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Abstract 

A cerium based metal-organic framework with MOF-76 topology has been synthesized by a very 

simple and fast solvo-thermal method that has been tested for 1 g yield. Variable Temperature-

powder X-Ray Diffraction and X-ray absorption data, analyzed by Rietveld and multiple-scattering 

EXAFS methods, revealed high thermal stability and the presence of three different stable 

structures. XANES and FTIR spectroscopies probed the presence of Ce(III) characterized by 

coordinatively unsaturated sites that however do not play the major role in CO2 adsorption. The 

material revealed excellent CO2 adsorption properties: the highest gravimetric capacity of 15 wt% is 

observed at 1.1 bar in the case of the sample activated at 250°C in vacuum, while the strongest 

interaction energy of 35 kJ/mol is observed in the case of the sample activated at 150°C. The 

negligible nitrogen uptake of the sample activated at 150°C indicates this material as a promising 

candidate for N2/CO2 separation purposes. 
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Introduction 

Microporous MOFs based on lanthanide metal ions or clusters represent a group of porous materials 

which possesses interesting coordination, electronic, and optical properties.
[1]

 Porous isostructural 

lanthanide-based MOFs, having the composition [Ln(BTC)(H2O)·4.3H2O] or Ln–BTC (Ln: Ce, Tb, 

and Y; BTC: 1,3,5-benzenetricarboxylate), and exhibiting a tetragonal structure were synthesized 

by ultrasonic irradiation at room temperature and their luminescence properties were studied.
[2]

 

The Y-based MOF Y(BTC)(H2O)•4.3H2O, showed permanent porosity, selective gas adsorption 

and good H2 capacity upon activation.
[3]

 

Gustasfsson et al.
[1c]

 developed a family of homeotypic porous lanthanide MOFs [Ln(BTC)(H2O)] • 

(H2O, DMF) with various metal ions (Nd, Sm, Eu, Gd, Tb, Ho, Er, and Yb). The structure was first 

described as coincident with MOF-76 for Tb(BTC)(H2O)1.5(DMF).
[4]

 The structures of the as-

synthesized compounds were tetragonal with 1D channels, showing accessible lanthanide ions and 

exhibited high thermal stability. 

By focusing attention on Ce metal ions, Ce-based Werner-type tetrahedra were employed for size 

selective luminescent detection of natural carbohydrates via incorporation of amide groups.
[5]

 Li et 

al.
[6]

 succeeded in obtaining single crystals of a Ce based BTC MOF in order to get a well-defined 

3D structure but the synthetic procedure showed difficulties in producing the material at gram-scale. 

Furthermore, a very recent paper
[7]

 reported that Ce-BTC structure collapses after removal of the 

solvent guest molecules. 

In the present work, a very simple and rapid one-pot solvo-thermal procedure is reported for the 

synthesis of MOF-76-Ce material. This method allows easy up scaling of the material. In respect to 

previous published data, the material revealed an improved thermal stability (up to 450°C) and the 

appearance of new well-defined structures upon heating. The intermediate (partly desolvated 

structure) showed selective adsorption towards CO2 over N2 and then it is here proposed for CO2/N2 

separation purposes, while the fully desolvated one is characterized by one of the highest CO2 
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volumetric density.
[8]

 As successfully applied to other MOFs systems,
[9]

 the combination of several 

structural and spectroscopic techniques have been used to disclose the complex structure of MOF-

76-Ce.  

 

Results and discussion 

Structure evolution of MOF-76-Ce 

MOF-76-Ce was synthesized as described in the Experimental section. Details on morphology, 

thermal stability and vibrational features are reported as Supporting Information (Sections S1-S3). 

In-situ Variable Temperature Powder XRD (VT-PXRD) data of MOF-76-Ce (formula: 

[Ce(BTC)]H2OnDMFm) collected in N2 flow, in the 25-600°C temperature range, are reported in 

Figure 1. Three distinct structural modifications are refined from the PXRD data. Starting from the 

“as made” sample (MOF-76-Ce-fs, fully solvated), the most relevant changes are observed at 

180°C (MOF-76-Ce-hs, half solvated) with a further evolution that ends at 350°C (MOF-76-Ce-

ds, desolvated). In the 250-300°C range, the patterns do not change substantially while, starting 

from 325°C the 100, 010 reflection shift slightly towards higher angles: this is caused by the chains 

of Ce-atoms moving slightly closer when the flexibility of the BTC linkers increases with 

temperature. The connectivity of the structure is unchanged during the structural changes. The 

transformations were found to be due to removal of water and DMF molecules from the channels in 

the [Ce(BTC)]∙H2OnDMFm structure. Similar features have been reported on single crystals of 

lanthanide MOFs with seven-coordinated Ln(III) ions linked by BTCs.
[1c]

 At 575°C there is a 

complete structure collapse with formation of CeO2 and coke in agreement with the weight loss 

seen in TGA analysis (section S2 in Supporting Information).  
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Figure 1. VT-PXRD in N2 flow showing structural changes of MOF-76-Ce during thermal 

treatment. a, PXRD patterns collected in the 25-600°C temperature range ( = 1.5418 Å). LaB6 is 

used as internal standard (reflection at 30.39°). b, Zoom on the low angle reflections. 

 

Rietveld refinement of the structures was carried out using high resolution powder patterns recorded 

in N2 flow at the temperatures for which the three structures were identified: 25, 180 and 350°C. 

Experimental patterns and refinement results are reported in Supporting Information S4 (see Figure 

S4 and Table S1), while graphical representation of the structures obtained is illustrated in Figure 2. 

The pattern measured at 25°C showed very strong similarities with a simulated pattern of MOF-

76.
[1c, 4]

 Indeed, the Rietveld refinement confirmed that this compound is a Ce-based analogue of 

the MOF-76-structure. The final structures reported in Figure 2 have been obtained after several 

iterated PXRD and Ce L3 edge EXAFS refinements. First, the structure obtained as a result of initial 

PXRD refinement was used as a model for EXAFS fitting. Then, the best-fit local environment of 

Ce atoms obtained by EXAFS was implemented into the periodic model of the whole material and 

the PXRD refinement was run again. Resulting structure was subsequently subjected to the new 

EXAFS fitting procedure and so on, until after several iterations the convergence of structural 

parameters was reached.
[9]
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The inorganic building unit is based on distorted pentagonal CeO7-bipyramids. In these polyhedra, 

six oxygen atoms are part of carboxylate groups while one oxygen atom belongs to a solvent 

molecule, water or DMF (see Figure 2 left panel and Figure 3, MOF-76-Ce-fs). Each BTC linker is 

connected to six Ce-atoms, two in one cerium chain and four on the opposite chain. Each 

carboxylate group bridges two Ce-atoms. The orientation of the BTC linkers alternates, forming 

regular wriggled (sinusoidal) chains of Ce atom (see Figure 2 left panel). The sheets are connected 

in a similar way with another set of BTC linkers orthogonal to the plane of the picture. This 

wriggling in and out of the plane in two directions arranges the CeO7-units into helical chains 

forming a 43-screw axes. The organic trimesate anions (BTC linkers) are situated in parallel with 

the (100) and (010) planes, forming non-interconnected square-shaped channels. In the fully 

solvated structure, the channels are lined with four coordinated solvent molecules, while in the half 

solvated (180
o
C) structure, the solvent molecules are removed in an ordered manner (Figure 2, 

medium panel, MOF-76-Ce-hs). Solvent molecules distribution reported in Figure 2 are arbitrarily 

represented. In particular in case of fully solvated sample, alternate arrangements of water and DMF 

have been considered. For the sake of simplicity disordered un-bonded solvent molecules have been 

omitted. In case of MOF-76-Ce-hs structure (Figure 2, medium panel), in principle DMF and water 

should be both taken into account, however only DMF molecules fit perfectly (while water would 

be too small) and distort the channels and thereby the structure by a diagonal contraction of the 

channels. In this intermediate structure, the solvent molecules are removed at two opposite corners 

of the channels, which lead to a distortion of the angle at these corners from ideal 90° in MOF-76-

Ce-fs to 68° in MOF-76-Ce-hs. As a consequence, the opposite angles are expanded from 90° to 

112°. Rhombic channels are therefore observed in which the coordinated solvent molecules are 

present as non-connecting pillars pointing into the pores. Please note that partially desolvated 

structure (MOF-76-Ce-hs) shows the major changes into the free space topology: in fact channels 

along [001] direction are strongly bent (middle structure, bottom row of Figure 2) and the DMF 
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molecules are much more protruding into the channels than in case of MOF-76-Ce-fs (left 

structure, bottom row of Figure 2). When all solvents molecules are removed, the structure relaxes 

to a square shape similar to the one with symmetric loading of solvent molecules. (Figure 2, right 

panel, MOF-76-Ce-ds). In this framework all coordinated solvent molecules are removed and the 

original symmetry is restored. The connectivity of the Ce-ions, involving the carboxylate groups 

remains unchanged. Ce-ions simply changes the local symmetry from a distorted pentagonal 

bipyramid in MOF-76-Ce-fs to a distorted trigonal prism in MOF-76-Ce-ds. 

 

Figure 2. Structures of MOF-76-Ce. Left panel: MOF-76-Ce-fs; central panel: MOF-76-Ce-hs; 

right panel: MOF-76-Ce-ds. Top row: tridimensional representation (view along the 001 direction) 

of the frameworks with sticks (solvent molecules are represented by sticks and balls). Cerium - dark 

cyan; oxygen - red; nitrogen - blue; carbon - grey, hydrogen - white. Middle row: layers of Ce and 

BTC linkers viewed along the 010 direction; Bottom row: one chain of Ce with the coordinating 

carboxylic groups and solvent molecules (viewed along the 100 direction). In case of MOF-76-Ce-

fs and MOF-76-Ce-hs, DMF and water have been arbitrarily alternated into the framework. For 

MOF-76-Ce-fs, solvent molecules not coordinated to Ce sites have been omitted. Coordinative 

structure at Cerium sites is evidenced with polyhedra in medium and bottom rows. 
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MOF-76-Ce-hs and MOF-76-Ce-ds PXRD patterns were reproduced upon activation in vacuum at 

150°C and at 250°C (see Figure S5 in Supporting Information), showing that both structures are 

obtained in slightly different conditions when samples are treated in vacuum or in flow respectively. 

Activated samples lose crystallinity if re-exposed to air. 

As announced, in order to refine the local coordination environment of cerium, Ce L3-edge EXAFS 

spectra were measured in situ during the activation. The data were collected for MOF-76-Ce-fs, 

during heating up to 350°C in He flow, and after subsequent cooling back to room temperature 

without interrupting the flow of He (MOF-76-Ce-ds). In this way, the MOF-76-Ce-fs and MOF-

76-Ce-ds bond distances were directly comparable without bias due to thermal effects. 

Figure 3a shows the experimental EXAFS signals for initial and final states of the activation 

process. The data indicate that the major changes upon activation happen in the nearest environment 

of Ce atoms (oxygen and carbon atoms within 3.5 Å from Ce that contribute to the phase-

uncorrected EXAFS in the range of 1.5-3.0 Å), since the largest peak centered at 2 Å gets 

dramatically perturbed, while farther-away coordination shells are much less affected. The main 

changes upon activation happen around 90°C and they were monitored by the mass spectrometer 

(see Figure S6b), which indicates that they coincide with the release of water. However, only the 

loss of one water molecule per cerium atom is certainly not sufficient to cause such a remarkable 

change in the EXAFS signal. At the same time, the loss of a larger fraction of coordinated first shell 

ligands would not have been consistent with the crystal structure, indicated by PXRD. In order to 

explain the changes in the spectra, the EXAFS data were fitted, using the corresponding PXRD 

geometries as starting points. Figure 3b shows the cluster used for MOF-76-Ce-fs. The activated 

structure lacks solvent oxygen Osol, but otherwise is qualitatively similar and therefore is not 

presented for the sake of brevity. Obtained fits are in good agreement with experimental data 

(Figure 3c, d). In MOF-76-Ce-fs, the main peak is due to the scattering from four pairs of oxygen 

atoms (O1-4), one pair of carbons (C1) and one oxygen of an adsorbed solvent molecule (Osol). 
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Despite the impressive decrease in the intensity of the first EXAFS peak in the activated material, it 

was confirmed that, upon activation until 350°C, only the solvent molecule desorbs, while all other 

atoms in the nearest vicinity of Ce remain. The decrease of the main peak is explained by a severe 

antiphase effect due to the significant elongation of Ce–O3 distance from 2.55 Å to 2.75 Å. While 

in solvated material the contribution from this path (dark-green curve in Figure 3c,d) is almost 

perfectly in phase with those of O1 and O2, in the activated form it goes exactly out of phase which, 

accompanied by the loss of solvent oxygen Osol, causes the observed damping effect. Consequently, 

the contribution from C1 and O4 becomes visible as a separate peak around 2.6 Å, whereas in the 

solvated material it is only a shoulder on the high-R side of the main maximum. (see details in 

Supporting Information, Table S2 and Table S3).  

 

Figure 3. EXAFS analysis of MOF-76-Ce. a, Fourier-transform (FT) modulus of experimental 

phase-uncorrected k
2
-weighted Ce L3-edge EXAFS signal of MOF-76-Ce. b, Atomic cluster used 

for EXAFS fitting. Colour code: blue – Ce, red – O, grey – C. Atoms that constitute the nearest 
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coordination of Ce and contribute the most to the EXAFS signal are labelled and highlighted by 

coloured halos. Absorbing Ce atom is in the center of the cluster. c-d, Comparison between 

experimental and fitted EXAFS signals for MOF-76-Ce-fs (c) and MOF-76-Ce-ds (d) sample. Top 

panels show the moduli of EXAFS FT, while the bottom panels exhibit the imaginary parts of the 

FT together with the contributions of the principal scattering paths. Vertical dashed lines indicate 

the boundaries of the fitted region. The colour of each path’s signal matches the colour of the halo 

in the panel (b) assigned to the atoms that form the path. With exception of solvent oxygen Osol, 

each path is formed by the two atoms equidistant from Ce that have the halos of the same colour. 

 

The oxidation state of Ce ion in MOF-76-Ce was studied by XANES and FT-IR methods (see 

Figure 4). 

Ce L3-edge XANES spectra serve as a very reliable indicator for Ce oxidation state, since the 

shapes of the L3 edge for Ce (IV) and Ce (III) are completely different. While Ce (IV) gives rise to 

a double-peaked main maximum with two low-energy shoulders, Ce (III) produces a very intense 

single-peaked white line.
[10]

 Typical examples that illustrate these two different cases are cerium 

(IV) oxide and cerium (III) nitrate, which were used in our XANES experiment as reference 

compounds (Figure 4a). Ce L3-edge XANES spectra were simultaneously collected with EXAFS 

data showing no substantial change of the Ce oxidation state, along the sample treatment in inert 

flow. 

Trivalent Ce species, with  at least one coordination vacancy, were monitored in MOF-76-Ce-ds 

upon CO adsorption followed by IR spectroscopy (Figure 4b). It is well-known that the CO 

vibrational frequency is able to shift differently after coordination by Ce
3+

 or Ce
4+

 centers.
[11]

 In this 

experiment, 10 mbar of CO were dosed at liquid nitrogen temperature on a self-supported pellet of 

MOF-76-Ce-ds (obtained by pretreating in dynamic vacuo at 250°C for 2h). The pressure in the 

cell was gradually reduced by contemporaneous recording of spectra. Three distinct contributions 



10 

 

appeared at 2155, 2149 and 2137 cm
-1

. The band at 2137 cm
-1

, being the first one to be removed 

upon lowering the pressure, was assigned to physisorbed CO condensed in the pores. The doublet at 

higher frequencies (2155 and 2149 cm
-1

) required more prolonged pumping to disappear and, for 

this reason, they can be assigned to CO interacting with acidic sites. At higher coverage, the feature 

at 2155 cm
-1

 was dominant, while the one at 2149 cm
-1

 was only a shoulder. By decreasing CO 

pressure, the feature at 2155 cm
-1

 disappears more rapidly than the one at 2149 cm
-1

. As CO 

vibrational mode on MOF open metal sites is intermediate between metals in oxides and metals 

grafted in different systems,
[12]

 the doublet can be ascribed to adsorption on Ce
3+

 sites, as bands due 

to Ce
4+

 were expected at frequencies higher than 2156 cm
-1

,
[11]

 in agreement with XANES results 

(Figure 4a). The hypothesis of two different Ce
3+

 sites, characterized by different strength and 

abundancy, was ruled out being not supported by the structure. Thus, the band at 2155 cm
-1

 could 

be tentatively assigned to CO interacting with one Ce
3+

 site and the band at 2149 cm
-1

 to CO 

bridged on two close Ce
3+

 sites, on the basis of literature reports.
[13]

 

 

Figure 4. a, Ce L3-edge XANES spectra of MOF in MOF-76-Ce-fs and MOF-76-Ce-ds, compared 

to Ce (IV) oxide and Ce (III) nitrate hexahydrate. All the spectra have been collected at room 

temperature. b, FTIR spectra of CO adsorption at -196°C recorded on MOF-76-Ce-ds (black 
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curve); red and gray curves represent respectively the highest (p=10 mbar) and the intermediate 

coverages obtained upon progressive outgassing.  

 

CO2 and N2 adsorption on MOF-76-Ce 

Adsorption properties towards CO2 of MOF-76-Ce-hs and MOF-76-Ce-ds were also explored. All 

the presented data indicate that the two materials, in spite of their similar structural features, such as 

the first coordination sphere of Ce sites, are expected to behave substantially differently. 

Volumetric CO2 isotherms recorded at 25°C in the 0-1.1 bar pressure range on MOF-76-Ce-hs and 

MOF-76-Ce-ds are reported in Figure 5a for both adsorption and desorption branches (full and 

open circles, respectively). MOF-76-Ce-hs and MOF-76-Ce-ds show comparable uptake up to the 

pressure of 0.15 bar, while at higher pressure (1.1 bar) MOF-76-Ce-ds reveals the higher CO2 

storage capacity of 4 mol/kg (15 wt%). 

Table 1 reports CO2 storage capacity in the case of the two samples together with the corresponding 

BET and Langmuir surface areas calculated from N2 adsorption at -196°C (see Supporting 

Information S8 for further details). The Langmuir surface area value measured for MOF-76-Ce-ds 

is quite high (999 m
2
/g), whereas for MOF-76-Ce-hs this value was not measurable, indicating that 

the pore of the material are not accessible to N2. Moreover, a negligible external surface area was 

expected from the large dimension of the MOF crystals (> 10 m, see Figure S1). “Channels gates” 

are not open for N2 as they are for CO2 in case of MOF-76-Ce-hs: it is thus evident that MOF-76-

Ce-hs is expected to be a suitable material for N2/CO2 separation purposes, whereas MOF-76-Ce-

ds would be preferable for CO2 storage. Nitrogen measurements were then repeated at 25°C, in 

order to quantify the selectivity of these materials in CO2/N2 flows. The N2 isotherms are reported 

in Figure 5a (triangles) whereas the adsorption selectivities (defined as 𝑆𝐶𝑂2/𝑁2 =
𝑛𝐶𝑂2𝑝𝑁2

𝑛𝑁2𝑝𝐶𝑂2
, where p 

are the partial pressures of the gas and n is the gas adsorbed at p on the material in the 



12 

 

corresponding pure gas isotherm) for a 15% CO2 / 85% N2 flow at 25°C and 1 bar are reported in 

Table 1. These values confirmed what expected indicating for MOF-76-Ce-hs large selectivities.
[8g]

 

It is interesting that a partial desolvation of the MOF structure, besides lowering the CO2 adsorption 

capacities as expected, causes an increase in the selectivity of the material. It could be then 

suggested the utility to retest the best performing microporous structures reported so far in the 

literature for CO2/N2 separation at different desolvation degree. 

In case of MOF-76-Ce-ds, although the CO2 adsorbed amounts are halved with respect to the ones 

reported for the MOF with best performances in these adsorption conditions (Mg-MOF-74, 21.6 

wt%),
[8g]

 the high affinity of this material toward CO2 can be qualitatively estimated by normalizing 

the CO2 uptake to the material surface area (see Figure 5b). This graph suggests that MOFs with 

open metal sites (as HKUST-1, Mg-MOF-74 and Ni-MOF-74) adsorb, at pressures  1 bar, more 

CO2 than the others, because of the positive effect of the cations on the storage capacity (e.g MOF-

76-Ce-ds has very similar performance to Mg-MOF-74)
[8g]

. Moreover, when CO2 volumetric 

density (often considered a more crucial parameter for implementation of a material in a CO2 

sequestration plant than gravimetric density)
[8h]

 is considered, MOF-76-Ce-ds at 25°C and 1 bar 

shows a value of 145 cm
3
 STP cm

-3
. This makes MOF-76-Ce-ds the third best performing MOF 

from this point of view and with a value close to the ones reported for Mg-MOF-74 (174 cm
3
 STP 

cm
-3

),
[8h]

 UTSA-16 (162 cm
3
 STP cm

-3
)
[8h]

 and NaX (177 cm
3
 STP cm

-3
).  

 

Table 1. Surface areas, CO2 storage capacity (at 1.1 bar and 25°C) and differential heat of 

adsorption of CO2 (qdiff, at 25°C and 0.002 bar ) on MOF-76-Ce. Adsorption selectivities for a 

gas mixture 15% CO2 / 85% N2 at atmospheric conditions are also reported (𝑆𝐶𝑂2/𝑁2). 

 SBET 

(m
2
/g) 

SLangmuir 

(m
2
/g) 

CO2 amount 

(mol/kg) 

CO2 storage 

wt% 
𝑆𝐶𝑂2/𝑁2 qdiff  

(kJ/mol) 

MOF-76-

Ce-hs  
n.p.* n.p.* 1.1 4.6 33.8 35 
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MOF-76-

Ce-ds  
754 999 4.0 15 15.4 21 

*n.p.: not porous 

 

 

 
Figure 5. N2 and CO2 Volumetric Isotherms. a, Excess CO2 and N2 adsorption and desorption 

isotherms at 25°C obtained on MOF-76-Ce-hs (red full and open circles respectively in case of 

CO2, while for N2 triangles were adopted) and MOF-76-Ce-ds (black full and open circles 

respectively in case of CO2, while for N2 triangles were adopted). b, Comparison of CO2 adsorption 

capacities normalized to the material surface area (in m
2
/g) as measured at 25°C and 1 bar for 

MOF-76-Ce-ds, other MOFs
[8g]

 and NaX.  

 

More complex and intriguing is the explanation of CO2 adsorption profile on MOF-76-Ce-hs, as 

this material has a very small accessible volume (as testified by the impossibility of measuring any 

surface area by N2 adsorption at -196°C). 

For the sake of completeness, CO2 volumetric measurements were performed also on MOF-76-Ce-

ds activated at 350°C and 450°C (see Supporting Information S9). 

The CO2 affinity to MOF-76-Ce-hs and MOF-76-Ce-ds was further investigated by means of 

FTIR and microcalorimetric measurements. FTIR adsorption study indicates that CO2 asymmetric 

stretching mode is only slightly perturbed, also in the case of fully desolvated sample (see 

Supporting Information S10), not allowing to evidence any difference between the two materials. 
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Concerning microcalorimetry, CO2 adsoprtion was measured in the pressure range of 0-0.1 bar at 

30°C: the results are summarized in Figure 6. The isotherms are reported in Figure 6a and they 

clearly demonstrate a Henry-type adsorption because of the low pressure considered (only 1/10 of 

the Ce atoms are involved). In the very first stages of the adsorption, the amount of CO2 measured 

reaches the value of 0.3 mmol/g for MOF-76-Ce-hs: this is considerably higher than for MOF-76-

Ce-ds. The same trend is observed in the volumetric isotherms reported in the inset of Figure 5a. 

Furthermore, the calorimetric data show a large difference in the initial heat of adsorption (Q
int

 J/g) 

for the two materials: the value obtained for MOF-76-Ce-hs is 2.5 times the value obtained for 

MOF-76-Ce-hs (Figure 6b). At the lowest pressure, the differential adsorption heat (Figure 6c) for 

MOF-76-Ce-hs is nearly 35 kJ/mol, a value that is close to the value obtained on other well-known 

MOFs with open metal site like HKUST-1 (29 kJ/mol)
[8f]

 and Mg-MOF-74 (39-47 kJ/mol).
[8d, 8e]

 

The heat of adsorption decreases till to reach a plateau at 28 kJ/mol. Surprisingly, MOF-76-Ce-ds 

shows from the beginning a lower interaction energy of 21 kJ/mol that is quite stable in the full 

range of the experimental data. This difference, both in values and in evolution during the 

increasing coverages, can be justified by the different nature of CO2 interaction towards the surface 

sites. In case of MOF-76-Ce-hs, the significantly higher interaction energy of CO2 could be due to 

the fact that the CO2 molecule has the right size to be entrapped inside the small cavities generated 

by the persistence of DMF molecules (see Figure 2 medium panel) while, in case of in MOF-76-

Ce-ds, the interaction is due to end-on Ce(III)∙∙∙CO2 adducts formed in presence of a coordination 

vacancy at cerium sites. Calorimetric measurements were also carried out on the material activated 

in vacuum at 350°C, confirming the similar behavior obtained in case of MOF-76-Ce-ds (see 

Figure S10 in Supporting Information). 

Both microcalorimetric and volumetric data show the reversibility of CO2 adsorption at 30°C and 

25°C. 



15 

 

 

Figure 6. CO2  Microcalorimetric data. a, Volumetric CO2 isotherms. b, Calorimetric isotherms. c, 

Differential heat distributions obtained on MOF-76-Ce-hs (red) and MOF-76-Ce-ds (black). 

Empty and full squares indicates the primary and secondary isotherms obtained at each temperature 

of activation. 

 

Conclusions 

A fast one pot solvo-thermal synthesis for MOF-76-Ce, a material with a very high thermal 

stability, has been optimized. Three different structures were recognized by means of VT-XRD 

technique. Their structures are characterized by a different ratio of solvent molecules to Ce ions 

(1:1, 1:2 and zero). Cerium has 3+ oxidation state and exhibits one coordination vacancy per metal 

center when the MOF is fully activated. 

Volumetric CO2 adsorption isotherms showed the highest value of 15 wt% at 1.1 bar for the sample 

activated at 250°C. However, microcalorimetry revealed, in the lowest pressure range, the strongest 

interaction energy of 35 kJ/mol for the sample activated at 150°C. The material activated at 150°C 

is not accessible to N2, while CO2 is strongly bonded at 30°C. This observation could become of 

extreme relevance in developing this material for post combustion CO2 capture, also thanks to its 

easy synthetic procedure. 

Cyclability of MOF-76-Ce upon multiple adsorption-desorption cycles will be investigated in 

future works. 
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Experimental Section 

MOF-76-Ce (as synthetized composition: [Ce(BTC)]H2OnDMFm) was synthesized using an exact 

amount of trimesic acid (H3BTC 95%, Sigma Aldrich, 0.525 g, 2.5 mmol) dissolved in a solvent 

mixture of N,N-dimethylformamide (Sigma Aldrich, anhydrous DMF, 99.8%, 100 ml) and 

millipore distilled water (50 ml). Then an exact amount of Ce(NO3)3∙6H2O (Sigma Aldrich, 

99.99%, 2.171g, 5 mmol) was added to the mixture, that was stirred for 15 min and placed in a 250 

ml DrySyn heating block set at 140ºC for 30 min. The precipitate was filtered, dried at 50ºC for 2h 

and washed with 30ml DMF. The final yield was of 1 g. 

 

Powder X-ray Diffraction PXRD patterns have been collected with a X’Pert PRO MPD 

diffractometer from PANalytical working in Bragg-Brentano geometry, using as source a ceramic 

tube with a Cu anode. Scattered photons have been collected by a X’celerator detector equipped 

with Ni filter to attenuate Kβ. Non-ambient chamber Anton Paar XRK900 with Be windows was 

used to collect the XRPD patterns as a function of the temperature, in N2 flow (flow rate 20 

ml/min). The temperature program was set in order to measure the sample each 25°C and waiting at 

each step 25 min before to collect the diffractogram. The sample has been heated with a heating rate 

equal to 2°C/min. The measured temperature of the experimental chamber is subject to an error 

within 5°C. The sample was mixed with 20% wt% of LaB6 (NIST 660a standard) as reference for 

both peak position and sample stage height. 

 

High Resolution Powder X-ray Diffraction (HR-PXRD) data were collected on a Bruker D8 

Advance with LynxEye XE detector in capillary transmission mode. The radiation was CuK-alpha-

1 selected by a Ge (111) monochromator. The sample was packed in an open 0.5 mm internal 

diameter quartz capillary between plugs of quartz wool and mounted in a Norby flow cell 
[14]

 and 
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heated with a Leister LE mini hot air blower. The experiment was carried out under a constant flow 

of nitrogen (10 ml/min, 99.99%, AGA). An initial structure change occurred when N2 flow was 

applied at 25°C. The sample was heated to 180°C at a rate of 2°C/min with rapid data collections. 

The sample was then held at 180°C and a series of patterns were collected with a count time of 1 

s/step and step size of 0.014°, until the structure was stabilized. The sample was then heated to 

350°C at the same rate. A pattern was collected at 350°C always with a count time of 1 s/step and 

step size 0.014°. 

All processing of the PXRD data was carried out with TOPAS. The structural transformation for the 

intermediate was carried out with PowderCell and force-field calculations were performed with 

Materials Studio using the Universal Force Field (UFF). 

 

X-ray absorption spectra at Ce L3-edge (5723 eV) were collected at the BM23 beamline of the 

European Synchrotron Radiation Facility (ESRF). The storage ring current was between 150 and 

200 mA. Incident radiation was subject to harmonic rejection by Si mirror and monochromatized by 

a double-crystal Si (111) monochromator. The data were acquired up to the Ce L2-edge (6164 eV) 

that limited the EXAFS signal down to k≈10 Å
-1

. Acquisition step was set to 0.3 eV in the near-

edge region and Δk = 0.035 Å
-1 

in the EXAFS part of the spectrum. We used three He/N2-filled 

ionization chambers as I0, I1 and I2 detectors, placing chromium foil between I1 and I2 for energy 

calibration. Acquisition time was set to 1 s/point in the XANES region and then increased 

quadratically up to 2 s/point in the end of the spectrum. XANES and EXAFS data were analysed 

using Demeter 0.9.20 package 
[15]

. Sample treatment was carried out in in situ cell, flowing 80 ml of 

helium per minute. During the activation, the sample was heated up to 350°C with a ramp rate of 

4°C per minute and then cooled down to 30°C. 
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FT-IR spectra were collected on a Nicolet-6700 spectrometer equipped with a MCT B type 

detector, in the range of 4000-400 cm
-1

, in transmission mode with a 2 cm
-1

 resolution, and 

averaged on 64 scans. 

 

N2 and CO2 adsorption isotherms were collected at 25°C on a volumetric instrument (Micromeritics 

ASAP 2020 sorption analyzer) by use of an isothermal water bath at 25°C. 

N2 adsorption isotherms were also collected at -196°C for surface area evaluations. 

Before each volumetric measurement, the samples (> 200 mg) were activated under vacuum at 150, 

250, 350 and 450
o
C respectively on the same vacuum equipment used for the FT-IR measurements. 

The samples were transferred in the measurement cell in a MBraun Star glove box (H2O, O2 < 0.5 

ppm). 

 

The heat of adsorption and the adsorption isotherms were measured simultaneously by means of a 

C80 microcalorimeter (Calvet type, Setaram, France) at 30°C (a well-established stepwise 

procedure is described in Supporting Information and Ref. [
[16]

]). Before each calorimetric 

measurement, the samples were activated under vacuum at different temperatures. After the first 

adsorption run, the samples were outgassed at 30°C overnight in the calorimeter before the second 

adsorption run was performed, such that the non-desorbable (irreversible) adsorbed fraction could 

be determined. 
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A fast one pot solvo-thermal synthesis for MOF-76-Ce, a material with a very high thermal 

stability, has been optimized. MOF-76-Ce showed three different structures with high potentiality 

in CO2 capture, being the highest value of 15 wt% at 1.1 bar for the sample activated at 250°C. 

 


