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Abstract 30 

Haploid technology is a valuable tool to obtain homozygosity particularly in woody plants, in order to support 31 

plant breeding. Hazelnut, the fourth worldwide nut tree, is a monoecious, anemophilous species and it is 32 

characterized by a sporophytic incompatibility system (Germain and Dimoulas, 1978), not allowing to obtain 33 

homozygous plants through conventional methods, involving several self-pollination. In this study, gametic 34 

embryogenesis was applied to hazelnut and, particularly, isolated microspore culture was performed on four 35 

different cultivars. Two culture media were tested and four temperature stress treatments were applied to the 36 

isolated microspores, cultivated at the vacuolated stage of development. For the first time in our knowledge, 37 

early embryos were recovered in hazelnut via isolated microspore culture in all cultivars. The assessment of the 38 

zygosity condition of embryos carried out using SSR markers showed that analysed embryos were homozygous 39 

indicating that they developed from haploid microspores. The response to the culture treatments, was, however, 40 

genotype-dependent, as previously reported in experiments regarding male gamete embryogenesis in other fruit 41 

crops. 42 

 43 

Keywords: Haploid, hazelnut, gametic embryogenesis, temperature stress.  44 

 45 
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Introduction 47 

Hazelnut (Corylus avellana L.), belonging to the Betulaceae family of the order Fagales and native to European 48 

regions, Turkey and the Caucasus mountains (Kafkas and Dogan, 2009), is the sixth worldwide tree nut, with a 49 

production of more about 858,000 tons (FAOSTAT, 2013), behind cashew, Persian walnut, chestnut, almond 50 

and pistachio. All cultivated forms of hazelnut are diploid with a monoploid number of chromosomes n=x=11. It 51 

is a monoecious, dichogamous, self-incompatible and wind pollinated plant (Rovira et al. 1993). The 52 

incompatibility system is sporophytically determined and controlled by a single locus with multiple alleles 53 

(Martins 2010). Incompatibility is a main factor limiting genetic improvement, and it prevents to reach 54 

homozygosity by conventional methods, involving several self-pollination cycles.  55 

Gametic embryogenesis is recognized as an important tool for plant breeding, making possible to develop, in 56 

only one step, completely homozygous lines, from heterozygous parents (Bueno et al. 2006; Seguì-Simaro and 57 

Nuez 2008; Islam and Tuteja 2012; Datta 2005; Solis et al. 2008; Germanà 2011a). This opportunity is 58 

particularly useful for breeding in woody species, in which it is not possible to obtain homozygosity through 59 

conventional methods (Germanà 2011b), because of the long juvenile phase, the high degree of heterozygosity, 60 

the large size and, often, of the self-incompatibility (Germana` 2006; 2009). 61 

Haploid (Hs) and doubled haploid (DHs) plants, are very useful to fix parental lines to produce F1 hybrids, for 62 

rapid introgression of new characteristics through backcrossing, to develop population molecular maps, to fix 63 

characteristics through transformation and mutagenesis (Datta 2005; Szareijo and Foster 2006; Soriano et al. 64 

2013) and to do reverse breeding (Dirks et al. 2009; Ferrie and Möllers 2011). In addition, haploids and double-65 

haploids are important for genomic studies and genome sequencing (Aleza et al. 2009; Dirks et al. 2009; Ferrie 66 

and Möllers 2011; Foster et al. 2007; Germanà et al. 2013; Talón and Gmitter 2008), for physical mapping 67 

(Leeuwen et al. 2003; Kunzel et al. 2000; Wang et al. 2001), genetic mapping (Houssain et al. 2007; Chu et al. 68 

2008; Zhang et al. 2008), and for the integration between physical and genetic mapping (Kunzel et al. 2000; 69 

Wang et al. 2001). 70 

Gametic embryogenesis represents a unique system where, thanks to the plant totipotency, a single immature 71 

gamete switches from the gametophytic pathway toward the sporophyte formation (Prem et al 2012). Gametic 72 

embryogenesis, that can be achieved from female (gynogenesis) or male (microspore embryogenesis) gametes, 73 

rarely occurs in nature (Silva 2012), and it is usually induced subjecting immature gametes to some kinds of 74 

stress. Particularly, temperature stresses, hot and cold, are the most effective and commonly used ways to 75 

promote microspore embryogenesis in several species (Ferrie and Caswell 2010; Germanà 2011 a; Shariatpanahi 76 

et al. 2006; Silva 2012). Specifically, the involvement of heat shock proteins (HSPs), when temperature 77 

treatments are applied in the microspore embryogenesis, has been described, but the molecular mechanism of 78 

the induction and the relationship between different stresses remain unclear. However, it is supposed that the 79 

increased levels of HSPs may be associated with the embryogenic potential acquisition (Karami and Saidi 2010; 80 

Silva 2012). 81 

In many crops, anther culture is often the method of choice for H and DH production because of its simplicity 82 

(Sopory and Munshi 1996). Nevertheless, the technique of isolated microspore culture, performed by removing 83 

somatic anther tissue and requiring better equipment and more skills compared to the first technique, provides a 84 

better system for investigating cellular, physiological, biochemical and molecular processes involved in pollen 85 

embryogenesis (Nitsch 1977; Reinert and Bajaj 1977; Germanà, 2011b). 86 
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In this study, the technique of isolated microspore culture was applied to five hazelnut genotypes, testing two 87 

basal media and four temperature stresses, with the aim to obtain micropore-derived embryo regeneration. 88 

 89 

Materials and Methods  90 

 91 

Plant material and pollen developmental stage 92 

Immature catkins (Fig. 1a) were harvested in February from trees of the following cultivars of Corylus avellana 93 

L.: ‘Tonda Gentile Romana’ (2 clones: TR and GR), ‘Imperatrice Eugenia’ (IE), ‘Minnulara’ (M) and 94 

‘Carrello’ (C).. Catkins with anthers (Fig. 1a) mostly containing microspores at the vacuolated/uninucleated 95 

stage (Fig. 1b) were selected, assuming that, like in many other fruit crops (Germanà 2011 a; 2011b), this stage 96 

of development is the most responsive for gametic embryogenesis also for hazelnut. For this reason, a 97 

preliminary investigation was carried out to select the appropriate catkin size staining anthers with few drops of 98 

4’,6-diamidino-2-phenylindole (DAPI) solution (1 mg/mL) and observing them under fluorescence microscope 99 

(Zeiss, Axiophot, Germany). Catkins with anthers containing microspores at vacuolated/uninucleate stage were 100 

selected and, as common pre-treatment, were placed in darkness at 4 °C for two weeks. 101 

 102 

Catkins sterilization and microspore isolation and culture 103 

After two weeks of 4 °C pretreatment, 5 catkins for each genotype were surface sterilized by immersion for 3 104 

min in 70% (v/v) ethyl alcohol, followed by immersion for 20 min in 25% (v/v) sodium hypochlorite solution 105 

(about 1.5% active chlorine in water) with few drops of Tween® 20, and then rinsed three times with sterile 106 

distilled water. After that, the material was maintained in immersion in gentamicin antibiotic solution (0.2%) for 107 

30 minutes. The antibiotic solution was removed and the microspore isolation was performed following the 108 

procedure reported by Kumlehn et al., (2006) with limited modifications. Isolated microspores were cultured at 109 

the concentration of 100,000 microspores per mL and a final volume of 1.0 mL per each Petri dish (3001-type 110 

Petri dishes, BD Biosciences) was placed.  111 

Petri dishes, sealed with Parafilm®, were placed at 26±1 °C, in the dark for the first 30 days and later under cool 112 

white fluorescent lamp (Philips TLM 30W/84, France) with a photosynthetic photon flux density of 35 µmol m-1 113 

s-1 and a photoperiod of 16 light hours.  114 

 115 

Experimental design 116 

In order to evaluate the influence of medium composition on the embryogenic induction of the five genotypes, 117 

isolated microspores were cultured on two different media: P (Germanà et al. 1996) and N6 (Germanà and 118 

Chiancone 2003). Moreover, because it is well known that usually stress enhances microspore response, isolated 119 

microspores cultured in both media, were subjected to the following thermal stress, just after isolation:  120 

1) 35 °C for 30 minutes (H),  121 

2) 40 °C for 60 minutes (H+),  122 

3) -20 °C for 30 minutes (F),  123 

4) -20 °C for 60 minutes (F+).  124 

Height Petri dishes (repetitions) were prepared per each combination (genotype, medium, thermal stress). 125 

 126 
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Data collection and statistical analysis  127 

Isolated microspores in culture were weekly observed by a stereo-microscope (Leica MZ 125) and by an 128 

inverted microscope (Zeiss West Germany). In addition, examinations were performed by a fluorescence 129 

microscope (Zeiss, Axiophot, Germany), after staining with 4’,6-diamidino-2-phenylindole (DAPI). Because 130 

changes in the microspore development distribution were observed for a long time, it was decided to report the 131 

final monitoring of the different features, registered after 20 months of culture. At this time, per each genotype 132 

and per each combination medium/thermal stress, 450 microspores/structures (three repetitions with 150 133 

elements each) were counted, in order to individuate the different structural features: uninucleated microspores, 134 

rarely binucleated with two different nucleus sizes beginning their normal gametophytic pathway, binucleated 135 

with two equal-size vegetative-type nuclei just starting their sporophytic pathway, trinucleated, and also 136 

multinucleated microspores. Moreover, the number of embryos and calli produced per each Petri dish were 137 

registered. These values were used to calculate means and to perform the statistical analysis. Differences among 138 

genotypes were tested by one-way analysis of variance (ANOVA) with Conover-Inman’s test (p < 0.05). To 139 

individuate the influence of the factors “Medium” and “Thermal treatment”, means were analysed by two-way 140 

ANOVA, and mean separation was performed using Tukey’s multiple comparison tests at (p ≤ 0.05).  141 

 142 

Detection of homozygosity   143 

Simple Sequence Repeat (SSR) markers were used to assess the genetic condition of embryos obtained from 144 

pollen microspore culture and to determine their origin (gametic or somatic).   145 

DNA extraction 146 

Embryos were collected from the culture medium by an insulin syringe, frozen in liquid nitrogen and ground 147 

using steel beads in a Tissuelyser (QIAGEN®, Germany). DNA extraction for genotyping was performed as 148 

described in Doyle and Doyle (1987) with minor modifications. 149 

 150 

PCR amplification and SSR allele sizing 151 

Five fully characterized SSR loci were used for assessing the origin of the embryos: CaT-B107, CaT-B503, 152 

CaT-B504, CaT-B505, CaT-B507 (Boccacci et al., 2005). PCR was performed, as described by Boccacci et al. 153 

(2008), in two steps in a total volume of 10 µl containing 20 ng of DNA, 0.25 U of KAPA Taq DNA 154 

polymerase (KAPABIOSYSTEMS, Wilmington Massachusetts, USA) 1 µl of 10X PCR buffer, 200 µM 155 

nucleotide mix and 0.5 mM of each primer. PCR conditions were as follows: an initial denaturation step at 95° 156 

C for 3 min followed by 32 cycles of denaturation (30 s at 95°C), annealing (45 s at 52° C), and extension (90 s 157 

at 72° C). The final elongation step was at 72°C for 30 min. Two µl of the amplification product were used as 158 

template for a second PCR, carried out for 28 cycles with the same conditions of the first one. 159 

PCR products were analyzed on a 3130 Genetic Analyzer (Applied Biosystems, Foster City, California, USA). 160 

Data were processed using GeneMapper Software (ver. 4.0; Applied Biosystems) and alleles were defined by 161 

their size in base pairs, by comparison with the size standard (GeneScan-500 LIZ, Applied Biosystems). 162 

Data obtained were compared with the hazelnut database of DISAFA. 163 

 164 

Results and Discussion 165 

 166 
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The microspore culture monitoring carried out by fluorescence microscope after 20 months of culture and after 167 

DAPI staining, showed uninucleated (Fig. 1b), binucleated presenting nuclei with asymmetrical division (Fig. 168 

2a), binucleated revealing nuclei with symmetrical division (Fig. 2b), trinucleated (Fig. 2c), and multinucleated 169 

stage (Fig. 2d); the performances of the different genotypes are reported in table 1-6. Actually, the presence of 170 

binucleated microspores with asymmetrical division of the nucleus, indicating of the gametophytic pathway, 171 

was very sporadic: never more that 3% and in three genotypes, (C, IE and M), less than 1% of the total (Table 172 

1).  173 

The statistical analysis carried out to study the in vitro isolated microspore development in the five hazelnut 174 

genotypes tested, showed different responses among the genotype (Table 1). For this reason, the influence of the 175 

two parameters “Medium” and “Thermal treatment” on hazelnut microspore development was carried out 176 

separately per each genotype. Particularly, regarding the “Medium” influence on the multinucleated microspores 177 

production, the P medium was the most valuable in the genotypes C, M and TR (Tables 2, 5 and 6). In the other 178 

genotypes, differences between the two media were not statistically significant. Two way ANOVA evidenced 179 

also that in the cultivars C and M, the formation of multinucleated microspores was mainly influenced by the 180 

factor “Medium”, while different results were recorded for the genotypes GR, IE and TR, where a significant 181 

interaction was observed between the two factors. IE, GR and C, were the genotypes with the highest 182 

percentages of multinucleated microspores. 183 

For GR, the factor “Treatment” was the main source of variability in the multinucleated microspore induction 184 

(Table 3). Particularly, statistically significant differences were observed between the treatment F+ and the 185 

treatment H, while the other treatments induced intermediate responses. The analysis of interaction evidenced a 186 

statistically significant difference in the thermal treatment H, where N6 induced better response than P (32.0% 187 

vs 19.8%) (data not shown). 188 

Diverse response was observed in the cultivar IE concerning the same parameter, in which none of the factors 189 

had a predominant influence (Table 4), but differences were observed in the response to thermal treatments 190 

between the two media: P better than N6 in H+ (+34.7% vs 24.7%) and in F (40.0 % vs 23.3%), whereas N6 191 

better than P in F+ (30.0% vs 22.7%) (data not shown).  192 

On the contrary, for TR, both factors (“Medium” and “Treatment”) had a significant influence on the 193 

multinucleated microspore induction. Analyzing separately the factors, P medium induced a statistically 194 

significant higher percentage of multinucleated microspores than N6; while, regarding the thermal treatments, 195 

two groups were individuated: Co and H induced statistically higher response than H+, F and F+ (Table 6). 196 

Furthermore, regarding the interaction, main differences were observed in the Control where the P medium 197 

induced a statistically higher response than N6 (37.3% vs 22.0%)  198 

After three-four months of culture, stereo- microscope observations revealed new structures: light brown calli 199 

(Fig. 3) that increased in quantity and volume and, also, the formation of globular embryos was detected (Fig. 4 200 

a). Moreover, different shapes of embryos were observed: elongated (Fig. 4 b) and also often embryos with a 201 

suspensor-like structure (Fig. 4c). This kind of structure was observed also in Citrus in the embryos obtained 202 

through isolated microspore culture, but not by anther culture.  203 

Previously, in fruit tree crops, Hofer et al (1999) reported embryo regeneration, through isolated microspore 204 

culture, in apple and, recently (Chiancone et al., 2015), the production of gamete-derived embryos obtained by 205 

in the same way in Citrus was reported. 206 
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Because of the data distribution, it was not possible to apply the two-way ANOVA to the average number of 207 

calli and embryos registered per Petri dish, but for the novelty and relevance of these results, it is interesting to 208 

describe the performance of the different cultivars. The statistical analysis of the average calli number per Petri 209 

dish confirmed the morphogenic potential of TR, that, together with GR, produced the highest number of calli 210 

(Fig. 5a). Actually, the highest average callus number per Petri dish was recorded in the genotype ‘Tonda 211 

Gentile Romana’ TR, in the treatment H+ in combination with the N6 medium (13.7) (Fig. 5f). As reported for 212 

the microspore development, also for calli production, the response to the different media and to the thermal 213 

treatments was genotype-dependent. The cold thermal treatments positively influenced callus production: 214 

specifically, F+ treatment induced the highest average number of calli per Petri dish in C, IE (in combination 215 

with P medium), GR (in combination with both P and N6 media); while, the hot thermal treatments, and 216 

particularly, the H+, seemed to produce a higher callus number in M (in combination with N6) and in TR (in 217 

combination with P and N6) (data not shown).  218 

The embryo achieving does not appear to be influenced by the treatments in the same way than calli. Really, 219 

with the exception of M, in which the combination of H+ thermal treatment with N6 medium, was proven to be 220 

suitable both for callus and embryo achieving. For the other cultivars, the results were different: the highest 221 

average embryo number were recorded in the control, in combination with P medium for C and TR, with N6 222 

medium for GR, and in the H+ treatment in combination with N6 medium for IE (Fig. 5b-f). 223 

Generally, regarding the effect of the medium composition, P medium induced a little higher percentage of 224 

multinucleated microspores and also a higher number of embryos. Not always at the genotype with the very 225 

high number of multinucleated microspores corresponded the higher microspore-derived embryo number (for 226 

example, IE). 227 

Regarding the stress, many research highlighted its importance in inducing microspore embryogenesis. 228 

However, in this study the higher number of embryos was obtained in both P and N6 control (without additional 229 

stresses other that 4 °C before isolation), except for IE. 230 

 231 

Detection of homozygosity    232 

Genetic analysis showed that the hazelnut embryos had a single allele at each of the five SSR loci analysed 233 

(Figs. 6 and 7) The allele found at each locus matched either one of the 2 alleles of the parent genotype (in the 234 

case of the figures ‘Minnulara’ was the cultivar of origin of the microspores). Being the embryos very small, 235 

ploidy level could not be determined; for this reason we can postulate that the embryos are very likely haploids 236 

but there is no evidence they may not be double haploids. For sure the embryos analysed originated from a 237 

haploid microspore. 238 

 239 

The production of homozygous plants in fruit trees of high commercial value like hazelnut is highly desired to 240 

help increase the breeding efficiency and reduce the time to obtain new varieties. But, this is not possible in 241 

woody plants, like hazelnut, characterized by long juvenile cycle, high degree of heterozygosity, large size and 242 

with incompatible systems. The only way to obtain isogenic lines is through haploid technology. Actually, 243 

microspore embryogenesis is a promising tool in plant breeding since it permits to obtain full homozygous 244 

plants in just one step using heterozygous parents (Germanà 2011 a, b). This technology can be of great interest 245 
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to increase the research and plant breeding of Corylus avellana, a species not very often subject of improvement 246 

(Dunstan and Thorpe 1986). 247 

 248 

Conclusions 249 

 250 

In our knowledge, this is the first time that haploid technology was applied to hazelnut and that homozygous 251 

early embryos were regenerated through isolated microspore culture. The response to the culture media and 252 

treatments, was, however, highly genotype-dependent, as previously reported in experiments regarding tissue 253 

culture in hazelnut as well as microspore embryogenesis in other fruit crops. Actually, each genotype presented 254 

different behaviour, even if, all of them produced calli and, more important, microspores-derived early embryos. 255 

Really, even if it is not possible to individuate the absolute best medium or thermal treatment stress, this result 256 

represents a major step forward in the knowledge on gametic embryogenesis in fruit crops. Further studies are, 257 

however, necessary to better understand the process of gametic embryogenesis in this species and to optimize 258 

the rate of microspore-derived embryos and, in addition, to obtain their germination into plantlets. 259 

 260 
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Tables 432 

Table 1 Influence of genotype on isolated microspore development, after twenty months of culture. 433 

Genotype 

Uninucleated 

microspores 

Binucleated 

microspores 

(SND) 

Binucleated 

microspores 

(ASD) 

Trinucleated 

microspores 

Multinucleated 

microspores 

% % % % % 

‘Carrello’ 27.7 a 28.4 ab 1.9 a 12.9 b 29.1 ab 

Tonda G. Romana 

GR 
30.0 a 25.3 bc 2.9 a 11.8 b 30.0 ab 

‘Imperatrice Eugenia’ 23.0 b 23.5 c 0.1 b 22.0 a 31.4 a 

‘Minnulara’ 23.4 b 31.1 a 0.6 b 21.6 a 23.3 b 

Tonda G. Romana 

TR 
27.6 a 27.1 ab 0.6 b 19.7 a 25.0 b 

Per each column, values followed by different letters are statistically different. 434 
One-way ANOVA, Conover-Inman’s test, p<0.05. 435 
SND: Symmetrical nucleus division 436 
AND: Asymmetrical nucleus division 437 
 438 

Table 2 Influence of medium composition and thermal treatment on ‘Carrello’ isolated microspore development, 439 

after twenty months of culture. 440 

Per each factor and per each column, values followed by different letters are statistically different.  441 
Two-way ANOVA, Tukey’s test, p<0.05.  442 
SND: Symmetrical nucleus division 443 
AND: Asymmetrical nucleus division 444 
P medium: Germanà at al 1996; N6 medium: Germanà and Chiancone, 2003. 445 
Co: no thermal treatment; H: 35 °C for 30 minutes; H+: 40 °C for 60 minutes; F: -20 °C for 30 minutes; F+: -20 446 
°C for 60 minutes. 447 
 448 

  449 

Factors 

Uninucleated 

microspores 

Binucleated 

microspores 

(SND) 

Binucleated 

microspores 

(ASD) 

Trinucleated 

microspores 

Multinucleated 

microspores 

% % % % % 

Medium (M) 
P 27.6 a 25.5 b 2.6 a 12.6 a 31.7 a 

N6 27.7 a 31.2 a 1.2 a 13.3 a 26.5 b 

M p value 0.962 0.003 0.073 0.593 0.014 

Treatment (T) 

Co 23.7 b 29.7 a 1.7 a 13.7 a 31.3 a 

H 34.0 a 26.2 a 2.1 a 11.0 a 26.7 a 

H+ 29.4 ab 26.4 a 1.4 a 11.4 a 31.4 a 

F 26.7 ab 29.3 a 2.0 a 14.0 a 28.0 a 

F+ 24.7 ab 30.3 a 2.3 a 14.7 a 28.0 a 

T p value 0.025 0.398 0.928 0.400 0.412 

M X T p value 0.425 0.330 0.658 0.175 0.145 
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Table 3 Influence of medium composition and thermal treatment on ‘Tonda Gentile Romana’ GR isolated 450 

microspore development, after twenty months of culture. 451 

Per each factor and per each column, values followed by different letters are statistically different.  452 
Two-way ANOVA, Tukey’s test, p<0.05. 453 
SND: Symmetrical nucleus division 454 
AND: Asymmetrical nucleus division 455 
P medium: Germanà at al 1996; N6 medium: Germanà and Chiancone, 2003. 456 
Co: no thermal treatment; H: 35 °C for 30 minutes; H+: 40 °C for 60 minutes; F: -20 °C for 30 minutes; F+: -20 457 
°C for 60 minutes. 458 
 459 
Table 4 Influence of medium composition and thermal treatment on ‘Imperatrice Eugenia’ isolated microspore 460 

development, after twenty months of culture. 461 

Per each factor and per each column, values followed by different letters are statistically different.  462 
Two-way ANOVA, Tukey’s test, p<0.05. 463 
SND: Symmetrical nucleus division 464 
AND: Asymmetrical nucleus division 465 
P medium: Germanà at al 1996; N6 medium: Germanà and Chiancone, 2003. 466 
Co: no thermal treatment; H: 35 °C for 30 minutes; H+: 40 °C for 60 minutes; F: -20 °C for 30 minutes; F+: -20 467 
°C for 60 minutes. 468 
 469 

  470 

Factors 

Uninucleated 

microspores 

Binucleated 

microspores 

(SND) 

Binucleated 

microspores 

(ASD) 

Trinucleated 

microspores 

Multinucleated 

microspores 

% % % % % 

Medium (M) 
P 32.7 a 22.8 b 3.4 a 11.4 a 29.6 a 

N6 27.2 b 27.7 a 2.4 a 12.2 a 30.5 a 

M p value 0.010 0.005 0.320 0.598 0.501 

Treatment (T) 

Co 29.0 a 26.3 a 2.0 a 14.3 a 28.3 ab 

H 34.8 a 23.8 a 4.6 a 10.9 a 25.9 b 

H+ 29.0 a 25.0 a 2.0 a 11.7 a 32.3 ab 

F 28.2 a 25.9 a 3.0 a 11.9 a 30.9 ab 

F+ 28.7 a 25.3 a 3.0 a 10.3 a 32.7 a 

T p value 0.050 0.852 0.500 0.523 0.023 

M X T p value 0.010 0.272 0.157 0.694 0.000 

Factors 

Uninucleated 

microspores 

Binucleated 

microspores 

(SND) 

Binucleated 

microspores 

(ASD) 

Trinucleated 

microspores 

Multinucleated 

microspores 

% % % % % 

Medium (M) 
P 23.2 a 22.9 a 0.0 a 20.3 a 34.5 a 

N6 22.4 a 22.5 a 0.0 a 22.1 a 33.9 a 

M p value  0.514 0.173 0.486 0.294 

Treatment (T) 

Co 19.3 a 23.7 a 0.0 a 20.7 a 36.3 a 

H 23.0 a 21.3 a 0.3 a 20.3 a 37.3 a 

H+ 26.7 a 27.3 a 0.0 a 16.3 a 29.7 a 

F 20.0 a 21.7 a 0.0 a 26.7 a 31.7 a 

F+ 26.0 a 23.7 a 0.3 a 23.7 a 26.3 a 

T p value  0.337 0.570 0.096 0.209 

M X T p value  0.823 0.570 0.544 0.024 
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Table 5 Influence of medium composition and thermal treatment on ‘Minnulara’ isolated microspore 471 

development, after twenty months of culture. 472 

Factors 

Uninucleated 

microspores 

Binucleated 

microspores 

(SND) 

Binucleated 

microspores 

(ASD) 

Trinucleated 

microspores 

Multinucleated 

microspores 

% % % % % 

Medium (M) 
P 25.6 a 24.5 b 0.0 a 19.7 a 30.1 a 

N6 29.6 a 28.2 a 1.0 a 19.4 a 21.8 b 

M p value 0.067 0.000 0.415 0.245 0.000 

Treatment (T) 

Co 24.3 a 23.0 a 0.3 a 22.7 a 29.7 a 

H 28.3 a 25.7 a 0.7 a 16.0 b 29.3 a 

H

+ 
31.0 a 28.0 a 0.3 a 18.3 ab 22.3 a 

F 26.3 a 28.1 a 0.4 a 21.2 a 23.9 a 

F+ 28.0 a 27.0 a 0.7 a 19.7 ab 24.7 a 

T p value 0.059 0.282 0.289 0.010 0.944 

M X T p value 0.008 0.234 0.500 0.008 0.714 

Per each factor and per each column, values followed by different letters are statistically different.  473 
Two-way ANOVA, Tukey’s test, p<0.05. 474 
SND: Symmetrical nucleus division 475 
AND: Asymmetrical nucleus division 476 
P medium: Germanà at al 1996; N6 medium: Germanà and Chiancone, 2003. 477 
Co: no thermal treatment; H: 35 °C for 30 minutes; H+: 40 °C for 60 minutes; F: -20 °C for 30 minutes; F+: -20 478 
°C for 60 minutes. 479 
 480 

Table 6 Influence of medium composition and thermal treatment on ‘Tonda Gentile Romana’ TR isolated 481 

microspore development, after twenty months of culture. 482 

Factors 

Uninucleated 

microspores 

Binucleated 

microspores 

(SND) 

Binucleated 

microspores 

(ASD) 

Trinucleated 

microspores 

Multinucleated 

microspores 

% % % % % 

Medium (M) 
P 25.6 b 24.5 a 0.0 a 19.7 a 30.1 a 

N6 29.6 a 28.2 a 1.0 a 19.4 a 21.8 b 

M p value 0.035 0.303 0.204 0.794 0.002 

Treatment (T) 

Co 24.3 a 23.0 a 0.3 a 22.7 a 29.7 a 

H 28.3 a 25.7 a 0.7 a 16.0 a 29.3 a 

H+ 31.0 a 28.0 a 0.3 a 18.3 a 22.3 b 

F 26.3 a 28.1 a 0.4 a 21.2 a 23.9 b 

F+ 28.0 a 27.0 a 0.7 a 19.7 a 24.7 b 

T p value 0.222 0.221 0.709 0.364 0.007 

M X T p value 0.010 0.010 0.954 0.330 0.043 

Per each factor and per each column, values followed by different letters are statistically different.  483 
Two-way ANOVA, Tukey’s test, p<0.05. 484 
SND: Symmetrical nucleus division 485 
AND: Asymmetrical nucleus division 486 
P medium: Germanà at al 1996; N6 medium: Germanà and Chiancone, 2003. 487 
Co: no thermal treatment; H: 35 °C for 30 minutes; H+: 40 °C for 60 minutes; F: -20 °C for 30 minutes; F+: -20 488 
°C for 60 minutes. 489 
 490 

 491 



16 

 

Figure legends 492 

Fig. 1: a) Catkins and one anther of Corylus avellana L., cv. ‘Imperatrice Eugenia’, at the developmental stage 493 

used for microspore isolation; b) Uninucleated microspore of cv. ‘Imperatrice Eugenia’ (DAPI staining) (Bar 494 

represents10µm). 495 

Fig. 2: a) Binucleated pollen, symmetrical division (DAPI staining), cv. ‘Imperatrice Eugenia’; b) Trinucleated 496 

microspore (DAPI staining), cv. ‘Imperatrice Eugenia’; c-d) Multinucleated microspore (DAPI staining), cv. 497 

‘Carrello’ (c) and ‘Tonda Gentile Romana’ TR (d) (Bars represent10µm). 498 

Fig. 3: Microspore-derived calli of cv. ‘Tonda Gentile Romana’ GR (Bars represent 100µm). 499 

Fig. 4 Microspore-derived embryos of cv. ‘Tonda Gentile Romana’ GR: a-c) different stages of development 500 

(Bars represent 20µm). 501 

Fig. 5: a) Influence of the genotype on the regeneration of calli and embryos of five hazelnut genotypes (One 502 

way ANOVA, Conover-Inman’s test p< 0.05) Within each parameter (callus or embryo), values followed by 503 

different letters are statistically different at p < 0.05 according to Conover-Inman’s test; b-f): Influence of the 504 

medium composition (P and N6) and of thermal treatments (35 °C for 30 minutes (H), 40 °C for 60 minutes 505 

(H+), -20 °C for 30 minutes (F), -20 °C for 60 minutes (F+)) on the production of calli and embryos of 506 

‘Carrello’ (b), ‘Tonda Gentile Romana’ GR (c); ‘Imperatrice Eugenia’ (d), ‘Minnulara’ (e) and ‘Tonda Gentile 507 

Romana’ TR (f). 508 

Fig. 6 Genetic profile at SSR locus CaT-B505 of the cultivar ‘‘Minnulara’’ (above) and of the microspore-509 

derived embryo (below). The embryo shows a single allele (128 bp) shared with the parental genotype. 510 

Fig. 7 Genetic profile at SSR locus CaT-B107 of the cultivar ‘‘Minnulara’’ (above) and of the microspore-511 

derived embryo (below). The embryo shows a single allele (114 bp) shared with the parental genotype. 512 
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