∧ C.S.F. proteins > 0.8 ⇒ bi-cluster1

C.S.F. proteins > 0.8 ∧ C.S.F. glucose < 1.5 ⇒ bi-cluster1

4.3 Mining Boolean gene expression data

An other experiment concerns the analysis of plasmodium, a public gene ex-
pression data set concerning Plamodium falciparum (i.e., a causative agent of
human malaria) described in [9]. It records the expression profile of 3 719 genes
in 46 biological samples. Each sample corresponds to a time point of the devel-
opmental cycle. It is divided into 3 phases: the ring, the trophozoite and the
schizont stages. The numerical expression data have been preprocessed by using
one of the property encoding methods described in [22]. We used Cocluster

to get the following bi-clusters:
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Figure 4: Characterizing bi-sets for bi-cluster1 in plasmodium w.r.t. different
values of minimal size and maximal exception ratio.

bi-cluster |τ | ring troph schiz. |γ|
bi-cluster1 20 15 5 0 558
bi-cluster2 16 0 5 11 1699
bi-cluster3 10 6 0 4 1462
total 46 21 10 15 3719

We extracted collections of bi-sets to characterize clusters of samples by means
of sets of genes. Here, the number of properties was too large and we extracted
the δ-bi-sets on the transposed matrix. It means that the frequency and the
confidence measures can not be used since they are computed on samples while
we are looking for patterns on genes. Therefore, to evaluate a bi-set (T,G),
we have considered |T |, |G|, εo, and εp. Results for a minimal size from 10%
up to 25% of |O| and for maximal values of εo from 0% up to 10% are in
Fig. 4. Considering bi-cluster1, we analyzed the characterizing 2-bi-sets when
the minimal size for their sets of objects was 25% of |O| and for a maximal
exception ratio εo = 0. Among the 442 bi-sets characterizing bi-cluster1, only
4 of them concern genes that belong to the same bi-cluster. In each of them,
we found at least one gene belonging to the cytoplasmic translation machinery
group which is known to be active in the ring stage (see [9] for details), i.e., the
main developmental phase corresponding to bi-cluster1.
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4.4 Characterization of unstable bi-partitions

In some application, clustering results are quite ambiguous. Algorithms gen-
erally return local optimum solutions for the considered objective function.
Usually, such local optima are close to the global one, and the computed bi-
partitions are quite similar after many randomly initialized executions of the
algorithm. However, in some cases, the local optima may give rise to very
different bi-partitions. How does our technique behave in this particular situ-
ation? How does characterization changes between two different bi-partitions?
Does bi-partition quality influence the relevancy of the characterizing patterns?
To answer such questions, we have analyzed the data set described in [2]. It
concerns the expression profiles of 3 433 genes during 10 time points of adult
drosophila melanogaster life cycle. The expression levels are measured for both
males and females, i.e., the data involve 20 biological situations. We applied
again a discretization method from [22] for gene expression property encoding.
We then executed 100 randomly initialized instances of Cocluster (to find
2 bi-clusters), and compared the results by considering both the Goodman-
Kruskal’s τ coefficient [14] and the loss in mutual information [11]. Notice that
this later is the objective function which Cocluster wants to minimize. Both
coefficient are evaluated in a contingency table p. Let pij be the frequency of
relations between an object of a cluster Co

i and a property of a cluster Cp
j , and

pi. =
∑

j pij and p.j =
∑

i pij . The Goodman-Kruskal’s τ coefficient, which
evaluates the proportional reduction in error given by the knowledge of Co on
the prediction of Cp and vice versa, is defined as follows:

τ =

1
2

∑
i

∑
j (pij − pi.p.j)

2 pi.+p.j

pi.p.j

1− 1
2

∑
i p

2
i. −

1
2

∑
j p

2
.j

The mutual information, which compute the amount of information Co contains
about Cp, is:

I(Co;Cp) =
∑

i

∑

j

pij log
pij
pi.p.j

Then, given two different bi-partitions (Co, Cp) and (Ĉo, Ĉp), the loss in mutual
information is given by:

I(Co;Cp)− I(Ĉo; Ĉp)

When computing such coefficients on the 100 bi-partitions returned by Co-

cluster, we found that results were significantly unstable (see Tab. 6). It seems
that there are two optimum points for which the two measures are distant. For
56 runs, we got a high τ coefficient (the mean is about 0.5605), for the other 44
ones the τ coefficient was sensibly smaller (about 0.1156). If we consider each
group of results separately, the standard deviation is significantly smaller. It
means that these two results are two local optima for the Cocluster heuristics.

From a semantical point of view, the first group of solution reflects the
male and female repartition of the individuals, while in the second group each
cluster contains both male and female individuals. Indeed, it seems that the
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τ I − Î

bi-partition instances mean std.dev mean std.dev

males vs. females 56 0.5605 0.0381 1.6615 0.0390

mixed 44 0.1156 0.0166 2.0256 0.0258

overall 100 0.3648 0.2240 1.8217 0.1847

Table 6: Clustering results on adult drosophila individuals.

bi-partition |B1|/|B2| P-freq P-conf O-freq O-conf

males vs. females 0.87 0.6% 91% 6% 78%

mixed 0.97 0.4% 73% 3% 47%

Table 7: Characterization interestingness measures on adult drosophila data.

the first co-clustering is more relevant w.r.t. the biological knowledge. We use
then our characterization technique to post-process the collection of all formal
concepts contained in the matrix. Obviously the characterization changes, but
we want also to evaluate this change in co-clustering interpretation. To do
that, we computed the means of all our interestingness measures (frequency,
confidence), one instance for each group of solutions. The two instances have
been chosen by considering those with the minimum deviation from the mean.
The interestingness measures were computed on all the 5 936 formal concepts,
without setting any frequency or confidence constraint. Results are in Tab. 7.

In the first bi-partition, the average frequency and confidence of the charac-
terizing rules are higher than in the second one. This is true for rules computed
on both objects and properties clusters. This means that local patterns (for-
mal concepts) reflects more the first bi-partition than the second one. In other
words, the consistency of the first global model is validated by the local asso-
ciations within the matrix. The fact that both Goodman-Kruskal and mutual
information loss measures are better in the first group of solutions, is a further
mean to link global and local consistency. It means that, characterizing a global
bi-partition by means of local patterns makes sense, and could be a new way to
assess bi-partition quality.

5 Conclusion

We presented a new (bi-)cluster characterization method based on extracted
local patterns, more precisely formal concepts and δ-bi-sets. It is now possible
to use quite efficient constraint-based mining techniques for computing various
local patterns. While a bi-partition provides a global and somehow expected
characterization, selected collections of characterizing bi-sets point out local as-
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sociation which might lead to more unexpected but yet relevant information.
Global and local patterns are both useful during a knowledge discovery process,
and it is important to support these intrinsically interactive processes. Our
approach suggest the use of characterizing queries, i.e., queries in which ana-
lysts can used the proposed accuracy measures to select relevant characterizing
patterns. Examples of typical characterizing queries are as follows:

• Select all the bi-sets which characterize bi-cluster (Co, Cp) with a maxi-
mum exception ratio of ε for both objects and properties;

• Select all the association rules with minimal body characterizing bi-cluster
(Co, Cp) with a minimal frequency f , a minimal confidence c, and a max-
imal exception ratio ε for the set of properties;

• Select all the association rules with minimal body characterizing bi-cluster
(Co, Cp) with a minimal frequency f , a minimal confidence c, and a min-
imal exception ratio ε for the set of properties.

The two first types of queries are obviously useful for bi-cluster characteriza-
tion. The third one concerns knowledge discovery thanks to unexpectedness.
Indeed, it might return patterns that are exceptions, i.e., they concern objects
belonging to bi-cluster (Co, Cp) that are characterized by some properties from
other bi-clusters. If a global pattern like a bi-partition captures some impor-
tant structures in the data, it seems also interesting to look at the collections
of local associations which are somehow far from it. Assume that the popular
association R which points out frequent transactions with beers and diapers
among male customers is somehow valid. A co-clustering on a complete basket
data set may group beer together with male customers within one bi-cluster,
and diapers with female customers in a second bi-cluster. In such a case, a
query which would select frequent and high-confidence association rules with a
high exception ratio on properties (ε > ε) would support the discovery of the
“unexpected” association R. Characterizing queries might be studied further.
They are interesting examples of queries which have to process both the data
and multiple types of patterns holding in the data, i.e., interesting objects for
the study of the promising inductive database framework [20, 8]. An other per-
spective is also to better understand the convergent techniques developed for
(conceptual) clustering, subgroup discovery [13], and association rule discovery.
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