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Abstract. The capability of palaeontologists to identify fossil remains of a particular 21 

group of vertebrates strongly depends on the knowledge they have of its comparative 22 

osteology and on the actual presence of diagnostic differences among the considered 23 

taxa. This could have a relevant influence on the study of palaeodiversity, since a low 24 

recognisability causes a loss of data when trying to reconstruct the history of taxa that 25 

lived on Earth in the past. Currently, more than 6000 extant species of lizards and worm 26 

lizards are known, and new ones continue to be discovered, mainly based on molecular 27 

data. But are we able to recognise this high diversity using osteology? As far as 28 

European taxa are concerned, the osteological recognisability of non-snake squamates is 29 

very low: only 31% of the extant European taxa can be identified based on their skeletal 30 

morphology. This is balanced partially by the fact that most recognisable taxa have been 31 

actually recognised in the fossil record, suggesting that the lost data are mainly due to 32 

the scarce knowledge of the comparative osteology of these reptiles and less influenced 33 

by other biases, such as taphonomic or collection biases. In this context, specimen-level 34 

phylogenetic analysis has proved to be a useful tool to identify diagnostic combinations 35 

of osteological features, at least for lacertid species, as evidenced by a case study 36 

focused on the genus Lacerta. 37 

Keywords: Identification, Squamates, Reptiles, Palaeontology, Biodiversity 38 

Introduction 39 

Non-snake squamates (i.e., lizards and worm lizards) exist since at least the Middle 40 

Jurassic (Rage, 2013), and are represented by more than 6000 extant species worldwide 41 

(Uetz and Hošek, 2016) and a number of extinct taxa (for a summary of extinct species 42 

see the now dated review of Estes, 1983, but also Böhme and Ilg, 2003). In order to 43 

identify the current diversity of these reptiles, herpetologists can rely on various 44 

different tools, in particular external morphology, behaviour, molecular and 45 

distributional data. Lately, the rate of new lizard descriptions was rising considerably 46 
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(Pincheira-Donoso et al., 2013). But what about the palaeodiversity? How precisely can 47 

we recognise the diversity of taxa that lived on Earth in the past? Except for a few 48 

remarkable examples (e.g., specimens in amber that preserve also the integument like 49 

Succinilacerta succinea (Boulenger, 1917) or those recently described by Daza et al., 50 

2016), vertebrate palaeontologists are mostly restricted to osteological features to 51 

identify fossil remains and study palaeodiversity. This makes the task of 52 

palaeoherpetologists much more complex and error-prone than that of 53 

neoherpetologists, given that it strongly depends on the degree of knowledge of the 54 

comparative osteology of the considered group and on the actual presence of diagnostic 55 

differences among the taxa. We here try to quantify the current osteological 56 

recognisability of the extant European non-snake squamates, in order to evaluate to 57 

what degree it affects our ability to comprehend the past diversity of these reptiles in the 58 

continent. The degree of recognisability is also evaluated at different hierarchical levels 59 

and within different clades, in order to understand where the information is scarcer and 60 

new studies are needed. Last but not least, we try to assess the utility of phylogenetic 61 

analyses to identify diagnostic osteological features for lizards, and lacertids in 62 

particular. 63 

Materials and methods 64 

We included 75 species of lizards and 3 worm lizards in our analysis. The included species correspond to 65 

the European amphibians and reptiles reported by Sillero et al. (2014), plus the lizards and worm lizards 66 

living on the Greek islands along the coast of Asiatic Turkey as reported by Speybroeck et al. (2016). 67 

Recently introduced taxa have been excluded (as e.g., Chamaeleo africanus). The definition of Europe 68 

largely follows Arnold and Ovenden (2002), but with the exclusion of Madeira and the Canary islands in 69 

the west, because they do not belong to the continent in geological terms. 70 

The evaluation of the recognisability of the different taxa is based on existing bibliography, as 71 

well as on personal observations (see supplementary text S1 for a list of the studied specimens). Details 72 

about the osteology of European lizards and worm lizards have been mentioned in more than 90 papers, 73 
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either dealing directly with comparative osteology (e.g., Evans, 2008) or simply reporting features in the 74 

remarks of the identification of fossil material of extant taxa (e.g., Blain, 2009). For a complete list of 75 

these works, see supplementary text S2. In order to avoid circular reasoning (as outlined by Bell et al., 76 

2010), geographical and/or chronological criteria are not considered useful for the identification of a 77 

taxon, since the range of a species may strongly vary during time. 78 

The recognisable taxa are not always represented by species, but often by different kinds of 79 

higher taxonomic ranks. Because of this, the recognisability is here analysed in two ways: 1) in terms of 80 

Operational Taxonomic Units (OTUs), regardless whether they represent family, genus or species level; 81 

and 2) at the level of species, genus, and family separately. The first analysis tells us how many 82 

taxonomic bins can be recognised when having skeletons of all the 78 extant European lizards, in order to 83 

depict the recognisable diversity based only on osteology. This diversity is then compared with the actual 84 

one recognised by neoherpetologists using other tools, in which OTUs are represented by the 78 extant 85 

species of European lizards and worm lizards. The second analysis quantifies how many species, genera, 86 

and families of lizards can actually be diagnosed with osteological characters, and, assuming that 87 

diagnostic characters are present, in which taxon we need more work to be done to increase this 88 

recognisability. Finally, given the widespread individual variation in lizard skeletons, and thus the low 89 

probability to find unambiguous, osteological autapomorphies for the species, we implemented a case 90 

study to evaluate the utility of specimen-level phylogenetic analysis for the identification of diagnostic 91 

combinations of osteological features of the European species of the genus Lacerta (as defined by Arnold 92 

et al., 2007). We compiled a novel phylogenetic matrix based on osteologicy only, including 159 93 

character statements taken from earlier works (see references in the supplementary text S2) and personal 94 

observations of ET. These character statements were scored in 37 OTUs consisting of single specimens 95 

(see supplementary text S1), which were identified before skeletonization, based on external morphology 96 

by the collectors or curators of the respective collections. The matrix was compiled in the software 97 

Mesquite v. 3.04 (Maddison and Maddison, 2015), and includes nine specimens of Lacerta agilis, nine 98 

specimens of Lacerta bilineata, five specimens of Lacerta schreiberi, four specimens of Lacerta 99 

trilineata, and four specimens of Lacerta viridis, which have all been scored based on first hand 100 

observations. The outgroup consists of specimens of the European lacertids Timon lepidus (1), Podarcis 101 

muralis (2), Archaeolacerta bedriagae (1), Algyroides nigropunctatus (1), and Psammodromus algirus 102 

(1). The matrix was analysed with TNT v.1.1 (Goloboff et al., 2008). We used an extended implied 103 

weighting approach (Goloboff, 2014) in order to reduce the influence of highly variable characters and 104 
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missing data. The tree search was performed using the New Technology Search, enabling all algorithms, 105 

and stabilizing the consensus tree five times with a factor of 75. In order to find all most parsimonious 106 

trees (MPTs), a second iteration of tree bisection and reconnection was performed. 107 

Results 108 

Recognisability 109 

The recognisability of European lizards and worm lizards appears to be rather low (Tab. 110 

1): the recognisable OTUs represent only 31% (24 out of 78 taxa) of the current 111 

European lizard diversity. A large number of lacertids and scincids, as well as all 112 

species of the genus Anguis, can only be identified at genus or even at family level 113 

(species complex in the case of Anguis). It has to be noted that agamids and 114 

chamaeleonids are poorly identifiable too, but since a single autochthonous species of 115 

each family is currently present in the continent, this has no evident effect on the count 116 

of the recognisability of extant taxa. Finally, the most recognisable group is Gekkota: all 117 

four species, belonging to four different genera, are clearly distinguishable from one 118 

another. 119 

The second analysis shows that recognisability highly depends on the hierarchical 120 

levels. Whereas all families of lizards are recognisable based on osteological features, 121 

only 45% of the genera and 17% of the extant species are known to have diagnostic 122 

features in their skeletons (Fig. 1). Also the degree of recognisability varies greatly 123 

within the different families: nearly half (43%) of the scincid and lacertid species can 124 

only be identified as belonging to Scincidae and Lacertidae, and the two European 125 

species of agamids and chamaeleonids cannot be distinguished from other, non-126 

European members of their family based on osteology. On the other hand, osteological 127 

characters of the anguids and blanids allow to recognise all European taxa at least at the 128 

genus level (Fig. 2). 129 
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As for the European fossil record, a large number of the recognisable OTUs 130 

have been identified (20 out of 24, 83%; 26% of the 78 extant species, meaning a loss of 131 

data of 74%; Tab. 1). Among the 24 OTUs, in fact, only those corresponding to 132 

Euleptes europaea, Mediodactylus kotschyi, Lacerta schreiberi and worm lizards of the 133 

Blanus strauchi complex have never been recovered as fossils. 134 

Phylogenetic analysis 135 

The first run of the case study of Lacerta produced a single MPT of a length of 136 

39.25405, and recovered the specimen of T. lepidus among the specimens of Lacerta. 137 

Given that all the recent phylogenetic analyses including these two genera find them as 138 

sister taxa (e.g., Carranza et al., 2004; Arnold et al., 2007; Kapli et al., 2011; Mendes et 139 

al., 2016), our result indicates that either we did not find enough osteological characters 140 

to unite Lacerta to the exclusion of Timon, or that the osteological variability is too high 141 

to obtain a meaningful tree topology based on osteological characters only. In order to 142 

test this, we performed a second analysis, including a constraint forcing the software to 143 

find all the specimens of Lacerta as a monophyletic group. This second run resulted in 144 

nine MPTs with a length of 39.80892. With the exclusion of a single specimen of L. 145 

viridis, all the other specimens form monophyletic clades with their respective species 146 

members in the strict consensus tree (Fig. 3). 147 

Discussion 148 

The impact of recognisability on the study of fossil European non-snake squamates 149 

The knowledge we have of past ecosystems is incomplete, because of the different 150 

biases that cause loss of information in the palaeontological record (among others, 151 

Dunhill et al., 2012). Among them, taphonomic bias has a major effect, in particular 152 

when it comes to small animals (Soligo and Andrews, 2005; Cooper et al., 2006). When 153 

an excavation is not directly focused on the recovery of small vertebrate remains, a 154 

collection bias may also occur, caused by the difficulty of discovering and collecting 155 
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small bones without proper methods and tools. This latter issue is particularly 156 

significant when old works are considered, whereas an increased attention towards these 157 

fossils became established in XX century. Finally, also a historical bias probably 158 

influenced the fossil record of poorly studied vertebrates, such as lizards: studies on 159 

their osteology were, in fact, rare until about the 1970s, with a significant increase from 160 

the 1980s onwards (Fig. 4). This increase in the number of lizard osteology papers still 161 

continues: nearly 25% of all the descriptions used for the current study were published 162 

between 2010 and 2016. Obviously, this lack of osteological data until recently 163 

hampered the identification of fossil taxa, even if the increasing number of description 164 

is highly promising for the future. Also, current taxonomic trends based on molecular 165 

analyses tend to raise subgenera and subspecies to genus and species level, respectively 166 

(e.g., Arribas and Carranza, 2004; Arnold et al., 2007), and it remains to be seen if this 167 

is also reflected in their osteology. 168 

The mentioned biases result in a significant loss of data, especially in small, 169 

fossil vertebrate taxa whose comparative osteology is poorly known, such as 170 

amphibians or reptiles. Delfino (2004) estimated the loss to be of 58% when comparing 171 

the Italian palaeoherpetological fossil record with the extant Italian herpetofauna. 172 

Within lizards, only the 36% of the diversity of extant Italian species has been 173 

recognised in the fossil record (Delfino, 2004), which amounts to a loss of data of 64%. 174 

Results are even worse when fossils of all European lizards and worm lizards are 175 

considered, with an increase in the lost information of 10% (74% versus the above-176 

mentioned 64% in Italy). The same holds true for the percentage of recognisability of 177 

extant lizards, which is 44% for Italian species (Delfino, 2004) and only 31% for 178 

European ones. The trend of decreasing recognisability when going from higher to 179 

lower taxonomic levels (Fig. 1) clearly shows that detailed osteological studies are 180 

strongly needed at genus and species level. As far as lacertids are concerned, this issue 181 
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is exacerbated by the fact that they are the most speciose family of lizards in Europe (56 182 

species out of 78, 72%) and that, among them, the sole genus Podarcis includes 21 183 

species, which can currently not be distinguished based on osteology. Moreover, the 184 

recognisability of Podarcis itself can be also questioned, because of the poor knowledge 185 

of the osteology of other small-sized European lacertids that can be potentially confused 186 

with it. Nonetheless, as will be shown below, detailed osteological study combined with 187 

novel methodological approaches like specimen-level phylogenetic analysis appears to 188 

be well suited to identify diagnostic combinations of osteological traits for lacertid 189 

species. This promising result indicates that at least for lacertids, if not for all lizards, 190 

the main issue decreasing recognisability may not be the lack of osteological traits in 191 

their skeletons, but the lack of our current osteological knowledge. As for anguids, this 192 

may hold true for the genus Anguis too, whose species have been mostly erected based 193 

on molecular data (Gvoždík et al., 2010, 2013), and for which no comparative 194 

osteological study has yet been published. Finally, despite not distinctly affecting the 195 

recognisability of extant European lizards, the fact that both European agamids and 196 

chamaeleonids can only be recognised at the family level will likely cause a loss in our 197 

knowledge of the past diversity of these two groups because of the absence of characters 198 

useful for distinguishing them from extant taxa that are currently extralimital, or from 199 

other species that have become extinct in the meantime. 200 

The degree of lost data about the palaeodiversity of non-snake squamates in 201 

Europe, at least when extant taxa are considered, is therefore very high, and most 202 

probably even higher considering that our estimation is made under the implied premise 203 

of an equal probability of fossilization for all taxa. However, as already stated by 204 

Delfino (2004), this is probably not true: some taxa (such as Iberolacerta spp.) live in 205 

environments that complicate fossilization, such as high-altitude forests or areas with 206 

acid soils, and nearly no sedimentation. Therefore, these species have lower 207 
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probabilities of being preserved in the fossil record. Moreover, some osteological 208 

features of certain species (e.g., the scarce robustness of the bones of small gekkotans 209 

and scincids) could prevent their preservation. It is also true that fossils are often 210 

represented by isolated skeletal elements or incomplete specimens, missing the 211 

necessary bones or bone features to identify them. Therefore, even if a species is 212 

theoretically recognisable based on its osteology, taphonomic bias often prevents 213 

identification of the fossils. Nonetheless, both in the Italian and the European fossil 214 

record, most recognisable OTUs have been recovered as fossils (Tab. 1). This further 215 

corroborates that the loss of diversity is not significantly due to an absence of remains 216 

(i.e., taphonomic and collection biases may be less influent), but mainly due to the lack 217 

of detailed knowledge of potentially diagnostic, osteological features. 218 

Given that, it appears evident that an improvement of our knowledge of the 219 

comparative osteology of lizards and worm lizards (but also of other reptiles and 220 

amphibians) is crucial in order to increase our understanding of the past diversity of 221 

these animals (as already pointed out by Bell and Mead, 2014). In particular, agamids, 222 

chamaeleonids, lacertids, scincids and Anguis need further investigations. The paucity 223 

of scholars interested in the comparative osteology of lizards in past times has surely 224 

prevented us to have a better capability to recognise fossil representatives of these 225 

animals, also because few researchers could not cover the whole extent of lizard 226 

diversity. New studies dealing with the osteology of extant species will surely benefit 227 

palaeontologists working with Pleistocene and Holocene fossils, which appear to be 228 

mostly attributable to modern taxa, but they will have an impact on the study of older 229 

fossils as well, because they will allow researchers to better recognise extinct forms and 230 

their relationships. Moreover, a better knowledge of the comparative osteology of extant 231 

species could also be useful for neoherpetologists to better understand the relationships 232 

between them, adding to other information such as external morphology and molecular 233 
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data, as shown by our phylogenetic analysis. Finally, only apomorphy-based 234 

identifications of fossil and sub-fossil material will allow to overcome the circular 235 

reasoning in palaeobiogeographical reconstructions, which led to the flawed recognition 236 

of herpetofaunal stability throughout the Pleistocene and Holocene of North American 237 

taxa (Bell et al. 2010). We should therefore be cautious with referrals of European 238 

Quaternary remains to extant taxa. 239 

The case of Lacerta 240 

Although the high variability within Lacerta species was confirmed by our phylogenetic 241 

analysis, the second run of the phylogenetic analysis with the constrained searches 242 

shows that specimen-level phylogeny can be a useful tool to identify diagnostic 243 

combinations of osteological features for lizard species. Given that the vast majority of 244 

specimens formed monophyletic clades with the other specimens of the same species, 245 

the set of character states uniting these monophyletic clades can be interpreted to be a 246 

diagnostic combination of osteological features of the respective species. It is important 247 

to stress that most single features of these diagnostic combinations can be variable 248 

within a clade, or shared with specimens of other species, so that they can rarely be 249 

considered unique autapomorphies of a particular species. However, the combination of 250 

all these osteological features is unique, and can be added to differential, morphological 251 

diagnoses of the species. The single specimen of L. viridis, which was found within the 252 

clade formed by the specimens of L. bilineata, is very incomplete, and does not preserve 253 

cranial material. It is possible that the erroneous placement of this specimen is due to 254 

that lack of cranial material, which is generally considered to be more diagnostic at 255 

species level than postcranial bones. Also, L. bilineata has only relatively recently been 256 

separated as distinct species from L. viridis (Rykena, 1991; Amann et al., 1997; 257 

Marzahn et al., 2016), and no morphological characters have been reported to date to 258 

distinguish the two species. Our results therefore appear to corroborate the general 259 
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assumption that cranial material is more readily identifiable to the species level than 260 

postcranial bones. Finally, it is important to note that only a constrained search managed 261 

to find the specimens of a single species in monophyletic clades. This result indicates 262 

that in the case of Lacerta, osteological characters alone do not seem to be enough to 263 

recover a reliable tree topology at the species level. Although the referral of the 264 

specimens to a single species was successful in nearly all cases (actually all the 265 

specimens that included cranial elements), the position of the Lacerta species as found 266 

in our strict consensus tree might thus not represent true phylogenetic relationships. 267 

More methodological work will be needed to address this discrepancy, but this would 268 

be out of the scope of the present study. In any case, the current analysis highlights the 269 

utility of specimen-level phylogeny to identify diagnostic combinations of osteological 270 

features for lacertid species. It also shows that lizard skeletons bear taxonomically 271 

significant features, and that detailed osteological studies are promising for the 272 

recognition of diagnostic traits and finally for identifying lizard remains in the fossil 273 

record. 274 
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Table 1) Recognisability of European lizards and worm lizards and their presence in the 388 

fossil record. 389 

Extant species Recognisable OTU Fossil record 

Laudakia stellio Agamidae indet. Yes 

Chamaeleo chamaeleon 
Chamaeleonidae 

indet. 
Yes 

Euleptes europaea E. europaea No 

Hemidactylus turcicus H. turcicus Yes 

Mediodactylus kotschyi M. kotschyi No 

Tarentola mauritanica T. mauritanica Yes 

Acanthodactylus 

erythrurus 
A. erythrurus Yes 

Algyroides fitzingeri Lacertidae indet. Yes 

Algyroides marchi   

Algyroides moreoticus   

Algyroides 

nigropunctatus 
  

Anatololacerta 

anatolica 
  

Anatololacerta 

pelasgiana 
  

Archaeolacerta 

bedriagae 
  

Dalmatolacerta 

oxycephala 
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Darevskia armeniaca   

Darevskia lindholmi   

Darevskia praticola   

Darevskia saxicola   

Dinarolacerta 

montenegrina 
  

Dinarolacerta 

mosorensis 
  

Hellenolacerta graeca   

Iberolacerta aranica   

Iberolacerta aurelioi   

Iberolacerta bonnali   

Iberolacerta cyreni   

Iberolacerta galani   

Iberolacerta horvathi   

Iberolacerta 

martinezricai 
  

Iberolacerta monticola   

Zootoca vivipara   

Eremias arguta Eremiadini indet. Yes 

Ophisops elegans   

Lacerta agilis L. agilis Yes 

Lacerta bilineata L. bilineata Yes 

Lacerta viridis L. viridis Yes 

Lacerta schreiberi L. schreiberi No 
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Lacerta trilineata L. trilineata Yes 

Podarcis bocagei Podarcis sp. (?) Yes 

Podarcis carbonelli   

Podarcis cretensis   

Podarcis erhardii   

Podarcis filfolensis   

Podarcis gaigeae   

Podarcis hispanicus   

Podarcis levendis   

Podarcis lilfordi   

Podarcis liolepis   

Podarcis melisellensis   

Podarcis milensis   

Podarcis muralis   

Podarcis 

peloponnesiacus 
  

Podarcis pityusensis   

Podarcis raffonei   

Podarcis siculus   

Podarcis tauricus   

Podarcis tiliguerta   

Podarcis vaucheri   

Podarcis waglerianus   

Psammodromus algirus Psammodromus sp. Yes 
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Psammodromus 

hispanicus 
  

Timon lepidus T. lepidus Yes 

Ablepharus kitaibelii Scincidae indet. Yes 

Ophiomorus 

punctatissimus 
  

Trachylepis aurata   

Chalcides bedriagai Chalcides sp. Yes 

Chalcides chalcides   

Chalcides striatus   

Chalcides ocellatus C. ocellatus Yes 

Anguis cephallonica 
Anguis gr. A. 

fragilis 
Yes 

Anguis colchica   

Anguis fragilis   

Anguis graeca   

Anguis veronensis   

Pseudopus apodus P. apodus Yes 

Blanus cinereus 
Blanus sp. 

(Western Group) 
Yes 

Blanus mariae   

Blanus strauchi 
B. strauchi 

complex 
No 

78 24 (31%) 20 (26%) 

 390 
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Figure 1) Recognisability of extant European lizards at family, genus and species 391 

levels. Numbers inside the columns represent the exact percentage of recognisable taxa 392 

and their number compared to the total number of family, genera and species 393 

respectively (between parentheses). 394 

 395 

  396 
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Figure 2) Hierarchical level of the recognisability in the different families of European 397 

lizards and worm lizards: percentage of extant species recognisable at family level is 398 

depicted in black, percentage at genus level in dark grey, percentage at species level in 399 

white, percentage at subfamily or species complex level in light grey. Numbers inside 400 

the columns represent the exact percentage of extant species recognisable at a specific 401 

level and their number compared to the total number of species included in the family 402 

(between parentheses). Abbreviations: Ag, Agamidae; Ch, Chamaeleonidae; Sp, 403 

Sphaerodactylidae; Ge, Gekkonidae; Ph, Phyllodactylidae; La, Lacertidae; Sc, 404 

Scincidae; An, Anguidae; Bl, Blanidae. 405 

 406 

  407 
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Figure 3) Strict consensus tree of 9 MPTs resulting from a constrained search forcing 408 

all specimens of Lacerta into a monophyletic clade (as confirmed by phylogenetic 409 

studies based on molecular data). All but one specimen (L. viridis MNCN 16504, 410 

marked in white) were recovered in monophyletic clades together with the other 411 

members of their species (highlighted by the grey rectangles). The character states 412 

uniting these clades at their base (indicated by dark grey dots) can be interpreted as 413 

autapomorphic combination of osteological traits of the respective species, and used to 414 

identify fossil material. The questionable position of MNCN 16504 is probably due to 415 

the lack of cranial material (the specimen only preserves a partial vertebral column). 416 

 417 

  418 
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Figure 4) Number of articles dealing with European lizard osteology per 10 years from 419 

the 1850s to today. 420 

 421 
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Supplementary text S1 

List of studied specimens. The specimens marked with an asterisk were included in the phylogenetic 
analysis. Abbreviations: CIPA - Laboratorio Arqueociencias Lisboa, Portugal; HUJ.OST - 
Osteological collection of the Hebrew University of Jerusalem, Israel; MCCI - Museo Civico di storia 
naturale di Carmagnola, Italy; MDHC - Massimo Delfino Herpetological Collection, Departement of 
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Switzerland; UAM.R - Universidad Autonoma de Madrid (Reptiles), Spain; ZMS - Zoologische 
Staatssammlung München, Germany. 

Laudakia stellio: MDHC 245; HUJ.OST-Z-5, 423, 424. 

Chamaeleo chamaeleon: MNHN 241, 1942-103, 2002-24, 1887-875; HUJ.OST-Z-380, 425. 

Euleptes europaea: MDHC 384, 388, 389. 

Hemidactylus turcicus: MDHC 26, 238 

Mediodactylus kotschyi: MDHC 201, 285. 

Tarentola mauritanica: MDHC 97, 98, 119, 194, 302. 

Acanthodactylus erythrurus: UAM.R.ACVII; EBD 1266 (specimen from the collection of Salvador 
Bailon). 

Algyroides fitzingeri: MDHC 351. 

Algyroides moreoticus: MDHC 174. 

Algyroides nigropunctatus: MDHC 171, 242, 243; NHMW 797*. 

Archaeolacerta bedriagae: MDHC 167*; unnumbered specimen from the collection of Salvador 
Bailon. 

Eremias arguta: MNHN 1944-168. 

Iberolacerta bonnali: UAM.R.Lm28A. 

Iberolacerta cyreni: UAM.R.Lm4. 



Iberolacerta monticola: UAM.R.Lm77, Lm92. 

Lacerta agilis: CIPA 1550*; MDHC 176*, 177*, 178*, 230*, 231*; MNCN 15979*; NHMW 802*; 
PIMUZ A/III 0902*. 

Lacerta bilineata: MDHC 15*, 48*, 73*, 77*, 84*, 381*; MNCN 16505*; PIMUZ A/III 1276*; 
UAM.R.Q21*. 

Lacerta schreiberi: CIPA 778*, 1256*, 1511*, 1517*; UAM.R.S-6*. 

Lacerta trilineata: MDHC 240*, 241*, 295*, 356*. 

Lacerta viridis: MNCN 16504*; NHMW 778*, 906*, 32879-3*. 

Ophisops elegans: MDHC 281, 282; unnumbered specimen from the collection of Salvador Bailon. 

Podarcis bocagei: UAM.R.PB48. 

Podarcis filfolensis: MDHC 385. 

Podarcis hispanicus: UAM.R.H30; two unnumbered specimens from the collection of Salvador 
Bailon. 

Podarcis lilfordi: two unnumbered specimens from the collection of Salvador Bailon. 
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stored in the Institut Català de Paleontologia Miquel Crusafont. 

Zootoca vivipara: MDHC 179; UAM.R.Lv24. 

Ablepharus kitaibelii: MDHC 239. 

Chalcides bedriagai: unnumbered specimen from the collection of Salvador Bailon. 

Chalcides chalcides: MDHC 94, 329, 398, 408. 

Chalcides ocellatus: MDHC 193, 250; MNHN 1992.193; specimen number 28 from the collection of 
Salvador Bailon. 
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Salvador Bailon. 
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Anguis gr. A. fragilis: MDHC 45, 49, 67, 102, 213, 221, 236, 237, 310, 367, 402. 

Pseudopus apodus: MDHC 214, 215; MNHN 1918.95, 1992.199; PIMUZ A/III0975. 



Blanus cinereus: MDHC 156; ZSM 175-1993-1, 175-1993-2, 227-1975, 548-2003, 652-0-1, 652-0-
2, 653-0-1, 653-0-2. 

Blanus mariae: ZSM 27-1988-1, 27-1988-2. 

Blanus strauchi: MCCI R-1635, 1668; MDHC 93, 286, 287, 288. 
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