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1. Introduction 

 

In the following sections of this introductory chapter, some basic pieces of information are provided 

that will be useful for the understanding of the chapters that follow. 

 

 

1.1. Basic principles of photophysics and environmental photochemistry 
1,2

 

 

In the natural environment sunlight is the source of radiation (λ > 280 nm) and, for photochemistry 

to be operational, one needs molecules that absorb radiation above 280 nm. When a molecule 

absorbs a photon, an electron is excited from the ground state (often it is the ground state from both 

an electronic and a vibrational point of view) to a vibrationally excited state of an electronically 

excited state. In the case of organic molecules, the ground electronic state is usually a singlet one 

(S0), where the electrons are all paired in full orbitals with antiparallel spin. When the molecule 

absorbs radiation, it reaches an excited state that is also a singlet one. It could be the first (S1), the 

second (S2) or a higher excited singlet state depending on the energy of the photon and of the 

molecular states (see Figure 1). To begin with, assume that the electron reaches a vibrationally 

excited state of S1. In some cases there might be an excess of vibrational energy, which may cause 

an excessive strain on the weakest molecular bond that is involved in the vibrational motions 

triggered by radiation absorption. In this case, bond breaking would take place: indeed, the very 

word photolysis suggests the occurrence of photoinduced bond breaking. As an alternative, the 

molecule can undergo fast vibrational deactivation to the S1 ground state. From here, the molecule 

could take part in chemical reaction, thermal or photochemical deactivation to S0, or inter-system 

crossing. Chemical reaction is quite rare in the case of the short-lived excited singlet states, but it 

accounts for instance for the photoisomerisation of 2-chlorophenol to 5-ring species.3 Thermal 

deactivation (internal conversion) can be of some importance in the field of environmental 

photochemistry, because it would be enhanced by inter-molecular interactions that could for 

instance account for the limited photophysical activity and photochemical reactivity of high-

molecular weight chromophoric dissolved organic matter (HMW CDOM).4 

 

 

Place figure 1.1 near here 

 

 

In some cases, the S1 → S0 transition takes place by emission of a fluorescence photon. If this is the 

case, the electron reaches an excited vibrational state of S0 and then the ground one by vibrational 

relaxation. The double loss of vibrational energy, in both S1 and S0, explains why the wavelength of 

the emitted (fluorescence) photon is higher (and, therefore, the associated energy is lower) 
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compared to the absorbed photon. Finally, the electron in the S1 state can undergo inter-system 

crossing (ISC) to the first excited triplet state (T1). The ISC implies spin inversion, and a further 

inversion would be required for the transition from T1 to S0. Such a transition is formally forbidden 

by the selection rules of quantum mechanics, which in practice means that its probability is low and 

that the T1 state is longer-lived than S1. The quite long lifetime means that T1 can undergo chemical 

reactions, for instance with the solvent or with dissolved molecules, as well as intra-molecular 

rearrangements. A common energy-transfer reaction takes place with dissolved O2, which is 

favoured by the fact that the O2 ground state is a triplet one. The reaction yields singlet oxygen 

(1O2), while the molecule usually reaches the S0 state. Internal conversion from T1 to S0 is also 

possible, in which case the energy is thermally lost through e.g. collisions with the solvent. In some 

rare cases, the transition from T1 to S0 can take place by emission of a phosphorescence photon. 

Similarly to the case of fluorescence emission, in the case of phosphorescence the molecule reaches 

a vibrationally excited state of S0 from which a further vibrational loss of energy takes place. 

Upon radiation absorption, other excited states different from S1 may be reached. If the energy 

is high enough (which is more common in the case of the environmentally non-relevant UVC 

radiation, λ < 280 nm), the electron may be abstracted from the molecule to produce its 

photoionisation.5 Interestingly, the irradiation of CDOM is well known to yield aquated electrons.3,4 

If the photon energy is not high enough to cause photoionisation, higher excited states than S1 may 

be reached (S2, S3 and so on). In the case of most organic molecules, the electron reaches a 

vibrationally excited state of the singlet state Sn (n > 1), from which it undergoes vibrational 

deactivation to the ground vibrational level of S1. This is quite important for photochemistry and 

photophysics because, independently of the excitation wavelength, the molecule always reaches the 

ground state of S1, from which its further evolution will be the same independently of the details of 

the excitation process. It is the so-called Kasha’s rule, according to which for instance the 

fluorescence emission wavelength is always the same (following the S1 → S0 transition) 

independently of the excitation wavelength (which may cause transitions of the kind S0 → S1, S0 → 

S2 and so on, depending on the photon energy). 

An interesting application of the Kasha’s rule can be seen in the case of the irradiation of 

anthraquinone-2-sulphonate (AQ2S). This molecule is not fluorescent (its ISC is much more 

efficient than the energy deactivation by fluorescence emission), but upon irradiation AQ2S forms 

fluorescent hydroxyderivatives.6 The fluorescence excitation-emission matrix spectrum of irradiated 

AQ2S is reported in Figure 2, showing a single emission band (in the range of 550-600 nm) that, 

however, corresponds to several excitation bands at different wavelengths, ranging from 200 to 500 

nm and suggesting various S0 → Sn transitions. 

In some cases, the Kasha’s rule is apparently not followed. This is the case for instance of the 

fluorescence spectrum of 4-phenoxyphenol, which has four paired emission bands (see Figure 3). 

One pair has emission at 300-350 nm, which corresponds to two excitation bands at 200-250 and 

250-300 nm. The second pair has emission at 350-425 nm, corresponding to two excitation bands 

around 250 and 300 nm. According to Kasha’s rule one would expect a single emission wavelength 
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(S1 → S0 transition), linked to the occurrence of one pair only or to four bands that should be 

vertically placed as in the case of Figure 2. However, 4-phenoxyphenol exists in aqueous solution in 

three different rotational conformations that undergo very slow inter-conversion (compared to the 

typical fluorescence lifetimes). It has been shown that a conformer accounts for the bands with 

emission at 300-350 nm, the other two for the bands with emission at 350-425 nm.7 

 

Place figure 1.2. near here 

 

 

Place figure 1.3. near here 

 

 

1.2. Photosensitisers and photoinduced transients in surface waters 

 

Several photochemical processes can take place in sunlit surface waters. Some of them involve the 

absorption of sunlight by the molecule(s) that are transformed, following reaction pathways that 

have been partly described in section 1.2 and that will be more extensively dealt with in Chapter 

4.3,8,9 However, additional reactions are triggered by the absorption of sunlight photons by naturally 

occurring photoreactive species called photosensitisers. Among these naturally compounds there are 

chromophoric dissolved organic matter (CDOM), nitrate, nitrite, Fe species and H2O2.
10 The 

(photo)chemistry of Fe, which also partially involves that of H2O2, is quite complex and will be the 

subject of a separate chapter. The present introduction will provide a general overview of the 

photochemistry of CDOM, nitrate and nitrite, to be further elucidated later on in this book. 

CDOM is, almost beyond any doubt, the single most important photosensitiser (or better, class 

of sensitisers) that occurs in natural waters. Its complex and not yet completely elucidated 

molecular structure has been the subject of intense debate. Today, many scientists accept that it 

could be a supra-molecular (rather than a macromolecular) combination of smaller compounds, 

which form aggregates that vary for the apparent molecular size.4,11,12 The most important 

photoactive moieties of CDOM are its humic and fulvic parts, which are responsible for an 

important fraction of sunlight absorption by CDOM itself.13,14 

The absorption of sunlight by CDOM causes the excitation of its photoactive moieties to 

produce the excited singlet states (1CDOM*). In the case of aromatic aldehydes, benzophenones, 

quinones and other chromophores, the singlet excited states tend to undergo an efficient inter-

system crossing (ISC) to produce the longer-lived triplets (3CDOM*),4,8,9 which are often involved 

in chemical reactions that cause the transformation of other dissolved molecules including dissolved 

pollutants. 

Despite the importance of triplet-sensitised transformation for the removal of many pollutants 

from surface-water environments,8-10 the main 3CDOM* sink is actually the reaction with O2 to 

produce singlet oxygen (1O2). The latter is also an important transient that might be involved in the 
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indirect photochemistry of dissolved compounds (e.g. chlorophenolates and aromatic amino acids 

such as tryptophan and tyrosine) 15-17 or that, as an alternative, may undergo deactivation upon 

collision with water. On top of all this, irradiated CDOM can also induce the photochemical 

production of •OH, of which it is actually the main source in most surface waters.10,18-21 Although 

several details are still missing, it is now generally acknowledged that part of the •OH 

photoproduction by irradiated CDOM involves the photochemical generation of H2O2.
22,23 The 

latter probably takes place upon dismutation of HO2
•/O2

−•, produced upon scavenging by oxygen of 

the reduced radical transients that are formed by reaction between 3CDOM* and dissolved 

compounds. Once photochemically generated, H2O2 can yield •OH through direct photolysis or 

(more probably) the Fenton reaction with H2O2.
24 The Fenton process is actually much less “clean” 

than it may be suggested by its traditional stoichiometric notation, because super-oxidised Fe 

species (e.g. ferryl) may be formed in competition with •OH. The actual •OH yield reaches ∼60% 

under the most favourable conditions (pH 2-3) 25 and it decreases with increasing pH.26 The 

reactions described so far are reported below, where S-H is a generic dissolved molecule that 

undergoes oxidation by reaction with 3CDOM*. 

 

CDOM →
νh  1CDOM* →

ISC  3CDOM*    (1) 
3CDOM* + O2 → CDOM + 1O2      (2) 
1O2  →

OH2  O2         (3) 
3CDOM* + S-H → CDOM-H• + S•      (4) 
3CDOM* + S-H → CDOM−• + S-H+•      (5) 

CDOM-H• + O2 → CDOM + HO2
•      (6) 

CDOM−• + O2 → CDOM + O2
−•      (7) 

HO2
• + O2

−• + H+ → H2O2 + O2       (8) 

H2O2 →
νh  2 •OH         (9) 

Fe2+ + H2O2 → FeOH2+ + •OH        (10) 

 

However, the photochemical production of •OH by irradiated CDOM is also known to follow an 

additional, •OH–independent pathway. It is possible that this pathway does not only yield genuine 
•OH, because so-called low-level hydroxylating species are certainly formed in the process. 

However, a certain amount of •OH is also produced.22 To get an idea of what the additional 

hydroxylating species may be, one can consider the photochemistry of anthraquinone-2-sulphonate, 

the triplet state of which (3AQ2S*) is certainly unable to produce •OH upon water oxidation.27 

However, 3AQ2S* quickly reacts with water to produce an adduct that may either evolve into AQ2S 

hydroxyderivatives or transfer the OH group to other molecules.6,27,28 The reaction products are not 

different from those expected upon reaction with •OH, but the AQ2S-H2O adduct is a much less 

powerful oxidant compared to •OH. 

The H2O2-independent pathway to •OH in the presence of irradiated CDOM might involve 

water oxidation by 3CDOM* (which is still controversial, as some triplet states can oxidise H2O but 
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others cannot),27,29 or a preliminary CDOM oxygenation followed by e.g. •OH production upon 

photochemical excitation of some oxygen-containing groups. Anyway, many details of the process 

are missing at the moment. 

An interesting issue is the detection of very high concentration levels of 1O2 in the inner 

hydrophobic cores of high-molecular weight CDOM (HMW CDOM). This concentrated 1O2 seems 

to have few chances of escaping into the solution bulk, because hydrophobic 1O2 probes 

(undergoing preferential partitioning into the waterless core environment) are needed to highlight it. 

However, it could play an important role in the degradation of hydrophobic pollutants that are 

partitioned inside CDOM cores.30,31 The occurrence of elevated 1O2 in HMW CDOM cores might 

be due to elevated photochemical formation or to longer lifetimes than in solution. Presently, little 

to no evidence is available to support the former hypothesis,32,33 while there is evidence for the 

latter.34 

Nitrate yields •OH upon absorption of UVB and (to a lesser extent) UVA radiation. A major 

process is generally agreed to be the following:35 

 

NO3
− →

νh  •NO2 + O−• →
+H  •NO2 + •OH    (11) 

 

The quantum yield of this reaction is independent of the wavelength and it is around 0.01.36 The 

involvement of H+ in the •OH production might suggest that the process could depend on pH, which 

is not exactly the case (at least as far as reaction 11 is concerned). Indeed, •OH has pKa ∼ 12 and 

the acid-base equilibrium •OH � O−• + H+ can, therefore, only be of importance around pH 12. At 

the typical pH values of surface waters, the equilibrium is totally shifted toward •OH.35 

Still, the photogeneration of •OH by irradiated nitrate depends on pH in the ∼neutral range,37 

which warrants a different explanation. A possibility is the contemporary photoisomerisation of 

nitrate to peroxynitrite, ONOO−, taking place along with reaction (11). The ONOO− is the 

conjugated base of peroxynitrous acid, HOONO, a weak acid with pKa ∼ 7. HOONO and ONOO− 

strongly differ for the inactivation pathways because, in addition to the common back-isomerisation 

to nitrate, HOONO decomposes into •OH + •NO2 while ONOO− reacts with dissolved CO2.
38,39 

Therefore, the prevalence of HOONO at pH < 7 and of ONOO− at pH > 7 could explain why the 

photogeneration of •OH by nitrate decreases with pH in the ∼neutral range.37 

 

NO3
− →

νh  ONOO−        (12) 

ONOO− + H+ � HOONO      (13) 

HOONO → NO3
− + H+        (14) 

HOONO → •NO2 + •OH        (15) 

ONOO− → NO3
−         (16) 

ONOO− + CO2 → ONOOCO2
−  → Other products (no •OH )  (17) 

 



7 
 

Nitrite mostly absorbs sunlight in the UVA region, with minor absorptions in the UVB and visible. 

Its •OH–producing photoreaction has the peculiarity of a wavelength-dependent quantum yield, 

from 0.065 at 300 nm to 0.025 at 360 nm and beyond.40 The reason could be the fact that different 

bands of nitrite, with different quantum yields and different roles depending on the wavelength, are 

involved into sunlight absorption. 

One should not forget that, in addition to photochemical production, the photogenerated 

transients undergo very fast inactivation (1O2, 
3CDOM*) or scavenging processes (•OH, CO3

−•, 
3CDOM*) in surface waters (in the case of 3CDOM*, the main scavenger is O2). The combination 

of production and very fast decay accounts for the fact that the transients reach relatively low 

(always < 10−12 M) steady-state concentrations in surface waters.10 

Concerning •OH one should not forget that, in addition to photochemical production, it also 

undergoes important scavenging in natural waters. The main •OH scavengers are dissolved organic 

matter (DOM, either chromophoric or not), inorganic carbon (HCO3
− and CO3

2−), nitrite and, in 

brackish or seawater, bromide.9,10 The reaction between •OH and inorganic carbon yields CO3
−•, 

which is also a significant reactive transient in surface waters and might be involved into the 

transformation of phenolates, aromatic amines and sulphur-containing compounds. The radical 

CO3
−• can also produced upon CO3

2− oxidation by 3CDOM*.41 The steady-state [CO3
−•] in sunlit 

waters is strongly anticorrelated with DOM, for two reasons. First of all, DOM is by far the main 

CO3
−• scavenger in surface waters. Moreover, by consuming •OH, DOM is also able to inhibit the 

photogeneration of CO3
−•.9,10 

 
•OH  + HCO3

− → H2O + CO3
−•      (18) 

•OH  + CO3
2− → OH− + CO3

−•      (19) 
3CDOM* + CO3

2− → CDOM−• + CO3
−•    (20) 

 

The reaction between •OH and bromide yields Br2
−•, which is an effective brominating agent for 

aromatic compounds including most notably phenols.42 In this way, the photogeneration of •OH in 

saltwater may induce the production of persistent and potentially toxic organohalogenated 

compounds.43-46 

 
•OH + Br− → OH− + Br•       (21) 

Br• + Br− � Br2
−•       (22) 

OH
Br

2
-

O
-2Br-,

-H+

Br
2
-

- Br-
OHBr

   (23) 

 

1.3. Seasonal and long-term variations of the main photosensitisers in lake water 
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In lake water, nitrate has often winter maxima and summer minima. In fact, during the warm 

season, inorganic nitrogen (including most notably nitrate) is largely consumed by micro-organisms 

to produce organic nitrogen. At the same time, the enhancement of photosynthesis during the 

summer season consumes dissolved CO2 and causes an increase of the water pH. The combination 

of pH increase and higher water temperature often causes the precipitation of CaCO3, which 

accounts for the summer minima of both alkalinity and inorganic carbon.47 

The DOC may be quite variable during the different seasons. However, during summer, the 

combination of algal growth (where the necessary carbon is largely taken from the atmosphere) and 

death (which releases dissolved organic material into lake water) is usually associated with annual 

maxima of DOM.48-50 

In alpine lakes, photochemistry may be strongly inhibited during winter and spring because of 

the ice cover and of the increased water turbidity soon after ice melting. In addition to 

photochemical issues, these phenomena are important for the protection of aquatic organisms from 

the harmful effects of the exposure to UVB radiation. In this context, climate warming could 

decrease the ice-cover period and indirectly cause an increased exposure of alpine plankton to 

UVB.51-53 

In arid environments, the net water loss and subsequent decrease of the water column depth 

during the dry season can have important effects on photochemical reactions. If water is simply lost 

by outflow (to rivers draining a lake, or to the sediment), without significant changes of the 

concentration values of the dissolved species, the lower column depth would favour all 

photochemical reactions but, most notably, the processes induced by •OH and CO3
−•. In contrast, 

water loss by evaporation causes a concentration of the non-volatile species that are dissolved in 

water. This phenomenon, while leaving almost unaltered the steady-state [•OH] and [CO3
−•], 

strongly enhances the processes induced by 1O2 and 3CDOM*.54 

Eutrophication of lake water (e.g. because of inputs of nutrients from human waste) often leads 

to an increase in the levels of both nitrate and DOM, while the opposite is expected to happen in the 

case of recovery from eutrophication.55-58 In nordic environments, climate change could give a 

contribution to eutrophication, with increasing levels of (most notably) DOM and CDOM. In 

contrast, in Mediterranean settings, climate change could induce desertification with loss of organic 

matter from soil that, after a first phase of organic carbon export to surface waters, would finally 

produce oligotrophication and very low DOM levels. Intermediate scenarios are of course highly 

likely, which makes it difficult to foresee in the general case the impact of climate change on DOM 

and CDOM.59,60 

A more widely agreed effect that is connected with climate is the increase of lake water 

alkalinity. Actually, increasing temperature enhances the dissolution of minerals such as CaSO4, 

producing in this case increased levels of both Ca2+ and sulphate. However, while Ca2+ is 

biologically stable, sulphate would be partially or largely converted into organic sulphur species 

(e.g. R-SH). The resulting imbalance of alkalinity is compensated for by increasing levels of 

inorganic carbon and pH.61-63 
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1.4. Photoinduced transformation of organic micropollutants 

 

The presence of organic micropollutants may pose a potential threat to the aquatic environment. In 

particular, the occurrence of the so-called emerging contaminants (ECc) is receiving increasing 

attention nowadays. Biological processes usually lead to a limited transformation of 

micropollutants, but biotransformation is often the most important removal process for these 

compounds from water.64 Additionally, photoinduced reactions involve the formation of radical 

species, able to almost completely abate micropollutants through non-specific reactions and to 

promote the formation of numerous transformation products (TPs). These TPs may possess diverse 

mobility, polarity and toxicity compared to the parent molecule and, therefore, the elucidation of 

transformation pathways followed by pollutants is crucial to evaluate their overall fate and the 

associated risks to the aquatic compartment. 

There are several difficulties associated with degradation studies in environmental matrices, and 

most notably: 

(1) the very low concentration of pollutants and, of course, of their TPs, thus very sensitive 

analytical instrumentation is required; 

(2) the complexity of the matrices, which may affect the analytical performance.  

Therefore, different strategies have been employed to generate and detect transformation products 

firstly at lab scale and then in natural systems, as described in chapters 12-14, where particular 

attention is devoted to the techniques that can be used in the field and in the laboratory for the 

detection of pollutants and of their transformation intermediates. 
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Figure captions 

 

Figure 1.1. Schematic of the processes that may follow radiation absorption by a water-dissolved 

organic compound. Solid horizontal lines represent ground vibrational states of 

electronic levels, excited vibrational states being dashed. Solid and straight vertical 

arrows represent radiation absorption processes (hν = photon), zigzag arrows are 

vibrational relaxation processes (including internal conversion), while dash-dotted 

arrows represent light emission (fluorescence or phosphorescence). ISC = inter-system 

crossing. 

 

Figure 1.2. Fluorescence spectrum of irradiated AQ2S (Vione, unpublished data). 

 

Figure 1.3. Fluorescence spectrum of 4-phenoxyphenol.7 
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1. Introduction 

1.1.  Lakes as a research facility 

Inland waters form the link between terrestrial and marine systems, being reactors of dissolved 

organic and inorganic matter along its path to the sea (Smith and Hollibaugh, 1993). Lakes have 

been a key subject of the ecological studies in the first half of the 20
th

 century, when they were 

exploited as model ecosystems, thought to be fairly simple for testing the emerging ecological 

hypotheses. Later, they have revealed a much greater complexity, challenging modern studies on 

trophic interactions; ecosystem degradation and recovery, especially eutrophication and 

acidification; ecological succession and regime shift; biogeochemical processes (Connell 1975; 

Peters, 1991; Scheffer and Jeppesen, 2007, Nixon, 2009). Among others, the theoretical foundation 

of the trophic-dynamic model of energy flow (Lindeman, 1942) and the early key questions on 

biodiversity and its role (Hutchinson, 1959) were based on comprehensive studies of lake 

communities. 

Lakes were also catalysts for the growth of research centres that achieved excellence and provided 

background for the new ecological science. Among others, the Italian Institute of Hydrobiology at 

Pallanza was an “heaven for ecologist” (Edmondson and Edmondson, 1990). 

At present a large body of literature provides studies on causes, effects and processes of 

eutrophication; interactions among climate, in lake physical processes and community structure and 

processes; benthic metabolism and its effects on deoxygenation and solutes and dissolved gas 

(especially CO2 and CH4) exchanges at the water-sediment interface; the deep sediments as sinks or 

sources of biogenic elements, especially N, P and Si; the structuring role of the littoral macrophyte 

belt and the adjacent submerged vegetation in the photic shallow waters (Jeppesen, 1998; Bastviken 

et al., 2004; Nizzoli et al., 2010; Pinardi et al., 2011). Whole lakes are also used for the bio-

manipulation experiments of the food webs in order to understand and manage trophic interactions 

and provide solutions for the recovery from deteriorated conditions (Shapiro et al., 1990). 

 

1.2. Lakes as a resource: water, water scarcity and lakes’ exploitation 

More than 99% of the water present on Earth is in the oceans and in the polar ice caps: this 

immense quantity of water is not directly available for human use. Comparatively, surface 

freshwater environments have much smaller volumes, but are the only standing waters that can be 

exploited. Nonetheless, these valuable resources are threatened and degraded at the point that a 

freshwater crisis could potentially occur in the near future as a combination of increased 



temperatures and changed precipitation patterns, increasing water demand, chemical and biological 

pollution (Yeston et al., 2006).  

In Italy, approximately 170x10
9
 m

3
 of freshwater are available in lakes, reservoirs and other lentic 

aquatic ecosystems, but nearly 120 x10
9
 m

3
 are stored in the four major sub-alpine lakes (Maggiore, 

Como, Iseo, Garda). These lakes are fed by glaciers, which are dramatically retreating with 

unpredictable future effects (Citterio et al., 2007). The large sud-alpine lakes are also man-regulated 

and used to store water in winter and spring, that is released through the emissary in summer for 

irrigation and industrial purposes. In parallel, lakes regulation allow the stabilization of hydrometric 

levels and the avoidance of their extreme fluctuations, keeping safe conditions for the human 

settlements along the coast (http://www.laghi.net/). Under these circumstances, contrasting and 

often conflicting targets by different stakeholders can establish for hydraulic safety, needs for 

touristic facilities, hydropower production and irrigation, and maintenance of the minimum 

environmental flow. The conflict extent can be amplified by climate changes especially in mid-

summer of dry years, when the water demand exceeds its availability, with critical impacts 

especially on agriculture. 

 

2. Physical factors structuring the lake ecosystem 

The structure and functioning of a given lake cannot be fully understood without knowing its 

genesis, the watershed geology and hydrogeology, and climate-dependent physical processes 

(Wetzel, 2001). 

2.1. Origin of lakes: an explanation of lakes diversity 

The comprehension of lakes origin helps to understand their large variety of forms, depths and 

dynamics. Most natural lakes were formed by catastrophic events. Tectonic lake basins are 

depression formed by a displacement of the earth crust; volcanic lakes originate in volcanic cones 

or in partially emptied magmatic chambers; kettle lakes were formed from melted blocks of ice 

buried in moraine debris, during glacier retreat. Other natural lakes originate from gradual, less 

catastrophic events. Solution lakes result from sinks formed by the gradual dissolution of rocks 

along fissures and fractures; oxbow lakes result from erosional and depositional action of rivers, for 

example during flooding events; dune lakes form in sandy areas by erosion; they may contain water 

seasonally. Reservoirs and quarry lakes are very recent impoundments, created largely by man. 

They are generally short lived because of eutrophic conditions and high siltation rates.  

 



2.2.  Water quality as a result of watershed geology and lithology  

Water quality depends on the interactions with the main lithological formations in the watershed. 

For example, the presence of limestone and marl is expected to naturally provide calcium and 

inorganic carbon ions; ophiolites can potentially leach magnesium, silica, alluminium and nichel 

and so forth (Table 1). Here, the inorganic carbon species are collectively represented by the total 

alkalinity (TA), that at the actual pH values is mainly accounted by HCO3
-
 and to a much lesser 

extent by CO3
2-

 and OH
-
, this latter being nearly negligible. Lakes with carbonate poor lithology, 

namely with only traces of marl and limestone, have low Ca
2
+Mg

2+
 and TA concentrations. The 

concentrations increase by approximately one order of magnitude in lakes with marl and limestone 

formations in the range 10-50% of the watershed surface. The presence of Triassic evaporites with 

gypsum outcrops accounts for significant increases of SO4
2-

, whilst in ophiolites-rich basins Mg
2+

 

becomes dominant among cations. 

 

Table 1. Major ions concentrations (µEq L
-1

) in water of high altitude lakes in the Northern Apennines, Italy, with 

different surface lithology. N: number of data, CD: conductivity at 20 °C (µS cm
-1

), TA: total alkalinity (µEq L
-1

). SA: 

sandstone, ML: marl and limestone, MU: maphic and ultra-maphic (ophiolites), SG: sandstone and gypsum. Data from 

Viaroli et al. 1992; 1994. 

lithology N pH CD TA SO4
2-

 Cl
-
 Na

+
 K

+
 Mg

2+
 Ca

2+
 

SA 17 7,17±0,35 36±14 228±143 44±12 65±14 80±9 8±1 24±7 90±56 

ML 9 8,00±0,18 164±48 1634±588 118±52 104±35 165±66 32±21 155±91 706±211 

MU 6 7,67±0,39 82±29 793±385 52±15 77±18 89±21 12±15 290±162 165±91 

SG 3 7,58±0,29 166±62 781±448 403±41 90±4 110±1 12±5 121±41 730±369 

The ion budget of lake water is mainly accounted by bicarbonates and calcium, with exceptions due 

to the lithological features of the watershed. In the Northern Apennine lakes (Table 1), on average 

TA+ SO4
2-

 accounts for 87% (70-95%) of the total anions and Mg
2+

 + Ca
2+

 represents 80% (50-

93%) of the total cations (Figure 1a). Specifically, the ion composition of lake water is mainly 

determined by calcium and bicarbonates which are nearly equivalent (Figure 1b). Synthetically, the 

ionic strength of the water can be represented with the electric conductivity (Figure 1c). 

The total alkalinity is almost completely due to the inorganic carbon equilibria that, under the pH 

and conductivity of the natural lake waters, are mainly driven by bicarbonates: 

CO2+ H2O ↔ H2CO3 

H2CO3  H2O ↔ HCO3
-
 + H3O

+
 (pKa1=6.35) 

HCO3
-
 + H2O ↔ CO3

2-
 + H3O

+   
(pKa2=10.33) 

 



 

Figure 1. Relationships between (a) the main ionic components, (b) calcium and total alkalinity and (c) conductivity 

and total ion concentrations in the water of the Northern Apennines lakes. 

 

Under these circumstances, increases of water acidity can be buffered by carbonates and 

bicarbonates that are converted into carbonic acid, finally releasing carbon dioxide in the 

atmosphere. The TA is operationally called Acid Neutralizing Capacity (ANC), which is equivalent 

to the acid quantity that is required to titrate a given water volume to pH 4.2, coinciding with the 

exhaustion of bicarbonates. To sum up, the sensitivity of lakes to acidification can be assessed with 

simple measures of pH, conductivity and, especially, ANC (Table 2).  

 

Table 2. Simple criteria for assessing the lake sensitivity to acidification (modified from Mosello et al., 1993; 

Krzyzanowski and Inne, 2010). 

 Very high High Moderate Low 

ANC (µµµµEqL
-1

) <50 50-200 200-400 >400 

pH <5.6 5.6-6.5 6.6-7.0 >7.0 

CD (µµµµS cm
-1

) <20 20-35 35-78 >60 

 

The literature on lake acidification is particularly rich of studies on causes and effects of acid 

depositions and their effects in lakes’ districts with very different lithology. Based on the 

knowledge of deterioration processes and possible remedial, restoration programs have been 

successfully applied at different spatial scales. However, one of the most famous example of 

successful management of lake acidification deals with the Lake Orta, that was recovered from 

heavy industrial acidification. The knowledge of inlake biogeochemical processes was a powerful 

support for designing the lake liming to buffer acidity, along with a cost-benefit analysis (Calderoni 

and Tartari, 2000).  

 

2.3. Heat budget, density dependent processes and their effects on water chemistry  



The seasonal dynamic of lakes is to a large extent regulated by physical processes which depends 

on the heat budget of the water mass and hydrodynamics. Heating and cooling have a profound 

effect on water temperature, which in turn is related to water density. At 1 atm pressure, the density 

peak of freshwater is attained at 3.98 °C. With water freezing, the water molecules become 

organized in the ice structure achieving the lowest density at 0 °C. For this reason, ice is floating on 

the underlying colder water masses. At high altitude and in the continental regions, the ice cap that 

progressively swell at the lake surface avoids the heat loss, thus preventing the water mass below to 

freeze. This way, the aquatic biota can survive albeit the atmospheric temperature is many degrees 

below zero. 

The water density also progressively decreases when temperature increases from 3.98 °C up to ∼30 

°C. The energy required to change the water temperature by 1 °C depends upon the initial water 

temperature. For example, the energy required to rise the water temperature from 29 to 30 °C is 

nearly 40 times higher than the amount required to increase the temperature from 4 to 5 °C. Hence, 

the water mass tends to accumulate heat becoming less dense than the bottom waters. Under these 

conditions, lakes become stratified and the relative thermal resistance to mixing increases.  

In stratified lakes, three main layers can be identified: the epilimnion, the surficial layer, uniformly 

warm and fairly turbulent; the hypolimnion, the deep and cooler layer, more dense and quiescent; 

these two layers are separated by the metalimnion, coinciding with the thermocline, the zone with 

the maximum rate of temperature decrease.  

In the temperate regions, the sequence of water heating and cooling are clearly highlighted by 

vertical temperature profiles (Figure 2a). From spring to late summer the temperature of surface 

water mass increases, whilst in the deeper waters it remains nearly constant. At the end of summer, 

due to the atmosphere cooling, the net heat loss from the water mass progressively increases. The 

surface waters cool and when their temperature is closer or lower to that of the water mass below, 

the water turnover begins, the density being greater in the colder surface horizon which sink causing 

the bottom water up-welling. The water overturn also occurs at the end of winter when the surface 

waters attain the temperature of maximum density. 

On the basis of the circulation patterns lakes are primarily classified into three groups: 1) amictic 

lakes, permanently stratified because of extreme environmental conditions, 2) holomictic lakes, 

showing at least one complete vertical mixing event: among them are dimictic lakes that mix twice 

a year, in spring and fall, 3) meromictic lakes, which circulate only partially, the bottom waters 

being permanently stratified. Their behavior is irregular and unpredictable being their stratification 

dependent also on chemical processes occurring in the hypolimnion and climate conditions. 

 



 

Figure 2. (a) Typical thermal stratification in a dimictic lake in the Po plain and (b) oxygen profiles along the maximum 

depth water column (modified from Nizzoli et al., 2010) 

 

The thermal stratification has a number of implications for water chemistry. The photosynthetically 

active radiations (PAR) penetrates only in the upper water layer (euphotic zone) supporting the 

primary production by phytoplankton. Light penetration into the water mass is inversely related 

both to depth and turbidity (or water color). The phytoplankton itself can limit the radiation 

penetration, because during growth it increases the water turbidity. Thus in deep lakes, 

photosynthesis would be effective only in the uppermost part of the water column, where light 

intensity is high enough to support autotrophic activities. By contrast, during thermal stratification, 

the hypolimnion becomes a dark isolated subsystem. 

Light penetration is one of the most constraints in the functioning of lake ecosystems. Dissolved 

oxygen is essential for the majority of aquatic organisms and its availability controls pathways and 

fate of other chemical elements. The concentration of oxygen in the water column depends on 

different abiotic (temperature, pressure, salinity, hydrodynamics) and biotic (photosynthesis, 

respiration and biologically mediated oxidations) factors. Oxygen has a low solubility in water and 

its concentration at the equilibrium is nearly 300 times lower than that in the atmosphere. The 

oxygen distribution along the water column is usually related with temperature profiles, according 

to the Henry law, but this seldom occurs due to the biological activity (Figure 2b). 

Phytoplankton photosynthesis supplies oxygen to the water mass while opposite reactions 

(respirations and microbial and chemical oxidations) consume oxygen. If oxygen consumption 

prevails over oxygen production or diffusion, most aquatic organisms will suffer for oxygen 

deficiency. For this reason, in stratified lakes the oxygenation of deeper water layers and, in turn, 

the survival of benthic fauna, depends almost exclusively on water overturn. 

The imbalance between primary production and respiration induced by stratification has major 

effects on lake metabolism. The epilimnetic waters are often O2 enriched, and CO2 and nutrient 



depleted. By contrast, the oxygen shortage in the deeper hypolimnion may stimulate anaerobic 

mineralization which regenerates primarily inorganic carbon, ammonium, phosphates and reactive 

silicates (Figure 3). In meromictic lakes, due to the persistent stratification, bottom waters become 

anoxic with the onset of severe reducing conditions. Under these conditions, anaerobic microbial 

metabolism shift from denitrification or nitrate reduction to ammonium towards manganese, iron 

and sulphate reduction, and methanogenesis. The end products of these processes are detrimental 

for water quality, the hypolimnion becoming an highly reduced systems which accumulates soluble 

metals, toxic sulphides and supersaturated with methane (Cook, 1984; Liua et al., 1986; Nizzoli et 

al., 2010). 

 

Figure 3. Examples of dissolved oxygen and inorganic dissolved phosphorus in the bottom waters of the main sud-

alpine lakes. The arrows indicate the most critical conditions that established in Lake Iseo after approximately 20 years 

of thermal stratification (Salmaso et al., 2007). 

 

3. Biotic structure and interactions, and processes of lake functioning 

 

3.1.  The lake “engine”: the foodweb  

The lake ecosystem is not homogeneous, but it composes of different subsystems whose biological 

components are constrained by morphology and physical factors (e.g. light penetration). One can 

distinguish three main components:  



1) the pelagic environment, the deep open waters, whose community is based on the 

microscopic planktonic organisms (Figure 4); 

2) the benthic subsystem, characterized by organisms living at the water-sediment interface and 

into the superficial sediments; in the deep waters it is aphotic and heterotrophic; 

3) the littoral zone, with shallow waters, that composes of a mosaic of habitats mainly 

structured by macrophyte communities, with gradients from emergent to submerged 

macroscopic vegetation. Here, the benthic subsystem can receive solar radiation sufficient to 

support photosynthesis. 

The primary production is based on the same process (photosynthesis) either for microalgae or 

macrophytes, but the fate of the photosynthetic products is quite different. Microalgae have an high 

probability to enter the grazing food web, while macrophyte tissues fuel mostly the detritus food 

web and often remains undecomposed due to the high content of refractory organic matter. For this 

reason, littoral sediments are often organic and characterized by high accretion rates. 

 

Figure 4. Representation of the pelagic food web of lake Maggiore (Giussani and De Bernardi, 2003). The main trophic 

interactions are shown by the arrows 

 

Lake food web is fuelled by solar energy as well as by the organic matter entering the aquatic 

environment from the catchment area. Energy transformations within the food web are driven by 

trophic relationships, which are accounted mainly by predation and competition interactions, 



(Figure 4). Solar energy is converted into chemical energy through photosynthesis by primary 

producers (i.e. microscopic microalgae suspended in the water mass as well as rooted plants 

attached to the sediments), then the vegetation biomass can enter the grazing or the detritus 

pathways. In the first case, herbivores feed on microalgae and carnivores feed on herbivores. In the 

second case, dead organic matter undergoes decomposition, first through the activity of bacteria and 

fungi, then through invertebrates feeding on the processed organic matter. Overall, inorganic 

compounds are assimilated by primary producers and converted into organic matter which is 

transferred across trophic layers and is then mineralized in the water column or in the sediments, 

thus releasing back its mineral components. Along the detrital path, detritus aggregates became 

richer in proteins edible for detritus feeder organisms, which in turn are preys of carnivore 

organisms. Such array of interactions results in what we see looking at the aquatic environment: 

plants growing around the shoreline, animals living within the coastal habitats, greenish water due 

to the growth of microalgae, small crustaceans and fishes feeding on them, and so on. 

Surprisingly, the lake world composes mainly of very small living organisms, with a clear contrast 

with the common citizen perception. The contribution to the total biomass of organisms belonging 

to different class sizes is as it follows: 0.1% for size > 1 cm; 1.9% for size 100 µm - 1 cm; 39% for 

size 0.2 - 100 µm and 59% for size <0.2 µm. In other words, the lake ecosystems are dominated by 

microbes and virus. 

Recent studies report also the relevance of dissolved organic matter (DOM) in the pelagic area as a 

trophic resource for bacteria, which is a potential food source for the food web. DOM may be 

produced in sediments due to incomplete mineralization, be released as by-products by 

phytoplankton during photosynthesis or imported from the watershed via runoff. DOM consists of a 

large pool of molecules which support the heterotrophic metabolism and the production of CO2, 

which is usually supersaturated (Caraco and Cole, 1999). These issues are potentially relevant for 

lake functioning, but are still underestimated and understudied. 

 

3.2. The “fuel” of lake engine: carbon cycle and organic matter 

As introduced in the previous paragraph, energy transfers and transformations throughout lacustrine 

food webs are driven by the carbon cycle. As commonly thought, the photosynthesis acts as the 

critical step in energy flow. An high production of energy in the chemical form per unit of solar 

energy can be possible through the formation of carbon-carbon bond in carbohydrates molecules. 

Hence, carbohydrates act as “chemical trap” of energy making it available for the subsequent steps 



of the food web. Therefore, such type of molecules, along with the derivative compounds (lipids, 

protein) become a sort of fuel which flows and is assimilated throughout the food chain. 

In the lacustrine ecosystems carbohydrates are used via respiration as well as fermentation in a wide 

array of reactions that release and make available the energy step by step. Usually, inorganic carbon 

is supplied to the photosynthetic process as carbon dioxide. The majority of carbon in lakes is 

present in form of equilibrium products of carbonic acid. In the scheme reported in paragraph 2.2 

are represented the main reactions of the equilibrium of carbonic acid which starts with the 

equilibrium between atmospheric and dissolved CO2. These equilibria, not only supply inorganic 

carbon to the food web, but also constitute the buffering system that is able to oppose to pH 

variations due to photosynthesis, respiration, or acid deposition. Inorganic carbon is also supplied to 

the aquatic environment by the rocks belonging to the watershed. As a matter of fact carbonate 

rocks (marl, limestone) bring into solution carbonate and bicarbonate, maintaining operative all the 

reactions described above. Carbon, together with N and P, is a fundamental element for the 

photosynthetic metabolism, but contrarily to N and P, it is generally enough abundant and it seems 

never limiting the primary production. 

The vast majority of the international literature dealing with limnological studies, and 

hydrochemistry in particular, focuses on the inorganic nutrients nitrogen and phosphorus, and more 

recently on dissolved silica. This is likely a consequence of those phenomena as water 

eutrophication that have strongly stimulated basic research in aquatic environments. Nutrient 

enrichment, in the form of reactive N and P and typically associated to the development of human 

activities and diffuse and point pollution of surface waters, has in the last decades enhanced primary 

production by autotrophs with detrimental consequences for water quality. Hypoxia, algal blooms, 

the disappearance of submersed macrophytes or of valuable fish species and their replacement by 

tolerant forms are relevant side effects of eutrophication. In many areas eutrophication phenomena 

were evident since the late 1960s and effective management strategies were performed in order to 

successfully reverse the trophic status of water bodies. With extremely detailed analysis of the 

multiple processes transforming N and P in the water and sediment compartments as well as in the 

food web the focus of limnologists is now on understudied pools of dissolved substances as DOM. 

There is a vast number of dissolved organic molecules in inland waters, forming a large pool which 

is poorly explored in terms of composition, reactivity, relevance for aquatic organisms and for 

whole system budgets. Previously considered scarcely reactive, and also due to analytical 

difficulties for routine measurements, the dissolved organic pools was neglected. Recent evidences 

on the contrary suggest the opposite, with relevant fluxes within aquatic ecosystems, for example 

from the roots to the pore water, from pelagic primary producers to the water column, from 



sediments to the overlaying water and from the water back to micro- and macroorganisms. In some 

geographical areas, where the DOM is dominant if compared to the inorganic pool, DOM sustains 

entirely primary production and fuels a large microbial activity (Paeri, 1974; Wetzel, 1992; Amon 

and Benner, 1996). The microbial communities, through the utilization of the more labile fractions 

of the dissolved organic matter pool (DOM) determine the composition of DOM and in particular 

the accumulation of the refractory fraction (Hansell, 2013). However, the DOM pool is dynamically 

replenished with labile DOM from terrestrial runoff, inlake production by autotrophs and photolysis 

of refractory DOM (Nagata, 2000). The use of organic matter by heterotrophic bacteria in lakes 

displaces carbon to both the atmosphere and food webs (Del Giorgio and Cole, 1988). The bacterial 

growth efficiency (BGE) provides an indication on the use of DOM and its conversion into 

biomass. BGE depends upon temperature, the composition and lability of the DOM pool and the 

concentrations of inorganic nutrient; an increase in the availability of N and P makes the use of 

DOM more efficient (Del Giorgio and Cole, 1988; Asmala et al., 2013). The multiple biotic and 

abiotic processes and the fate of dissolved organic matter in lakes is an extremely stimulating 

subject for future research and open new and interesting windows on the pathways of energy and 

matter in aquatic water bodies. 

 

3.3. Shallow lakes and littoral zone: neglected systems? 

Shallow lakes are characterized by a low ratio between the water mass and the sediment surface and 

for this reason sedimentary processes may play a relevant role in water chemistry (Søndergaard et 

al., 2003). Benthic processes may recycle large amount of nutrients and promote eutrophic 

conditions and water turbidity but, simultaneously, shallowness may allow benthic primary 

production and the coupling between heterotrophic regeneration and autotrophic uptake (Pinardi et 

al., 2009; Nizzoli et al., 2014). Microbial respiration in organic sediments has also the potential to 

exhaust the small oxygen reserve of the water column and determine hypoxic or anoxic conditions, 

in particular during night hours (Bolpagni et al., 2007). However, even short periods of wind can 

mix the whole water mass promoting aeration and reoxidation of surface sediments. Different 

typologies of macrophytes may colonize shallow lakes, including emergent plants as the common 

reed, floating-leaved plants as the water lily or pleustonic communities as duckweeds. All these 

plants have photosynthetic apparatus outside the water column and therefore evolve oxygen and fix 

inorganic carbon to and from the atmosphere. They are also all characterized by elevated rates of 

production, resulting in accumulation of organic matter at the sediment level and determining rapid 

infilling of the water body. In shallow lakes photosynthesis may occur at the sediment-water 

interface, via benthic microalgae or rooted macrophytes. The latter may inject oxygen within 



sediments via the roots, augmenting the volume where aerobic microbial processes as nitrification 

are confined (Soana and Bartoli, 2014). Such mechanism (ROL, radial oxygen loss), is an 

adaptation of plants to survive in otherwise anoxic sediments; oxygen penetration is in fact limited 

to a few millimeters. Despite thin, this horizon is characterized by an intense microbial activity and 

is fundamental for the reoxidation of the end-products of anaerobic metabolism as ferrous iron, 

manganous manganese, sulphide or methane (Ribaudo et al., 2009). The presence of oxygen within 

sediments indirectly buffers the release of P and promotes, via coupled nitrification and 

denitrification, the loss of nitrogen (Soana et al., 2015). Besides roots, the presence of bioturbating 

fauna as surface or deep burrowers (i.e. chironomids or oligochaetes) favors the oxygenation of 

sediments and the occurrence of aerobic microbial processes (Pelegrì and Blackburn, 1996; 

Svensson et al., 2001). 

 

4. Eutrophication: an opportunity to study lacustrine food web and processes  

Although the productivity is based on the carbon cycle, the magnitude of the production depends 

primarily on the availability of both P and N as well as minor elements (Si, Fe). The trophic status 

of a lake, i.e. its primary productivity level, has been assumed as a criterion to classify lakes. When 

nutrient availability exceeds certain thresholds, it triggers the onset of a degenerative process which 

is due to the excessive primary production, the so called eutrophication. 

The term eutrophication derives from a Greek word that means good nutrition. The adjective 

eutrophic was used firstly in early 20
th

 century by the German limnologist August Thienemann to 

indicate high lake productivity. He defined eutrophic the highly productive lakes and oligotrophic 

the low productive ones -oligo meaning poor-.  

The modern definition was formerly proposed by Vollenweider (1968) as the water enrichment by 

phosphorus (P) and nitrogen (N) that stimulates primary production of phytoplankton up to levels 

that cannot be controlled by grazing. The excess biomass can thus settle and accumulate on the 

sediment surface, where its decomposition causes oxygen consumption till the complete depletion 

(see Figure 3). A special attention was devoted to P, that was assumed to be the main limiting factor 

for primary productivity. In this fashion, the cause-effect relationship appeared simple and was 

successfully applied in restoration programs since early 1970s. Further studies have demonstrated 

that eutrophication is also “an increase of the organic matter supply rates to aquatic ecosystems” 

(Nixon 1995). However, these definition of eutrophication disregarded the complexity of the 

involved processes, i.e. hydro-morphology, multiple element stoichiometry, biological and 

biogeochemical interactions (Cloern 2001; Duarte 2009; Nixon 2009; Howarth et al. 2011). In fact, 



responses of phytoplankton communities are controlled not only by the bottom-up nutrient supply 

and stoichiometry, but also by top-down trophic interactions (Carpenter et al. 1985). 

The long term data series from Lake Maggiore highlights how water contamination has changed in 

the last decades (Figure 5). From 1950s to late 1970s, P has been the most concern due to its 

exponential increase in the water column. The enforcement measures regarding wastewater controls 

and treatments (Law No 319/1976) and the reduction of P in detergents (Law No 82/1982 , Ministry 

Decree No 413/1988), along with protection measures of the coastal lake, allowed to reverse the 

trend, with a significant reduction of P concentration back to the levels detected in the 1950s. 

A completely different trend is occurring for reactive inorganic nitrogen (Nir), that is still 

increasing, albeit at much lower rates, it becoming a serious threat for most surface and 

groundwater.  

 

  

Figure 5. Long term evolution of nitrogen and phosphorus concentrations in the Lake Maggiore (Rogora et al., 2013). 

Legend: NO3-N: nitrate nitrogen, TN: total nitrogen; TON: total organic nitrogen; SRP: soluble reactive phopshorus; 

TP: total phosphorus. 

 

4.1. Nitrogen cycle 

Nitrogen has an atmospheric storage which is accessible only to few taxa of both autotrophs (e.g. 

Cyanobacteria) and heterotrophs (e.g. Rhizobium sp.). The main pathways of the N cycle are 

mediated by bacteria, allowing different oxidation and reduction processes which are definitely 

responsible of N fate in the ecosystem (Figure 6). Among others, nitrogen fixation, and coupled 

nitrification and denitrification and anammox represent key processes regulating the inorganic 

reactive nitrogen input to and output from the ecosystem (Saunders and Kalff, 2001). 

The industrial conversion of N2 into NH3, the so called Haber-Bosch process, has increased the 

availability of inorganic reactive nitrogen (Nir) by 85 Tg N yr
-1

 since the last century. In parallel, the 

emission and deposition of nitrogen oxides (NOx) from combustions has increased by 21 Tg N yr
-1

 

(Galloway et al., 2003). A so great nitrogen availability, especially from industrial fixation, has had 



relevant benefit for agricultural and livestock production, but in parallel the nitrogen contamination 

has increased two times in superficial waters and four times in the atmosphere. 

In a lake nitrogen can be fixed either biologically or can reach the water body through runoff. 

Nitrogen salts (ammonium, nitrites and nitrates) are assimilated by aquatic plants and transformed 

into organic compounds: this happens in the water column throughout phytoplankton and floating 

macroalgae or in the sediment throughout rooted macrophytes (Pinardi et al., 2011; Nizzoli et al., 

2014). Organic nitrogen is then recycled through benthic bacteria mostly as ammonium. In the 

recent past it was believed that the role of sediments in the nitrogen cycle was not relevant; 

however, with the problem of high nitrogen amounts reaching lakes it has been noted that an 

efficient way to lower nitrogen internal load is the coupling of nitrification and denitrification, 

bacterial processes occurring in the sediment which lead to the production of molecular nitrogen 

(Seitzinger et al., 2006). 

 Figure 6. Main pathways of the nitrogen cycle. 

 

1n: natural fixation 

1a: industrial fixation (Haber-Bosch) 

2: NH4
+ 

assimilation  

3: ammonification  

4: nitrification 

5: dissimilative reduction of nitrate to ammonium 

(DNRA) 

6a,b: denitrification with molecular nitrogen and nitrous 

oxide as end products 

7: assimilative NO3
- 
 reduction 

8: atmospheric oxidation of N2 to NO, N2O and N2O5 

(e.g. combustion) 

9: reaction of NOx with rain to form HNO3 

10: export and burial 

 

Unfortunately, the organic matter reaching the sediment of eutrophic water bodies usually exceeds 

the capacity of bacteria to degrade it and the consequent lack of oxygen on the bottom affects the 

process of nitrification carried out in the sediment by aerobic bacteria. So the coupling of 

nitrification and denitrification in eutrophic system is not working and this fact leads to an 

accumulation of ammonium in the water column. Furthermore, under reduced chemical conditions 

and organic enrichment, the dissimilative reduction of nitrate to ammonium may become a relevant 

process, replacing denitrification and resulting in further production of NH4
+
 (Fig. 7).  
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Figure 7. Total Denitrification (A) and total DNRA (B) rates in hypolimnetic sediment from two lakes with different 

trophic status: CS is mesotrophic and LV is eutrophic with an high organic load. Denitrification is lower in LV (older 

and more eutrophic) due to the reducing sedimentary conditions (Nizzoli et al., 2010)  

 

4.2. Phosphorous cycle 

The phosphorous cycle has a sedimentary pathway, with a negligible atmospheric reserve. 

Furthermore, contrarily to nitrogen, P does not undergo microbially-mediated redox processes. This 

peculiarity in any case does not simplify the study of P, as the geochemical transformations of this 

element and their regulation within sediments are directly affected by microbial activity (table 

3)(Rigler, 1956). P enters all lake continuously in runoff water, mostly as inorganic P; it is 

assimilated by phytoplankton and plants, incorporated as organic P and recycled again by benthic 

bacteria as PO4
3-

 (Dillon and Kirchner, 1975; Boström et al., 1988). A variable fraction of the 

regenerated inorganic P can also be trapped, complexed or fixed in many different ways by the 

sediments or by various compounds in unsoluble forms (Syers et al., 1973). 

In oligotrophic condition, due to the low quantities of P that reach the lake and to the interactions of 

this element with the superficial oxic sediment, phosphorus is almost undetectable in the water 

column and often limits the primary production. In eutrophic conditions, P becomes abundant first 

of all due to the loads that enter the lake but also because of an elevated internal recycle linked to 

anaerobic bottom conditions that favor P release (Hupfer and Lewandowski, 2008). 

In particular, it seems that P cycle in sediments is primarily regulated by iron and calcium 

availability (table 3). Ferric iron binds and precipitate phosphate in highly insoluble complex/forms. 

During the summer months, due to the lack of oxygen, specialized bacterial population use nitrates, 

sulphates or even ferric iron as electron acceptors. The produced ferrous iron is more soluble and 

releases PO4
3-

 to the water column. Anoxia at the sediment level brings the regeneration of a large 

amount of P maybe stored for long periods in the mud, rendering it suddenly available for algal 

blooms. 



 

Table 3. Principal Phosphorus species, with indicated the main features, reactivity and availability to primary 

producers. 

P species Characteristics Reactivity and availability to 

primary producers 

Organic P Organic detritus Not available. Mineralized by 

phosphatases 

Ca≈PO4 autigenic Formed inlake due calcite 

precipitation, or biogenic processes 

(mollusc shells) 

Not soluble. Extractable with strong 

acids 

Ca≈PO4 detrital Originated from rocks and solid 

transport from watershed 

Not soluble. Extractable with strong 

acids traibile con HCl 1 N 

Fe≈PO4 Ferric (FePO4) and ferrous 

[Fe3(PO4)] phosphates; complexes 

with iron hydro-oxides (FeOOH) 

Low solubility. Redox sensitive.  

Exchangeable P Weak binding with exchange sites 

on clay, carbonates, etc.  

Extractable with cation substitution 

at alkaline pH 

Dissolved organic P Organic metabolic by product  Readily available  trough 

phosphatase activity 

Dissolved inorganic P Soluble mineral phosphates, that at 

6.5<pH<8.5 are H2PO4
-
 and HPO42

-
  

Readily available 

 

4.3. Linking the water cycle with nutrient and catchment 

The hydrological cycle is regulated by climate and its equilibrium depends upon two main 

processes: evaporation and precipitation, occurring both on the land and on the free water surface. 

Most evaporation occurs in the ocean surfaces and forms clouds that discharge on lands. Surface 

flow follows natural slopes and feed groundwater, rivers and lakes, transporting a variety of 

dissolved and particulate compounds. Weathering and solubilization of elements from rocks and 

soils link the hydrological and sedimentary cycles. Recent changes of climate, precipitation patterns 

and land use in watersheds have resulted in different timing and transport of the key nutrients N, Si 

and P to lakes, with relevant implications for the biological communities. 

Agriculture and farming have simplified the landscape, removing natural elements as riparian 

corridors and wetlands and have enriched arable lands with large amounts of synthetic fertilizers 

and manure (Bartoli et al., 2012). A fraction of the nitrogen which is in excess to crop uptake is 

mobilized as nitrate via irrigation and precipitation waters and pollutes surficial water bodies and 

aquifers. Elevated nitrate concentrations are a major problem for inland and coastal areas, 

stimulating primary production, eutrophication phenomena and posing at risk water consumption by 

animals and humans.  



In agricultural areas the hydrological cycle has been deeply altered by water abstraction for 

irrigation purposes; this has accelerated the pollutant transport to rivers and lakes. 

The silica cycle has been altered as well due to progressive impoverishment of bioavailable silica in 

cultivated areas and to the river damming, which slows/hampers its solid transport (Carey and 

Fulweiler, 2007). Large and small artificial basins and hydropower plants allows to retain upstream 

freshwater, and to store it for the production of electricity and to feed the irrigation canal network. 

Minor transport of silica may unbalance the ecological stoichiometry of nutrients, favoring the 

appearance of potentially harmful algal blooms as flagellates and cyanobacteria, at the expense of 

diatom communities. 

Lakes could become “probes” to track/detect relationships between humankind activities and water 

resources, to develop knowledge on ecosystem resilience and fragility, and to make clear the 

sustainable development concept. A number of lakes have undergone deep modifications of their 

chemical and biological quality, due to excess nutrient input and eutrophication phenomena, to acid 

rains, to unsustainable pressure on fish communities or to the introduction of alien species. There 

are also examples of successful interventions that have reversed such detrimental impacts towards 

the recovery of pristine conditions. A great effort has been also devoted to restore eutrophic lakes 

either with nutrient removal or with the mitigation of eutrophication effects (cit.). The lake 

oligotrophication is often apparent, since the recovery of the former chemical conditions is not 

followed by the restoration of the pristine biotic communities (Nixon 2009; Duarte et al 2009). 
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Abstract 

Photochemical processes are controlled by the characteristics of the underwater light field. These 

conditions will change over time and space, in relation to the position, concentration and 

properties of the optically active components in the water column as well as the direction and 

intensity of the incident solar radiation. This chapter will examine the underwater light field, the 

spectral properties of those components that influence this field and their estimation using 

appropriate modelling approaches as well as in situ and remote technologies. 
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Section 1. 

Incident solar radiation  

 

The total incident solar radiation (global solar radiation) on the surface of an aquatic ecosystem 

is the sum of the direct and indirect (diffuse) radiance on the water surface. Both the direct and 

indirect solar radiance depend on the total exo-atmospheric solar radiation, solar zenith angle 

and the resulting modifications that occur between the water surface and the top of the 

atmosphere, due to atmospheric absorption and scattering.  

 

The sun emits similar to a blackbody at 5800K with a spectral distribution following Planck’s law. 

The maximum emission is near 0.5 mm, with emission tails extending from the gamma region to 

infrared. The amount of solar radiation reaching the outer atmosphere depends on the distance 

(squared) of the Earth from the sun. The solar constant changes over the lifetime of the sun and 

is influenced by sun activity (in particular the number of sunspots), with 11, 22 and 80 year cycles. 

Typically, the solar constant of 1372 W m-2 varies less that 1% from year to year.1 As the Earth 

orbits the sun in an elliptical manner (eccentricity of 0.0167 in 2006), the relative distance 

changes, with the smallest distance occurring in January and the largest in July (change in 

distance from the sun of 3.4% or 5.1 million km). The difference in exo-atmospheric radiation is 

6.9%.  

 

The seasonal cycle of solar radiation results from the tilt of the Earth’s axis (obliquity of 23.5º) 

and influences the changes in the position of the sun in the sky (solar zenith angle) and the 

duration of the day with respect to the night. At the equator, the zenith angle reaches a 

maximum at noon during the vernal and autumnal equinox. At latitudes above 23º, the sun is 

never directly overhead.  

The amount of solar energy incident on a horizontal surface at the top of the Earth’s atmosphere 

is: 
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Where S0 is the solar constant, r and r0 are the instantaneous Earth-sun distance and its mean 

annual value and  is the solar zenith angle. There are numerous online calculators to 

determine each one of these variables for different geo-locations and times (days and hours of 

the day).  

The modification of the exo-atmospheric solar radiation through the atmosphere depends on the 

distance travelled to reach the surface of interest (optical pathway) as well as the characteristics 

of the intervening atmosphere. In a homogeneous medium, the intensity of monochromatic 

electromagnetic radiation will decrease in a logarithmic fashion following the 

Beer–Lambert–Bouguer law. The extinction of the incident radiation flux results from the 

capacity of the medium to absorb or scatter radiation at specific wavelengths. However, the 

atmosphere is not homogenous, as the position and concentration of its optically active 

components and their relative capacity to absorb and scatter in different wavelengths varies 

vertically, horizontally and temporally. It is possible to consider the atmosphere as a series of 

horizontal uniform layers, but temporal and geographical variations in the concentration of the 



optically active components of each layer will influence the incident flux reaching the water 

surface.  

 

In most cases, it is possible to estimate the atmospheric extinction of solar radiation by 

considering the total concentration and optical properties of the components in a standard cloud 

free homogeneous atmosphere. In the UV and short visible wavelengths, both scattering and 

absorption are important while at higher wavelengths, absorption dominates extinction of direct 

radiation (in a cloud free atmosphere). At sea level, the total solar irradiance on a surface, in clear 

sky conditions, has been modelled using estimates of the degree of scattering by molecules and 

aerosols and the absorption of water vapour and other gases, 2, 3, 4 including ozone. 5, 6 In general, 

UV radiation below 0.3µm is nearly completely absorbed due to oxygen (< 0.2 µm) and ozone (< 

0.29 µm), while most of the UV-A and visible wavelengths are influenced by a few weak and 

narrow absorption bands of oxygen and ozone. Incident near infrared radiation (700 – 4000 nm) 

is attenuated by large absorption bands associated to water vapour, CO2, CH4 and N2O, while the 

absorption of thermal infra-red radiation (4 – 22 µm) is dominated by CO2, water vapour and 

ozone. 

Molecular scattering is greater at low wavelengths (proportional to λ-4, following the equation for 

elastic scattering of Rayleigh), meaning that scattering is 9 times stronger in the short visible (400 

nm) with respect to long visible (700 nm) wavelengths. For aerosols and particles that have a 

similar dimension to the wavelengths of the incident radiation, the resultant scattering is less 

wavelength dependent. This latter type of scattering occurs mostly in the lower parts of the 

atmosphere.  

 

Clouds have a strong influence on the incident solar irradiance. Because they contain droplets 

that are larger than aerosols and because the total mass of liquid water (or ice) can be significant, 

they can often completely block direct solar radiation. Spectrally, scattering from clouds 

dominates in the visible wavelengths, while absorption from clouds dominates in infrared. The 

transition from high scattering to high absorption varies between clouds types, and whether they 

consist of ice or liquid water. Most radiative transfer models include parameters for cloudy 

conditions.
 6, 7, 8 In general, estimated cloud transmittance, derived by satellite measurements are 

sufficient to correct for the reduction of direct solar radiation on the surface of a water body.  

 

Diffuse solar radiation (skylight) results from the elastic scattering by molecules and aerosols in 

the atmosphere. In a cloud free sky, the ratio of diffuse to direct radiation typically ranges from 

15% at solar noon to 40% at small zenith angles, with the maximum intensity of diffuse radiation 

just below 500 nm. In conditions of high cloud cover, all of the available light is typically diffuse.  

 

While most models consider the sum of direct and diffuse solar radiation on a horizontal surface 

at sea level, the incident radiation on inland water bodies depends on the altitude. Many of the 

world’s largest lakes have altitudes near to and above 1000m (African Rift Valley Lakes, Lake 

Titicaca, Lake Sevan). Most models 9 use satellite estimated irradiances combined with a digital 

elevation model and consider the most important change with altitude to be the reduction of the 

optical pathlength ( ). Broadly speaking, the increase in irradiance with altitude should be 

exponential, and follow . There are a number of empirical and radiative transfer 



models that can be used to estimate the change in total solar irradiance (global solar radiation) 

on a horizontal surface with altitude. 10,11,12,13 Most of these have been developed for use in 

renewable energy technologies. The increase in irradiance with altitude will be wavelength 

dependent and influenced by the atmospheric conditions relative to the area of study. This is 

particularly important for UV radiation where the “altitude effect” can result in a 20% increase in 

UV radiation for a 1000 m increase in altitude. 14 Dvorkin and Steinberger(1999) modelled 

changes in UV irradiance, direct and diffuse, with altitude using information about the vertical 

distribution of ozone concentration, aerosols, SO2 and NO2. 
15

 

 

Section 2.  

Underwater light environment 

Solar radiation incident on a water body can either be reflected from the surface (surface albedo) 

or enter the medium. Once solar radiation passes the air water interface, its spectral and spatial 

distributions in the water body depend on the concentrations and distribution of the optically 

active components (e.g. dissolved or particulate matter that absorbs or scatters in the visible or 

ultraviolet wavelengths) present.  

 

Surface albedo is defined here as the surface reflection of direct and diffuse radiation (and does 

not include the volume scattering from within the water body) and follows Fresnel equations. 

For the direct component, surface albedo is influenced by the solar angle, wind speed (or surface 

roughness) and the relative refractive index of water and air. 16 Surface albedo increases to 

nearly 100% at high solar zenith angles (low solar elevation). Likewise, surface albedo is sensitive 

to the air-water refraction index. The refractive index of pure water is higher in the UVR with 

respect to the visible, ranging from 1.36 at 300 nm to 1.33 at 700 nm. Furthermore, the 

refractive index of water decreases with temperature. 17 Wind or wave action decrease surface 

albedo at high solar zenith angles but can increase albedo at lower solar zenith angles. 18 For 

diffuse radiation, surface albedo can be calculated by integrating the angular distribution of the 

incident diffuse radiation, or more simply by using empirical models based on surface roughness 

or wind speed. 19  

 

Once past the air-surface interface, the fate of solar radiation in the water column is controlled 

by the absorption and scattering characteristics of the optically active components of the water 

body. In clear water bodies, reflected radiation from the lake or ocean floor will also contribute 

to the available solar radiation within the water column.  

 

Absorption occurs when photons of the incident solar radiation are removed by the incident flux 

by the presence of molecules in the aquatic medium. Photons that have sufficient energy bring 

about transitions from one electronic energy level to another in the receiving molecule. If that 

molecule is part of a photosynthetic system, its energy is transferred to a reaction centre for 

photosynthesis. For other molecules, the transition from a lower excited state to a higher occurs 

by interaction with a paramagnetic molecule such as oxygen. The excited molecule can return to 

its original state with dissipation as heat energy distributed amongst the molecules of the system 

or re-emission as fluorescence. In most aquatic ecosystems, the majority of the incoming photons 

are absorbed by four components: water, chromophoric dissolved organic matter (CDOM), 



particulate organic matter (POM) including phytoplankton and particulate inorganic matter (PIM). 

This division can also be made on the basis of living and non-living matter as: water, CDOM, 

photosynthetic biota and tripton (inanimate particulate matter).  

 

Scattering increases vertical attenuation by changing the direction of the downward directed 

photons as well as increasing their optical path length and therefore the probability of their 

absorption. The two kinds of scattering that occur in an aquatic environment are density 

fluctuation scattering and particle scattering. The former is caused by microscopic fluctuations in 

density which lead to changes in the dielectric constant of the aquatic medium. The interactions 

of the radiation field with these inhomogeneities lead to changes in angular distribution of the 

incident radiation, in relation to the wavelength. In the clearest waters, this “molecular” type 

scattering dominates. 20, 21 Particle scattering depends on the characteristics of the particulate 

matter present, following the theoretical basis developed by Mie (1908). Particle scattering 

results in an angular distribution that is different than that of density fluctuation scattering 

(increased forward direction) and is sensitive to the scattering cross section of the particle.22 In 

general, particle scattering has a near linear relationship with the concentration of suspended 

inorganic or organic particulate matter present in the water body,
23,24 with differences in the 

constant of proportionality occurring with types of suspended matter. Spectrally, scattering 

decreases at higher wavelengths following a power function.
24 In recent years, significant efforts 

have been made to determine mass-specific coefficients for scattering in relation to the 

concentration of suspended particulate matter (SPM), or the individual contributions of organic 

(POM) and inorganic fractions (PIM). In some cases, a specific scattering function for individual 

phytoplankton groups can be determined.25,26 In highly productive waters, phytoplankton cells 

make the most significant contribution to particle scattering while scattering in coastal and 

inland waters is often dominated by suspended organic (non-living) or inorganic matter. In 

general, the concentrations, size distribution and refractive index of the particulate matter will 

determine their influence on the scattering properties of a water body. 

 

The spectral characteristics of the underwater light field are divided into optical water classes. 

Oceanic waters, where phytoplankton biomass dominates the underwater optical properties 

with its co-production of dissolved and particulate matter, are classified as Case 1 waters. 27 The 

apparent and inherent optical properties (sensu Preisendorfer, 1961)28 of Case 1 waters are 

often associated to the concentration of chlorophyll a pigment, historically used as a proxy for 

phytoplankton biomass. Although put into a single class, there is a wide variability in the optical 

properties of Class 1 waters, in particular in the UVR.  

 

In most coastal and inland water bodies, the inflow of terrestrial matter has significant direct and 

indirect impacts on the underwater optical field, through the increased absorption due to 

dissolved organic matter and the increased scattering due to suspended matter. These more 

optically complex ecosystems are classified as Case 2 waters. As both the inflow rate and in-lake 

processes (photobleaching, flocculation, and dilution) can change over space and time, variability 

in the underwater optical field is expected.
29,30,31 These variations can influence phytoplankton 

community structure and biodiversity,32 as well as major biogeochemical processes and the 

radiative balance between absorbed and reflected solar irradiance. 22, 33
 



 

In both Case 1 and Case 2 waters, the concentration of phytoplankton biomass strongly 

influences optical conditions, directly modulating the underwater light field and indirectly 

contributing to the optical characteristics of the dissolved and detrital matter present.34, 35, 36 The 

resultant spectral characteristics of the underwater light field are strongly influenced by the 

concentration, ratio and state of photosynthetic pigments present in the phytoplankton 

community, including chlorophyll-a, chlorophyll-b and c, carotenoids and phycobiliproteins. As a 

whole, the absorption spectra due to phytoplankton have two peaks of maximum absorption in 

the blue and red wavelengths,37, 38, 39, 40, 41 with the former higher than the latter due to the 

contribution of accessory pigments. The number and wavelength of absorption peaks is sensitive 

to the concentration and dominant algal group, with two peaks occurring in highly productive 

waters and a single peak in marine waters with lower biomass.37,40,41 

 

While concentrations of phytoplankton play an important role in the spectral conditions of the 

underwater light field, attenuation in the short visible wavelengths and UVR in Case 2 waters is 

usually dominated by absorption by chromophoric dissolved organic matter (CDOM). CDOM is an 

important fraction of the dissolved organic matter in most aquatic ecosystems, representing up 

to 90% in some natural waters.42 CDOM is operatively defined as the organic fraction that, after 

filtration at 0.2 µm, absorbs radiation in the ultraviolet and visible wavelength range.43, 44, 45 

CDOM absorption follows in a near exponential decrease from the UVR to the far visible 

wavelengths, declining to near zero at 700 nm (Figure 1). This shape has been associated to the 

charge transfer interactions between donor-acceptors formed by the oxidation of the aromatic 

polymers present in the natural sample,43 as well as the superposition of independent 

chromophores. One of the most useful parameters in the characterization of CDOM absorption 

curve is based on the change in the slope of the exponential decrease in absorption. The 

absorption spectral slope (S) has most often been determined using a standard equation, 
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oeaa , where oa  is the absorption coefficient at an initial wavelength λ0 (eg. 270 

nm).46 Different wavelength intervals have been used to calculate spectral slope47 (eg. 275-295 

nm) which has allowed for some confusion, as the change in slope will vary significantly in 

different intervals. The distribution of spectral slope has been used to identify wavelength 

intervals related to specific CDOM origins and loss processes. 29, 48 The absorption spectral slope 

has been associated with aromaticity and average molecular weight of the CDOM compounds 

present.49 Furthermore, the relationship between spectral slope and absorption over time or 

distance can be used to identify CDOM sources and sinks in estuaries, lakes and reservoirs.50,51,52
 

 

The influence of CDOM on the underwater light field depends on its optical characteristics, which 

reflect the temporal and spatial variations in CDOM sources and sinks.29,53 In most aquatic 

ecosystems, autochthonous sources (generated from within the waterbody) and allochthonous 

sources (coming from the surrounding catchment) both contribute to the CDOM pool.54,55,56 

CDOM from terrestrial sources can dominate the optical conditions in lakes receiving waters from 

extensive wetlands or forested areas.29 Phytoplankton related CDOM production, mediated by 

microbial activities, can make a significant contribution in water bodies with elevated primary 

productivity.45,57,58 Protein-like CDOM from autochthonous sources (plankton exudates and 



detrital material) is reported to be more resistant to photo-induced transformations, while 

indirect reactions of plankton derived organic matter have been reported where lignin-based 

CDOM is present.59 In most lake environments, several sources may be present and the resulting 

CDOM optical properties will depend upon exposure history, mixing conditions and proximity to 

major sources or sinks. Another important factor in the optical properties associated to CDOM is 

the formation of Fe-CDOM complexes in hypoxic and anoxic water, when a buildup of nutrients 

and organic matter in the sediments and in the water column result in an accumulation of H2S 

and Fe2+. When the redox water conditions change, dissolved Fe2+ is oxidized to Fe3+ which may 

precipitate out of the water column into the sediment but may also remain in solution, binding to 

dissolved organic matter. The impact on CDOM absorption can be significant, with a clear 

increase in all wavelengths typically associated to CDOM.60,61 

 

It is well noted that photochemical processes play an important role in altering CDOM optical 

properties. Changes in CDOM absorption characteristics occur directly from solar exposure and 

indirectly upon oxidation of the aromatic compounds,33, 62 which cause losses in humification and 

aromaticity. In the ultraviolet B wavelengths (UVB, 280–315 nm), absorption losses of CDOM are 

related to the degradation of the olefinic components.63 Exposure to UVA (315-400 nm) has been 

associated to modifications in the CDOM aromatic fraction. 64 Changes in absorption in the visible 

wavelengths have been associated to a disruption in the intramolecular charge transfer that is 

associated to the CDOM absorption spectrum.65
 

 

CDOM may be classified as refractory, semilabile and labile in relation to its availability to 

microbial consumption. By considering the refractory and semilabile portion of CDOM, Nelson et 

al. proposed that CDOM optical properties may be used as semi-conservative tracer of water 

masses. 45 Changes in CDOM absorption follow that of the concentration of dissolved organic 

carbon (DOC) in many ecosystems.66,67 However, most inland ecosystems with multiple sources 

and sinks of organic carbon show significant variability in CDOM/DOC ratios (Figure 2). 

 

Particulates can strongly influence the optical properties of water bodies due to their absorption 

as well as scattering properties. Particulate matter usually consists of both organic and inorganic 

fractions, the former including both inanimate organic matter and phytoplankton. The absorption 

spectra of the total particulate fraction will typically follow an exponential decay from the UV 

wavelengths with “shoulders” of absorption due to phytoplankton, most notably at 670nm 

(chlorophyll a). Absorption from the inanimate (organic and inorganic) fraction (tripton) has a 

similar spectrum as that of CDOM but often with a lower exponential slope (Figure 3). 68,69
 

 

Scattering by particles varies little in the visible wavelengths, with a general increase at lower 

wavelengths. This is generally the case with phytoplankton related scattering as well.22 Scattering 

by phytoplankton will vary depending on the dominant type of phytoplankton present; the 

composition of its cell walls, average cell size and the presence of gas vacuoles. A chlorophyll 

specific scattering coefficient is often used in modelling the impact of phytoplankton cells on the 

underwater light environment.70, 71 For particulates in general and phytoplankton in particular, 

scattering increases in a near linear manner with concentration. 

 



Water molecules absorb and scatter incident light. Absorption increases throughout the near 

infrared wavelengths with five prominent absorption bands at 760 nm (2.6 m-1), 970 nm, 1190 

nm, 1450 nm, and 1940 nm.
72 Studies of the absorption of pure water in the UVR shows a range 

of values, most showing an increase in absorption from 400 nm (~0.01 m-1) to 300 nm (~0.1 

m-1) .73 Scattering by water is largely elastic scattering (density fluctuation) and is highly 

wavelength dependent, with elevated scattering in the lower visible wavelengths and UVR; one 

has b=0.058 m-1 at 400nm and 0.1 m-1 at 350 nm. Raman (inelastic) scattering by water molecules 

plays a smaller role in modifying the underwater light field, but can have a significant influence 

on the remote estimation of optical properties. Inelastic scattering occurs when the photons 

interact with the water molecule, through the vibrational (O-H) energy transition. The scattered 

photons are red-shifted about 100 nm of the excitation wavelength. Raman scattering of water is 

highly wavelength dependent (λ-5), with the highest scattering at the lowest wavelengths.
74

 

 

Section 3. Measurement of underwater light field and Inherent Optical Properties 

 

The measurement of the underwater light field is essential to understanding the dynamics of 

primary production, photodegradation of organic matter as well as photoinhibition of aquatic 

fauna and flora. Approaches to estimate the optical properties of marine and inland waters have 

been used since the early days of aquatic science and are now greatly facilitated by the 

availability of low cost underwater radiometers. The absorption and scattering properties of the 

medium (inherent optical properties) provide likewise fundamental information on the optical 

components that determine the characteristics of the underwater light field. Other properties 

such as remote sensing reflectance and upwelling radiance (apparent optical properties) can also 

provide fundamental optical information over large geographic areas, but remain sensitive to 

external environmental conditions such as sun location.  

 

One of the oldest and most common measurement of the light environment is Secchi depth, 

measured using a Secchi disk or tube. Secchi depth has been shown to be inversely proportional 

to the sum of the beam attenuation coefficients (c = a + b, where a is the absorption and b is the 

scattering) and is most commonly used to estimate the diffuse attenuation coefficient (Kdλ),
22 

when no irradiance meter is available.  

 

The downward radiant flux per unit area in a single wavelength or larger waveband can be 

measured by means of a submersible radiometer. These collect all the photons that reach its 

collector, usually in a proportional manner to the cosine of the angle between the normal to the 

collector surface and the direction of the incident flux. Cosine collectors are usually located 

slightly above the radiometer casing and are calibrated in water to avoid the “immersion effect” 

related to the differences in the refraction index of air and water.22 Below the sensor are 

photodetectors and a photomultiplier which produce a signal related to the incident irradiance. 

Synchronous measurements of irradiance and depth allow for the determination of a downward 

irradiance profile, which is used to measure the downward diffuse attenuation coefficient Kdλ. Kdλ 

quantifies the rate of change of solar irradiance in a specific wavelength or waveband with 

increasing depth in the euphotic zone. It is defined as the exponential decrease with depth of the 

ambient downwelling irradiance Edλ (W m−2 nm-1), which comprises all photons moving in a 



downward direction (> 90° with respect to the vertical): 
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where Kd,λ is the diffuse attenuation coefficient (m−1) at wavelength λ (nm), Edλ is the downward 

irradiance measured at depth z (m) in a homogeneous water column, while Eoλ is the downward 

irradiance just below the water surface.38 It should be noted that the estimation of Kd,λ is 

sensitive to the method used to fit the profile of decreasing irradiance with depth.75
 

 

Measurements of Kd,λ assume that the optical conditions to the depth z are consistent, which 

may often not be the case. Stratification may occur in relation to changes of density over depth 

(e.g. thermal stratification) or as the result of biological (e.g. chlorophyll maximum) or optical 

(epilimnal CDOM photodegradation) factors. The penetration depth Pdλ for 1% (or 10%) of the 

sub-surface solar irradiance is determined using Kdλ as: 
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Considerable research has been done to estimate Kdλ for various types of water bodies using 

remote sensors. Remote sensing methods to estimate Kdλ, using empirical and semi-analytical 

approaches have proven very successful in Case 1 waters, but less successful in more optically 

complex waters. Standard Kd,490 algorithms are now available on most optical ocean colour 

systems (e.g. MODIS). Remote sensed spectral attenuation has been used successfully to identify 

the temporal and spatial variations of the biogeochemical processes in the world’s oceans and 

lakes. By understanding the distribution of Kdλ, it is possible to estimate solar irradiance at 

different depths, thereby providing fundamental information for photo-limited processes such as 

lake productivity and photodegradation.  

 

In addition to downwelling irradiance, upwelling irradiance also plays an important role in 

primary productivity and radiative transfer, as well as determining the appearance of the water 

body. In situ measurement of the upwelling irradiance can be made using a radiometer directed 

downward below the water surface. The upwelling irradiance is the sum of upward traveling 

photons (< 90o with respect to the downward vertical direction). Typically, upwelling irradiance 

diminishes with depth in a similar manner to downwelling irradiance in a homogeneous medium 

(without optical stratification), following an exponential decay, 
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where Euλ(z) is the upward spectral irradiance at depth z, Kuλ(z) (m-1) is the coefficient of 

exponential decay with depth and Euλ(z=0) is the upwelling irradiance just below the surface. The 

maximum depth of the water column that influences the water leaving radiance can be defined 

as the “effective upwelling depth”,75 below which the optical properties of the water body no 

longer influence the water leaving radiance. If, at a specific wavelength, the effective depth is 

greater than the lake depth, the upwelling irradiance will be influenced by the spectral 

reflectance properties of the lake bottom, mediated by the optical properties of the intervening 

water layers. 

 



Upwelling irradiance plays a key role in primary productivity and radiative transfer, as well as 

determining the appearance of the water body. As the upwelling irradiance is influenced by the 

angular distribution of the downwelling radiance and the optical properties of the water body, it 

serves as the basis of remotely made observations of water quality in lakes, estuaries and the 

ocean. 

Radiative-transfer models (e.g. Hydrolight) and semi-analytical models separate bottom and 

water column reflectance by using a typical particle phase function for specific water classes. If 

the water body is stratified and the effective depth is greater than the depth of the surface layer, 

upwelling irradiance will contain a depth-weighted exponential mean of the optical properties of 

the layers present.  

 

Scalar irradiance is defined as the integral of radiance distribution at a point over all directions 

about the point. It is equivalent to the total radiant flux per m2 from all directions at a given point 

in the medium.
22 The measurement of scalar irradiance is similar to that of irradiance with a 

spherical collector. Meters with all three collectors, downward, upward and spherical are now 

commonly used. The determination of the angular distribution of radiant flux, using for example 

a tube photometer containing a cylindrical tube to limit the acceptance angle, provide a more 

complete description of the radiance distribution.  

 

Inherent Optical Properties (IOPs) are related to the optical properties and concentration of the 

particulate and dissolved substances present. They directly control the absorption and scattering 

properties of the water column but are not sensitive to changes in radiance distribution. 

Generally, the estimate of phytoplankton biomass, CDOM and particulate matter is made by 

sampling, storage in appropriate conditions and laboratory measurements. In situ measurements 

provide the most accurate method of estimation. However, they are limited to the temporal and 

spatial constraints of a field campaign.  

 

The in situ concentrations of photosynthetic pigments and their degradation products are 

estimated using extraction in an organic solvent and quantification of one or more specific 

photosynthetic pigments by spectrophotometry, fluorometry or chromatography.
76 In situ 

estimates by fluorescence have also been used successfully to measure spatial (horizontal and 

vertical) and temporal changes in phytoplankton biomass, at a high resolution.
77,78 They include 

light emitting diodes for the excitation of specific pigments with sensors to measure the response 

in fluorescence, for example of chlorophyll a (excitation 440 nm, emission 680 nm) or 

phycocyanin of cyanobacteria (excitation 620 nm, emission 645 nm). 

 

In recent decades the use of satellite based optical sensors has opened up new opportunities for 

extensive measurements of IOPs, with initial emphasis on phytoplankton biomass and their 

related pigments. Models were proposed to estimate the concentration of chlorophyll a based on 

absorption characteristics,
79, 80,81 and regression analysis using in situ data.37, 41, 82 However, the 

absorption of phytoplankton is a combination of chlorophyll a as well as other accessory 

pigments. For this reason, the ratio of total absorption coefficient of phytoplankton and 

chlorophyll-a concentration is often used ( ): 



 

The absorption efficiency of phytoplankton chloroplasts will decrease with higher algal density. 

This “package effect” is a main source of spectral absorption variability.83 Pigment concentrations 

determine the absorption spectral shape, but the package effect can significantly influence on 

the absorption efficiency.40 Several methods have been utilised to estimate Chla from remotely 

sensed data of reflected radiance; near-infrared/red band ratio empirical methods 84, 85, 

semi-analytical methods 84 and three-band empirical methods.
81, 86 Phycocyanin is a unique 

pigment in cyanobacteria, and thus provides a more useful indicator of cyanobacterial biomass 87, 

88 and its measurement has often been based on the 620-nm absorption.
87-92 

 

The remote estimation of phytoplankton related absorption and scattering is hindered by the 

presence of detritus and cell constituents other than pigments. Band ratios are often used to 

remove the effects of absorption by other optically active components present.38 One major 

drawback to remote estimation of phytoplankton is that direct measurements are limited to the 

upper layers of the water column. Thus indirect or secondary approaches are necessary to 

estimate a full profile of phytoplankton biomass and pigment compositions. However, remote 

sensing allows for regular and extensive estimates where in-situ measurements are insufficient to 

capture the spatial and temporal variability of this important optical component.93
 

 

The in situ measurement of the non-living particulate fraction, both organic and inorganic is 

usually carried out by sampling, filtering and quantification using gravimetric or combustion with 

infrared gas analysis. Remote measurements of the particulate fraction offer numerous 

advantages at the cost of a lower accuracy. In comparison to phytoplankton pigments, the 

estimate of the different particulate fractions, living and non-living, organic and inorganic 

presents a larger challenge, as their optical properties can vary significantly in relation to their 

sources and sinks. The particulate organic carbon (POC) pool, in particular, contains a wide variety 

of optically distinct components, from bacteria to macrophyte detritus.
94 In the first published 

algorithm for estimating POC from remote sensing, a two-step process was based on the 

dependence of the backscattering coefficient (bbp) by particles suspended in seawater and the 

dependence of the spectral remote-sensing reflectance (Rrs(λ)) on bbp.
95 More recently, 

reflectance ratios and multiple-spectral approaches (e.g. Normalized Difference Carbon Index) 

were used to estimate POC distribution in the open ocean by relying on the dominance of 

phytoplankton biomass in the total POC concentration. There are clear difficulties in applying this 

to turbid inland waters, where inorganic particles play a more important role in the optical 

backscattering properties of the water body. 96, 97 Duan et al. developed a power regression 

model of the direct empirical relationship between POC and atmospherically Rayleigh-corrected 

MODIS data for inland turbid waters.
52 Such approaches indicate that remote sensing of different 

particulate fractions, their concentrations and optical properties is feasible. 

 

CDOM is typically measured using spectrophometric measurements of filtered water samples. 

The significant spatial variability of CDOM can be captured using an extensive sampling network. 

High frequency studies of CDOM variability are more rare. Hourly changes in CDOM in streams 

and rivers due to variability in runoff, autochthonous production, photobleaching and 



interactions with sediment detritus are not uncommon.
98,99 Recently, deployable 

spectrophotometric probes have been used to acquire high frequency measurements.100
 

 

The remote estimation of CDOM and DOC presents an opportunity to examine spatial and 

temporal changes in this important optical and biological component (Figure 4). Spectral band 

ratios, linear band combinations and semi-analytical algorithms have been used to estimate 

CDOM dynamics using the remote sensing reflectance data.101,102,103 While most of these are 

limited ecosystems where a single CDOM source undergoes dilution and conservative mixing, 

recent developments indicate that regional wide algorithms can also be used to examine CDOM 

in different inland water bodies (Figure 4).104
 

 

Conclusion 

The spectral distribution of the underwater solar radiation field is both a function of as well as a 

driver of the biological, chemical and physical conditions at any particular depth. While the 

dissolved and suspended organic matter modify the penetration depth of UV radiation and visible 

solar radiation, their exposure to solar radiation modifies their optical and biological 

characteristics.
29 In lakes, rivers and wetland ecosystems, where the CDOM and POM levels can 

be elevated, the penetration of UV may only be few centimetres and products of 

photodegradation can strongly influence biological cycles.51,105 Low molecular weight 

photoproducts of degraded CDOM are more edible to bacterial communities while solar UV 

radiation may increase the toxicity of natural and anthropogenic organic compounds leading to 

negative effects on biota .106,107 The spectral distribution of light within the mixed portion of the 

water will modify the ability of phytoplankton to conduct photosynthesis. Phytoplankton, the first 

level of the aquatic food web, utilise various mechanisms of orientation and vertical migration to 

optimize their exposure to solar radiation.108,109 While solar radiation provides the energetic basis 

for photosynthesis, high doses of UV radiation may cause chlorophyll photobleaching, 

modification of the DNA structure, cellular damages, inhibition of motility and orientation, as 

well as photoinhibition. 110,111,112,113  

 

Variations in the spectral intensity of solar radiation in the water column, in particular UVR, 

modify the aquatic cycles of carbon, nitrogen, sulphur, and metals.114 Changes in the 

concentrations and optical characteristics of components of the water column (and atmosphere) 

will influence basic biogeochemical cycles of aquatic ecosystems. Long term monitoring and 

improved understanding of these transformations is fundamental to understanding the fate of 

organic matter in these ecosystems. 
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Figure 1. CDOM absorbance follows a near exponential decay with increasing wavelengths. 

Samples from freshwater lakes across different bio-regions.  

 

 

Figure 2. CDOM/DOC ratios from 38 lakes in southeast China sampled in April 2012. CDOM 

absorption measured at 280 nm.  
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Figure 3. Total absorption with relative contributions from CDOM (ag), nonliving particulate 

matter (ap), phytoplankton (aph) and water in two Chinese lakes, Lake Poyang (PYH) and Lake Bali 

(BLH).  

 

 

Figure 4. CDOM absorption Ag375 nm in Lake Taihu Lake in for March 2004 using a linear regression 

model. 
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Chapter 4. Abstract 

 

Solar light is able to photoinduce the phototransformation of a lot of pesticides. In this chapter 

we describe some of the most important photochemical processes leading to the chemical 

transformation of pesticides, in particular photodehalogenation, photoisomerization, photo-

fries and photo-claisen. In each case, theoretical considerations are given and illustrated by 

examples taken from the literature. This chapter provides useful data for the understanding of 

the photoreactivity of a wide range of molecules of environmental concern. 
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4.1 Introduction 

Pesticides are intensively used to improve crop yields and meet the challenge of feeding an 

ever-increasing population. Yet, pesticides are biologically active molecules that may have a 
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toxic effect on non-target organisms, in particular human beings and fauna. Once they have 

been released to the environment pesticides can undergo transformation through biotic and 

abiotic processes leading to degradation products that may happen to be also toxic. This is 

therefore of importance to get insight into these reactions to evaluate the risk that may cause 

pesticides use. Solar light can induce chemical transformation of pesticides provided that 

these latter absorb radiations wavelength of which is longer than 290-295 nm. These 

photochemical reactions can take place in all the environmental compartments, surface 

waters, surface of leaves, surface of soils, atmosphere and whatever the state of the molecule, 

solid or dissolved.  

When compared to chemical transformation at the ground state, photochemical reactions are 

characterized by electronic excitation and thus by the change of electronic configuration.
1-3

 As 

the chemical reactivity of a molecule is determined by the electronic configuration, ground 

state reactions significantly differ from photochemical reactions. Most frequently, pesticides 

as many other organic compounds are synthesized using ground state reactions. They are 

stable under usual conditions but not necessarily when electronically excited. Since nowadays 

molecular structures in pesticides become more and more complex, the problem of 

photostability becomes more and more urgent. Complex molecules possess an increased 

number of photochemical degradation pathways. In principle, the ground electronic state of 

any compound can give rise to a number of different excited electronic states, singlet or 

triplet, each with its own electronic distribution and its own reactivity (Scheme 1). Since 

excited electronic states have a higher internal energy than ground states, many processes are 

possible. 

[Scheme 1] 
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The photochemical transformation of pesticides has been intensively studied for decades and 

a lot of data can be found in the literature concerning the rates of pesticides photolysis and the 

nature of their photoproducts. The objective of this review is not to make an inventory of 

existing data, but to detail the mechanism of some types of reaction, in particular, 

photodehalogenation, photoisomerization, photo-fries, photo-claisen, that are observed for a 

lot of pesticides. 

 

4.2 Photodehalogenation 

 

Many pesticides are arylhalides or contain such moieties. Dehalogenation in these compounds 

is one of the most important photodecomposition modes. The arene halogen bond 

fragmentation may be induced mainly by four processes.
4,5

 A homolytic cleavage leading to 

two radicals may occur (equation 1). A heterolytic cleavage of the arene halogen bond 

generally leads to the formation of the aryl cation and the release of the halide (equation 2).
6
 

Photochemical electron transfer form an external electron donor to the electronically excited 

aryl halide induces the release of the halide and the formation of an aryl radical (equation 

3).
7,8

 Less frequently, a direct nucleophilic substitution at an electronically excited aryl halide 

is observed (equation 4). 

Ar-X* → Ar 
•
 + X 

•
    (equation 1) 

Ar-X* → Ar
+
 + X

−
    (equation 2) 

Ar-X* + electron donor → (Ar-X)
 •−

 → Ar 
•
 + X

−
  (equation 3) 

Ar-X* + Nu
−
→ Ar-Nu + X

−
   (equation 4) 

In the context of photochemical degradation of pesticides, the resulting intermediates react 

either by addition of OH
-
 to give Ar-OH in the presence of water or by reduction to give Ar-H 

in the presence of a suitable hydrogen donor. The addition of water to a phenyl radical leading 
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to phenol was recently studied in detail.
9
 Photocyclization may also take place in particular 

when the molecule carries a substituent with a more or less extended π-electron system.
10

 

Depending on the nature of such substituents, this transformation can involve a variety of 

mechanisms. Generally, HX is released.  

 

 4.2.1 Nucleophilic substitution  

When the herbicide bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) is irradiated in 

unbuffered water (pH=4.2) between 300 and 350 nm, 3-dibromo-4,5-hydroxybenzonitrile is 

produced with a chemical yield of 65 %.
11

 This is fully consistent with the substitution of Br 

by OH (equation 2 or 4). 

The herbicide 2,4-dichlorophenoxyacetic acid is slowly photodegraded in aqueous solution. 

Again, the photosubstitution of Cl by OH is observed at the two positions.
12

 The ether bond 

being quite weak, 2,4-dichlorophenol is formed along with dechlorinated compounds 

(Scheme 2).  

[Scheme 2] 

 

 4.2.2 Reductive dehalogenation  

Chlorothalonil (1,3-dicyano-2,4,5,6-tetrachlorobenzene) is a broad spectrum foliar fungicide, 

very commonly used worldwide, absorbing solar light until 350 nm. Its photolysis was 

studied in various media (Scheme 3). When chlorothalonil is solubilized in n-heptane or 

deposited on paraffinic wax films surface, the mono, di and tridechlorinated derivatives are 

formed. In aqueous medium, photoproducts corresponding to the replacement of Cl by OH in 

position 2 and 4 in respect with CN are detected, but dechlorinated derivatives are again the 

main photoproducts.
13-15

  

[Scheme 3] 
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A detailed investigation based on steady-state and laser flash photolysis experiments allowed 

to rationalize the mechanism of this photodehalogenation.
16

 It was established that the 

photolysis of chlorothalonil involves the triplet excited state. This species could be 

successfully detected and its reactivity investigated. The triplet whose transient absorption 

spectrum shows two maxima at 320 and 580 nm is trapped by oxygen with a bimolecular rate 

constant of 7.8×10
8
 M

-1
s

-1
. The reaction with oxygen essentially consists in energy transfer 

from triplet chlorothalonil to triplet ground state oxygen yielding singlet oxygen. 

Quantification of the yield of singlet oxygen was done by measuring the IR emission of 

singlet oxygen at 1270 nm.
17

 The yield is 0.88 in pure acetonitrile and falls to 0.48 in 

water:acetonitrile (95:5, v/v). Steady-state experiments showed that the quantum yield of 

chlorothalonil photolysis is enhanced when oxygen is removed from the solution is line with 

the triplet involvement or in the presence of H-donor molecules showing that chlorothalonil 

photodehalogenation is governed by the direct interaction between the triplet and H-donor 

molecules present in the medium.
16

 The important consequence is that formulation 

components, that are potential H-donor molecules, are expected to increase the rate of 

chlorothalonil photolysis in the first stage of its life cycle, that is to say when it is at the 

surface of the leaf cuticle just after the spraying. The enhancing effect of formulation 

adjuvants was actually confirmed. The reaction of the triplet with the solvent or any H-donor 

molecule generates the reduced radical that could be produced by irradiating chlorothalonil in 

pure 2-propanol (Scheme 4).  

[Scheme 4] 

 

The change of photoproducts when passing from heptane to aqueous medium is explained by 

the possibility of nucleophilic substitution when water is present. But interestingly, 2-
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hydroxychlorothalonil and 4-hydroxychlorothalonil are produced by different reactions. By 

comparing the data obtained in the presence and in the absence of oxygen it was concluded 

that 2-hydroxychlorothalonil is directly generated from the triplet by nucleophilic substitution 

of Cl by OH from water (equation 2 or 4) while formation of 4-hydroxychlorothalonil 

requires the presence of oxygen and the preliminary reduction of chlorothalonil triplet by the 

solvent (equation 3). Acetonitrile is often used as a co-solvent to improve the solubility of 

molecules. It must be kept in mind that even though this solvent is a poor H-donor, it can 

promote photoreduction in some cases. 

 

 4.2.3 Photocyclisation  

 

Sulcotrione (2-(2-chloro-4-mesylbenzoyl)cyclohexane-1,3-dione) is a triketonic herbicide 

used in replacement of atrazine. It absorbs solar light with an absorption extending until 350 

nm. In neutral water, the photolysis of sulcotrione is very slow with a reported half-live 

around 100 days, and the only described photoproduct in the registration report is 2-chloro-4-

methylsulfonylbenzoic acid. When sulcotrione is as a solid on leaves or wax films, its 

photolysis is much faster with a half-life of several hours, and the main photoproduct is the 

xanthene depicted in Scheme 5.
18,19

 This photocyclisation also occurs in acidic water when 

sulcotrione is in the molecular form (pKa = 3.1). Due to the weak photolytic quantum yields, 

it was not possible to detect any transient species and therefore clear up the reaction 

mechanism of the HCl elimination.  

[Scheme 5] 
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Triclosan is another molecule whose photolysis also produces a cyclic compound.
20,21

 When 

triclosan is irradiated in the anionic form (pKa = 8.1), four major photoproducts are identified 

among which 2,8-dichlorodibenzodioxin (Scheme 6).  

[Scheme 6] 

To investigate deeply the mechanism of photocyclisation, several experiments were 

conducted. Firstly, triclosan was irradiated in the presence of d8-2-propanol. The substitution 

of Cl by a deuterium atom demonstrated that the biradical depicted in Scheme 7 is the key 

intermediate in the reaction.  

[Scheme 7] 

Secondly, the nature of the C-Cl cleavage was investigated. Laser flash photolysis of triclosan 

allowed to rule out the homolytic nature of the cleavage as in the presence of high amount of 

Cl
-
, Cl2

-.
 was not detected. Moreover, high amounts of NaCl or NaBr did not affect the 

photolysis of triclosan showing that carbocations are not formed and the cleavage of the C-Cl 

not heterolytic. Giving all these data, it was proposed that an intramolecular electron transfer 

occurs from the phenolic moiety to the chlorinated ring in the excited triclosan. The resulting 

biradical anion eliminates Cl
-
 to form the neutral biradical (Scheme 8). Density functional 

calculations supported this mechanism.  

[Scheme 8] 

 

Propiconazole ((+)-1-[2-(2,4-dichlorophenyl)-4-propyl-1,3-dioxolan-2-ylmethyl]-1H-1,2,4-

triazole), a foliar fungicide, also undergoes photocyclization through elimination of Cl from 

the dichlorinated ring and H from the triazole (Scheme 9). The quantum yield of 

propiconazole photolysis is rather high (0.11 ± 0.01) but the photocyclisation product is only 

one of the main photoproducts.
22

  

[Scheme 9] 
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In the case of itraconazole another fungicide showing a structure close to that of 

propiconazole the formation of an aryl radical was proposed.
23

 Cyclisation is assumed to 

proceed by an intramolecular attack of the initially generated aryl radical towards the triazole 

ring in poorly H-donating solvents such as acetonitrile. In good H-donor solvents such as 

ethanol reductive dehalogenation takes place.  

 

4.3 Photoisomerization 

 

E/Z photoisomerization is a typical example of a photostationary equilibrium (Scheme 10).
24-

27
  

[Scheme 10] 

 

In contrast to thermodynamic equilibria, photostationary equilibria do not depend on the 

thermodynamic stability of the constituents but on their ability to absorb light at a particular 

wavelength (equation 5). For example, when the E-isomer absorbs better than the Z-isomer 

(Absorption coefficients: εE > εZ), the Z-isomer is accumulated in the reaction medium 

(concentration of E  (c(E)< concentration of Z (c(Z)) since the transformation E→Z is faster 

than the inversed reaction and vice versa. In many cases, the corresponding quantum yields 

(ΦE→Z and ΦZ→E) are in the same order of magnitude.  

 

 
(equation 5) 

 

Photochemical E/Z isomerization may be induced by photosensitization via energy triplet or 

singlet transfer. Reversible addition of a photochemically generated radical intermediate on a 

triplet excited species such as an aromatic ketone may also lead to such an isomerization.
30,31 
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E/Z Photoisomerization is observed in compounds possessing a C=N, N=N or similar units as 

well.
32

 Many pesticides contain such bonds.
 
Often biological activity is only observed for one 

of these isomers since the structural change caused by such a transformation is considerable 

from the enzymatic reactivity point of view. For reasons just discussed, the photochemical 

intermediate significantly differs from the thermodynamic intermediate generated in the 

synthesis of these compounds using organic ground state reactions.
 

 

4.3.1 Ethylene bonds 

Azoxystrobin is a systemic fungicide only active in the E form. Its photochemistry was 

investigated in solvents of low polarity (n-heptane and isopropanol) to mimic the fate of the 

fungicide at the surface of leaves cuticle and also in water to understand its fate once it is 

released in surface waters.
33,34

 Based on analytical and kinetic data, it was demonstrated that 

in heptane isomer E undergoes efficient photoisomerization into the isomer Z with a quantum 

yield of 0.75±0.08 (Scheme 11). The isomer Z also undergoes photoisomerization into isomer 

E with a quantum yield close to 1. A pseudo photostationary equilibrium is therefore reached 

when the ratio [isomer E]/[isomer Z] is 2.0±0.1.
33

 Photodegradation only takes place from E 

isomer (quantum yield = 0.073±0.008). In isopropanol, both photoisomerization and 

photodegradation are significantly slower.  

[Scheme 11] 

 

Theoretical calculations using a simplified molecule were performed to understand these 

results. They revealed that four conformers may participate in the isomerization mechanism 

(Ecis, Etrans, Zcis and Ztrans). The Ecis/Etrans and Zcis/Ztrans pairs of conformers have similar 

energies (0.0/0.6 kcal mol
−1

 and 4.0/3.5 kcal mol
−1

) and are separated by low electronic 

energy activation barriers (6.7 and 2.1 kcal mol
−1

, respectively). Ground state E and Z species 
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are thus an equimolar mixture of the respective two conformers. In addition, large activation 

barriers (above 45 kcal mol
−1

) prevent isomerization in the ground state (Etrans → Ztrans or Ecis 

→ Zcis). The excited state potential energy surface shows two avoided crossings. As the 

energy gap is much smaller for isomerization via the trans isomers at the first avoiding 

crossing than for isomerization via the cis isomers at the second avoiding crossing and as 

Ecis(S1) faces a large barrier toward Etrans(S1), isomerization is favored between Etrans and 

Ztrans. The dipole moments were also investigated to understand the effect of solvent polarity 

that is rationalized in terms of stabilization of ground and excited states at the avoided 

crossing. At the first avoided crossing, the ground state dipole moment is larger (8.3 D) than 

that of the excited state (1.8 D). Thus, in polar solvents, the excited state is less stabilized than 

the ground state potential energy. This leads to a larger S0/S1 gap in isopropanol, a lower 

transition probability in isopropanol than in heptane and finally a lower photoreactivity.  

 

 4.3.2 Oxime bonds 

A lot of pesticides bear an oxime function. Oxamyl is active in the Z form. Under irradiation, 

it undergoes photoisomerization (Scheme 12) and is also converted in a nitrile after losses of 

the carbamate and CH3S.
35

 The oximino derivative obtained by hydrolysis in the dark only 

undergoes photoisomerization.  

[Scheme 12] 

 

Cyclohexanedione oximes are herbicides that bear two keto groups and an O-substituted 

oxime that can be in E or Z form (Scheme 13). Cyclohexanedione oximes are marketed in the 

active E form. Typically, cyclohexanedione oxime herbicides undergo photochemical 

transformation but dark chemical rearrangements are also possible in acidic medium (Scheme 

12).
36

 Isomerization of the E-isomer into the Z-isomer has been reported to take place in the 
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dark and under irradiation in water.
37,38

 If the photochemical isomerization of oximes is a 

well-known reaction,
39

 the dark isomerization is more surprising. It is explained by the acidic 

hydrolysis of the oxime which makes possible the rotation of the O-alkyl about the C-N bond. 

The formation of oxazole from cyclohexanedione oxime herbicides was also reported.
40

 In the 

dark, this reaction starts by N protonation followed by cleavage of the N-O bond, loss of 

R3OH, Beckmann type rearrangement and final cyclization. The photochemical production of 

oxazole is observed in various media such as water, methanol or soil surface. Last, the imine 

is the main photoproduct in solid and in solution while its formation is very minor in the dark.  

The oxime function is clearly at the core of the (photo)rearrangement.  

 

[Scheme 13] 

 

In the case of cycloxydim, the absence of photoisomerization in acetonitrile was 

demonstrated.
41

 NMR and absorption data showed that in non-protic solvent such as 

acetonitrile, the enol form is stabilized by an intramolecular hydrogen bond with the oxime 

nitrogen. After the π/π* oxime excitation, the C=N bond is weakened. This allows 

isomerization about the CN bond. In contrast, in water, where the keto form is favoured due to 

intermolecular hydrogen bonds between the carbonyl and solvent OH, internal rotation is free 

and isomer Z can be obtained. Such an inhibiting effect of intramolecular hydrogen bonds on 

photoisomerization has been reported in the literature.
42,43 

 

 

 

4.4 Photo-fries 
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In a classical Fries rearrangement, for example, a phenolester is transformed into a 

hydroxyacetophenone derivative by migration of an acyl group. At the ground state, this 

reaction occurs under Lewis acid catalysis. The same reaction also takes place without any 

chemical activation when it is carried out under UV irradiation.
44,45

 Singlet and triplet excited 

states may be involved. It is generally admitted that arylester such as 1 undergo homolytic 

fragmentation which leads to the formation of a phenoxyl (2) and an acyl (3) radical (Scheme 

14).
46

 Radical combination leading to the formation of C-C bonds yields the regio isomers 4 

and 5. After tautomerisation which reestablishes aromaticity, the final products 6 and 7 are 

obtained. The regio selectivity depends on the nature of further substituents at the aromatic 

moiety. Furthermore, it can be affected by the reaction medium. For example, when carried 

out in solution the selectivity is often low while when the reaction is performed in a 

constrained environment such as zeolites, it may be increased.
47

 The reaction is observed with 

a variety of functional groups such as amides, sulfonates and sulfonamides or aromatic 

lactones and lactams. Similar transformations have been observed with compounds carrying 

an alkene moiety instead of an aromatic group.
44,48

 For example enolethers derived from 

cyclic 1,2-diketones or 1,3-diketones have been transformed.
49,50 

 

Phenylurea herbicides that do not bear halogens undergo photo-fries rearrangement upon 

excitation at λ > 300 nm.
51

 On the other hand, photo-fries rearrangement is not observed in 

the case of 1-naphthyl methylcarbamate (carbaryl) that is photolyzed into 1-naphthol.
52 

This 

behavior contrasts with that of other naphthyl esters.
53

  

 

 

4.5 Photo-claisen 
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The Claisen rearrangement is a well known and widely used ground state reaction. Most 

frequently, this reaction occurs according to a concerted mechanism. A photochemically 

version of the reaction has also been reported.
54

 Under these conditions, it is often performed 

with aromatic compounds. A classical example is that of the transformation of allyl phenyl 

ether.
55

 As in the case of the photo Fries reaction and in contrast to the Claisen reaction at the 

ground state, there is formation of two radical species.
56

 Most probably, the reaction occurs at 

the singlet state. A 
1
πσ* (S2) state is involved in the fragmentation. Radical combination then 

leads to two regioisomeric adducts. And again, tautomerization generates the final products. 

The regioselectivity is highly affected by the environment. For example, when corresponding 

phenol derivatives form inclusion complexes with cyclodextrines, the formation of para 

products is stronger favored as in the case of a homogeneous medium like a solution.
57

 Such 

studies are also useful to discuss photochemical degradation of pesticides which often occurs 

in heterogeneous media. 

The herbicide napropamide (N,N-diethyl-2-(1-naphthyloxy)propionamide) undergoes photo-

claisen reaction in aqueous medium and on solid supports such as cellulose and silica.
58,59

 

This shows that radicals are sufficiently mobile on solid supports to generate the keto 

tautomers. The cage escape product, 1-naphthol, is also produced in water as on solid 

supports. 
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Captions for figures 

 

Scheme 1: Basic photochemical processes involved in photochemical transformation 

Scheme 2 : Photohydrolysis of 2,4-dichlorophenoxyacetic acid 

Scheme 3 : Photolysis of chlorothalonil in apolar medium and in water/acetonitrile (80:20, 

v/v) 

Scheme 4: Photoreduction of the triplet of chlorothalonil in the presence of an H-donor 

molecule (R-H) 

Scheme 5: Photolysis of sulcotrione on paraffinic wax films 

Scheme 6 : Dioxin formation upon irradiation of anionic triclosan 

Scheme 7: Trapping of the biradical by d8-2-propanol 

Scheme 8: Formation of the biradical by intramolecular electron transfer  

Scheme 9: Photocyclization of propiconazole 

Scheme 10. E/Z photoisomerization of an alkene. 

Scheme 11: Photoisomerization of azoxystrobin  

Scheme 12: Photoisomerization of oxamyl 

Scheme 13: Chemical structure of cycloxydim, a cyclohexanedione oxime herbicide and of its 

main photochemical and dark reactions  

Scheme 14. Mechanism of the photo-Fries rearrangement. 
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Scheme 4 
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Scheme 5 
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Scheme 6 
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Scheme 9 
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Scheme 11 
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Scheme 13 
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Abstract 

The photochemical reactions that occur in natural water bodies play an important role 

in many biogeochemical processes, such as global carbon cycling and the fate of organic 

contaminants. Photochemically active compounds found in these systems include nitrate, nitrite, 

and dissolved organic matter (DOM). DOM is a major constituent in the water matrix and thus 

its photochemical reactions are central to understanding the photochemistry of natural waters. 

DOM is colored (typically yellow to brown) and absorbs light in the ultraviolet and visible range. 

Formation of excited states following DOM absorption leads to (sensitized) production of 

reactive intermediates, such as singlet oxygen, organic peroxyl radicals, hydrogen peroxide, 

hydroxyl radical, and excited triplet states. As DOM is a complex, heterogeneous material, a 

complete mechanistic understanding of these species’ production has been difficult to obtain. 

The aim of this chapter is to develop a framework for understanding the mechanism of sensitized 

reactive intermediate production from DOM, with special attention to the role of DOM 

molecular size.  
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1. Introduction   
Dissolved organic matter (DOM), defined as the pool of carbonaceous compounds found 

ubiquitously in aqueous environments, represents the largest pool of reduced carbon in the 

biosphere.
1,2

 DOM has been characterized as a complex mixture of organic compounds of 

varying molecular weight and composition, ranging from simple molecules composed of carbon, 

hydrogen and oxygen to more complex structures where heteroatoms such as nitrogen and sulfur 

are incorporated.
3
 

Based on its source and subsequent physicochemical properties, DOM observed in 

surface waters can be classified into three main pools. These include terrestrial or allochthonous 

and aquatic or autochthonous DOM.
4-6

 Both of these sources are considered to be end-members 

of geochemical importance and are frequently used to define boundaries with respect to the 

observed physicochemical properties of DOM in aquatic systems. A third component observed 

in surface waters under the influence of anthropigenic activities is the material derived from 

wastewater processes, referred to as effluent organic matter (EfOM). EfOM is composed of 

oxidized, recalcitrant DOM from drinking water sources as well as soluble microbial products 

(SMPs), a byproduct of biological treatment of wastewater.
7
 The chemical composition of DOM 

includes lignin-type compounds, sugars, peptides, and polysaccharides; with phenolic, quinone, 

ketone, aldehyde, aromatic, carboxylic acid, amide, ester, and ether functional groups.  

2. Molecular composition of DOM  

The structural characterization of DOM has fascinated researchers since the published 

molecular formula of a humic substance (C40H30O15) in 1840.
8
 Historically, DOM has been 

quantified as dissolved or total organic carbon (DOC or TOC).
9,10

 DOM has been represented as 

a combination of both humic and non-humic material,
1-3

 with the humic material, commonly 

known as humic substances (HS) accounting for as much as 80% of the total DOM in fresh 
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waters.
3,11

 HS are further classified into fulvic acid (FA) and humic acid (HA), based on their 

solubility at different pH values and chemical composition.
12

 The non-humic component of 

DOM includes proteins, carbohydrates, and other organic compounds including low molecular 

weight acids.  

The number of studies focusing on EfOM has lagged behind the progress made on DOM. 

However, analysis of the properties of EfOM suggest that it behaves differently from DOM. 

Briefly, the composition of EfOM could be sub-divided into three main groups: (1) background 

DOM originating from water supplies, (2) SMPs produced during biological wastewater 

treatment, and (3) natural and synthetic trace chemicals.
7
 In terms of mass contribution, SMPs 

will dominate over the background DOM. The trace chemicals will contribute a minor part to the 

overall mass. SMPs are produced during biological processes in wastewater treatment plants and 

are divided into two categories: biomass-associated products (BAP) and utilization-associated 

products (UAP).
8,13

 UAP are a result of microbial substrate intake, which is proportional to the 

amount of substrate available in the system, and BAP is a result of microbial endogenous decay, 

which correlates to biomass concentration in the biological reactor.
7,9,10,14

 Operational parameters 

such as sludge retention time, organic loading rate, hydraulic retention time, and process 

temperature can alter the properties of SMPs, therefore impacting the overall chemistry of 

EfOM.
14-17

 

In the past decade, DOM has been characterized using a wide array of analytical 

techniques, such as three-dimensional fluorescence excitation-emission spectroscopy,
18-20

 high 

and ultra-high resolution mass spectrometry,
21-23

 and NMR (carbon, nitrogen and 

phosphorous).
24-28

 These techniques have allowed researchers to obtain chemical formulas and 

additional information of chemical functionalities. For example, Stenson et al. used Fourier 
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transform ion cyclotron resonance mass spectrometry (FTICR-MS) to determine the molecular 

formulas for 4626 individual components of Suwannee River Fulvic Acid (SRFA) and compared 

these data to degraded lignin.
21

 This technique has also been applied to EfOM and shown that it 

has more diverse functional groups than DOM isolates from natural samples.
29

 Furthermore, 

FTICR-MS has been used to characterize/compare EfOM derived from different activated sludge 

processes.
30

  

The apparent molecular weight (AMW) of DOM has consistently been of interest to 

scientists and engineers examining the impact of DOM on natural and engineered processes.
31-33

 

Multiple techniques have been used to measure this property, including vapor pressure 

osmometry,
34,35

 size exclusion chromatography (SEC),
36

 small angle X-ray scattering,
35

 

ultracentrifugation,
37

 and light scattering techniques.
38

 Early on, researchers had a fairly good 

understanding of the molecular weight range (700-10,000 Da published in 1968)
39

 of DOM and 

its metal-complexing abilities.
40,41

 Based on all of the above techniques, the average molecular 

weight of DOM molecules is likely around 1 kDa.
42

  

In addition, size fractionation of bulk DOM into its AMW fractions has been utilized as a 

tool to evaluate the physiochemical properties of DOM. Size fractionation has been performed 

using ultrafiltration membranes,
33,43,44

 as well as by dialysis and SEC.
45

 These techniques have 

provided greater insight into the physicochemical properties of DOM, which in turn has allowed 

for more advanced study of its photophysical and photochemical properties.  

3. Photophysics of DOM 

 The first law of photochemistry states that the rate of direct photoreaction of a chemical 

is a function of the rate of light absorption. Therefore, in order to describe the photochemical 

properties of DOM and its molecular weight fractions, we start by describing the basic 
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photophysical processes that are in effect when DOM interacts with light. The potential 

photophysical processes upon DOM light absorption are shown in Fig. 1. The initially formed  

[Fiure 1 near here] 

singlet excited state, 
1
DOM

*
, can undergo various processes, including internal conversion (IC), 

fluorescence (F), and intersystem crossing (ISC), which leads to a triplet excited state, 
3
DOM

*
. 

Compared to individual organic molecules, DOM exhibits some complex optical properties that 

are difficult to describe. The difficulty is compounded by DOM’s heterogeneity and inexact 

knowledge of its structure. In the following sections, a framework is developed for 

understanding the photophysics of DOM light absorption and luminescence so as to understand 

its photochemical pathways.  

As light absorption is the initial step in the population of excited states that lead to 

reactive intermediates, it is useful to develop a framework for explaining this initial 

photophysical step. First, the types of chromophores in DOM and their electronic transitions as 

individual moieties will be discussed. We will subsequently review the relationships between 

absorption spectra and DOM physicochemical properties. 

3.1 Light Absorption 

 Absorbance spectra of simple inorganic and organic compounds derive from energy 

differences between the lowest vibrational state of the electronic ground state and different 

vibrational states of higher electronic states. In aqueous solutions, vibrational structure is lost and 

mainly broad absorption bands are observed. For DOM, however, absorbance decreases 

exponentially (i.e. no prominent absorption bands) from ~ 200-600 nm.
46,47

 Importantly, DOM 

spectra share these characteristics, regardless of source and physicochemical properties. 

 The most likely chromophores in DOM include various carbonyl-containing groups and 

aromatic rings. Electronic transitions in these groups involve excitation of electrons in non-
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bonding or π bonding orbitals to a π* anti-bonding orbital (either n → π* or π → π*). With 

respect to carbonyl compounds, the n → π* transition is lower in energy than the π → π* 

transition, but is also forbidden and therefore less intense. For example, Fig. 2 shows the 

maximum molar absorption coefficient (ελ,max) for the n → π* and π → π* transitions for acetone 

and 3-buten-2-one. If one considers the UV-visible spectrum of DOM to be due to individual 

[Figure 2 near here] 

chromophores, extremely conjugated carbonyl and olefin compounds would need to be present 

in order to achieve absorption into the near UV and visible wavelength range (e.g. the λmax of β-

Carotene which has 11 conjugated carbon-carbon double bonds is 452 nm).  

 Aromatic structures represent the other potential chromophore (π → π* transition) in 

DOM. Sharpless and Blough have suggested that all DOM absorption and photochemistry results 

from these structures,
48

 though this does not exclude carbonyl compounds conjugated to 

aromatic rings (e.g. aromatic ketones).
49-51

 It has been suggested that lignin is a DOM-precursor 

in both marine DOM
52

 as well as terrestrial DOM (SRFA).
21

. Lignin contains linked aromatic 

rings substituted with hydroxyl, alkoxy, and carboxyl groups that are electronically isolated by o-

ether linkages. Empirical rules have been developed for benzoyl derivatives (present in lignin), 

correlating structure with λmax. For example, consider Fig. 3 in which a benzoyl ring is 

substituted with a p-hydroxy and m-alkoxy group. Even with the presence of these electron-

donating substituents, the calculated λmax is only 262 nm. This value is in good 

[Figure 3 near here] 

agreement with the λmax of 282 nm measured in lignin obtained from an un-treated wood 

powder.
53

 Fused aromatic and heteroaromatic rings (e.g. anthracene and quinolone) have 

absorption bands that extend into the near UV (e.g. log10(ε) of quinolone is ~ 3.1 at 310 nm).   
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 Many parameters have been used to characterize DOM absorption spectra. For example, 

the spectral slope parameter (S), obtained from exponential fitting of the absorption spectrum, 

provides a quantitative measure of how rapidly absorption decreases as a function of wavelength. 

The E2:E3 and E4:E6 ratio (ratio of absorption at 254 nm to that at 365 nm and 465 nm to that at 

665 nm, respectively) are other quantitative parameters used to describe that rate of absorbance 

decrease as a function of wavelength. Previous research has shown that both S and E2:E3 

increases with decreasing molecular size fractions of DOM.
43,52,54,55

 Addition of simple organic 

acids to DOM decreases its molecular size (shown by SEC), apparently by disrupting 

hydrophobic interactions, which in turn leads to a decrease in UV-visible absorbance.
56

 In 

addition, reduction of DOM with borohydride as well as photobleaching results in a preferential 

loss of visible absorption.
57

 

 Our initial discussion of DOM chromophores highlighted that, except for very conjugated 

structures, absorption occurs mainly below 300 nm. If it is assumed that DOM absorption spectra 

are due to a superposition of individual chromophores, highly conjugated or heteroaromatic 

structures need be present in order to explain DOM’s absorbance in the near UV and visible 

region of the spectrum. However, research suggests that these structures are not prevalent in 

DOM. It has been proposed that the complex optical properties of DOM result from 

intramolecular charge transfer (CT) complexes.
48,58,59

 According to this model, intramolecular 

electron donors (D) and acceptors (A) within DOM can interact to form a donor-acceptor 

complex (D + A  DA). CT complexes (D
+
A

–
) can form directly upon excitation of ground 

state DA  

DA + hν → D
+
A

–
         (1) 

or following conversion of a singlet or triplet excited state.
60
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DA + hν → 
1
(DA)*          (2) 

1
(DA)* → D

+
A

–          
(3) 

1
(DA)* → 

3
(DA)*          (4) 

3
(DA)* → D

+
A

–
          (5) 

Additionally, CT states could be formed by electron transfer from short-range (but non-

complexed) excited state donors and acceptors:
61

  

D*
 
+ A → D

•+
 + A

•–          
(6) 

D + A* → D
•+

 + A
•–

          (7) 

For DOM, the CT state is represented by DOM
+•/–•

, signifying a di-radical charge separation. 

Presence of short-range, CT interactions between electron-rich donors and electron-poor 

acceptors are capable of producing lower energy electronic transitions, thus, explaining the near 

UV and visible absorption properties of DOM. Assuming that lignin is the main DOM precursor, 

it is likely that hydroxy/methoxy substituted aromatics (e.g. phenols, methoxylated phenols) act 

as donors while carbonyl-containing structures (e.g. quinone, triplet aromatic ketones/aldehydes) 

act as acceptors. It is well known that triplet aromatic ketones ( V 7.10
≈redE ) oxidize electron-

rich phenols,
49

 and that DOM inhibits oxidation of electron-rich phenols.
62

 Furthermore, kraft 

lignin (containing donor phenolic groups) and 3,5-di-tert-butyl-1,2-benzoquinone (an electron 

acceptor) interact to produce a CT absorption band.
63

 

 The CT model could also explain correlations between DOM physicochemical and 

optical properties. Observations of an inverse dependence of S on molecular weight are 

explained by the greater likelihood of CT interactions present for larger DOM molecules. 

Conversely, lower molecular weight DOM, having a less aggregated structure, should have less 
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CT interactions. An alternative explanation to the CT model is that higher molecular weight 

DOM molecules absorb more, possibly due to a greater degree of π electron conjugation.  

3.2 Luminescence  

 Following excitation to a singlet excited state, 
1
DOM* can undergo many photophysical 

processes (see Fig. 1). Vibrational relaxation of 
1
DOM* from an excited vibrational state to the 

ground vibrational state of an excited electronic state occurs quickly (within picoseconds). The 

possible fates of 
1
DOM* are reaction, fluorescence, internal conversion, or intersystem crossing.  

 The lifetime of 
1
DOM* (τ1DOM*) is related to the sum of its decay processes: 

000*1

1

ISCICF

DOM
kkk ++

=τ          (8)   

Because of its short lifetime, it is intuitively unlikely that 
1
DOM* has significant intermolecular 

reactions. However, research investigating the effect of halide quenching on DOM excited states 

and reactive intermediates has shown that photochemical production of hydroxyl radical (HO
•
) is 

correlated to fluorescence quantum yields (i.e. τ1DOM*), but not triplet state quantum yields.
64

 

This does not exclude intramolecular electron transfer reactions, which as previously discussed 

could lead to CT states within DOM molecules.  

 Fluorescence quantum yields for DOM range from ~ 0.1-2% depending on the sample 

and excitation wavelength.
52,59,65

 Interestingly, DOM fluorescence spectra do not seem to follow 

Kasha’s rule, which states that fluorescence is expected to originate from the lowest vibrational 

excited state and thus a molecule will exhibit identical emission wavelength and quantum yield 

regardless of excitation wavelength. For simple organic molecules, Kasha’s rule is explained by 

rapid (picosecond) internal conversion or vibrational relaxation of higher excited states to the 

lowest electronic excited state.  
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 Model DOM compounds,
49-51

 DOM isolates,
66

 and EfOM
67

 have been shown, in some 

cases, to increase the degradation rate of organic pollutants (relative to direct photolysis in pure 

water), apparently due to oxidation by 
3
DOM*. It is therefore necessary to understand the rate of 

intersystem crossing as a function of AMW. Although the intersystem crossing quantum yields 

for DOM are difficult to measure these values are expected to be near 0.3-1, as evidenced by 

experimental measurements
68

 and the expectation that carbonyls, a potentially important 

chromophore, have intersystem crossing values near unity.
69

  

 Phosphorescence of DOM (
3
DOM* → 

1
DOM) is weakly allowed by spin-orbit mixing 

and time-resolved measurements estimate 
3
DOM* lifetimes of ~ 1-100 µs.

48
 Some studies have 

reported direct observation of 
3
DOM*.

70-72
 Notably, there is some debate over whether the 

transient species observed in these studies is actually 
3
DOM* (though no other suggestion for the 

transient has been advanced) as it was not quenched by alkyl phenols, a well-known 
3
DOM* 

quencher. However, the apparent 
3
DOM* signal is quenched by sorbic acid, a known triplet state 

quencher. 
72

 

4. Photochemical Formation of Reactive Intermediates 

The photosensitized formation of reactive intermediates from DOM is a potential source 

of organic pollutant degradation in natural systems (e.g. estuaries, treatment ponds, rivers, lakes). 

Reactive intermediates include HO
•
, singlet oxygen (

1
O2), and 

3
DOM*. In addition, 

photoionization of DOM can produce the aqueous electron, e
–

(aq), however, dissolved oxygen 

([O2] ~ 200 µM) effectively scavenges all e
–

(aq) to form O2
–•

 (k ~ 2 × 10
10

 M
-1

s
-1

).
73

 Other 

photochemically produced species include H2O2 and peroxyl radicals (RO•).  

 The specific mechanism for the formation of reactive intermediates is described below 

using DOM as the starting material. After DOM absorbs light and electrons are promoted to an 

excited state, the system could return to the ground state following emission (fluorescence). A 
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fraction of the chromophores that were excited could also go through intersystem crossing and 

form 
3
DOM*. The excited triplet state can be quenched by molecular oxygen, which results in 

the formation of 
1
O2.

74
  

3
O2 + 

3
DOM* → 

1
O2

 
+

 1
DOM        (9) 

Due to the relatively low energy of 
1
O2 (94 kJ mol

-1
) this reaction occurs readily and it has been 

suggested that 
1
O2 is essentially a probe for 

3
DOM*.

48
 

 The formation of HO
•
 occurs through the photochemical reactions of DOM, however, the 

source of this radical is still under investigation.
75-78

 At least two general pathways have been 

suggested: an H2O2-dependent and H2O2-independent pathway. In addition there is evidence that 

both free HO
•
 is produced as well as a so called lower-energy hydroxylating species. The H2O2-

independent pathway is often portrayed as a 
3
DOM* or a low-energy hydroxylating species 

abstracting hydrogen from water. Quinones are a potential model for these low-energy 

hydroxylating moieties in DOM. In fact, photochemical studies of 2-methyl-p-benzoquinone 

indicate that hydroxylation occurs through a water-quinone exciplex, and not free HO
•
.
76

 

Oxidation of water by an excited state DOM species has yet to be shown, however. Studies of 

HO
•
 production from DOM isolates using different probes and quenchers show that the H2O2-

dependent pathway accounts for up to ~ 50% of HO
•
 production and that some probes (e.g. 

terephthalate and benzoate) are not specific for free HO
•
.
78

   

Direct detection of reactive intermediates using time-resolved techniques is difficult, 

though some studies have utilized laser flash photolysis methods. Steady-state measurements 

using probe compounds is common. An excellent review of these methods has been written by 

Blough and Zepp
79

 and the reader is referred there for complete details. In brief, 
1
O2 is 

commonly measured by its reaction with dienes (dimethyl furan or furfuryl alcohol). Steady-state 
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concentrations of 
1
O2 are calculated from the rate of diene loss and the known rate constant for 

the reaction between 
1
O2 and the specific probe. Dienes (e.g. sorbic acid) are also used to probe 

3
DOM* production rates

80
 and energies.

81
 As 

3
DOM* is a strong oxidant, alkylated phenols such 

as 2,4,6-trimethylphenol are also commonly used to measure production rates of triplet states. 

Many probes have been used to monitor HO
•
 production rates, though it has been shown that 

hydroxylated products can result from hydroxylating species other than HO
•
.
78

 

4.1 Observations for bulk DOM 

 Production of reactive intermediates from bulk DOM samples has been well studied for 

the past few decades. Specifically, many studies have quantified the production rate and quantum 

yield of reactive intermediates for natural samples of varying origin, while others have sought 

mechanistic understanding. Optical properties of DOM are closely tied to the formation of 

reactive intermediates.  

 For 
1
O2, quantum yields on the order of 0.6-6% have been reported for various natural 

water samples,
58,82,83

 from which steady-state concentrations can be calculated if the spectral 

irradiance is known. HO
•
 formation rates from DOM photolysis are on the order of 10

-12
 to 10

-11
 

M s
-1

,
75,84,85

 while quantum yields for this species are less commonly reported. However, values 

of 1.1 to 3.0 × 10
-4

 for three ocean waters and 7.5 × 10
-5

 for SRFA have been measured 

irradiating at 320 nm.
75

 This same study measured nine HO
•
 quantum yields for SRFA over 290-

360 nm, finding an average value of 5.4 × 10
-5

. In particular, the HO
•
 quantum yield of SRFA 

peaked around 310 nm, and decreased at shorter and longer wavelengths. Steady state 

concentrations of 
3
DOM are estimated at 10

-15
 to 10

-13
 M.

81
 In addition, a pioneering study by 

Zepp et al. estimated 
3
DOM* energy levels around 250 kJ mol

-1
 for natural samples and DOM 

isolates.
81

 With respect to quantum yields and steady-state concentrations of reactive 
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intermediates, wastewater-derived EfOM has been shown to have higher values relative to DOM 

isolates, potentially due to non-humic material produced in water treatment (see section 2).
43,55,86

  

 In an effort to chemically alter the photosensitizing moieties of DOM, Mostafa and 

Rosario-Ortiz treated bulk EfOM with oxidizing NaOCl and O3.
43

 A decrease in absorbance and 

increase in E2:E3 accompanied DOM oxidation and resulted in an increase in singlet oxygen 

quantum yield. The decrease in absorbance is explained by oxidation of light-absorbing aromatic 

rings and olefins. The increase in singlet oxygen quantum yield indicates either the relative non-

importance of the oxidized aromatic/olefin moieties as sensitizers in 
1
O2 formation or a decrease 

in molecular weight following oxidation (see section 4.2). Conversely, Sharpless treated DOM 

isolates with reducing NaBH4.
87

 While a decrease in absorbance was noted, there was no 

apparent decrease in singlet oxygen quantum yield. These observations support the idea that, 

while chemical alteration of both electron donors (aromatics/olefins) and acceptors (carbonyls) 

may disrupt CT interactions and thus decrease absorbance, mainly carbonyl-containing 

compounds (acceptors) mediate the formation of 
1
O2. Implicitly, this means that oxidation with 

NaOCl or O3 does not alter the carbonyl-containing compounds in DOM. 

 Correlations between production of reactive intermediates and optical properties of bulk 

DOM samples have been reported for a variety of samples. Firstly, the correlation of singlet 

oxygen quantum yield to absorbance parameters (S, E2:E3, specific absorption coefficients) 

43,58,83,87,88
 probably reflects an increase in CT interactions in DOM with lower S and E2:E3. An 

increase in formation of CT complexes may decrease the efficiency of 
3
DOM* formation 

(through production of CT states following absorption of a photon or reaction of 
1
DOM* → 

DOM
•+/•–

 and 
3
DOM* → DOM

•+/•–
).

48
 Since 

3
DOM* is the precursor to 

1
O2, a decrease in singlet 

oxygen quantum yield would follow. A few studies report a positive correlation between 
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fluorescence quantum yield and hydroxyl radical quantum yield,
45,55,64

 although it is unclear 

whether this relationship is due to molecular size parameters or some involvement of 
1
DOM* in 

HO
•
 production (see section 4.2).

45,55
 

 With respect to DOM source, it has been shown that EfOM has larger quantum yields for 

reactive intermediates formation than DOM isolates.
86

 As noted in section 2, EfOM is comprised 

of recalcitrant DOM from drinking water sources, SMPs, and trace organic contaminants. 

Organic contaminants in EfOM should have no contribution due to their very low concentration. 

It is possible that the difference in apparent quantum yields is due to the oxidation of DOM 

during chlorination in drinking water treatment. In fact, a positive correlation has been shown 

between oxidant dose and singlet oxygen quantum yield,
43

 with the reason being attributed to 

either a decrease in molecular weight following oxidation or a chemical change in the sensitizing 

chromophores. The presence of SMPs in EfOM may also cause this increase, though apparent 

quantum yields of reactive intermediates from SMPs have not been measured.  

4.2 Observations from different molecular weight fractions 

 Relatively few studies exist on the effect of molecular weight on reactive intermediates 

formation, however, there is a consistent trend of increasing apparent quantum yield for 

fluorescence and all reactive intermediates with decreasing size.
43-45,47,55,88

  The results from 

these studies will be summarized in this section and a framework for understanding the physical 

and chemical basis is developed.     

 Wang et al. used ultrafiltration to separate a fulvic acid isolate and observed higher 

fluorescence intensities for lower AMW fractions, which were attributed to CT interactions 

within the DOM. This observation has been confirmed by further studies utilizing ultrafiltration 

for both EfOM
44,55

 and a DOM isolate.
44

 Fig. 4 shows the fluorescence quantum yields for 
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different AMW fractions of Suwannee River NOM (SRNOM) and an EfOM sample as a 

function of excitation wavelength. As shown, the fluorescence quantum yields are higher for  

[Figure 4 near here] 

EfOM than for SRNOM. The bottom part of the figure shows the peak emission wavelength as a 

function of excitation wavelength. A monotonic increase of the emission versus the excitation, as 

observed for SRNOM, has been used to rationalize CT interactions for DOM.
59

 However, for 

EfOM, the monotonic increase in emission versus excitation is only observed for the lower 

AMW fraction. For the larger AMW fraction and bulk sample, there is a deviation at excitation 

wavelengths below 350 nm. Below this wavelength, it appears that fluorescence is following 

Kasha’s rule, indicating differences in photophysical behavior and suggesting the presence of 

individual compounds that will also impact photochemical properties. The same deviation is 

observed between 400-420 nm excitation for smaller EfOM AMW fractions.  

 The increase in fluorescence quantum yield for lower AMW fractions could be due to 

either lower degrees of quenching of 
1
DOM* or intrinsic fluorescence ability. For example, 

larger molecular weight DOM molecules may have a more aggregated three dimensional 

structure,
33,89

 which would promote intramolecular quenching of 
1
DOM*, resulting in a decrease 

in fluorescence quantum yield. Alternatively, lower AMW fractions could contain more potent 

fluorophores. However, considering that more conjugated structures generally have higher 

fluorescence quantum yields,
61

 and that higher AMW fractions might be expected to have more 

conjugated structures relative to low AMW fractions, the first explanation (quenching of 

1
DOM*)  seems more likely. 

 With respect to reactive intermediates, an early study by Haag and Hoigné
88

 used gel 

permeation chromatography to separate DOM samples into apparent molecular weight fractions 
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and quantified steady state 
1
O2 concentrations ([

1
O2]ss). Their results showed that 100-500 Da 

fractions had consistently higher, or at least equal, [
1
O2]ss as bulk samples. Richard et al. used 

SEC-Page to separate DOM isolate standards and soil DOM extracts in order to determine the 

effect of AMW on fluorescence and photosensitizing ability.
45

 Fluorescence intensity was 

increased in low relative to high AMW fractions. Degradation of fenuron and 2,4,6-

trimethylphenol (TMP), known to react with 
3
DOM*,

49,50
 was also increased in low AMW 

fractions, suggesting an increase in reactive intermediates formation. Rosario-Ortiz et al. have 

carried out studies on the effect of AMW on reactive intermediates quantum yields;
43,44,55

 the 

general results are summarized in Fig. 5, which shows the apparent quantum yields for SRNOM 

[Figure 5 near here] 

and an EfOM sample. The bulk EfOM sample had higher quantum yields for the formation of 

HO
•
, 

1
O2, and 

3
DOM* compared to DOM.

44
 After fractionation, lower AMW fractions of EfOM 

still had higher quantum yields than DOM. In addition the components associated with the lower 

AMW fraction of EfOM are much more reactive towards the formation of reactive intermediates. 

This fraction could be enriched in SMPs. The work done on AMW fractions could be 

rationalized by expecting that lower AMW components will have molecules with excited states 

separated by larger energy gaps, compared to larger (and more highly conjugated) components 

with faster internal conversion kinetics. It could also be that there are inherent differences in 

chromophore composition, and higher SMP reactivity overall. 

 It should be noted that the chemical probe used to measure 
1
O2, furfuryl alcohol (FFA), is 

hydrophilic and is limited to reaction with bulk, aqueous phase 
1
O2 and not 

1
O2 in the DOM 

microenvironment.
90

 Therefore, an increase in singlet oxygen quantum yields may reflect the 

greater amount of 
1
O2 escaping the DOM microenvironment (and reaching the bulk phase) 
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before being quenched by DOM as would be expected with smaller molecular size DOM 

molecules. However, the fact that 
3
DOM* quantum yields (measured by TMP) positively 

correlate with singlet oxygen quantum yields suggests another explanation, namely, that 
3
DOM* 

itself (and not 
1
O2 alone) may undergo intramolecular quenching. Higher AMW DOM has a 

more aggregated three-dimensional structure (see section 5) and thus increased intramolecular 

quenching is expected in these fractions.     

 Two studies have reported an increase in HO
•
 quantum yield with decreasing AMW.

44,55
 

In both instances, a concomitant increase in fluorescence quantum yield was observed in low 

AMW fractions. Sharpless and Blough have suggested that this is an indication of fewer CT 

interactions in low AMW fractions
48

. This seems plausible, as CT interactions would provide a 

relaxation pathway for excited state DOM molecules, which play a role in formation of HO
•
.   

5. Scavenging of reactive intermediates by DOM 
 Central to the understanding of photochemical production of reactive intermediates from 

DOM photolysis is the recognition that DOM is reactive towards these very same reactive 

intermediates. In principle, both inter- and intramolecular reaction of reactive intermediates with 

DOM are possible. Wenk et al. studied quenching of model triplet excited states (quinones and 

aromatic ketones) by bulk DOM standards,
91

 finding that only neutral or cationic sensitizers were 

quenched, likely due to complexation of these molecules by DOM. Based on rate constants 

measured for this system in aerated solution where triplet states are deactivated via reaction with 

oxygen, intermolecular quenching is insignificant below DOM concentrations of 22-72 mgC L
-1

, 

which is far below that of most natural systems. Intramolecular quenching of 
3
DOM* has not yet 

been investigated and remains a possible pathway for 
3
DOM* loss.  

 Other reactive intermediates have high reactivity with DOM, including HO
•16,33,92

 and 

1
O2.

93
 Scavenging of these species by DOM can affect their steady-state concentrations and thus 
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their ability to degrade organic contaminants. Rate constants for the reaction of HO
•
 and 

1
O2 with 

DOM are on the order of 10
8-9

 and 10
5
 MC

-1
s

-1
, respectively, where MC is the molar concentration 

of carbon. Dong et al. showed that lower AMW fractions of EfOM were more reactive towards 

HO
•
 on a per carbon basis, explaining the result as geometric affect. In short, if high AMW 

fractions contain more aggregated three-dimensional structures, some carbon atoms are likely 

inaccessible to HO
•
. Conversely, less aggregated, low AMW fractions having a higher surface 

area-to-carbon atom ratio would exhibit higher reactivities on a molar basis based on this 

geometric effect. 

5. Conclusions 

 Throughout this chapter, we have developed a framework for understanding the 

photophysical and photochemical processes in the complex material that is DOM. There are a 

few main conclusions that can be derived. One is that the optical properties (absorbance, 

fluorescence, phosphorescence) in DOM are influenced by interactions within DOM molecules. 

This may be influenced by the so-called charge transfer interactions as well as by molecular size. 

In addition, photochemical production of reactive intermediates (as well as fluorescence) clearly 

varies with molecular size. It is difficult at this point, however, to distinguish whether this is due 

to strictly molecular size (e.g. intramolecular quenching) or differences in chemical composition 

between the different fractions. More experiments are needed to clarify this matter. For example, 

reduction of molecular size fractions with borohydride to yield DOM with the same electron 

donating or accepting capacity would allow examination based solely on molecular size. 

Conversely, chemically modifying the same molecular fraction, or bulk DOM sample, via 

chemical or electrochemical oxidation or reduction would provide insight into the effects of 

chemical composition. In the context of natural systems, knowing the molecular size of the DOM 

in the system should provide a good surrogate to the expected steady-state concentrations of 
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reactive intermediates and thus provide estimations of indirect organic pollutant degradation 

rates.  
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Captions 

Figure 1. Simplified Jablonski diagram representing the photophysical processes possible for 

DOM.  

Figure 2. Maximum absorption coefficients (units of M
-1

cm
-1

) for acetone and 3-buten-2-one.  

Figure 3. Calculation of maximum absorption wavelength for a typical DOM moiety based on 

empirical rules for benzoyl derivatives.  

Figure 3. Calculation of maximum absorption wavelength for a typical DOM moiety based on 

empirical rules for benzoyl derivatives.  

Figure 5. Quantum yields for the formation of reactive intermediates (
1
O

2
, 

3
DOM*, HO

•
), for 

different size fractions normalized to the values of the unfractionated samples of SRNOM and 

Boulder Waste Water (BWW) sample. Quantum yields are reported as % to facilitate the display 

of the data. Figure adapted from Mostafa et al. 2014.
44

   

 



 23

 

Figures 

 

 
 

Figure 1. Simplified Jablonski diagram representing the photophysical processes possible for 

DOM.  

 

O O

π π∗ ε189nm  = 900 ε213nm = 7100

n π∗ ε280nm = 12 ε320nm = 27
 

Figure 2. Maximum absorption coefficients (units of M
-1

cm
-1

) for acetone and 3-buten-2-one.  
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Figure 3. Calculation of maximum absorption wavelength for a typical DOM moiety based on 

empirical rules for benzoyl derivatives.  

 

Figure 4. Fluorescence quantum yields as a function of excitation wavelength is presented for 

each size fraction in a) SRNOM and b) Boulder Waste Water (BWW). Peak emission 

wavelength as a function of excitation wavelength is depicted for each size fraction for c) 

SRNOM and d) BWW. Figure taken from Mostafa et al.
44
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Figure 5. Quantum yields for the formation of reactive intermediates (
1
O

2
, 

3
DOM*, HO

•
), for 

different size fractions normalized to the values of the unfractionated samples of SRNOM and 

Boulder Waste Water (BWW) sample. Quantum yields are reported as % to facilitate the display 

of the data. Figure adapted from Mostafa et al. 2014.
44
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ABSTRACT 

 

Excitation Emission Matrices - EEMs - are three-dimensional representations of 

the total emissive light in terms of intensity and diversity of emission wavelengths 

one sample can gather when irradiated in a fixed range of excitation wavelength, 

generally between 200 nm and 700 nm. Excitation Emission Matrices of 

Fluorescence - EEMF - is an analytical tool of choice when investigating 

chromophoric complex systems made of several chemical compounds, as those of 

Dissolved Organic Matter  - DOM - in surface waters.  

The characterization of DOM via EEMF is non invasive and easily implementable 

in field sampling, making it more and more used. Additionally EEMF can inform on 

chemical composition of DOM, dissociate autochthonous from allochthonous 

organic matter production, visualize biological activities and investigate colloidal 

and particulate organic matter. Transept sampling approaches along watersheds 

enable to study DOM dynamics as well biotic (macrophyte inputs, phytoplankton 

blooms) as abiotic processes (photoprocesses, mineralization, water fluxes). 

When EEMF is coupled to data processing algorithms, like PARAFAC, hidden 

features from the temporal and spatial variability of DOM composition in surface 

waters can be revealed. 

In order to go deeper in the study of molecular composition of fluorophores in 

DOM samples, EEMF could also be coupled with orthogonal analytical tools like 

ultra-high resolution mass spectrometry or nuclear magnetic resonance. Such 

strategy should in the future enable to target a set of chemical moieties or families 

responsible for DOM’s cycling and reactivity, and strengthen the powerfulness of 

EEMF by increasing our knowledge on the fluorescent fingerprint gathered in a 

single EEM. 
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1. INTRODUCTION 

When studying surface water chemistry, fluorescence techniques are precious tools that 

have been widely used since they provide a wealth of biological and chemical 

information. Fluorescence spectroscopy was applied in the field of soil chemistry 

between the 1950’s and 1970’s thanks to emission/excitation and synchronous scan 

spectra 1-3 in order to discriminate between the various kinds of soil organic matter and 

to study their binding to metallic ions. In the 2000’s, the first reports of Excitation-

Emission Matrices (EEMs) appeared in the studies of the aquatic environment.  

Excitation-Emission Matrix Fluorescence (EEMF) allows evaluation of the quality of 

chromophoric dissolved organic matter (CDOM), differentiation of the colloidal from the 

dissolved organic matter, exploration of the dissolved organic matter (DOM) dynamics, 

traceability of an organic pollutant from the source, and optimization of the disinfection 

processes in water treatment plants. 

CDOM originates from terrestrial, atmospheric and autochthonous sources, which are 

related to landscape (grassland, peatland, forest), hydrology (river flow, runoff, 

snowmelt) and anthropogenic activities (agriculture, industries) 4.  

The fluorescence of DOM is widely reviewed in marine ecosystems as well as 

freshwaters and water treatment systems 5-11. In this review, we will focus on the 

natural dissolved organic matter present in surface waters and on its characterization 

by EEMF, including the biotic and abiotic processes occurring in DOM that affect EEMs, 

the applications of chemometrics to a large set of EEM spectra and the future of EEMF in 

surface water chemistry to characterize the photoactive material. 

2. EEMF AMONG FLUORESCENCE TECHNIQUES 

Steady-state or time resolved measurements are used to determine spectroscopic 

characteristics of the fluorescence emission of a molecule (spectrum, fluorescence 

quantum yield and lifetime) 10, 12. Steady-state measurements are the most easily 

implemented in scientific data. They are performed with a conventional 

spectrofluorimeter using a constant illumination and detection. The sample is excited 

with a continuous beam of light, generally produced from a xenon arc pulsed lamp and 

the intensity of the emission is detected by means of photomultiplier tubes or charge-



coupled devices. The excitation and emission wavelengths are chosen by the user 

according to the spectrum to be measured. In fact, emission, excitation and synchronous 

scan spectra can be collected, respectively by the measurement of the fluorescence 

intensity (i) at a fixed excitation wavelength and for a selected emission wavelength 

range, or (ii) at a fixed emission wavelength and a selected excitation wavelength, or (iii) 

by varying the excitation and emission wavelengths simultaneously, with an off-set 

wavelength of 20-30 nm. 

These three types of measurements have been used in the study of the fluorescence of 

organic matter for specific applications such as the determination of the nature of DOM 

and the possible interactions with organic contaminants or trace metals 13-20. 

Only a small fraction of the bulk DOM sample is investigated with these techniques. 

However, when studying DOM dynamics and biogeochemical cycles, all the fluorescence 

information should be exploited. Therefore, the total emission fluorescence spectra (that 

is EEM), flourished in the scientific community and particularly in the field of aquatic 

sciences, to obtain a more holistic view of ecosystems 21-25. An EEM is a three-

dimensional fluorescence picture, obtained for a range of emission wavelengths when 

excited at multiple wavelengths, as shown in the Figure 1. The x-axis and y-axis are 

respectively the range of excitation and emission scanned, while the z-axis represents 

the intensity of the emitted light symbolized by a chosen scale colour. 

 

 

Figure 1 :  Example of two EEMs  from aqueous samples from (a) Peterson Creek, Juneau, Alaska and (b) Swan 

River, Perth, Australia, adapted from 7. Letters A, B, C, M and T indicate the aquatic fluorophores as described in 

Table 1. 

3. EEMF AS A TOOL TO STUDY CHROMOPHORIC DISSOLVED ORGANIC 

MATTER IN SURFACE WATERS 



3.1. The chemical composition of fluorescent chromophoric dissolved organic matter 

Surface waters (wetlands, springs, ponds, lakes, rivers, tributaries and estuaries) are 

rich in organic carbon constituents coming from dissolution, leaching or deposition of 

terrestrial and atmospheric organic matter4, 26-28. This organic matter is a complex 

macromolecular network made of ligno-cellulosic plant residues associated to organic 

compounds and other biomacromolecules such as proteins and lipids. The amount of 

DOM found in aquatic systems is quantified by the dissolved organic carbon (DOC), 

approximatively spanning from <1 mg.L-1 to 20 mg.L-1 or above 29-32. Higher values of 

DOC are generally attributed to pollution events, as for untreated sewage waters. 

Variations of DOC levels show a good correlation with absorption parameters like the 

absorption coefficients and the spectral slope coefficients as defined in 2002 by Zepp et 

al. 31, 33. 

Among the chromophoric dissolved organic matter, some chemical units have the ability 

to fluoresce. They include tyrosine and tryptophan moieties, phenolic structures as well 

as more condensed macromolecules, deriving from the fulvic and humic acids 

encountered in soils. They are denominated fulvic-like and humic-like structures. Such 

subunits, particularly the fulvic-like units 29, have been well correlated to DOC in 

freshwater samples.  

With EEMs, all these aquatic fluorophores can be qualitatively and quantitatively 

visualized at a glance on EEMs. Their fluorescence parameters are listed in Table 1, as 

initially proposed 34, 35 by Coble (1996) and Parlanti (2000). 

 

Table  1 : Aquatic Fluorophores found in EEMFs 

Fluorophore 

according to 34 

Fluorophore 

according to 35 
λex / nm λem / nm 

Fluorophore 

constituents 

B γ 275 310 Tyrosine-like 

T δ 275 340 Tryptophan-like 

A α’ 260 380-460 
Humic & Fulvic 

(terrestrial) 

M β 310-320 380-420 
Humic (marine or 

autochthonous) 

C α 330-350 420-480 
Humic & Fulvic 

(terrestrial) 

 



EEMF has been developed in order to track the various kinds of dissolved organic 

matter in aquatic environments 36. Optical measurements, and particularly fluorescence 

of humic-like structures were directly linked to their aromatic content 37. 

3.2. Fluorescence indices for the interpretation of fluorescence data 

In the same way as absorption parameters have been used to assess various kinds of 

DOM, fluorescence indices were developed specifically for aquatic environments. Even if 

these indices are helpful for data interpretation, they were used for specific aqueous 

compartments and much attention should be taken when expanding their use to other 

water environments.  

Fluorescence indices represent generally the ratio of fluorescence intensities at specific 

analysed wavelengths. Mc Knight et al. (2001) have developed, for her research on 

rivers and lakes the fluorescence index (FI) that represents the ratio of emission 

intensities (450 nm / 500 nm) and characterizes the slope of the emission curve at an 

excitation of 370 nm 37. The FI values determine the microbial or the terrestrial 

precursors of dissolved organic matter. The higher the FI value is (around 2.0) the 

higher the microbial activity that has produced aquatic organic matter. FI should be 

interpreted carefully when monitoring DOM cycling in estuaries 38, mangrove 

environments39 and marine samples40 due to other interfering physical-chemical 

processes (salinity, flocculation, water mixing, influence of marine/microbially-derived 

DOM). 

In other cases, these indices are calculated in specific areas of the EEMs, like the 

humification index HIX and the freshness index BIX. The humification index HIX was 

introduced by Zsolnay et al. (1999). HIX is calculated as the ratio of the area 435-480 nm 

of the emission spectrum to the area 300-345 nm for an excitation wavelength set at 254 

nm 41. HIX represents the degree of humification of aqueous soil extracts.  

Parlanti et al. (2000) calculated the freshness index BIX as the ratio of the intensities 

between the β peak and the α peak 35. It represents the input of microbial organic matter 

compared to more decomposed organic matter. BIX is useful for determining rivers and 

tributaries inputs for estuaries and marine environments (Figure 1). An increase in the 

BIX value up to 0.9 for salinity values higher than 25, associated to the decrease of HIX, 

could be associated to a change of organic matter and a terrestrial organic matter 

removal source. Abiotic processes (water mixing area or photodegradation area) or 



biological productivity, or combined abiotic and biotic processes could explain the 

evolution of these indices. 

 

 

Figure 2 : Humification index (HIX) and  the recent autochthonous contribution index (BIX) in an estuary 

environment (Gironde, France), adapted from 38 

An interesting volumetric integration under the five excitation emission regions of EEM 

has been suggested by Chen et al. (2003) for DOM fractions, marine water and 

freshwaters 42. This regional integration enabled to dissociate the different forms of 

hydrophobic and hydrophilic DOM fractions. 

A redox index was recently proposed by Miller et al. (2006). They compared the reduced 

quinone-like moieties to the total quinone-like input from specific fluorescent 

components obtained after a trilinear decomposition of EEMs 43, 44. The redox index 

requires the statistical treatment of a large amount of EEMs, and it should be promising 

for understanding DOM redox states and the ability of DOM to produce e.g. disinfection 

by-products upon water treatment 45.  

3.3. The fluorescence of colloidal organic matter 

As proposed by Piccolo in 2001, humic substances can be viewed as supramolecular 

structures 46. The first fractionation applied to natural organic matter (NOM) was the 

distinction between humic and fulvic acid, based on the difference of solubility in an 

acidic medium. Humic acid is insoluble at pH < 2 and fulvic acid is totally solubilised 

whatever the pH 47, 48. Fractionation studies gained interest in the scientific community 

in order to inspect the colloidal organic matter in surface waters, using size exclusion 



chromatography 21, 49-54, flow field fractionation 55-58, hydrophobic/hydrophilic resins 52, 

59-62 and ultrafiltration 63-70. 

There has been an increased interest to separate colloidal organic matter as a function 

of its hydrophobic/hydrophilic properties. Such separation can be performed after an 

acidification step, through XAD resins and acidic elution 59, 60. Hydrophobic fractions 

present quantifiably larger overall fluorescence in riverine DOM, according to the EEMF 

volumetric integration proposed by Chen et al. (2003). 13C NMR data suggest that these 

hydrophobic fractions have higher aromatic carbon content, too 42. The Hydrophobic 

Organic Acid fraction (HPOA) has been used as a good proxy for differentiating CDOM 

terrestrial sources from autochthonous (algal, microbial) or photodegraded DOM 71.  

 

Ultrafiltration is another fractionation tool used to concentrate DOM and remove water 

molecules and salts. Ultrafiltration requires membranes with specific molecular cut-offs. 

The cut-off range included between 0.5 and 5 kDa is generally used to differentiate the 

colloidal organic matter from the low molecular weight compounds. The combination of 

ultrafiltration with EEMF allows the detection and the isolation of fluorophores, which 

could not be achieved without the fractionation step. Ultrafiltration was performed on 

water from Amazonian rivers. Aquatic fluorophores A and C were present in all fractions 

and fluorophore C, generally attributed to higher molecular weight compounds, was 

preferentially retained with 5 kDa cut-off 63, 66. The marine fluorophore M was present in 

the lowest size fraction (MW < 500 Da) 69. In USA rivers from southeastern Georgia it 

has been observed that size distribution could affect the spectroscopic patterns (peak 

position and fluorescence intensity) 65. 

 

Even if some spectroscopic shifts have been noticed with aquatic DOM fractions 

obtained via size exclusion chromatography (SEC) too, the similarity of the distribution 

of the fluorophores, especially peak A and C, is evident 21. SEC presents the advantage to 

couple multiple spectroscopic detectors 49, 50. It can inform on specific interactions, by 

interpreting the chromatographic behaviour. However, a major drawback is the 

hydrophobic interaction of DOM constituents with the stationary phase 49. Interactions 

with metals have also been investigated 51. A recent study consisting in measuring EEMs 

of surface fresh waters fractions obtained by SEC concluded that fluorescent moieties 



are present in all the molecular weight continuum of DOM, which is in total agreement 

with the hypothesis of the supramolecular structure 54. 

 

Field-Flow Fractionation (FFF) presents the advantage to avoid hydrophobic 

interactions with DOM. It was applied to follow two fluorescent colloidal fractions 

(around 2 kDa and 13 kDa ) and it discerned DDOM inputs and photochemical processes 

from  two southwestern Florida rivers 55. Two colloid sizes have also been found in 

coastal waters, spanning at 1-5 kDa and 15-150 kDa. EEMF reveals that proteinaceous 

material dominates the smallest fraction and humic-like compounds mostly contribute 

to the larger one 56. FFF brought new insights in the characterization and localization of 

fluorophores and chromophores in DOM from Canadian freshwaters 58. 

 

 

Although fractionation techniques enable a better understanding of the aquatic 

fluorophores in DOM, unfractionated samples offer a more complete characterization of 

DOM molecular signatures. EEMs remain a valuable analytical tool for chemical 

fingerprinting of bulk DOM samples, evaluating biotic and abiotic processes involving 

fluorescent compounds. 

4. DOM DYNAMICS ASSESSED BY EEMF 

DOM in aqueous compartments can control ecological processes by influencing pH, it 

can be a substrate for biological activity 72-74, influence the availability of nutrients 75-78, 

control geochemical and photochemical reactions 63, 71, 79-86 and interact with trace 

metals 63, 78, 83, 87-94 and organic pollutants 95-101.  

There’s a need for developing analytical approaches that inform on both DOM 

composition and reactivity. Optical measurements have been developed for such 

purpose. EEMF is ideally suited for the investigation of DOM dynamics and chemical 

fingerprinting of DOM composition in all aquatic environments 7, 10, 42, 50, 102, 103. 

Environmental biotic and abiotic processes can be tracked when looking at EEMs, as 

shown in the following sections. 

4.1. Biotic processes 



Biological activity is highlighted by an intense T-peak or a higher contribution of β peak 

compared to the α peak (elevated BIX value) 35, 38. Aquatic macrophyte specific 

fluorophores correspond to the known protein-like peak and to autochthonous 

fluorescence below 400 nm, when the excitation wavelength is set under 300 nm 104. 

Local phytoplankton blooms in some oceanic environments are also easily assessed via 

EEMF due to their predominant M peak 105. The fluorescence index (FI) has been 

correlated to the relative contribution of microbial versus higher plant organic matter 37. 

Chromophoric dissolved organic matter has been found to be directly or indirectly 

produced by marine phytoplankton 106, 107. These fluorescent exudates, both fluorescent 

protein-like and marine humic-like material, should participate to surface water DOM 

biogeochemical dynamics. Phytoplankton can also bloom during the summer period in 

lakes, altering the DOM fluorophores composition, with a production of non-humic 

quinone-like and amino acid-like fluorophores 102. Macrophytes have been shown to 

produce protein-like fluorescent DOM directly affecting the productivity of watersheds 

104. 

 

When looking at biogeochemical cycles, biotic processes cannot generally be 

distinguished from abiotic processes and particularly from photoprocesses. The 

microbially-derived non-humic and fulvic acid fractions of the DOM in a lake 

environment have been found to be associated to photodegraded quinone moieties 108. 

4.2. Abiotic processes 

One of the most interfering abiotic processes in surface waters is the direct and indirect 

photoprocesses generated from sunlight exposure 79, 83, 109. Photoreactions are generally 

ascertained to induce seasonal variability in DOM 79, 110 or differences in water column 

composition and reactivity 18, 79. Photobleaching directly impacts aquatic fluorophores 

chemistry, and the relevant EEMs are characterized by a reduction of the emission 

intensity and a blue shift (of the emission wavelength) 83, 111. Photomineralisation 

changes the fluorophores matrices by bringing new chemical species such as dissolved 

inorganic carbon 112, 113 ammonia 114 or labile photoproducts 113. FA-like fluorophores 

appeared to be more photodegraded compared with the protein-like fraction. 

Photosensitized reactions can totally change the reactivity of surface waters by 

generating transient species 85, 109, 113. From this point of view, CDOM is a photochemical 



source of transients in addition to being one of the substrates on which they act. 

Fluorescence of CDOM is usually reported to be a good proxy of CDOM photoactivity and 

it is correlated to singlet oxygen productivity in aquatic systems 115, 116. 

 

Under redox conditions, the amount of DOM electron donating moieties can be tracked 

by EEMF 43, 117 The distribution between the oxidised and reduced quinones informs on 

the redox state of DOM samples and explains the variation in the fluorescence index.  

DOM redox reactions directly impact the mobilisation, complexation or transport of 

metal species like arsenic 91 copper 118 mercury 88, 92, 119 or organic pollutants 96-98, 101, 

which interfere with the global cycling of DOM, and particularly DOM fluorophores. 

 

Water fluxes and salinity gradient are two other abiotic processes that could dilute or 

otherwise affect aquatic fluorophores, and they are easily tracked in EEMs. It was even 

shown a reduction in the molecular mass for high salinity environments 120.  DOM is a 

useful tracer for water mixing in estuaries 38, 95, 121, 122. Rhone river plumes and mixing in 

the Marseille bay have been shown to produce a specific biological activity 111. New 

loads or fresh organic matter from tributaries can also be detected in river mixings 104, 

123. 

 

 

When studying environmental processes, scientists tend to accumulate a large amount 

of EEMs in the various sampling areas. In order to treat this large amount of 

information, chemometrics can help them to discriminate and validate models in large 

scale experimental fields. 

 

5. EEM-PARAFAC 

EEMs can be easily obtained all around the world, in water chemistry laboratories for a 

large set of samples. However, EEMs require a standardized protocol for each spectral 

acquisition, including caution for inner filter effects, optical corrections and 

normalizations 36, 124, 125. An interlaboratory experiment conducted in 2010 by Murphy 

et al. 103 showed that EEM data were difficult to compare due to the lack of information 

on the way EEMs were acquired.  



Once these analytical cares are validated, an EEM database can be created gathering as 

many matrices as sampled. Emission/excitation peak picking is generally the first 

operation carried out on EEM. This first step is essential for going further, but 

information contained in EEMs is often under-exploited compared to the potential of the 

technique.  In 1997, Bro exposed a multi-way decomposition methodology, PARAFAC, 

which consists in a multi-dimensional generalization of the usual principal component 

analysis 126. This way of treating data was pioneered by Stedmon et al. in 2003 in aquatic 

environmental compartments 36. Since this time a number of scientific papers appeared, 

which used this methodology in several biological samples 127-129, food beverages 130-134 

and environmental samples 4, 36, 102, 135-143. 

 

Once PARAFAC is applied to an EEM database, each EEM is reduced into a set of trilinear 

terms and a residual matrix, as shown in Figure 3. This method uses an alternating least 

squares algorithm to minimize the sum of squared residuals in a trilinear model 36, 126, 144  

  i = 1,….,I; j = 1,….,J; k = 1,….,K 

where  is the fluorescence intensity of the ith sample at jth emission wavelength and 

kth excitation wavelength. The scores, , are directly proportional to the concentration 

of the fth fluorophore in the ith sample. The loadings,  and , represent respectively 

emission and excitation spectra for the fth fluorophore. The variable, N, represents the 

number of fluorophores. The residual  corresponds to the unexplained variation of 

the PARAFAC model.   

 

Figure 3 : Multi-way decomposition of EEMs database into five PARAFAC components, adapted from 144. 

As a function of the relative abundance of aquatic fluorophores in water samples, a 

minimum of five PARAFAC components are found to explain the global information 



contained in EEMs databases 36, 135, 136, 143, 145. The number of components can increase 

up to thirteen under specific red/ox conditions and potential presence of anthropogenic 

organic pollutants 43, 45, 102, 104, 108. 

 

EEM-PARAFAC enables to gather temporal and spatial variability of DOM composition in 

surface waters 140, 145-148 which, in the context of global warming, appears to be a crucial 

step, for collecting historical information on climatic events. These scientific studies 

highlight DOM sources and sinks, in connection with the local and the global aquatic 

ecosystems 145.  Hydrological connectivity between water masses can be assessed as 

well 104 and the transport of DOM components can be followed in a riverine, lacustrine, 

estuarine and oceanic continuum 38, 149.  

The impact of anthropogenic activities can be traced 141, 143, 150-154 with specific PARAFAC 

components. Biogeochemical changes impact the aquatic fluorophores composition, 

which could be attributed to specific contributions of anthropogenic relative to 

autochthonous DOM or to a seasonal effect. The latter issues make the interpretation 

difficult but they reinforce the powerfulness of PARAFAC treatment to a large set of 

EEMs, acquired in the spatio-temporal context of DOM dynamics. 

 

Climatic events (flooding and drought periods, sunlight irradiance, storm/hurricane 

events) affect the aquatic fluorescent CDOM quality and quantity in water reservoirs 138, 

155, 156. For instance, the contribution of humic-like substances to CDOM in Lake 

Tianhmuhu in China appears to be higher in wet seasons, characterized by an elevated 

frequency of rainfall and runoff, compared to the proteinaceous components 138. 

 

6. CAN EEMF BRING NEW INSIGHTS INTO DOM CHEMICAL DIVERSITY? 

EEM measurements boomed in the past decades as they allow since global information 

on aquatic fluorophores to be gathered thanks to an untargeted approach. They are 

presently inseparable from the investigation of biogeochemical cycles in all water 

compartments. Statistical deconvolution of the original signal enables interpretation 

and explanation of biotic and abiotic processes occurring in aqueous continuums. The 

parallel factor analysis, PARAFAC, is the nowadays-privileged signal processing method. 



Other statistical treatments have been recently applied to dissolved organic matter, 

including self-organising maps (SOM) and correlation analysis 157, 158 or independent 

component analysis 159, 160. The combination of PARAFAC and SOM clarifies pH-induced 

changes in DOM 158. The use of SOM and artificial neural networks for the 

decomposition of EEMs appears to be helpful in the monitoring of organic matter 

removal in wastewater treatment processes 161, 162. Independent component analysis 

presents the advantage of classifying the constitutive components of EEM matrices of 

removing interfering fluorescent components, facilitating a future characterization of 

aquatic fluorophores 159.  

 

For a better knowledge of fluorescent dissolved aquatic matter, EEMs are acquired 

concomitantly with ultra-high resolution mass spectrometry, thereby getting a global 

overview of aquatic DOM complexity 163-167.  

A Spearman rank correlation between PARAFAC components intensities and FTICR-MS 

peak intensities has been proposed to discriminate the variations of fluorescent DOM 

pool constituents 164, 165, 167. Humic-like fluorophores (peak A) appeared to be made of 

compounds rich in oxygen, with a relatively high double bond equivalent. The molecular 

formula C17H14O11 presents an elevated Pearson correlation level 165. Such observation 

means that this hypothetical isomer presents common seasonal and spatial covariations 

in water reservoirs under environmental conditions. 

Another big step that is being made and that will increase in the next years is the use of 

EEMF in aquatic ecosystems to track the fluorescing components as well as the non-

fluorescing families that should evolve with similar variations, presenting common 

sinks, productions or transports in ecosystems 167. It was shown that non coloured and 

photo-labile aliphatics (carboxylic-rich alicyclic molecules) co-vary in the same manner 

as actual known fluorophores present in the Congo River, when the river water was 

photo-irradiated 163. Such observation surely requires more research but it is evident 

that future studies should integrate these kinds of orthogonal analytical tools in order to 

go further in the knowledge concerning the links between aquatic fluorophores and 

their environment. When orthogonal tools (fluorescence, nuclear magnetic resonance, 

mass spectrometry, X-ray photoelectron spectroscopy, direct scan voltammetry) are 

used, it is possible to highlight some DOM organic moieties facilitating electron transfer 

reactions. This is of fundamental importance in DOM cycling and reactivity problems 168.  



 

The dynamics of DOM fluorophores are not totally understood, especially under extreme 

conditions 109, 141, 166. EEMF has brought new insights in chemical processes involving N 

and S compounds produced by specific microbial activity in an arctic lake 166 or new 

photoactive compounds presenting a high degree of transients species production on 

Antarctic waters 109. The links between all the ecosystems parameters (microbiology, 

topology and hydrology) should be taken into account to go further in the DOM cycling 

understanding 141. 

 

Another challenge that should emerge in the future is the detection of untargeted 

compounds that could reach surface waters, due to their intrinsic fluorescence 

properties or by their associations to humic compounds. Correlation between elemental 

formulas and fluorescent PARAFAC components will help in this sense. Recently, the 

fluorescent humic-like component appeared to be correlated to disinfection by-products 

content (trihalomethanes and haloacetic acids) due to chlorine reactivity towards DOM 

45, 169. Other emerging pollutants such as benzene or naphthalene-like compounds due to 

oil spills events 170-172 or oxidant agents (whitening agents, detergents, chlorinated 

compounds) due to sewage treatments 6, 83, 173 are directly fluorescing components that 

can reach water systems and change the fluorescence signature of DOM. In a recent 

study some oil-derived components were still detected, via EEM-PARAFAC, in deep 

ocean waters, two years after the oil spill in the Gulf of Mexico 172.  

EEMF should help in the future to assess the precise impact of these organic molecules 

on aquatic DOM diversity. An important advantage of EEMF is that it permits a non-

invasive, fast and cheap screening of complex systems that should be coupled to other 

analytical tools dealing with structural aspects. 
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Abstract 

The hydroxyl radical (HO
●
) is a strong oxidizing agent that can transform dissolved 

organic matter (DOM) into many intermediate photoproducts and byproducts which 

include low molecular weight (LMW) DOM, hydrogen peroxide (H2O2), CO2, 

dissolved inorganic carbon (DIC: dissolved CO2, H2CO3, HCO3
−
, and CO3

2−
), NO3

−
, 

NH4
+
, and so on in surface waters. Furthermore, HO

●
 has a prominent role in the 

transformation of recalcitrant pollutants into more biodegradable compounds. This 

chapter discusses the key sources of HO
●
 in natural waters and elucidates the 

phototransformation pathways of high molecular weight (HMW) and LMW DOM 

induced by HO
●
. As an example, the photooxidation of methylmercury chloride 

(MeHgCl) by hydroxyl radicals is discussed along with its reaction mechanism. 

Among the possible indicators of DOM transformation, the decrease in the 

fluorescence intensity of autochthonous fulvic acid is discussed based on field 

observations. The presented results suggest that HO
●
 may be involved in the 

photooxidation of both HMW and LMW DOM in surface waters.  
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5.1 Introduction 

Phototransformation of dissolved organic substances including organic pollutants 

is a natural phenomenon in rivers, ponds, lakes, estuaries and oceans, induced by 

natural sunlight. Sunlight primarily initiates phototransformation processes, also 

through the generation of reactive transients. They include the hydroxyl radical (HO
●
) 

that is produced by irradiation of photosensitizers such as nitrate, nitrite and dissolved 

organic matter (DOM) in surface waters. Experimental studies on surface waters have 

shown that HO
●
 can be produced, among others, by the photo-Fenton reaction

1-5
 , 

through H2O2 photogenerated by DOM
6, 7

, as well as from NO3
−
 and/or NO2

−
 

photolysis.
4, 5, 7-10

 The radical HO
●
 is a reactive and efficient electrophile that can 

react non-selectively with a wide range of dissolved compounds at reaction rates often 

limited by mass transfer diffusion phenomena. It is also a strong oxidant (E° = 2.32 V 

vs NHE at 298 K and pH 7)
11

 that it is used to achieve complete mineralization of 

emerging organic contaminants in advanced oxidation processes (AOPs), such as 

O3/H2O2, UV/H2O2, UV/TiO2, etc.
12, 13

 when HO• is generated in engineered water 

treatment systems. In natural waters the reaction between hydroxyl radicals and 

biorecalcitrant pollutants is often an important degradation pathway which can give 

an increment of the biodegradability and consequently promote the transformation of 

emerging contaminants till, in some case, a complete mineralization.
14, 15

 

The mechanism behind the phototransformation of organic compounds by HO
●
 is 

a complex process that depends on molecular size, occurrence of functional groups 

and their chemical behavior.
16-19

 For HMW DOM, it has been shown that successive 



photooxidation of specific functional groups by HO
●
 occurs sequentially.

20-23
 

Simultaneously, HO
● 

can react with low molecular weight compounds while HMW 

DOM (e.g. humic acids) may act as photosensitizer.
17, 18, 24

 While HO
●
 can be 

involved in the phototransformation of DOM in surface waters,
25-28

 the complexity of 

the process as far as natural DOM is concerned makes it difficult to assess the 

importance of HO
●
 in field observations. Indications can be obtained from the 

decrease in DOM fluorescence
27, 28

 and from the diurnal variations of H2O2
6
 produced 

from DOM upon sunlight exposure during the daytime.      

This chapter will give a general overview on the mechanism of production and on the 

reactivity of HO
●
 in surface waters and on the associated phototransformation 

mechanisms of both HMW and LMW DOM. It will also discuss the 

phototransformation of a common organic pollutant, methylmercury chloride, and the 

decrease in fluorescence of fulvic acid as a useful indicator for photooxidation in 

surface-water photochemistry.  

 

5.2 Sources of HO
● 

upon irradiation of surface waters 

The radical HO
●
 can be produced in aqueous solution upon irradiation of 

nitrate, nitrite and several organic compounds. Production rates vary widely 

depending on the HO
●
 source (see Table 5.1).

3, 10, 29-35
 

[Table 5.1 near here] 

 



Photoproduction rates of HO
●
 from small molecules (e.g. phenylalanine, 

diaminostilbene type-DAS1 or peracetic acid; see Table 5.1) are usually lower 

compared to relatively large compounds such as standard Suwanne River Humic and 

Fulvic Acids (SRHA and SRFA), extracted fulvic acids or DOM. After a certain limit, 

however, an elevated molecular weight becomes detrimental to photoreactivity, which 

will be the topic of another chapter of this book. Because of the abundance of humic 

substances (fulvic and humic acids) in natural DOM, they play a significant role in the 

in-situ photooxidation of smaller molecules and organic pollutants.
18, 24, 36, 37

  

The contribution of NO3
−
 and NO2

−
 to HO

●
 in natural waters depends on their 

concentration, that is controlled by several processes that are not necessarily of 

photochemical nature. For instance,  NO3
−
 is one of the key nutrients which fuels on 

primary productivity
38, 39

, although primary producers (e.g. phytoplankton) and 

nitrification processes (NH4
+
 → NO2

−
 → NO3

−
 or NH4

+
 + 2 O2 → NO3

−
 + 2 H

+
 + 

H2O) can regenerate NO3
−
 in waters under both photoinduced and microbial 

conditions.
39, 40

 Moreover, denitrification (NO3
−
 → NO2

−
 → NO → N2O → N2), 

caused by denitrifying bacteria
41

 or anaerobic ammonium oxidation, ANAMMOX 

(NH4
+
 + NO2

−
  → N2H4 → N2), carried out by Anammox bacteria

42
 are all processes 

that can limit the concentration of nitrate and nitrite in natural waters.  

For this reason, although nitrate and nitrite can be key HO
●
 sources in some 

environments, DOM would often play a more important role. Part of the HO
●
 

photoproduction by DOM is promoted by the generation of H2O2 that is then involved 

in several processes including the Fenton and photo-Fenton ones.
22, 24, 30, 43-47

  It has 



been estimated that the photo-Fenton process would contribute to 2-70% of HO
●
 

photoproduction in freshwater.
3-5, 10, 24, 29

 Up to 50 % of the hydroxyl radical 

generation by irradiated DOM is thought to take place through reaction pathways 

involving H2O2, while the exact nature of the H2O2-independent pathway(s) is still 

elusive.
24, 48

  

 

5.2.1 HO
●
 from photo-Fenton reaction 

The photo-Fenton reaction requires iron species, H2O2 and radiation. Trace metal 

ions, particularly Fe
3+

/Fe
2+

, occur in a variety of natural waters, from freshwater to 

seawater. H2O2 is produced in sunlit surface waters and has strong diurnal variations, 

with concentrations that gradually increase before sunrise to noon and then gradually 

decrease after sunset, see as example the case reported in (Fig. 5.1).
6
 

 

[Figure 5.1 near here] 

 

In the reported case the higher H2O2 concentration at noon time is mostly caused by 

light intensity, which is more important than other factors such as water flow rates.
6
  

Diurnal variations of H2O2 in the surface waters are commonly measured in natural 

surface waters.
6,49-54

 The photo-Fenton reaction has been observed in the surface 

water of the open ocean and it can be for instance detected as an anticorrelation 

between the vertical profiles of Fe(II) and H2O2, suggesting a reaction between the 

two species.
55

 Interestingly, photochemical reactions involving the direct photolysis 



of H2O2 have been shown to be also important in the production of HO
●
 upon UVC 

irradiation of DOM, which is of interest for water treatment.
56

     

H2O2 is primarily generated by DOM, mostly humic substances (fulvic and 

humic acids), upon irradiation of surface water.
6
 The production rate of H2O2 by 

Standard Suwannee River Humic Acids (SRHA) is approximately 2.6-fold higher 

compared to SRFA when they are illuminated in ultrapure (Milli-Q) waters (Fig. 

5.2).
6
  

 

[Figure 5.2 near here] 

 

This issue might be offset by the three-fold reactivity toward HO• of SRHA compared 

to SRFA.
57

 Note that aqueous solutions (1 mg L
-1

) of standard organic substances are 

used for production of HO• radicals. Note also that all data depicted in the Figure 5.2 

are calibrated for natural sunlight on 6 July 2004 at Hiroshima University Campus at 

noon under clear sky conditions, which was 4.05-fold higher than the artificial Xenon 

lamp used as solar simulator.   

The mechanism of H2O2 production from DOM probably involves several 

reactions.
4, 6, 54, 56, 58-60

 Photoexcited DOM can release aqueous electrons (e
−
) (Eq 5.1) 

or oxidize dissolved compounds (R) yielding DOM radical anions (DOM
−•

). In both 

cases, the reaction with the molecular oxygen would produce the superoxide radical 

anion (O2
●−

) (Eq 5.2, 5.3). The dismutation of superoxide and its conjugated acid, 

hydroperoxide (HO2
●
, pKa = 4.8)

61
 would then yield H2O2. Once H2O2 is formed, it is 



involved in the Fenton and photo-Fenton reaction to produce HO
●
 in the presence of 

Fe(III)/Fe(II) species and sunlight (Eqs 5.6-5.7).
1, 4, 55

  

The whole reaction scheme is shown below:  

DOM  +  hυ  → 
3
DOM

*
 → e

−
  +  DOM

+●    
 (5.1) 

e
−
  + O2 →  O2

●−
       (5.2) 

3
DOM

*
 + R → DOM

●−
 + R

+●      
(5.3) 

DOM
●−

 + O2 → DOM + O2
●−

      (5.3) 

O2
●−

  + H
+
 → HO2

●       
(5.4) 

HO2
●
 + O2

●−
  + H

+
 →  H2O2 + O2     (5.5) 

FeOH
2+

 + hυ → Fe
2+

 + HO
●      

(5.6) 

Fe
2+

 + H2O2 → Fe
3+

 + HO
●
 + HO

−     
(5.7) 

  

Synergistic photogeneration of reactive oxygen species (e.g. O2
●−

) by dissolved 

organic matter (e.g. fulvic and humic acids) and C60 in the aqueous phase can be 

interpreted on the basis of  the above mentioned reaction scheme.
62

  

   

5.2.2 In situ Generation of HO
●

 from DOM via H2O2 

Another important source of HO
●
 is the in situ generation of HO

●
 from 

DOM.
30, 60, 62

 The process may at least partially occur upon photoinduced generation 

of HO• from H2O2, which is primarily produced from DOM components such as 

Fluorescent Dissolved Organic Matter (FDOM) or Colored Dissolved Organic Matter 



(CDOM) by the above mentioned reactions (Eqs 5.1-5.5). The key reaction processes 

can be depicted as follows: 

 FDOM + O2 + H2O + H
+
 + hυ  → H2O2 + FDOM

●+
 + HO

●
    (5.8) 

 H2O2 → 2 HO
●
                                          (5.9)  

It has been estimated that FDOM could contribute to 10-40% of HO
●
 production in 

freshwater streams.
29

 Note that the direct oxidation of H2O/OH
–
 by the photoproduced 

triplet states of the DOM is a very intriguing topic, but a  complete clarification of the 

role of this process in the photogeneration of HO
●
 is far to be obtained, even because 

it is difficult, with real samples, to discriminate between the Fenton/photo-Fenton 

pathways and possible direct oxidative processes.       

 

5.3 Phototransformation induced by HO
●
 

Phototransformation of DOM by HO
●
 is a general phenomenon in surface 

water photochemistry because the DOM the main sink of HO
●
, although its actual 

importance is still under debate.
4, 16, 18, 24, 26, 28, 35, 63

  Photooxidation of DOM can be a 

complex phenomenon due to the wide variations in DOM composition (both natural 

and anthropogenic DOM) in natural waters. Natural DOM includes HMW 

components such as allochthonous humic substances (fulvic and humic acids) of 

terrestrial origin , autochthonous fulvic acids of phytoplankton origin or extracellular 

polymeric substances, as well as the LMW components such as amino acids, 

carbohydrates, phenols, and so on.
64-66

 On the other hand, anthropogenic DOM 

includes emerging organic contaminants such as endocrine disruptors, 



pharmaceuticals and personal care products (PPCPs), pesticides, herbicides, 

detergents or fluorescent whitening agents (FWAs), including mostly diaminostilbene 

type (DAS1) and distyryl biphenyl (DSBP), protein-like components, sterols, and so 

on.
13, 63, 67, 68

 An important difference between both natural and anthropogenic DOM 

is the low production of H2O2 by the latter solar exposure,
6,7, 47

 An important 

difference between natural and anthropogenic DOM is the low production of H2O2 by 

the latter upon solar exposure, which is probably linked to a lower capacity to absorb 

sunlight.
24, 47

      

DOM as photosensitizer can produce reactive species upon sunlight 

absorption, which can induce the transformation of the photosensitizing molecule 

and/or of other dissolved organic compounds. From another point of view, a DOM 

component can be transformed by reactive species photoproduced by itself (or simply 

upon other sunlight-induced photoreactions) or by other photosensitizers (e.g. DOM, 

nitrate, nitrite). The two processes are named direct and indirect photooxidation, 

respectively, and the extent to which they occur depends on DOM photoreactivity 

(direct photooxidation is for instance favored with the most photoreactive DOM 

components/moieties).
6,2-4, 8, 9, 24, 69-79

  

 

5.3.1 Phototransformation of HMW DOM by HO
●
 

Self-photooxidation is common with humic substances such as fulvic and 

humic acids.
22, 24, 80

 These substances absorb sunlight and subsequently produce H2O2, 

and then HO
●
, through several chain reactions (Eqs 5.1-5.7) as discussed before. They 



can also react with photogenerated transients, including HO
●
. Light-induced 

phototrasformation is consistent with the decreasing electron-donating capacities of 

humic substances under irradiation, due to selective destruction of their 

photosensitizing chromophores.
81

  

The ability of organic compounds to react with HO
●
 can be assessed by using the 

group contribution method (GCM) to predict the aqueous phase HO• rate constants 

for many functional groups including (1) H-atom abstraction, (2) HO• addition to 

alkenes, (3) HO• addition to aromatic compounds, and (4) HO• interaction with sulfur 

(S)-, nitrogen (N)-, or phosphorus (P)-atom-containing compounds.
16

 Although the 

GCM cannot be used for humic substances (HSs), it has been shown that HSs are 

more reactive toward HO• than “average” organic molecules.
57

 Therefore, highly 

susceptible specific functional groups in humic substances could easily be degraded 

upon reaction with HO
●
 as well as with other transients. Important uncertainties 

concerning the degradation pathway(s) still remain, including for instance the possible 

formation of [DOM−HO]
*
 adducts upon radical addition of HO

●
 to the phenolic 

moieties of DOM. 

 

5.3.2 Photooxidation of LMW DOM or organic pollutants: Methylmercury 

chloride as an example 

Phototransformation of LMW DOM can take place by reaction with HO
●
, 

generated by photosensitizers.
17, 18, 24, 82

 Smaller molecules are generally less 

photoactive than humic substances because of the small molecular structure and few 



functional groups. Moreover, different LMW DOM components show different 

phototransformation pathways upon sunlight exposure. Under irradiation of one 

specific substance (e.g. phenol), some new component can be produced (e.g. 

hydroquinone), which in some cases may be more photosensitive and could 

consequently produce more H2O2 upon irradiation.
6,7

 Therefore, photooxidation of 

LMW DOM components in surface waters is a complex phenomenon that could be 

strongly affected by the chemical nature (molecular structure and weight) of the 

organic substance.  

As an example, here it will be discussed the photooxidation of methyl mercury 

chloride (CH3HgCl), a neurotoxin, which is one of the most toxic form of mercury 

that occurs in natural waters.
17, 18, 36, 83, 84 

CH3HgCl is readily biomagnified up aquatic 

food chains to levels harmful to both humans and wildlife, and it is of concern 

because of the increasing worldwide pollution by mercury.
17, 83, 85

 Photooxidation of 

CH3Hg
+
 is one of its main removal pathways from natural waters, and it has been 

shown to occur in the presence of DOM but not in ultra-pure water.
18, 84

 Mechanisms 

for the photodegradation of CH3Hg
+
 have been proposed by several studies, but 

several uncertainties still remain.
18, 36, 84

 Our proposed mechanism is connected with 

two key facts based on the electronic configuration of complexes formed between Hg
+
 

and the functional groups of DOM.
19 

First, formation of π-electron bonding systems occurs between CH3Hg
+
 [Hg

1+
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] and DOM (CH3Hg—DOM), 

through electron donation from the functional groups of high-molecular-weight DOM 



to an empty s-orbital of CH3Hg
+
 (ligand-to-metal charge transfer).

86, 87
 The overall 

conditional complexation constants (K′DOM) between Hg(II) and dissolved organic 

matter (extracted humic acids, fulvic acids and hydrophobic acids) show very strong 

interactions (K′DOM = 10
23.2±1.0

 L kg
−1

) at Hg/DOM ratios below approximately 1 μg 

Hg/mg DOM, which are indicative of strong mercury−thiol bonds.
88

 In contrast, much 

weaker interactions (K′DOM = 10
10.7±1.0

 L kg
-1

) are observed at Hg/DOM ratios above 

approximately 10 μg Hg/mg DOM, coherently with Hg binding to oxygen functional 

groups.
88

 These π-electrons are loosely bound and they are highly susceptible to 

radiative excitation.
 86, 87, 88

 A ligand-to-metal charge transfer could be triggered by 

photolysis of the complex H3C−Hg
+
←DOM (where the “←” indicates electron 

donation), which could take place as follows (Eq 5.10): 

H3C−Hg
+
←DOM + hν → H3C−Hg

•
 + DOM

+•
   (5.10) 

The quenching of the fluorescence signals of biofilm extracellular polymeric 

substances was reported in the presence of Hg
+2

 ions, which is an experimental 

evidence of the energy transfer between the DOM ligand and the Hg
2+

 centre in 

R−Hg
+
–DOM complexes.

65
 

Oxidized DOM (DOM
+•

) could undergo several processes. Interestingly, similar 

phenomena involving the charge-transfer photolysis of Fe(III)-DOM complexes 

would ultimately cause DOM mineralization via decarboxylation.
36

 The species 

H3C−Hg
•
 might for instance react with HO

•
 and/or 

1
O2.

36, 84
 Oxidizing transients are 

expected to preferentially react with the methyl moiety of H3C−Hg
●
, because the 



coordination π-electron bonding system would provide an increased electron density 

on the methyl group and would lower the excitation energy of the carbon-mercury 

bond.
89

 Such processes would lead to the demethylation of H3C−Hg
●
, with formation 

of elemental Hg and oxidation of the methyl group (Eq 5.11). 

H3C−Hg
•
 + 

1
O2/HO

•
 → Hg + oxidized CH3  (5.11) 

The occurrence of inorganic compounds can also be important: for instance, 

increasing salinity can decrease the photodegradation of CH3Hg
+
 by several 

processes
17

, including: (i) the scavenging of HO
•
 by bromide (the main HO

•
 

scavenger in seawater)
90, 91

, and (ii) the different speciation of the CH3Hg
+
 cation in 

seawater compared to freshwater. In seawater, the formation of stable complexes/ion 

pairs with anions such as Cl
−
 and Br

−
 may hinder the formation of the photolabile 

species H3C−Hg
+
−DOM. 

 

5.4 Estimation of the phototransformation of DOM by HO
●
 

An increase of H2O2 from its initial level before sunrise is related to an HO
●
 

production through direct photochemistry or Fenton processes, and to the subsequent 

decomposition of DOM
+●

 formed upon reaction between DOM and HO
●
. Because 

DOM is a major HO
●
 sink, each mole of produced H2O2 can potentially yield a mole 

of DOM
+●

,
6
 which is typically susceptible to decompose during the day time in 

surface water. In the Kurose River, Hiroshima Prefecture, Japan, the diurnal H2O2 

production in stream water has been measured and it was, on average, equal to 5 nM 



in between 5:30-8:00 Japan Standard Time (JST), 14 nM in between 8:00-10:00 JST, 

28 nM in between 10:00-11:00 JST, 34 nM in between 11:00-12:00 JST, 31 nM in 

between 12:00-13:00 JST,  25 nM in between 13:00-14:00 JST, 18 nM in between 

14:00-17:00 JST and 0 nM in between 17:00-19:00 JST (Fig. 5.1). By deduction of 

H2O2 concentration before sunrise (5:30 am period), the total H2O2 production during 

the day light period is 222 nM for 13.5 hours.  

In downstream river water, H2O2 production was on average 12 nM in 

between 5:30-8:00 JST, 27 nM in between 8:00-10:00 JST, 55 nM in between 10:00-

11:00 JST, 59 nM in between 11:00-12:00 JST, 65 nM in between 12:00-13:00 JST,  

65 nM in between 13:00-14:00 JST, 58 nM in between 14:00-15:00 JST,  58 nM in 

between 15:00-17:00 JST and 16 nM in between 17:00-19:00 JST. Total H2O2 

production during the day light period was thus 534 nM for 13.5 hours. Note that 

H2O2 production was estimated for each hour during its measurement for more than 

one hour. The phototransformation per day of DOM by HO
●
 could be approximated 

by using a simple equation: 

 Cumulated [H2O2(nM)] = Cumulated [HO
●
] = Cumulated [DOM

+●
]     

 For stream water, Σ[DOM
+●

] = Σ[H2O2(nM)] = 222 nM for 13.5 hours.  

 For downstream river water, Σ[DOM
+●

] = Σ[H2O2(nM)] = 534 nM for 13.5 hours. 

[DOM
+●

] represents the decomposition of DOM by HO
●
 produced from H2O2, 

either by photo-Fenton reaction or other photoinduced processes (e.g. the direct 

decomposition: H2O2 + hν → 2 HO
●
). In the case under study, the decomposition of 

DOM by HO
● 

in stream water would be 2.4-fold lower (222 nM for 13.5 hours) than 



for downstream river waters (534 nM for 13.5 hours). This difference could result 

from several facts: first, the in-flowing rate of upstream river water was apparently 

higher compared to the downstream rivers, which would decrease the ability of 

sunlight to thoroughly illuminate the stream water. Second, DOM contents are 

relatively higher in downstream rivers (326-384 µM C) than in upstream rivers (118-

239 µM C).
63

 Third, the upper locations for in-flowing upstream water are mostly 

shaded by forest plants
63

 that can decrease the solar irradiance on the water surface 

and subsequently lower the H2O2 concentrations in the sampling site.  

Diurnal variation of H2O2 is commonly measured in rivers
6,54

, lakes
49

, 

estuaries
50

, and oceans.
51-53

 The amplitude of the H2O2 diurnal cycle (highest 

concentration at noon time minus concentration during the period before sunrise) was 

measured in different ecosystems and resulted equal to 35-65 nM in rivers, 790 nM in 

lake, 36-183 nM in estuary and  20-476 nM in coastal and open ocean.
47,65

 Because it 

is readily measured, H2O2 concentration could be a useful indicator to estimate DOM 

photooxidation by HO
●
, produced by photosensitizers in surface waters.          

 

5.4.1 Decrease in fluorescence of fulvic acid as a useful indicator for 

photooxidation in surface water photochemistry: A field observation 

Detection of photooxidation of DOM upon solar exposure in surface waters is 

a critical phenomenon in field observation. In fact, although dissolved organic carbon 

(DOC) concentrations (used as measurement of DOM) generally decrease upon 

irradiation in the laboratory,
92-96

 this is not always the case for field studies of in-



flowing waters (streams and rivers) or stagnant surface waters (lakes, estuaries and 

oceans). In streams and rivers, the water flow continuously carries fresh DOM and the 

photoinduced degradation effect caused by sunlight is relatively small compared to 

that of stagnant waters. On the other hand, DOM in stagnant waters is substantially 

enhanced during the summer seasons in the surface water compared to deeper 

waters.
27, 28, 97, 98

. Therefore, in addition to photoinduced degradation, one has a 

significant input of autochthonous DOM by phytoplankton under both photoinduced 

and microbial conditions.
28, 66, 99

 On the other hand, photooxidation of DOM upon 

solar exposure in surface waters can be monitored by the decrease in the fluorescence 

intensity of high molecular weight DOM, particularly humic substances (fulvic and 

humic acids) of terrestrial origin and autochthonous fulvic acid-like (C-like) 

substances of phytoplankton origin. The relevant studies can be carried out by 

comparing the fluorescence peak intensities in the Excitation Emission Matrix (EEM) 

spectra recorded for surface and deeper waters.  

Autochthonous DOM is for instance produced in the surface waters of Lake 

Hongfeng and Lake Baihua during the summer season. By using fluorescence 

spectroscopy, three components can be  identified: fulvic acid-like (M-like), 

autochthonous fulvic acid-like (C-like) and tryptophan-like (peaks T and TUV) 

components identified using fluorescence spectroscopy.
27

 PARAFAC modeling on 

the EEM spectra of eutrophic Lake Hongfeng and Lake Baihua demonstrates that the 

fulvic acid (C-like) component is the key one among those identified during the 

summer stratification period (Fig. 5.3).  



 

[Figure 5.3 hear here] 

 

Based on the difference between surface and deeper water, it has been possible to 

estimate the photooxidative decrease in fluorescence intensity of the fulvic acid (C-

like) component (Table 5.2; Fig. 5.4). Indeed, during the winter vertical mixing period 

the fluorescence intensity of DOM and all other parameters undergo very limited 

variations, followed by a decrease when the stratification period is started in early 

summer (Fig. 5.4).     

 

[Figure 5.4 near here] 

 

In the surface waters of Lake Hongfeng, the fluorescence intensity of the fulvic acid 

(C-like) component is decreased by approximately 2-29% for peak C and 0-29% for 

peak A during the summer period from May to September (Table 5.2).  

[Table 5.2 near here] 

Interestingly, the fluorescence intensity in the surface layer is lower than in 

deeper water during summer, but it becomes higher in November (Figure 5.4). This 

observation can be accounted for by the low degree of DOM photodegradation in the 

surface water layer in the early winter, for which reason the generation of new DOM 

including autochthonous fulvic acid from primary production could easily offset the 

relatively low photooxidative loss of autochthonous fulvic acid.
27, 66

 Coherently, the 



primary production (chlorophyll a) is significantly higher in surface water (15.0-20.5 

µg/L, mean = 19.1 µg/L at 0-3 m depths in February ) than in the deeper layer (2.7-

19.1 µg/L, mean = 8.6 µg/L at 10-25 m depths) during the winter period.
27

 On the 

other hand, in the surface waters of Lake Baihua, the photooxidative decrease in 

fluorescence intensity of the fulvic acid (C-like) component is significantly higher in 

July (58-65%) and September (26-29%) compared to the deeper water layers (Table 

5.2). The decrease in fluorescence is relatively low in November (15-21%), February 

(12-23%) and May (10-16%), but it is observed throughout the summer and winter 

period. Such differences are probably caused by the mixing of wastewater released 

from industries in the waters of Lake Baihua
27

, which may reduce the winter vertical 

mixing and decrease the primary production.
27

 The reduction of vertical mixing 

enhances the solar exposure of surface-water DOM, thereby enhancing 

photodegradation, while a lower primary production would generate smaller amounts 

of autochthonous fulvic acid. The outcome is a decrease of fulvic acid fluorescence, 

which is more marked in the surface waters of Lake Baihua (highest: 58-65% in July) 

than in Lake Hongfeng (highest: 29% in July).
27

         

The fluorescence of the fulvic acid (C-like) component could thus be a useful 

indicator for photooxidation processes in surface waters including rivers
63

 and 

lakes.
27, 28

 Many photooxidation experiments have been carried out using water from 

rivers, lakes and marine ecosystems,
93, 94, 96, 100-102

 but, due to the complexity of the 

factors involved, the decrease of DOM in field observation is rarely observed.
27, 28, 63

 

Indeed, the autochthonous DOM from primary production (e.g. phytoplankton or 



algae) under both light and dark conditions 
39, 66, 99

 enhances the DOM contents in the 

surface water layer during the summer stratification period.
27, 28, 97, 98, 103

 However, 

when measuring fluorescence intensity instead of the DOC, the photooxidation-

induced decrease is so high that it cannot be compensated for by the production of 

fresh DOM. In this way, it is possible to highlight the photodegradation of fulvic acids 

in surface waters.  

On the basis of the arguments discussed in previous paragraphs, it can be 

easily imagined that HO
●
 would play a role in the photooxidation of DOM. However, 

the exact importance of the HO
●
 radical in the observed photodegradation processes 

still needs to be clarified and quantified.     

 

5.5 Factors affecting surface water photochemistry   

Photooxidation processes mostly occur in the photic or mixing zone of surface 

waters. On the other hand, the extent of the photic or mixing zone of lakes or oceans 

depends on water depth, on the presence of total suspended solids (TSS) and total 

DOM and, for lakes, also on size and location (for instance, the action of wind may 

enhance the mixing zone).
104-107

 Such phenomena substantially affect the Secchi disk 

readings in a variety of lake waters. For instance, a ∼75% decrease of TSS effluent 

loadings from waste-water treatment plants can cause a ∼25% increase of Secchi 

depths.
105

 Because of its high ability to absorb sunlight, DOM can also limit the 

photic zone in waters as it can inhibit the penetration of solar radiation into the deeper 

layers.
104, 107

 Correspondingly, waters with high contents of DOM can limit the 



photoinduced decomposition of DOM itself. For example, in the same experimental 

conditions over a 13-day irradiation period, it has been demonstrated that the 

percentage of DOM photodegradation was significantly higher (36% vs. 16%) in 

stream water with low contents of DOM (100 µM C) compared to downstream river 

water with higher contents of DOM (200 µM C).
96

 Similarly, exposure to light of 

waters with similar contents of DOM (2046 and 1972 µM C) yielded similar fractions 

of decomposition under the same experimental conditions (31 and 36%, 

respectively).
94

 Similar results are also found in earlier studies.
100, 101

 Although the 

photodegradation of DOM also depends on its nature.
22

, the low extent of 

photooxidation in waters with high contents of DOM may be connected to the 

absorption of radiation by organic compounds. DOM contents could, therefore, limit 

photodecomposition processes altering the depth of the photic zone. The key factors 

that affect surface water photochemistry can be summarized as follows: (1) sunlight 

irradiance; (2) water temperature; (3) concentration of inorganic species in water (in 

particular iron species, NO2
–
, NO3

–
, pH, alkalinity, salinity and ionic strength); (4) 

nature and concentration of DOM; (5) dissolved oxygen and consequently the redox 

potential of the water; (6) depth of the water and (7) its dynamic in the mixing zone 

(hypolimnion).
22

 Note that some of the above reported factors are strongly influenced 

by local and global changes such as the increment of UV-radiation during ozone hole 

events, the global warming and the modification of the average atmospheric 

composition (e.g. increase of the CO2 concentration).  

 



5.6 Consequences and implications of phototransformations induced by HO
●
 

Phototransformation processes, which include the reactions induced by HO
●
, 

play an important role in surface waters, particularly in lakes, estuaries and oceans. 

These processes can interact with other biogeochemical and global cycles and the 

possible implications can be summarized as follows:  

(1) Under the global warming conditions that enhance the phototransformation of 

DOM by increasing the stratification of the surface water layer, numerous 

intermediate products including nutrients (NO3
−
, NO2

−
, NH4

+
, and PO4

3−
), CO2, DIC 

(dissolved CO2, H2CO3, HCO3
−, and CO3

2−), LMW DOM and so on can be 

produced.
22, 39, 103, 108-111

 Such photoproducts can further fuel the primary 

productivity
39

 and enhance the biota growth in natural waters.
112

   

(2) The synergistic effects of seawater acidification and high temperature
113, 114

 are 

expected to enhance the production of reactive oxygen species (ROS), including HO
●
, 

in surface waters (e.g. through photo-Fenton processes).  

(3) ROS production can have an impact on living organisms.
30, 115, 116

 The radical HO
●
 

can damage the photosystem II activities and finally cause cell death. 
30, 117

  

(4) Transformation of organic pollutants including cyanobacterial toxins, induced by 

photochemical processes including reactions with HO
●
 
118-120

, can produce labile 

LMW DOM and other mineralization products such as CO2, CO, DIC, etc. Such 

photooxidation processes could play an important role in reducing the harmful effects 

of organic pollutants to organisms including humans.   



The described processes and interactions account for the importance of elucidating 

the role of HO
●
 in the transformation and mineralization of natural DOM and organic 

pollutants. 
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Figure captions 

Fig. 5.1 

Diurnal variations of H2O2 concentration in the upstream waters collected on August 

23, 2003 and the downstream waters collected on September 26, 2003 in the Kurose 

River, Hiroshima Prefecture, Japan. The upstream course of the river is mostly 

surrounded by dense forests, while the downstream river was substantially polluted by 

household effluents from undeveloped sewage treatment systems in Higashi-

Hiroshima during the sampling period (see Mostofa et al. 2005a for details).     

Fig. 5.2 

Photoinduced generation of H2O2 and HO
●
 from standard Suwannee River Fulvic 

Acid (a) and standard Suwannee River Humic Acid (b) in photoexperiments 

conducted using a solar simulator. Aqueous solutions (1 mg L
-1

) of the standard two 

substances are used for production of H2O2 and HO
●
. All data depicted in these 

Figures are calibrated for natural sunlight on 6 July 2004 at Hiroshima University 

Campus at noon under clear sky conditions. 

Fig. 5.3 

The autochthonous fulvic acid-like (C-like) substance is identified using parallel 

factor (PARAFAC) modeling on the EEM spectra of the lake waters at different 

vertical depths, collected from Lake Hongfeng (HF) and Lake Baihua (BH), China.  

Fig. 5.4 

Photoinduced decrease in the fluorescence intensity of fluorescence peaks (peak C 

and peak A) of autochthonous fulvic acid-like (C-like) substance of phytoplankton (or 

algal) origin in the surface waters of Lake Hongfeng (HF) and Lake Baihua (BH), 

China, compared to the deeper water layers. Water samples were collected from two 

sites of each lake (southern site = HF-S and northern site = HF-N for Lake Hongfeng, 

BH-1 and BH-2 for Lake Baihua). 
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Abstract 

Singlet oxygen, (1O2, 
1∆g), is a selective oxidant produced in sunlit surface waters. It is an electrophile 

produced from the quenching of excited state triplet natural organic matter (
3
NOM) by dissolved oxygen 

and it reacts with electron-rich alkenes, sulfides, and phenols. The concentration of 
1
O2 is high near the 

NOM molecules that sensitize its production and significantly decreases moving away from the NOM 

source. This chapter discusses the formation, quenching, reactivity, and detection of 
1
O2 and includes 

examples of surface water contaminants that react with 
1
O2. 

 

8.1 Introduction 

Singlet oxygen, (
1
O2, 

1∆g), an excited state of molecular oxygen, is one of several 

photochemically produced reactive intermediates (PPRIs) found in sunlit natural waters.1-11 The presence 

of singlet oxygen in sunlit natural waters has been known since Zepp, et al. detected 
1
O2 in 1977.

1
 The 

first electronic excited state of molecular oxygen, 
1
O2 is formed in a sensitization process in which energy 

is transferred from triplet states of photosensitizer species to molecular oxygen.2,3,11-13 Compared to most 

other PPRIs produced from indirect photochemical processes, 
1
O2 is a selective oxidant.

2,9,10
 Its formation 

in the environment has been determined to be dependent upon the presence of both sunlight and 

chromophores in the water that can act as sensitizers.
1-5,8-10

 In laboratory studies and the few field 

measurements that have been undertaken, 
1
O2 displays fairly specific reactivity.

2-3,11,13
 Singlet oxygen 

may be a key intermediate species in the transformation and fate of both pollutants and naturally 

occurring refractory organic compounds that abound in natural systems. 

Singlet oxygen is the first electronic excited state of ground state molecular oxygen, O2, which 

has two unpaired electrons in its valence shell (making it a triplet). Upon energy transfer from a sensitizer 

excited to its triplet state (
3
sens), O2 is converted to 

1
O2. As shown in Figure 8.1, 

1
O2 (

1∆g) is 22.5 

kcal/mole higher in energy than in the spin-unpaired ground state.
11,12,14

 A more energetic form of singlet 

oxygen, 
1Σg, can also be formed, but it quickly decays to 

1
O2 (

1∆g) in solution and will not be discussed 



further in this chapter; the term 
1
O2 is commonly used to refer to the 

1∆g species and that convention will 

be used here from this point forward.
11,12,14

 Since the energy gap between ground state oxygen and 
1
O2 is 

relatively small, many sensitizers are capable of efficiently producing 1O2.
15 Phosphorescence 

measurements have been utilized to monitor the radiative decay of 
1
O2 back to the ground state.

16-19
 This 

spin-forbidden luminescence is seen in the near infrared region of the spectrum at 1270 nm. The lifetime 

of 1O2 is relatively long in the gas phase (τ = 2.58 × 103 s), but 1O2 is efficiently deactivated by many 

solvents.20 In aqueous solutions, solvent deactivation is the primary relaxation mode for 1O2; the lifetime 

of 
1
O2 in water is 4 µs.

20,21
 In chemical reactions 

1
O2 is an electrophile, reacting with electron rich alkenes 

and aromatic compounds, phenols, and sulfides.
2,3,11 

The importance of 1O2 in the transforming organic compounds in natural waters has been the 

subject of debate. Because its reactivity is limited to a few general reaction types and is rapidly 

deactivated by water, some have thought that 
1
O2 is a relatively insignificant oxidant in natural 

systems.2,13 Some researchers rationalize that other PPRIs react more rapidly and with more types of 

organic molecules than does 
1
O2, thereby making the reactions of 

1
O2 inconsequential in the degradation 

of most aquatic pollutants. While 
1
O2 may not be as active as hydroxyl radical and other PPRIs in the 

degradation of many organic molecules, it may be important to the fates of compounds containing certain 

electron rich functional groups or hydrophobic species that associate with natural organic matter (NOM; 

an important photosensitizer of 1O2 in natural waters).  

 

8.2 Quenching and Reactivity of Singlet Oxygen in Aqueous Solutions  

8.2.1 Physical Deactivation of 1O2 and the Steady-state Approximation 

In solution, solvent deactivation is the primary relaxation mode for 
1
O2. Water physically 

quenches 
1
O2 with a solvent deactivation rate constant (ksolv) of 2.5 × 10

5
 s

-1
.
20,21

 Organic compounds in 

solution are also capable of physically quenching 1O2 without reacting with it. Amines such as 

diazobicyclo[2,2,2]octane (DABCO) exhibit this quenching behavior, as do sodium azide and β-



carotene.
20,22

 Addition of these species in solutions containing 
1
O2 leads to predictable decreases in 

1
O2 

concentrations based on the amount of quencher added and its 1O2 quenching rate constant (kq). This 

predictable quenching effect can be used as a diagnostic test for the involvement of 
1
O2 in photochemical 

reactions. The steady-state concentration of 
1
O2 ([

1
O2]SS) in sunlit natural waters can be approximated 

based on the species that produce it and those that quench it. Equation 1 gives the rate law for 
1
O2 

formation and decay for the simple case where solvent quenching is the only significant deactivation 

route. In this equation, kf is the rate constant for 1O2 formation in a given solution (in units of M/s). This 

1
O2 photosensitization rate constant depends on the concentration of excited triplet state sensitizer and the 

rate constant (k) at which it creates 
1
O2 (kf = k[

3
sens]). Because things like light intensity and the amount 

of dissolved oxygen in solution impact [3sens] and k, kf will also be dependent on these factors. 

d[1O
2
]

dt
= k

f
− k

solv
[1O

2
]    (1) 

In this scenario, [1O2]SS can be expressed as a balance of production and loss processes, as in equation 2. 

[1O
2
]
SS

=
k

f

k
solv

    (2) 

Upon addition of additional physical quenchers of 
1
O2 (Q) or substrates that chemically react with 

1
O2 (S), 

the 1O2 rate law and [1O2]SS equations include additional terms, as shown in equations 3 and 4. In these 

equations krxn is the bimolecular rate constant for chemical reaction of the substrate with 
1
O2 and kq is for 

physical deactivation of 1O2. In most natural water systems, physical deactivation by the water solvent 

dominates the denominator and the other terms can be neglected (and equation 2 can be used). Equation 4 

can be useful in laboratory studies where added 
1
O2 quenchers and reactants can be added to help 

determine the extent of involvement of 1O2 in a given photoreaction. 

d[1O
2
]

dt
= k

f
− k

solv
[1O

2
]− k

q
[Q][1O

2
]− k

rxn
[S][1O

2
]  (3) 

[1O
2
]
SS

=
k

f

k
solv

+ k
q
[Q]+ k

rxn
[S]

   (4) 



 

8.2.2 General Chemical Reactions Involving 1O2 

In addition to radiative decay and physical quenching, 
1
O2 also undergoes a series of specific 

chemical reactions.
2,3,11,20

 Examples of these chemical-quenching methods are shown in Figure 8.2. One 

of the most studied reactions involving 
1
O2 is the [4+2] cycloaddition reaction that it undertakes with 

conjugated dienes.
2,3,11

 Several studies have shown that 
1
O2 reacts with acyclic, cyclic, and heterocyclic 

dienes, and Wilkinson, et al. (1995) have compiled bimolecular rate constants for many such reactions.20 

This reaction class is analogous to Diels-Alder reactions that occur between dienes and alkenes that are 

commonly taught in introductory organic chemistry courses. The initial product of the [4+2] 

cycloaddition reaction is an endoperoxide. Oftentimes, however, the endoperoxide is too unstable to be 

isolated, and it undergoes further reactions that are indicative of the endoperoxide intermediate.
11

 The 

most important [4+2] cycloadditions that are used in environmental analyses of 
1
O2 are those with furan-

based molecules that have been employed as 
1
O2 sensors.

1,23-26 

 Singlet oxygen also participates in [2+2] cycloadditions.
2,11

 This reaction occurs between one 

electron-rich carbon-carbon double bond and 1O2 to form 1,2-dioxetane products. Most dioxetanes are 

unstable due to the strain in forming the 4-membered ring and break down to form other products shortly 

after being formed.
11

 Certain sterically protected dioxetanes, however, are quite stable. A third reaction 

mode that exists between 1O2 and unsaturated organic molecules is the ene reaction.11 This reaction yields 

hydroperoxide products.  

  In addition to reacting with alkenes, 1O2 has also been shown to be reactive towards 

sulfides.
2,11,20,27,

 Ackerman demonstrated that electron-rich sulfides are more reactive to singlet-

oxygenation than electron-poor species; this is consistent with 
1
O2 electrophilic character.

27
 Compilations 

of rate constants exist for the reaction of different sulfides with 1O2.  

Perhaps the most studied 
1
O2 reaction in the environment is the singlet-oxygenation of phenolic 

molecules.
28-35

 Since the phenolic moiety is an important part of many organic substances found in 

natural, drinking, and wastewaters, Tratnyek and Hoigné studied the interaction between 
1
O2 and various 



phenolic compounds in aqueous environments.
31

 With knowledge that the more electron rich phenolate 

ion reacts more quickly with 1O2 than does the parent phenol, they studied various substituted phenols in 

aqueous solutions over a range of pH values. Their work has made it possible to predict the rate of 

oxidation of differently substituted phenols as a function of the basicity of the water.
31,3 

 

8.3 Singlet Oxygen Detection Techniques 

Quantifying the presence of PPRIs such as 1O2 under field conditions can be difficult due to their 

low concentrations, limited sensitivity of the measurement methods, and non-specific reactivity of sensor 

molecules.
9,10, 36,37

 Various measurement techniques have been employed to quantify the presence of 
1
O2 

in laboratory and field settings. Most molecular probes for 1O2 have been designed based on its selective 

reactivity with electron rich alkenes. In laboratory settings, one can also directly monitor the 

phosphorescence emitted as 
1
O2 decays back to ground-state O2.

15-19
 The following sections highlight the 

direct and indirect techniques often used to assess the concentration of 
1
O2 in solution.  

 

8.3.1 Singlet Oxygen Probe Molecules 

Most environmental reports of 
1
O2 detection involve molecular probes, in which the degradation 

of a compound with known reactivity with 
1
O2 or the formation of the products of a singlet-oxygenation 

reactions are followed during the course of a photolysis experiment.1,23,26,36,37 This technique necessitates 

removing a water sample from the system of interest, adding the trapping agent to the water sample, and 

irradiating the mixture. The loss of the probe molecule or the formation of 1O2-specific reaction products 

is then tracked (usually by high performance liquid chromatography) over time. The probe molecule 

should be carefully chosen to react selectively with 
1
O2 in a well-controlled, predictable manner. The rate 

at which the probe molecule (P) degrades (or products form) is then used as an indirect method to 

calculate [
1
O2]SS, as depicted in equations 5 - 7. Equation 5 is the rate law for probe loss due to 

1
O2 and 

equation 6 is a linearized form that can be plotted to give the observed degradation rate constant (kobs). 



This can be used with the probe’s known rate constant for reaction with 
1
O2 to determine [

1
O2]SS as shown 

in equation 7. 
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Zepp, et al. provided an early example of using molecular probes to detect 
1
O2 in irradiated 

natural waters.
1
 In their seminal work, they capitalized on the fact that 

1
O2 reacts quickly with 2,5-

dimethylfuran (DMF). An additional consideration in choosing DMF as a 
1
O2 probe was the fact that its 

photooxygenation products are well characterized.
1,9,37

 This means that the loss of DMF or the formation 

of its known 1O2 reaction products could be tracked to determine how much 1O2 was present in irradiated 

natural waters. Figure 8.3 shows the structure of DMF and its reaction products.  

 In the years following the work of Zepp, et al., it was reported that H2O2 was a possible 

interfering oxidant in the determination of [1O2] by DMF.8-10 As a result, Haag and coworkers developed a 

new probe for selectively detecting 
1
O2 in natural waters.

23
 The researchers outlined the characteristics of 

a good 
1
O2 probe molecule: 

A good 
1
O2 probe should exhibit: 

� no direct photolysis or self-sensitization 

� no radical-initiated autooxidation or polymerization 

� no interference by its own photooxygenation products 

� no quenching of sensitizer triplets 

� no physical quenching of 
1
O2 (or a small, known fraction) 

� high rate constant for reaction with 
1
O2  

� rate constant independent of pH (or with known dependence) 

� high water solubility 

 

 Taking these factors into account, furfuryl alcohol (FFA) was employed as a 1O2-trapping 

agent.
23-25

 Like with DMF, FFA’s singlet-oxygenation products are well known, as seen in Figure 8.3.
3,9,37

 



An experimental advantage that FFA has over DMF is the fact that it is less volatile and more water-

soluble than DMF. These two considerations allow for less demanding sampling techniques. The 

sensitivity of FFA, however, does not match that of DMF, as the rate constant for reaction with 
1
O2 is 

about five times lower for FFA.  

 Aguer and Richard studied the reactivity of another furan-based molecule, furoin, as a probe for 

PPRIs.
26

 Not only did they find that furoin reacts with both 
1
O2 and hydroxyl radical (�OH), it was also 

determined that different products resulted depending on which PPRI was present. Since the relative 

contribution of �OH reaction with furoin could be differentiated from that of 
1
O2, this research highlighted 

the promise of using furoin as a probe for the simultaneous measurement of both 
1
O2 and �OH. 

In an attempt to improve indirect chemical trapping methods for 1O2, Nardello, et al. employed 

non-furanyl compounds as probe molecules.
38-39

 A primary motivation for developing these probes was 

the uncertainty in which furanyl probe photooxidation products could be attributed to reaction with 
1
O2. 

The probe molecules that they developed reacted quantitatively with 
1
O2 to form a stable endoperoxide as 

the major/only product. An advantage of isolating the endoperoxide product is that other oxidants that 

could conceivably react with the probe would not produce an endoperoxide, thereby giving evidence to 

the direct involvement of 
1
O2. A recent review of methods for detecting PPRIs in aqueous systems 

identified only FFA and 1,3-cyclohexadiene-1,4-diethanoate (CHDDE), one of the probes developed by 

Nardello, et al., as the only two probe molecules that fit Nardello’s definition of a good 1O2 probe (as 

articulated in references 37 and 39).
38

 Figure 8.3 also shows the reactivity of CHDDE with 
1
O2. Major 

advantages of FFA are the copious prior studies using it as a 1O2 probe to use as reference and its wide 

commercial availability. Although FFA has been widely adopted as a 
1
O2 probe molecule, it does have 

some shortcomings. Other PPRIs such as �OH and excited state triplet organic matter (
3
OM) can react 

with FFA and degrade it. The extent to which the different pathways are involved in FFA degradation can 

be deduced by tracking the formation of 
1
O2 specific FFA degradation products, calculating the expected 

contribution of �OH to FFA loss based on independent measurements of [�OH]SS and the known rate 

constant for reaction of �OH with FFA, and through the use of 
1
O2 quenchers to identify any additional 



loss of FFA not attributable to 
1
O2 or �OH. Al Housari, et al. provide a thorough description of this 

process of delineating the specific pathways responsible for FFA photodegradation.40 

Luminescence-based 
1
O2 probes have also been developed, but none have been widely adopted in 

the detection of 
1
O2 in surface waters.

37
 One pair of chemiluminescent probes that have been used to 

detect 
1
O2 in environmental samples will be described later (in section 8.5).

41-43 

   

8.3.2 Direct Detection of Singlet Oxygen Phosphorescence 

 Phosphorescent measurements of the relaxation of 
1
O2 back to ground state O2 were first utilized 

in the 1960s to determine the pure radiative lifetime of 
1
O2.

15
 While initial studies examined the 

luminescent properties of 1O2 in the gas phase, good solution phase results proved to be more elusive. 

Krasnovsky was the first researcher to monitor the phosphorescent signal emitted by 
1
O2 in solution.

16
 

With sensitizers dissolved in air-saturated solutions of carbon tetrachloride, a phosphorescent signal 

centered at 1270 nm was observed when the solutions were irradiated in a steady-state fashion. In 

addition to observing the radiative decay of 
1
O2, Krasnovsky also noted that the signal was proportional to 

the amount of sensitizer present in solution. Following this study, Krasnovsky developed a 

phosphoroscope instrument to monitor the 1270 nm luminescence signal.
17

 Among other things, this 

instrument was used to study the efficacy of different sensitizers as 
1
O2 generators and the effect of 

solvent on the lifetime and quantum yield of 1O2. The next major improvement in directly observing 1O2 

luminescence was the application of short duration laser pulses as the source of excitation.
18,19

 Laser flash 

photolysis (LFP) systems that arose from these technological improvements are now used in 

environmental laboratories to study the reactivity of pollutants and other chemicals found in surface 

waters with 
1
O2 and to measure quantum yields of 

1
O2 production.

7,44-46 

 



8.4 Production of Singlet Oxygen  

8.4.1 Photochemical Production from Dissolved Natural Organic Matter in Natural Waters 

 Zepp and co-workers showed that aquatic natural organic matter can act as sensitizers for the 

production of 
1
O2 in natural waters.

1,4,5
 Their findings were reinforced by many other researchers studying 

the photochemical properties of NOM, a few of which will be presented here. Frimmel et al. have 

measured quantum yields of 
1
O2 production (Φ∆) for several NOM samples.

7
 The Φ∆ is defined as how 

many 
1
O2 molecules are produced per photon absorbed by the sensitizer. Using laser flash photolysis 

methods, they measured 1O2 quantum yields of between 1.5 – 3.0 % for a variety of NOM source 

materials, with a soil NOM sample giving a particularly high yield relative to aqueous NOM. Sandvik, et 

al. examined 
1
O2 production from NOM along salinity transects in an estuary.

17
 They report Φ∆ values 

ranging from 1.7 – 6.1 %. They also found that NOM of lower molecular weights gave larger Φ∆, and that 

NOM isolated from different locations along a salinity gradient gave similar Φ∆.  

 Paul, et al. used a laser flash photolysis method and monitored the phosphorescence of 
1
O2 to 

determine Φ∆ for NOM samples isolated from several aquatic, soil, swamp, and peat sources.45 They 

report Φ∆ values ranging between 0.16 – 0.91 % for aquatic NOM, 0.26 – 2.69 % for soil NOM, 0.81 – 

0.83 % for peat NOM, and 0.61 % for the one swamp source tested. In addition to reporting higher Φ∆ for 

soil NOM, they also found that a synthetic OM was a very poor producer of 
1
O2. 

 Several studies have been undertaken to correlate Φ∆ with other measurable characteristics of 

NOM. Dalrymple, et al. studied the production of 
1
O2 from various aquatic NOM samples and found that 

Φ∆ correlates well with the E2/E3 ratio (ratio of the absorbance at 254 nm to absorbance at 365 nm) of the 

NOM.
48

 Measured Φ∆ values ranged from 0.59 – 4.5 %. They also showed that while Φ∆ decreases as pH 

increases for a given NOM sample, solution pH alone is a poor predictor of Φ∆. Peterson, et al. also 

observed a positive correlation between Φ∆ and E2/E3 ratio.
49

 They measured Φ∆ and 
1
O2 formation rates 

from Lake Superior water collected near shore to more interior regions of the lake. These water samples 

varied considerably in NOM content and the extent to which they were influenced by riverine sources 



draining into the lake. They found that 
1
O2 formation rates were much higher near the shore where NOM 

concentrations were significantly higher, but that Φ∆ was greater in the open lake (where the NOM had 

high E2/E3 signatures). 

 Marchisio, et al. found that Φ∆ increases as excitation wavelength decreases for NOM collected 

from several lakes, but the effect is much less dramatic than that observed for hydroxyl radical and 

3
NOM.

50
 They report Φ∆ values ranging from 0.4 – 1.7 %, with the lowest value measured with the 

longest irradiation wavelength (420 nm) and the highest value measured upon excitation with the shortest 

wavelength (313 nm). The authors used the wavelength dependence of Φ∆ in modeling the expected 

decrease in [
1
O2]SS with depth of the water column.  

 Sharpless examined 
1
O2 photoproduction from NOM samples that had been reduced with 

NaBH4.
51

 His experiments showed that the Φ∆ is negligibly impacted upon NOM reduction, with Φ∆ 

ranging from 1.4 to 3.2 %. Various NOM sources gave different Φ∆ that scaled with E2/E3 ratios and 

overall 1O2 production rates decreased upon NOM reduction due to associated decreases in NOM 

absorbance. He proposes that borohydride reducible species such as aromatic ketones are involved in the 

1
O2 sensitization process. Like Marchisio, et al., Sharpless also found that Φ∆ increased as excitation 

wavelengths decreased. In another study, Sharpless, et al. examined the effects of photooxidation on 

NOM’s ability to produce 1O2.
52 They report Φ∆ values between ~1.4 and 2.0 % for two aquatic NOM and 

one soil NOM prior to irradiation and that the values increase to ~ 1.7 and 2.7 % following 

photooxidation of the NOM. Photooxidation of the NOM thus leads to more efficient production of 
1
O2. It 

should be noted that photoweathering of the soil sample tested led to more dramatic increases in Φ∆, even 

though its E2/E3 ratio increased much less dramatically upon light exposure than those of the aquatic 

NOM tested. The Φ∆ values reported in this study scale with the E2/E3 ratio when following the evolution 

of these parameters upon photooxidation of a given NOM sample; the trends differ considerably when 

comparing across NOM sample types. Measured Φ∆ values showed a weak negative correlation with the 

electron donating and electron accepting capacities of the NOM, indicating that NOM containing a high 



percentage of redox active functional groups are slightly less efficient sensitizers of 
1
O2 than NOM with 

fewer redox active sites.  

  

8.4.2 Photochemical Production from Effluent Organic Matter in Natural Waters 

In addition to NOM, other organic matter found in natural waters can sensitize the production of 

1
O2. Several recent papers report on the ability of effluent organic matter (EfOM) from wastewater 

treatment plants or samples collected from EfOM-impacted surface waters to produce 1O2.  Mostafa and 

Rosario-Ortiz report that EfOM is an efficient producer of 
1
O2, giving higher Φ∆ values (2.8 – 4.7 %) than 

commonly used NOM sources (1.6 – 2.1 %).
53

 Increases in Φ∆ upon oxidation of the EfOM were 

observed (reaching as high as 9.3 %), which is consistent with the photooxidation results for NOM 

reported by Sharpless, et al. A study by Zhang, et al. gave similar results.
54

 They found that an EfOM also 

had a higher Φ∆ than several NOM samples (2.66 % versus 1.34 – 1.85 %). They also measured Φ∆ of 

different EfOM fractions and found that the hydrophilic fraction gave the highest value (8.16 %; 

transphilic and hydrophobic fractions gave Φ∆ values of 2.45 and 3.24 %, respectively). They deduce that 

the hydrophilic fraction dominates 
1
O2 production in EfOM. Bodhipaksha, et al. studied the 

photochemical properties of EfOM-impacted waters.55 They examined whole water samples and isolates 

and found that Φ∆ correlated with the production efficiency of 3OM, which is to be expected based on 1O2 

being a downstream product of 3OM. Like others, they found that Φ∆ scaled with E2/E3 ratio and that Φ∆ 

decreased as the electron donating capacity of the OM increased. They report greater photochemical 

reactivity of the whole water samples than that of the isolates, cautioning against the sole use of isolates 

in photochemical studies. In experiments where EfOM and DOM solutions were mixed in various 

proportions, no increases in 
1
O2 production due to EfOM (the more efficient producer of 

1
O2) were 

observed, which was ascribed to EfOM quenching 
3
NOM. 

 



8.4.3 Photochemical Production from Particulate Natural Organic Matter in Natural Waters 

The photosensitizing properties of particulate organic matter (POM) are not well understood. A 

recent paper used synthetic POM (silica particles coated with commercial OM) to explore the ability of 

the POM to produce 
1
O2.

56
 Through the use of probe molecules capable of sorbing to the POM, they 

found that POM is a poorer sensitizer of 
1
O2 relative to dissolved NOM, but that the sorbed probes 

degraded more rapidly than in DOM solutions in the absence of POM due to the relatively high [
1
O2] at 

the POM surface. This is consistent with a pair of studies describing the heterogeneous distribution of 1O2 

in irradiated DOM solutions (see section 8.5). For moderately hydrophobic pollutants that are reactive 

toward 
1
O2 (log KOC ~ 3 – 5), these particles could be important in their fates. A model is given to show 

how observed 1O2 concentrations are expected to change for substrates of varying hydrophobicity upon 

filtration of POM from photolysis solutions.   

 

8.4.4 Steady-state Concentrations of 
1
O2 in Surface Waters 

The relatively low quantum yields of 
1
O2 production by surface water constituents and rapid 

deactivation by water leads to low steady-state 1O2 concentrations in natural waters. Studies have reported 

[
1
O2]SS ranges between 10

-15
 and 10

-12
 M at the surface.

8-10,37
 Concentrations of 

1
O2 are expected to 

decrease with depth and will depend on the how colored the water is.
2,3,49,50

 Marchisio, et al. model the 

predicted depth profile for [1O2] for two different NOM concentrations based on light filtering through the 

water column and Φ∆ measured at different excitation wavelengths.
50 

 

8.4.5 Other 
1
O2 Sources for use in the Laboratory  

In laboratory studies, one can choose synthetic photosensitizers that produce 
1
O2 with high 

quantum efficiencies. Methylene Blue, Rose Bengal, and perinaphthenone are a few examples of such 

sensitizing dyes, with quantum efficiencies of 0.50, 0.75, and 0.95, respectively.20,58 Such high quantum 

yields are not observed with the materials present in natural waters, and these synthetic sensitizers can be 

used to assess the reactivity and reaction mechanisms of 
1
O2 with various substrates. This is a common 



method used to measure bimolecular rate constants for reaction with 
1
O2. Singlet oxygen can also be 

generated in non-photochemical reactions.11 These reactions can be useful for measuring a substrate’s 

reactivity with 
1
O2 in the absence of other light induced processes (i.e. direct photolysis or reaction with 

other PPRIs). Foote and Clennan describe several of these relatively clean methods for producing 
1
O2.

11
 

 

8.5 Microheterogeneous Distribution of Singlet Oxygen in Natural Waters 

8.5.1 Microheterogeneous 1O2 Distributions 

One important finding from non-environmental photochemical studies is that 
1
O2 exhibits 

heterogeneous concentration profiles in multiphasic media; the presence of microphases that co-localize 

and concentrate the sensitizer and substrate leads to enhanced 1O2 reaction rate.58,59 A set of recent studies 

have shown that aqueous solutions of NOM act in a similar fashion, with regions of high 
1
O2 localized in 

and near the photosensitizing NOM molecules and much lower concentrations in the bulk aqueous 

phase.
42-43

 The production and distribution of 
1
O2 and the partitioning of probe molecules between the 

NOM microsphere and the bulk aqueous phase is shown in Figure 8.4. This microheterogeneity of 
1
O2 

distributions is potentially important because hydrophobic pollutants can partition into NOM and 

potentially witness much higher 
1
O2 concentrations than molecules freely dissolved in the aqueous phase. 

Such hydrophobes could thus degrade more quickly than would be expected based on [
1
O2]SS values 

measured by hydrophilic probes. For this reason, Hassett described NOM as possibly being a potent 

microreactor for breaking down hydrophobic pollutants.
60

  

To demonstrate microheterogeneous 1O2 distributions in aqueous NOM solutions, 

chemiluminescent hydrophobic probe molecules capable of partitioning into the NOM microphase and 

reacting selectively with 
1
O2 were analyzed alongside FFA.

41
 Figure 8.5 shows these probes and their 

detection scheme. Specifically, spiroadamantyildene-substituted vinyl ethers (1a and 1b in Figure 8.5) 

reacted with 
1
O2 to form stable dioxetane products (2a and 2b). Following trapping, the dioxetanes are 

induced to decompose with luminescence upon addition of tetra-n-butylammonium fluoride (TBAF); this 

type of trap-and-trigger luminescence technique gives good sensitivity. When aqueous NOM solutions 



were irradiated in the presence of the various probes, the hydrophobic probe molecules that associate with 

the NOM microphase reported much greater 1O2 concentrations than FFA did, thus supporting the 

microheterogeneous distribution of 
1
O2 in sunlit surface waters.

42,43
  

A probe molecule or pollutant will witness an apparent 
1
O2 concentration ([

1
O2]app) that is a 

function of its partitioning between the NOM and bulk aqueous phases and the volume averaged 
1
O2 

concentrations in the NOM and aqueous phases, as shown in equation 8. The [
1
O2]app that a given probe 

molecule sees can be easily calculated based on the probe’s loss rate (or product formation rate), the 

probe concentration, and the probe’s krxn with 
1
O2, as shown in equations 9 and 10. These equations would 

also apply to hydrophobic pollutants. 
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 A model was developed to account for and provide a visual representation of the 

microheterogeneous distribution of 1O2 produced from the irradiation of NOM. In this model, NOM is 

considered to be a distinctive phase comprised of many spherically shaped monodisperse NOM particles 

inside which the sensitizing chromophores are evenly distributed. According to this description, 
1
O2 is 

produced only in the NOM microenvironment. Upon irradiation a concentration gradient develops 

between the NOM microphase and the surrounding aqueous environment. This gradient drives a net flux 

of 1O2 out of the NOM and into the aqueous phase. Singlet oxygen has a limited diffusion distance due to 

its rapid deactivation by water. The [
1
O2] is thus reduced over time as the 

1
O2 diffuses away from the 

NOM region. Equation 11 shows how the concentration decreases over time ([
1
O2]t) relative to its initial 

concentration in the NOM region ([1O2]0).  
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One can convert this time-based change in [
1
O2] to distance from the NOM phase with knowledge of the 

length (l) a transient species can diffuse over time. Here D is the diffusivity of O2 in water and kD is the 

aqueous phase 
1
O2 deactivation rate constant (kD = ksolv + kq[Q]aq, where [Q]aq is the aqueous phase 

concentration of a quencher of 
1
O2). Figure 8.6 shows a cartoon depiction of the dramatic effect of 

aqueous phase quenching of 
1
O2 as it diffuses from the NOM region to the aqueous phase. Very recently, 

1
O2 microheterogeneity was reported in the particulate organic matter (POM) sensitized production of 

1O2, as described above (section 8.4.3). 

 

8.5.2 Effects of Quenchers and the Kinetic Solvent Isotope Effect on Microheterogeneous 
1
O2 

Distributions 

Common tests used to confirm the involvement of 
1
O2 in aqueous phase reactions did not 

appreciably alter the responses of the hydrophobic probe molecules and cannot be used as diagnostics for 

1
O2 reactions in the NOM microenvironment. Experiments in aqueous solutions with NOM and added 

1
O2 

quencher sodium azide were performed to determine its effects on [
1
O2]NOM and [

1
O2]aq. Addition of azide 

caused a predictable decrease in FFA photodegradation rate, due to a precipitous drop in the average 

[
1
O2]aq in the presence of the additional quencher. In contrast to the FFA results, the data obtained for the 

hydrophobic probes display a much smaller quenching effect; these probe molecules sample the 
1
O2 in the 

hydrophobic NOM microenvironment that is inaccessible by the hydrophilic azide ion quencher.  

The hydrophobic 
1
O2 quencher β-carotene was also added to solutions of the most hydrophobic 

probe and NOM to determine its effect on 
1
O2 contained in the environment of the NOM microphase. 

Based on a known β-carotene quenching rate constant and the nominal quencher concentrations in the 

experiments, the magnitude of the quenching at these concentrations was much higher than predicted by 

the conventional homogeneous 1O2 distribution model. The enhanced reactivity displayed by β-carotene is 

a consequence of the actual sample volume that it occupies; due to its low aqueous solubility and 



extremely high hydrophobicity, β-carotene is expected to be present predominately in the NOM 

microphase, which occupies a much smaller volume than the bulk solution. This leads to higher effective 

β-carotene concentrations within the NOM region and efficient quenching of [1O2]NOM.  

The kinetic solvent isotope effect measured by the hydrophobic probes was also much different 

than that observed with hydrophilic probes. Only minimal solvent effects were seen with the hydrophobic 

probes when the solvent was changed from H2O to D2O, whereas this change in solvent composition 

normally would lead to about thirteen-fold increases in loss rates of aqueous phase probe molecules due 

to the longer 
1
O2 lifetime in D2O.

20,21,42
 This result was consistent with numeric modeling results that 

predicted little change in [1O2]NOM upon changing the solvent from H2O to D2O.42  

 

8.6 Examples of Aquatic Species Potentially Transformed by Singlet Oxygen in Surface Waters 

 Despite the fact that many pollutants contain functional groups that are known to react with 1O2, 

few studies report its involvement in the degradation of pollutants. Oftentimes pollutants that are prone to 

reaction with 1O2 also are susceptible to direct photolysis or reactions with other PPRIs. This section 

describes some of the surface water species that are reactive toward 
1
O2 to varying degrees. 

 

8.6.1 Cimetidine and Ranitidine 

 Cimetidine and ranitidine are two high use antacids that have been detected in surface waters.
61,62

 

Both were found to be photoreactive, with ranitidine degrading mostly through direct photolysis with a 

small contribution (~10 %) due to 
1
O2 in Mississippi River water.

44
 The photodegradation of cimetidine, 

however, is dominated by reaction with 
1
O2. The photochemical behavior of cimetidine is thus 

highlighted here because it is the rare aquatic pollutant whose photochemical fate is attributed solely to 

reaction with 
1
O2. The role of 

1
O2 in the degradation of cimetidine was deduced from quenching studies 

that clearly implicated 
1
O2 and ruled out radical species. The reactivities of cimetidine and model 

compounds of cimetidine were assessed using steady state and laser flash photolysis experiments with 



efficient, synthetic sensitizers of 
1
O2. Figure 8.7 summarizes some of this work. The model studies show 

that the cyanoguanidine unit of cimetidine is unreactive toward 1O2, ruling out reaction at that site. Both 

the substituted imidazole ring and the sulfide site showed reactivity with 
1
O2, with the sulfide site reacting 

about an order of magnitude slower than the imidazole and cimetidine parent species. This means that the 

majority of the 
1
O2-induced degradation of cimetidine is likely to occur at the imidazole ring. Only one 

product (in low yield) was identified, cimetidine sulfoxide; sulfoxides are common products of 
1
O2 

reactions with sulfides. The low yield of this product is consistent with the sulfide site contributing only 

slightly to the degradation of cimetidine. Additional studies at different pH values showed that the 

reaction of 
1
O2 with cimetidine was highly sensitive to pH due to the basicity of the imidazole nitrogen. 

Since protonation of the imidazole ring creates a positive charge, reactivity with the electrophilic 1O2 is 

significantly altered, with much lower rate constants at low pH (krxn = 2.2 × 10
8
 M

-1
s

-1
 at pH 8 and krxn = 

3.3 × 10
6
 M

-1
s

-1
 at pH 4). The half-lives of cimetidine are expected to vary considerably from site to site 

based on differences in [
1
O2]SS and pH across various surface waters. Peterson, et al. calculated expected 

cimetidine half-lives across an NOM gradient in Lake Superior.
49

 They predicted near surface half-lives 

ranging from less than 4 h near shore where riverine NOM at relatively high concentrations dominates to 

120 h in the open lake where NOM concentrations are much lower. When accounting for loss of 

cimetidine throughout the entire water column, half-lives were predicted to be considerably larger due to 

light attenuation; calculated half-lives ranged from 44 to 155 days depending on season and location 

within the lake. 

 

8.6.2 Pesticides 

Pesticides are well-studied pollutants in terrestrial and aquatic systems. The photochemical 

behaviors of a great variety of pesticides from various chemical classes have been reported. Few of these 

reports implicate 1O2 in the surface water photodegradation of pesticides under environmentally relevant 

conditions. Two reviews regarding the photochemical fates of pesticides, however, report that some 

pesticides such as thiobencarb, carboxine, uracil herbicides and pyrimidine fungicides are degraded when 



irradiated in the presence of synthetic sensitizers of 
1
O2.

63,64
 These pesticides may also be subject to 

1
O2 

reactions in sunlit surface waters. The pesticides that have been reported to degrade by 1O2 under field 

relevant conditions are described here, and the structures of these species can be seen in Figure 8.8 

Mesotrione is a triketone herbicide that has been introduced to the market relatively recently. It undergoes 

a self sensitized reaction with 
1
O2 under direct photolysis conditions, but its photodegradation rate in 

NOM solutions was accelerated relative its direct photolysis rate.
65

 The study’s authors attributed the rate 

enhancement to reaction with 1O2. Zeng and Arnold studied the photochemical fates of sixteen pesticides 

in prairie pothole lake water.
66

 The NOM from these pothole lakes led to the increased removal rate of the 

pesticides. The extent of indirect photolysis was assessed relative to direct photolysis by comparing loss 

rates in buffered pure water to those in the pothole water. Quenching studies were conducted to assess the 

relative importance of individual PPRI on the indirect photodegradation of the pesticides. Their results 

show that 
1
O2 contributed to the degradation of several pesticides to varying degrees. About 10 % of the 

loss of mesotrione was attributed to 
1
O2 in this system, with the majority being due to 

3
NOM. The role of 

1
O2 was more substantial in the loss of bentazon (~40 % of its total degradation was due to 

1
O2), 

clopyralid (~45 %), chlorpyrifos (~30 %), and propiconazole (~70 %). Fenthion undergoes a self-

sensitized reaction with 
1
O2 whereby it forms a stable sulfoxide product.

64
 The formation of a sulfoxide 

product in environmentally relevant indirect photolysis experiments provides evidence for some 

involvement of 1O2 in the oxidation of disulfoton. 

 

8.6.3 Hormones and Hormone Mimics 

Estrogenic steroid hormones have been widely studied in surface waters due to their potent 

biological activity. Grebel, et al. show that the photochemical fate of 17β-estradiol (E2) is expected to be 

strongly influenced by salinity (see Figure 8.8 for the structure of E2 and the other chemicals listed 

included in this section).67 They report that the contribution of 1O2 to the photodegradation of E2 is 

negligible in freshwater and that the E2 photodegradation rate was reduced by 90 % in saline waters. 

They also found that the relative contributions of different PPRIs changed in moving from freshwater to 



seawater, with 
1
O2 responsible for 42 % of the indirect loss rate in the saline system. In a study of the 

photochemical behavior of synthetic growth promoters, Qu, et al. found that direct photolysis was the 

primary loss pathway for the trenbolone acetate and melengestrol acetate families, while zeranol, β-

zearalanol and zearalanone degraded by indirect photolysis.
68

 Quenching studies conducted at various pH 

values indicated that 
1
O2 may be a contributor to the indirect photolysis of these synthetic hormones only 

in basic solutions. The pH behavior is consistent with the electrophilic 
1
O2 reacting much more rapidly 

with deprotonated hydroxyaromatic compounds than with the undissociated neutral species. 

Phytoestrogens are plant-derived chemicals that may act as endocrine disruptors. Kelly and Arnold 

determined that the phytoestrogen daidzein photodegrades mainly through direct photolysis with some 

additional loss due to reaction with 
1
O2.

69
 The phytoestrogens biochanin A, genistein, and equol were 

found to be susceptible to indirect photolysis, with 1O2 and 3NOM being responsible for the degradation.70 

The extent of 
1
O2 involvement was shown to increase at higher pH values when the hydroxyaromatic 

rings would be more deprotonated and electron rich. 

 

8.6.4 Biomolecules such as Amino Acids and Proteins 

Biomolecules found in surface waters may be susceptible to photooxidation. Boreen, et al., 

studied the indirect photochemistry of eighteen free amino acids.
71

 Four (histidine, His; methionine, Met; 

tyrosine, Tyr; and tryptophan, Trp) showed some reactivity with 
1
O2. Each of these amino acids contains a 

functional group that is known to react with 
1
O2: His has an imidazole ring, Met has a sulfide site, Tyr has 

a phenolic group, and Trp has an indole ring system (see Figure 8.8 for the structures). Depending on the 

source of the seven natural waters tested, 1O2 contributed from 70 to 100 % of the photochemical loss of 

His, 35 to 62 % for Met, 3 to 33 % for Tyr, and 3 to 11 % for Trp. The involvement of 
1
O2 varied 

considerably with the water source. A recent paper by Chu, et al. found that protonated His and histamine 

(a His metabolite) photodegradation rates are enhanced relative to their neutral species.72 This result 

would not be expected based on the reactivity of the protonated imidazole rings with 
1
O2, as the 

protonated form exhibits lower inherent reactivity toward electrophilic 
1
O2. The enhancement was 



attributed to reaction with 
1
O2 by protonated His and histamine molecules that were sorbed to the NOM 

sensitizer. In this scenario, His and histamine witnessed higher [1O2]app than their unprotonated analogs 

would witness in the bulk aqueous phase. This behavior was further detailed by adding competitive 

sorbates that displaced the protonated His and histamine species. When cosorbates were added, the 

degradation rate enhancements due to the high relative [
1
O2]app at the NOM surface was drastically 

reduced. 

Lundeen and McNeill studied the reactivity of an intact protein (glyceraldehyde-3-phosphate 

dehydrogenase; GAPDH) with 
1
O2.

73
 They tracked the oxidation of His residues within the GAPDH 

structure under singlet-oxygenation conditions. They found that the position of the His within the 

GAPDH structure was critically important in their rates of oxidation, with surface exposed His residues 

oxidized much more rapidly than His residues buried deep within the protein matrix. Singlet oxygen 

accessible surface areas (
1
O2-ASAs) were calculated from GAPDH’s crystal structure and the oxidation 

rates of His residues showed a strong correlation to the His 
1
O2-ASAs. Results of this study may be useful 

in predicting photooxidation rates for proteins and oligopeptides in surface waters.
 

 

8.6.5 Viruses 

The ability of 
1
O2 to inactivate viruses has recently been explored in an effort to better understand 

the fates of waterborne pathogens and potentially reduce their impacts on the environment and society. 

Kohn and Nelson explored the direct and indirect photoinactivation of MS2, a bacteriophage commonly 

used as a surrogate for human enteric viruses, in the presence of various sensitizers.74 Indirect 

photochemistry mediated by 
1
O2 was found to be critically important in the inactivation of MS2. 

Quenching studies and experiments performed in D2O (to capitalize on 
1
O2’s well known kinetic solvent 

isotope effect) were used to identify 1O2 as the inactivating species. Commercial and natural organic 

matter led to faster inactivation rates than OM from a waste stabilization pond (WSP). A later study using 

additional NOM samples and WSP water gave similar results.
75

 The MS2 was found to associate with the 

NOM and inactivation was rapid in these solutions due to the high [
1
O2]app at the NOM interface. The 



inactivation of MS2 was attributed to 
1
O2 produced exogenously (i.e. by the NOM) rather than to any 

direct or endogenous (i.e. self sensitized) production of PPRIs. MS2 did not associate with WSP water 

and a large degradation rate enhancement due to the high [
1
O2]app at the NOM surface was not observed 

for this sample. The importance of exogenous sensitizers was further detailed by Silverman, et al.
76

 They 

found that unfiltered surface water samples from five locations significantly increased the rates of 

inactivation of one virus and two bacteriophages. One virus, poliovirus type 3, however, appeared to 

degrade primarily via endogenous reaction pathways rather than due to 1O2 generated by NOM from the 

surface water samples. 

Rule-Wigginton, et al. determined that a site-specific oxidation of an amino acid residue on the 

outer surface of the major capsid protein of MS2 was found to occur upon irradiation of MS2 in the 

presence of Rose Bengal (a synthetic 
1
O2 sensitizer).

77
 This type of 

1
O2 reaction mechanism may be 

important in the photooxidation of waterborne viruses. 

Mattle, et al. have developed a predictive photochemical model to assess the relative roles of 

direct photolysis and various PPRIs in the inactivation of MS2, adenovirus, and phiX174.
78

 To do so, they 

determined reaction rate constants for different PPRIs and the viruses. They also measured direct 

photolysis quantum yields. These parameters and steady-state concentrations of the PPRIs were then used 

to predict inactivation rates and parse out which pathways are responsible for virus inactivation. Their 

results implicated mostly direct photolysis in the inactivation of these viruses, with some disinfection due 

to 
1
O2 for MS2 and adenovirus. 

 

8.6.6 Other Species 

 The photochemical fate of the high use flame retardant tetrabromobisphenol A (TBBPA) was 

examined in a set of studies.79,80 TBBPA was shown to rapidly quench 1O2, particularly when the phenolic 

TBBPA molecule was deprotonated (see Figure 8.8 for TBBPA’s structure). A TBBPA photoproduct 

from reaction with 
1
O2 was identified by electron paramagnetic resonance (EPR) spectroscopy when 

TBBPA was irradiated in the presence of synthetic sensitizers.
79

 Similar results were obtained when a 



commercial humic acid was used as sensitizer.
80

 The 
1
O2 quencher sodium azide inhibited the growth of 

the TBBPA 1O2 product and limited uptake of oxygen by TBBPA. These results suggest that TBBPA may 

be rapidly oxidized in natural waters due to reaction with 
1
O2. 

 The bacteriostatic antibiotic trimethoprim undergoes indirect photolysis via reaction with 
1
O2 and 

�OH.
81,82

 The involvement of 
1
O2 was determined by tracking reaction products, including those that 

evolve from the breakdown of a [2+2] cycloaddition of 
1
O2 to a trimethoprim double bond. About 20 % 

of the trimethoprim photodegradation was attributed to 1O2. The aquaculture antibiotic ormetoprim 

photodegrades due to direct and indirect processes.
83

 Most of the indirect photodegradation is due to �OH, 

but 
1
O2 was also believed to be involved. Many sulfonamide antibiotics have been studied.

46,84-87
 Their 

photodegradation is expected to be mostly due to direct photolysis and reaction with 3NOM, but 1O2 may 

also contribute to some minor extent.
46,86,87 

In addition to sensitizing the production of PPRI, NOM can also quench and react with PPRIs. 

This dual role of NOM is a potentially important aspect of the global carbon cycle. Phototransformations 

initiated by PPRIs may conceivably reintroduce refractory NOM molecules into the bioavailable fraction 

of DOM in natural waters. Machado, et al. provide evidence that phenolic functionalities on lignin 

molecules undergo reactions with 
1
O2.

88
 McNally, et al. used model compounds to demonstrate that 

1
O2 is 

likely to be important in the degradation of lignin molecules only at deprotonated phenolic sites.
89

 These 

electron-rich phenolate sites were found to react with 1O2 with krxn on the order of 107 M-1s-1. Total 1O2 

quenching rate constants were considerably lower for the undissociated phenolic sites, and reaction with 

excited state sensitizer was favored under these conditions. Cory, et al., measured the uptake of 1O2 by 

NOM in Rose Bengal sensitized experiments by measuring the loss of dissolved oxygen upon irradiation 

and employing several standard diagnostic tests for the involvement of 
1
O2.

90
 Between 64 – 70 % of the 

uptake of oxygen by NOM was due to 1O2 under the study conditions. They determined that NOM was 

capable of both physically and chemically quenching 
1
O2 with rate constants that were similar to phenols 

and aromatic amines on a per carbon basis.  



Singlet oxygen is also reputed to be involved in the cycling of metals in surface waters. Zhang 

and Hsu-Kim have implicated 1O2 as the primary species involved in the photodemethylation of the toxic 

species methylmercury in surface waters.
91

 Two recent studies by Garg and co-workers show that 
1
O2 is 

involved in the redox cycling of iron in surface waters.
92,93

 Specifically, 
1
O2 oxidizes semiquinone-like 

Fe(II)-oxidizing species that are stable in the dark. These oxidants are thus capable of oxidizing Fe(II) to 

Fe(III) in the dark when 
1
O2 is not present, but are quickly oxidized by 

1
O2 produced upon irradiation. As 

such, the studies’ authors identify other processes that are responsible for the oxidation of Fe(II) to Fe(III) 

in sunlit surface waters. 
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Figure 8.1 Physical properties of 
1
O2 and ground state oxygen (adapted from references 11, 12, and 14). 
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Figure 8.2 Characteristic reactions involving 1O2 (adapted from references 2 and 11). 



 

 

Figure 8.3 Molecular probe molecules used to detect 1O2 (adapted from references 1, 10, 23, 37-39) 
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Figure 8.4 Schematic depiction of 
1
O2 production and measurement in aqueous NOM solutions (adapted 

from references 42 and 43).
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Figure 8.5 Trap-and-trigger 
1
O2 detection scheme of hydrophobic probes 1a and 1b. The probes react 

with 
1
O2 to form stable dioxetanes 2a and 2b. Upon triggering with TBAF, the dioxetanes decompose 

through an electron-exchange mechanism in which the oxybenzoate ester anion is formed in an electronic 

excited state. The anion luminesces as it relaxes to its ground state. The amount of light released depends 

on the amount of 1O2 trapped and can thus be used to determine 1O2 concentrations. (Adapted from 

reference 41.) 
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Figure 8.6 Depiction of 
1
O2 production within an NOM microsphere and its deactivation as it diffuses 

through the aqueous phase. 
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Figure 8.7 Structures of cimetidine and cimetidine model compounds used to assess the reactivity of 

different functional groups with 
1
O2, as determined by laser flash photolysis (Latch, et al., 2003). Here krel 

are 
1
O2 quenching rate constants for each species relative to that measured for the neutral cimetidine 

parent compound. These results implicate the imidazole ring as the most likely reaction site, although the 

identification of cimetidine sulfoxide as a reaction product provides evidence that some reaction also 

occurs at the sulfide site. As the indicated N-atom of cimetidine’s imidazole ring is protonated in acidic 

media, reaction rates slow considerably due to the reduced electron density of the heterocycle. (Adapted 

from reference 44.) 



 

 

Figure 8.8 Structures of several environmentally relevant chemicals that may undergo reaction with 1O2 

to some extent in sunlit surface waters. 
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Abstract 

The present chapter describes firstly the iron chemistry in aqueous solution in all its 

complexity. The photochemical properties are then presented in detail for the main 

forms of iron complexes found in aquatic compartments or used in advanced 

oxidation processes. In the third part of the chapter, the photochemical impact of 

different iron complexes on the degradation of water-dissolved organic compounds is 

explained in detail and the significance of different physico-chemical parameters is 

evaluated. Some examples of the use of iron species in advanced oxidation processes 

are presented to show their positive effects on water treatment.  
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9.1 Iron 

Iron is the most abundant transition metal in the earth’s crust (average 

concentration is about 5.6%). It is also the metal most used by modern human society. 

In the environment, it is present primarily in rocks as well as in soils but also, in lower 

amounts, in water systems (dissolved or suspended) and in atmospheric solid or liquid 

phases. Moreover, it is one of the most significant elements for almost all living 

organisms including humans. Iron is also an essential element because it plays a 

central role in many biological and chemical processes. 

In the solid phase, iron is generally found as oxides or oxyhydroxides, and among 

them the most frequent are hematite, magnetite, limonite, goethite and lepidocrocite. 

These forms of iron are scarcely soluble in water, but their solubility can be increased 

in the presence of siderofores and they can also undergo a process of photodissolution 

upon absorption of visible and UV light
1
. In the aquatic environment, iron is present 

at different concentrations that are lowest in sea water (between 0.2 and 4 nmol L
-1

) 

and highest in the atmosphere (fogs and clouds), from few µmol L
-1

 up to 400 µmol 

L
-1

 
2-4

. In the continental aquatic compartment, the average concentration of dissolved 

iron is equal to few µM but the highest concentrations can reach about 150 µM.  

This short introduction shows the key role that iron species can have on 

environmental processes and more generally the importance of this element for life on 

earth.  

In this chapter, iron chemistry in water is firstly described in detail, then the main 

photochemical processes involving different iron species are presented with 
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qualitative and quantitative results. Finally, in the last section, the impact of iron 

complexes in the aquatic environment and their use for advanced oxidation processes 

(AOPs) are discussed. 

 

9.1.1 Iron in water: speciation and physicochemical properties 

9.1.1.1 Iron in natural waters 

Iron in natural waters is present as ferric (Fe(III)) or ferrous (Fe(II)) oxidation state 

which depends on pH, on the oxidative and reductive processes and also on the 

presence of organic or inorganic complexing agents. The ability of the ferric/ferrous 

couple to be reduced or oxidized is an important feature for the chemical and 

biological processes in aquatic environment. Fe(II) is naturally present in anaerobic 

environment, while Fe(III) is the most stable form in aerobic water. Fe(III) is present 

as soluble complex species such as: [Fe(H2O)6]
3+

, [Fe(H2O)5(OH)]
2+

, 

[Fe(H2O)4(OH)2]
+
, [Fe(H2O)3(OH)3], [Fe(H2O)2(OH)4]

-1
, and possibly 

[Fe2(H2O)8(OH)2]
4+

, depending on the physico-chemical conditions (e.g. pH and Fe 

concentrations). However, these iron aquacomplexes account for a minor part of the 

total iron present in natural waters.
5
 Eberle and Palmer have measured the 

concentrations of iron and identified different soluble species in the Rhine river 

(Europe): of the 407 µg L
-1

 total Fe(III), only 1.6 µg L
-1

 Fe(III) was really dissolved 

(after filtering the solution with a 0.4 µm filter). In the filtrate, 39% of the Fe(III) was 

in the form of [Fe(H2O)4(OH)2]
+
, 28% as [Fe(H2O)3(OH)3] and 13% as 

[Fe(H2O)2(OH)4]
-1

. The rest was not identified, but it was probably in the form of 
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soluble Fe(III) colloids. The large difference between really dissolved Fe(III) species 

and the total concentration of iron can be attributed to oxides and complexes with 

organic matter or polycarboxylic acids.  

As mentioned above, iron plays an important role in the biological and chemical 

cycles of different elements present in water. For example, a low iron concentration 

can limit the growth of phytoplankton in the oceans.
6
 Iron is also an important 

element in the atmosphere or in natural waters, as described by Behra and Sigg
7
 or 

Sulzberger et al.
1
.  

 

9.1.1.2 Hydrolysis of Fe(III) salts 

The hydrolysis of Fe(III) salts in aqueous solution is a complicated process, leading to 

different iron species depending on several parameters like pH, initial concentration 

of Fe(III) salts, temperature, ionic strength of the solution, type of the counter anion, 

presence of complexing agents, etc. To explain this phenomenon it is necessary to 

divide the process of hydrolysis of ferric salts into four stages:
8
 

- Formation of low molecular weight species (monomers and dimers). 

- Formation of red cationic polymer. 

- Ageing and oxidation of the red polymer. 

- Formation of ferric oxides and hydroxides by precipitation of low molecular 

weight precursors. 

The low molecular weight complexes are as follows: 

- Monomer [Fe(H2O)6]
3+

, corresponding to Fe
3+

 cation surrounded by six water 
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molecules placed in an octaedric structure. 

- Monomer [Fe(H2O)5(OH)]
2+

 or Fe(OH)
2+

, where one water molecule is 

substituted by an hydroxyl group. 

- Monomer [Fe(H2O)4(OH)2]
+
 or Fe(OH)2

+
, where two water molecules are 

substituted by two hydroxyl groups. 

- Dimer [Fe2(H2O)8(OH)2]
4+

 or Fe2(OH)2
4+

, a dimer complex with two metal 

centers. Its structure has been discussed for a long time. Nowadays, the structure is 

supposed to be a dihydroxy-form, corresponding to the molecular formula 

[(H2O)4Fe(OH)2Fe(H2O)4]
4+

, where the atoms of iron are connected by two hydroxyl 

bridges. In contrast, the oxo form [(H2O)5FeOFe(H2O)5]
4+ 

where the atoms of iron are 

connected by a single oxygen bridge is less probable. 

The hydrosoluble Fe(III) polymers are: 

- A trimer form, for which two formulas are proposed, [Fe3(OH)3(H2O)12]
6+

 (or 

Fe3(OH)3
6+

), and [Fe3(OH)4(H2O)14]
5+

 (or Fe3(OH)4
5+

). 

- Fe(III) oligomers, polymers or soluble aggregates; they are also present in water 

but their structures are never been identified. 

The list of Fe(III) species, which are found in natural waters, is completed by ferric 

oxides or oxyhydroxides in the form of colloidal or suspended particles, for example 

goethite α-FeO(OH), lepidocrocite γ-FeO(OH), hematite α-Fe2O3, maghemite γ-Fe2O3 

or ferrihydrite Fe(OH)3. These species are scarcely soluble in water
9
 and can undergo a 

process of photodissolution
1
 (or can be solubilized by chemolitothrophic bacteria), with 

formation of soluble Fe(II) or Fe(III) species. 
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To simplify the chemical formulas of the iron complexes, the water molecules will not 

written in the following part of this chapter. Therefore, for instance, Fe
3+

 corresponds 

hereafter to [Fe(H2O)6]
3+

. 

 Influence of pH: 

 The pH plays a crucial role on the dissociation equilibrium of the Fe(III) species 

and on their distribution in the aquatic environment. In the area of neutral and basic 

pH, iron is present in the oxidized form and tends to agglomerate or precipitate. The 

dissociation equilibria and related constants were determined by Faust and Hoigné for 

an ionic strength of 0.03 M:
 10

  

( )
23

2Fe H O Fe OH H
++ ++ → +   K1 = 2.7×10

-3
 M   (9.1) 

( )3

2 2
2 2Fe H O Fe OH H

++ ++ → +   K2 = 1.3×10
-8

 M
2  

 (9.2) 

( )
43

2 2 2
2 2 2Fe H O Fe OH H

++ ++ → +  K3 = 6.0×10
-4

 M   (9.3) 

 The distribution of Fe(III) monomeric complexes at pH < 5 is presented in the 

following figure (Figure 9.1):  

[Figure 9.1 near here] 

Influence of iron concentration: 

The iron species present in solution depend also on the initial Fe(III) concentration. 

Flynn
8
 has established a diagram of predominance of low molecular mass ferric 

species as a function of both concentration and pH. The results show that 

hydroxylated monomeric forms are present at higher pH. The higher is the pH, the 

more the monomeric species is hydroxylated, while iron dimer complexes exist in 

solution only at relatively elevated Fe(III) concentrations (> 5×10
-2

 M). 
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9.1.1.3 Spectral properties of iron aquacomplexes 

 Figure 9.2 presents the different absorption spectra of low molecular mass iron 

complexes. Strong differences can be noticed between the different complexes. 

[Figure 9.2 near here] 

- The absorption spectrum of the Fe
3+

 complex is characterized by a maximum at 

240 nm, with molecular absorption coefficient between 3850 and 4500 M
-1

 cm
-1

.
11-13

 

- The absorption spectrum of the FeOH
2+

 complex presents a maximum at 297 nm, 

with a molecular absorption coefficient around 2000 M
-1

 cm
-1

.
10

 

- The absorption spectrum of the Fe(OH)2
+
 complex has also a maximum at 297 

nm, but the molar absorption coefficient is not well defined; it is variably reported as 

1100
14

 or 1800 M
-1

 cm
-1

.
12

 This ferric complex is quite unstable and tends to 

precipitate. 

- The dimer Fe2(OH)2
4+

 has a maximum at 335 nm with a molecular absorption 

coefficient between 3500
13 

and 8300 M
-1

 cm
-1

.
12

 

- The soluble aggregates of Fe(III) give a continuously increasing absorption from 

500 to 200 nm, without notable maxima. 

 

9.1.1.4 Other complexes of iron 

 In the presence of high concentrations of sulfates and in acidic environment, the 

following inorganic complexes can be formed: [FeSO4]
+
, [Fe(SO4)2]

-
, [FeHSO4]

2+
. 

With high concentration of chlorides one can observe the formation of [FeCl]
2+

 and 
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[FeCl2]
+
. The presence of phosphates leads to iron hydrogen- and 

dihydrogenphosphates and, depending on the concentration of oxygen, soluble ferrous 

or insoluble ferric forms are created. Dissolved iron often makes complexes with 

organic polycarboxylic acids such as citrate, oxalate, malonate etc. This phenomenon 

will be described in section 9.2.2. 

 

9.2 Photochemistry of iron complexes  

 9.2.1 Aquacomplexes 

The first observation of the photochemical activity of iron salts was given by Evans 

and Uri in 1949
15

. They demonstrated the photopolymerization of acrylonitrile and 

methylmethacrylate in a solution of FeCl3. 

In 1953, Bates and Uri
16

 have shown the activity of ferric ions in the presence of a UV 

light source. Oxidation of organic compounds present in the system was observed 

under UV irradiation. As an agent responsible for this reaction, the hydroxyl radical 

formed via photodissociation of Fe(OH)
2+

 was supposed: 

( )
2 2h

Fe OH Fe HO
ν+ + •→ +        (9.4) 

The photochemical behaviour of various Fe(III) aquacomplexes has been the main 

objective of many studies, especially in later decades. Two major types of processes, 

where iron plays a role of photoinducer of pollutants degradation, can be highlighted:  

• The first mechanism is based on the Fe(III) complexed solely by hydroxyl/water 

groups, where the pollutant can react with hydroxyl radicals generated by 

photodissociation of the complex(es).
 17
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• The second mechanism concerns the complexation of Fe(III) by organic complexing 

agents, which could be the pollutant (like nitrilotriacetic acid NTA), the solvent etc. 

Absorption of light induces an intramolecular photoredox process, reducing Fe(III) to 

Fe(II) and oxidizing the complexing agent.
 18

 

The formation of hydroxyl radicals from Fe(III) aquacomplexes under irradiation is 

explained by an energy diagram of transition metal complexes (Figure 9.3).  

[Figure 9.3 near here] 

Among the transitions indicated in the diagram, the ”B” transitions are the most 

frequent and relevant to photochemical processes. Irradiation of metal complexes at a 

suitable wavelength lets the intramolecular redox processes take place. Under 

irradiation, the energy of the photons is absorbed and the complex gets excited. In the 

excited state, the metal and ligand are likely to undergo redox reactions. Deactivation 

of the excited state leads to either transfer of charge from ligand to metal (LMCT), 

liberating reduced metal and oxidized ligand (HO
•
 for Fe(III) aquacomplexes), or to 

the regeneration of the initial complex by non-redox radiation. 

The HO
•
 formation efficiency depends strongly on the Fe(III) speciation and on the 

irradiation wavelength. This efficiency is often represented as a quantum yield, which 

is defined as the ratio of transformed or formed molecules to the number of absorbed 

photons during the same period of time. The quantum yields of hydroxyl radical 

formation are presented in Table 9.1:
11,19,20

 

[Table 9.1 near here]. 

Table 9.1 shows that the monomeric complexes Fe(OH)
2+

 and Fe(OH)2
+
 are the most 
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photoactive species for the hydroxyl radical formation. The other Fe(III) species form 

also some hydroxyl radical under irradiation, but with a much smaller quantum yield. 

Moreover, it is important to notice that at pH > 5 the concentration of Fe(OH)2
+
 is 

higher (Figure 9.1), but one also observes the precipitation of iron hydroxides and 

thus the main source of hydroxyl radicals (soluble Fe(III) species) is rapidly dried out. 

Table 9.1 also shows that the efficiency of hydroxyl radical formation is 

wavelength-dependent, and that the relevant quantum yields decrease with increasing 

wavelength. For shorter wavelengths the energy of the photons is higher, which is in 

agreement with the fact that the release of hydroxyl radicals from the solvent cage 

needs an amount of additional energy to that needed for the electron transfer.  

During the irradiation of solutions of Fe(III) aquacomplexes, the redox process leads to 

the formation of iron in the ferrous oxidation state. In Table 9.2,
10,11,21

 the quantum 

yields of Fe(II) formation are gathered for different wavelengths of irradiation and 

different chemical compositions of the solutions. The percentage of the monomer 

complexes is another parameter that should be taken into consideration. It is defined as 

the ratio of the concentration of monomer complexes to the total concentration of 

Fe(III). 

[Table 9.2 near here]. 

This table confirms also that the efficiency of the process of Fe(II) formation is strongly 

dependent on both Fe(III) speciation and the irradiation wavelength. 

The degradation of pollutants in the aqueous phase, photoinduced by Fe(III) 

aquacomplexes, have been widely studied in the 1990s and 2000s. Various pollutants 
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have been tested, especially herbicides of the triazine
22

 and phenylurea groups,
23,24

 

tenzides,
25

 derivates of benzene
17

 and phenolic derivates.
26

 These compounds generally 

do not undergo direct photodegradation under sunlight (λ > 290 nm). For these different 

molecules, the primary degradation step is the same: formation of hydroxyl radicals 

which react with pollutants at different sites, according to their chemical structure. 

More details are given in section 9.3. 

The reported data concerning the primary process (quantum yield) of the 

photochemical reaction clearly show that Fe(III) speciation and wavelength of 

irradiation are two important parameters controlling the efficiency of the 

photochemical process and, therefore, the production of hydroxyl radicals. 

The principal role of Fe(II) in the general processes involving iron species in aquatic 

media lies in the Fenton reaction. In fact, the reaction of Fe(II) with hydrogen 

peroxide, in oxygenated solution, could provide an additional source of hydroxyl 

radicals. 

( ) ( )2 2Fe II H O Fe III OH HO
− •+ → + +  k = 53 M

-1
 s

-1
. 

27
 (9.5) 

Hayon and Weiss
28

 also reported the reaction of Fe(II) in an aquatic oxygenated 

solution upon irradiation at 254 nm, leading via electron transfer to the formation of 

the superoxide radical anion.  

( ) ( )2 2

h
Fe II O Fe III O

ν •−+ → +       (9.6) 

Despite low absorbance below 300 nm, it was described that this process could occur 

under irradiation at wavelength higher than 300 nm,
29

 but the efficiency in such 

conditions is very low.  



 13

It is also known that the superoxide radical anion can recombine with its protonated 

form, the hydroperoxide radical (pKa = 4.8), to give molecular oxygen and hydrogen 

peroxide: 

2 2 2 2 2 2HO O H O H O O OH
• •− −+ + → + +

 
  k = 9.7 × 10

7
 M

-1
 s

-1
 (9.7)

30
  

Hydrogen peroxide can also be formed by recombination of hydroperoxide radicals, 

but with a lower rate constant: 

2 2 2 2 2HO HO H O O
• •+ → +    k = 8.3 × 10

5
 M

-1
 s

-1 
(9.8)

31
  

The second important role of ferrous ions is their oxidation to ferric ions by reaction 

with the hydroxyl radicals, superoxide anion and hydroperoxide. In all the cases, 

Fe(III) is generated but with different rate constants. 

( ) ( )Fe II HO Fe III OH
• −+ → +  k = 3×10

8
 M

-1
 s

-1
 
33

 or k = 4.6×10
8
 M

-1
 s

-1
  (9.9)

30
 

( ) ( )2 2 2Fe II HO H Fe III H O
• ++ + → +  k = 1.2 × 10

6
 M

-1
 s

-1
     (9.10)

33
  

( ) ( )2 2,

2 2 2

H H O
Fe II O Fe III H O

++•−+ → +  k = 1.0 x 10
7
 M

-1
s

-1
     (9.11)

34
  

These reactions lead again to the formation of Fe(III) and, therefore, a continuous 

photochemical source of radicals is present in such systems. However, the first 

reaction with the hydroxyl radicals consumes a strong oxidant (HO
•
 itself), which is 

detrimental for the process of organic compound oxidation. On the contrary, the two 

other reactions with hydroperoxide radical or superoxide radical anion are very 

positive for the regeneration of Fe(III) and so for the photochemical production of 

hydroxyl radicals. This regeneration of hydroxyl radical species could explain the 

complete mineralization of pollutants that is often observed in the photochemical 

processes involving iron species. 
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 9.2.2 Organic complexes 

Polycarboxylates such as citrate, malonate and oxalate are common constituents of 

precipitation, fog, surface waters and soil solutions.
35

 They can form strong 

complexes with Fe
3+

 and enhance the dissolution of iron in natural waters through 

photochemical processes.  

Aminopolycarboxylic acids (APCAs) like EDTA (Ethylenediaminetetraacetic acid) or 

EDDS (Ethylenediamine-N,N'-disuccinic acid) may behave similarly to 

polycarboxylic acids.
36

 In fact, APCAs have a strong ability to solubilize and 

inactivate metal ions (and particularly iron) by complex formation. 

The stability constants K of metal-organic ligand complexes are defined and 

determined as follows, whenever possible: 

MLn-1  +  L  ↔  MLn 

Kn = [MLn] / [MLn-1] [L] 

 The following table shows literature values of stability constants of iron (ferric 

and ferrous) complexes with different organic ligands (polycarboxylic or 

aminopolycarboxylic acids) (Table 9.3). 

[Table 9.3 near here] 

From the table it is clear that the stability constants of the complexes can vary widely 

and that the organic compounds have not the same ability to complex ferric or ferrous 

iron in aqueous solution. In addition, we note that the stability constants with ferric 

iron are systematically higher than those with ferrous iron. 
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Moreover, the formed Fe-ligand complexes can absorb radiation at much longer 

wavelengths (generally until 500 nm, which allows them to absorb sunlight) than the 

non-complexed polycarboxylic or aminopolycarboxylic acids, which do not absorb 

sunlight. The following figure shows an example of the structure of the FeNTA 

complex (NTA = nitrilotriacetic acid) and its UV-visible spectrum (Figure 9.4). 

[Figure 9.4 near here] 

The polycarboxylate or aminopolycarboxylate complexes undergo rapid 

photochemical reactions under sunlight irradiation, leading to the formation of 

oxidizing species.
37,38

 Therefore, the presence of polycarboxylates or 

aminopolycarboxylates affects the speciation of iron in surface waters and the 

biogeochemical cycles of iron and other elements. It was reported that light irradiation 

of Fe(III)-polycarboxylate or Fe(III)-aminopolycarboxylate complexes could produce 

both Fe(II) and ligand-free radicals by the ligand-to-metal charge transfer (LMCT) 

reactions (9.12). The photogenerated radical could react with Fe(III) species or O2 to 

form Fe(II) species or the superoxide radical anion O2
•-

 (9.13), respectively. The 

relative rates of the reactions of the radical with O2 or Fe(III) are very important for 

determining the steady state concentration of Fe(II) and O2
•-

. As mentioned before, 

O2
•-

 and its acid conjugated form HO2
•
 (pKa = 4.8 for the HO2

•
/ O2

•-
 couple) can 

participate in further reactions, including the generation of H2O2 (reactions (9.14) to 

(9.17)).
32

 The yield of H2O2 depends critically on the competition between 

H2O2-producing reactions (reactions (9.14) to (9.17)) and the O2-producing reactions 

((9.18) and (9.19)). 
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( ) ( ) ( )
*h

Fe III L Fe III L Fe II L
ν •− →  −  → +        (9.12) 

2 2 ox
L O O L

• •−+ → +                 (9.13)  

2 2 2( ) ( )H
Fe II O Fe III H O

+•−+ → +   k = 1.0 x 10
7
 M

-1
 s

-1
     (9.14) 

2 2 2( ) ( )H
Fe II HO Fe III H O

+•+ → +  
-
  k= 1.2 x 10

6
 M

-
1 s

-1
   (9.15) 

2 2 2 2 2

H
HO O H O O OH

+• •− −+ → + +  k = 9.7 x 10
7
 M

-
1 s

-1
    (9.16) 

2 2 2 2 2

H
HO HO H O O

+• •+ → +    k = 8.3 x 10
5
 M

-
1 s

-1
     (9.17) 

2 2( ) ( )Fe III HO Fe II O H
• ++ → + +   k < 1 × 10

3 
M

-1
s

-1
     (9.18) 

2 2( ) ( )Fe III O Fe II O
•−+ → +     k = 5 × 10

7
 M

-
1 s

-1
     (9.19) 

From these reactions it seems very likely that the concentrations of HO2
•
/O2

•-
 and 

Fe(III)/Fe(II) and, as a consequence, the formation of H2O2 in water are intertwined. 

In fact, it is well known that HO
•
 can be formed upon oxidation of Fe(II) by H2O2 in 

the so-called Fenton reaction (9.20).
39

 The rate constant proposed by Gallard and 

collaborators
40

 is close to those proposed in 1951 by Barb and coworkers.
27

  

2 2( ) ( )Fe II H O Fe III HO OH
• −+ → + +   k = 63 M

-1
 s

-1
     (9.20) 

Reactions (9.12) to (9.20) are similar to those described for iron aquacomplexes, but 

the formation of the superoxide radical anion and, therefore, of hydrogen peroxide is 

more efficient with organic complexes that with aquacomplexes.  

The pH is an important parameter that governs the efficiency of the photochemical 

process. Interestingly, contrary to aquacomplexes or polycarboxylate complexes, a 

very efficient photochemical process is observed until pH 9.0 with 

aminopolycarboxylate complexes of Fe(III).
40

 The increase of the pH range for the 

photochemical process is particularly interesting in terms of the natural environment, 
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and it reinforces the fact that iron complexes may have an impact on the environment. 

In the following section, different examples of photochemical reactions involving 

different kinds of iron complexes are presented. 

 

9.3 Phototransformation of organic compounds in the presence of iron  

Degradation by light, reaction with the hydroxyl radical HO
•
 and hydrolysis are 

important processes of pollutant abiotic degradation in the environment and can 

provide an alternative way to biodegradation. The major abiotic reactions (except for 

the hydrolysis) are connected with irradiation by sunlight. If the pollutant absorbs 

solar light, it can undergo photolysis that may lead to its transformation. If the 

pollutant does not absorb sunlight, its transformation can be induced by different 

absorbing species present in or added to the aquatic medium (e.g. nitrate, humic 

substances, Fe(III) complexes, H2O2). A common feature of these species is the 

formation under irradiation of highly oxidative transients, mainly the hydroxyl 

radicals HO
•
, which degrade many organic compounds in water with rate constants 

close to the diffusion control 
41

. The formation of oxidizing transients has been used 

in different chemical processes, designated as advanced oxidation processes (AOP’s), 

to eliminate organic compounds from aqueous solutions. Among the different AOP’s, 

the TiO2 photocatalysis, the photo-Fenton reaction using Fe(III) species, H2O2 and 

UV-Visible radiation and the photooxidation process of Fe(III) complexes or Fe(III) 

aquacomplexes are commonly used to transform (mineralize) pollutants.  
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9.3.1 Impact in the aquatic compartments 

 

9.3.1.1 Fe(III) complexing agents 

 The first studies on the impact of the photochemistry of iron complexes in 

aqueous solution were performed on the fate of strong chelating agents used in the 

domestic and industrial domains, to remove metal cations including iron species. 

Aminopolycarboxylic acids such as nitrilotriacetic acid (NTA) were used to complex 

divalent and trivalent cations, for example in the formulation of detergents. Since 

Fe(III) is one the most widely present cations in natural waters, nitrilotriacetic acid 

will exist in waste water principally as Fe(III) nitrilotriacetate Fe(NTA). As it is 

shown in Figure 9.4, the absorption spectrum shows a tail up to the visible domain. As 

a result, Fe(NTA) undergoes transformation under solar irradiation and it is of great 

importance to know its photochemical behavior to understand the fate of NTA in the 

environment.  

 According to a study of Andrianirinaharivelo and collaborators,
18

 the 

photodegradation of Fe(NTA) in aqueous solution does not occur by a single process. 

The conjunction of the excitation wavelength and pH makes the overall phenomenon 

quite complicated, but pH seems to be the most important parameter. The 

monohydroxyanion, the species present in neutral solution (Figure 9.4), can undergo 

at 365 nm a simple photosolvation leading to hydrous Fe(III) oxide and NTA. Upon 

excitation at 254 nm the Fe-O bond can be activated, giving rise to HO
•
 radicals and 

Fe(II). In acidic medium the molecular form of the complex Fe(NTA) reacts by charge 

transfer, either between Fe(III) and the carboxylate group at 365 nm or between Fe(III) 
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and the H2O ligand at 254 nm. In addition, the oxidation rate of Fe(II) species is quite 

different in neutral and acidic solution. 
 

The nature of the photoproducts is also dependent on pH and wavelength: Fe(III), 

Fe(II), NTA, IDA (iminodiacetic acid), CO2 and HCHO can all be produced. 

Accordingly, in terms of the fate of Fe(NTA) at pH 5.5 to 7.0 and λ < 290 nm, all the 

above described photoreactions and photoproducts are involved. 

Another study performed by Andrianirinaharivelo and Bolte
42

 on the transformation 

of iminodiacetic acid, photo-induced by complexation with Fe(III), shows that the 

degradation of the aminopolycarboxylic acid can continue until complete 

transformation into CO2 (Figure 9.5). 

[Figure 9.5 near here] 

 

9.3.1.2 Fe(III) aquacomplexes 

The photosensitizing role of aqueous Fe(III) species was a subject of interest for 

environmental photochemistry in surface
43-47

 and cloud
10,48-51

 waters as well as for 

pollutant degradation.
24,25,29,52,53

 In the absence of chelating agents, the most 

photoactive species is Fe(OH)
2+

 that is the main aquacomplex present in moderately 

acidic solution (see paragraph 9.2).
10

 

In our group, for the studies performed on the transformation of pollutants 

photoinduced by Fe(III) aquacomplexes, we investigated the transformation of the 

pollutant from the first transient species formed to the complete mineralization, via 

the identification of several photoproducts to establish a mechanism of degradation as 
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in the paper of Mailhot and co-workers.
17

 In this particular paper, presenting the 

degradation of 4-chloroaniline, the authors identified three different mechanisms of 

transformation as a function of the experimental conditions: 

- ring substitution 

- rind opening 

- oligomerization processes. 

In the paper of Galichet and co-workers,
54

 the toxicity of the solution was monitored 

at the same time as the degradation process of isoproturon. The evolution of the 

toxicity during the early stages of the degradation showed a strong increase from the 

starting toxicity of isoproturon (Figure 9.6). However, the degradation process was 

very efficient and after 6h the toxicity came back to the initial level, after which the 

mineralization process caused a further toxicity decrease. These results suggest that 

the degradation of pollutants has to be monitored throughout the process. In fact, 

some photoproducts can be more toxic than the starting compound and this may cause 

a serious problem for the aquatic environment.    

[Figure 9.6 near here] 

The studies performed with Fe(III) aquacomplexes lead, in most cases, to the 

complete mineralization of the pollutant. This very important result is based on a 

homogenous photocatalytic process based on the couple Fe(III)/Fe(II), which 

produces a continuous formation of radical species (mainly the hydroxyl radical, 

Figure 9.7). The oxidation of Fe(II) into Fe(III), which is the limiting step of the 

process, is favoured by i) the presence of oxygen and a complexing agent of Fe(III), ii) 
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the attack of the radical species formed on Fe(II) and iii) the oxygen photoassisted 

oxidation of Fe(II), giving rise to Fe(III) and the superoxide radical anion.
29

  

[Figure 9.7 near here] 

These different research works give evidence for the efficiency of pollutant removal 

from water by a process of homogenous photocatalysis.  

 

9.3.1.3 Fe(III) organic complexes 

The photochemistry of Fe(III)-organic complexes is also used for the degradation of 

organic pollutants. The reactivity of two main organic complexes, namely 

Fe(III)-nitrilotriacetic acid (FeNTA) and Fe(III)-ethylenediamine-N,N’-disuccinic 

acid (FeEDDS) is here reported. 

FeNTA was studied in the presence of 4-chlorophenol (4-CP) adopted as target 

pollutant.
62

 The quantum yields of the photodecomposition of the complex FeNTA 

and of Fe(II) formation by an intra-molecular photoredox process (the first stage of 

the reaction) were evaluated and presented in the following table (Table 9.4): 

[Table 9.4 near here] 

The quantum yields are high and the photoredox process is efficient over a large range 

of pH values. This is a very different finding compared to the results obtained with the 

Fe(III) aquacomplexes, which are efficient only until pH 4.0. However, while pH 

plays a significant role on the quantum yields of the first step (FeNTA disappearance), 

its effect is far less pronounced as far as 4-CP degradation is concerned. 

The effect of FeNTA concentration on the kinetics of 4-CP disappearance gave clear 
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evidence that the species generated upon irradiation of FeNTA are able to induce the 

degradation of 4-CP (Figure 9.8). Indeed, no degradation of 4-CP was observed 

without FeNTA, and the rate of 4-CP degradation increased with increasing FeNTA 

concentration. 

[Figure 9.8 near here] 

The short-lived transients produced during the process were clearly identified and the 

two mechanisms leading to 4-CP degradation were elucidated.  

At long wavelength irradiation (i.e., low energy), the RCO2
•
 radical is formed upon 

intramolecular electron transfer between the carboxylate group and Fe(III), which is 

reduced to Fe(II). In the presence of oxygen, an hydrogen atom is abstracted from the 

R function of the RCO2
•
 radical to produce HO2

•
 and, upon dismutation, H2O2. 4-CP 

degradation results from the attack by HO
•
 generated by a Fenton reaction (Figure 

9.9). At shorter wavelength irradiation (i.e. higher energy) the main detected radical 

species is CO3
•-

, together with HO
•
. In this case, there is an electron transfer from the 

OH
-
 or H2O ligand to Fe(III) (Figure 9.9).  

[Figure 9.9 near here] 

Carbonate radical (CO3
•-

) requires the presence of oxygen to be formed; on the 

contrary, R-CO2
•
 is formed even in the absence of oxygen. However, whatever the 

mechanism of FeNTA degradation, 4-CP requires the presence of oxygen to be 

degraded. Due to the elevated photolysis quantum yield of FeNTA, the resulting 

photoinduced pollutant degradation appears to be an efficient way of 

self-decontamination in the natural environment. 
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The second study presented here describes the impact of the photochemistry of the 

complex FeEDDS on the degradation of 4-tert-butylphenol (4-t-BP) in aqueous 

solution.
40

 The detailed chemical structure of the complex between Fe(III) and EDDS 

and the predominance of the different forms with respect to pH were also obtained by 

ab initio calculations. In fact, pH is the main parameter influencing the 

photodegradation efficiency and the study was thus performed in a large range of pH. 

In the following figure (Figure 9.10) the effect of pH is clearly demonstrated. 

[Figure 9.10 near here] 

The observed increase of the degradation rate of 4-t-BP (R4-t-BP) until pH 8.0 is due to 

the iron cycle and the relative concentration of the Fe(III) and Fe(II) species. These 

concentrations are strongly impacted by the presence of HO2
•
/O2

•-
, photogenerated by 

the complex FeEDDS. Above pH 8.0, the degradation rate of 4-t-BP decreases 

because of the presence of another less photoactive form of the complex. Indeed, the 

most photoactive form of the FeEDDS complex is the non hydroxylated one.  

The reported results show that pH is a key parameter for iron complexes, thus it is 

very important to know their speciation for their use and optimization in water 

treatment processes.  

 

9.3.2 Iron use in advanced oxidation processes  

Advanced oxidation processes that employ titanium dioxide, hydrogen peroxide and 

iron species have been extensively studied over the last two decades.
56,57

 In the 

following part of this paragraph, three different studies using iron species in advanced 
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oxidation processes are presented.  

9.3.2.1 Fe(III) aquacomplexes 

The principle of heterogeneous photocatalysis with titanium dioxide is a well known 

process: by irradiation of TiO2 with light of energy higher than the band gap (λ < 400 

nm), a pair of charge carriers (electron/hole) is formed. Photogenerated charge 

carriers can react with molecules adsorbed on the surface of TiO2 particles. The most 

important reaction is oxidation of adsorbed water molecules, dissociated or nor, by 

holes to generate the hydroxyl radicals. 

In the paper of Mestankova et al. (2005),
58

 the authors investigated the influence of 

ferrous and/or ferric ions on TiO2 efficiency. The kinetics of oxidative 

photodegradation of Monuron (3-(4-chlorophenyl)-1,1-dimethylurea), an herbicide of 

the phenylurea family, in different photocatalytic systems (iron, TiO2 and combined 

system iron + TiO2) were investigated and compared. It was studied the influence of 

iron addition on the TiO2 photocatalyst and of TiO2 on the photocatalytic cycle, 

observing a very positive effect of iron addition. The latter was more pronounced 

when TiO2 concentration was lower. In a suspension of TiO2 (24 mg L
-1

) with addition 

of Fe(III) (3 × 10
-4

 mol L
-1

), the measured rate constant of Monuron degradation was 

similar to that obtained in a suspension of TiO2 with a concentration 20 times higher 

(500 mg L
-1

). The mechanistic approach allowed the authors to identify the main 

reactions governing the combined system and to propose a photochemical cycle 

(Figure 9.11).
58 

[Figure 9.11 near here] 
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Two interactions between iron and TiO2 appear to be essential for the efficiency of 

such process: i) the reaction of Fe(II) with oxidizing species generated upon 

irradiation of TiO2 (H2O2, HO2
•
/O2

•-
) induces an additional formation of HO

•
 from the 

well-known Fenton process and regenerates the highly photoactive Fe(III) species; ii) 

the reaction of Fe(III) with photogenerated electrons can decrease the reactivity of 

monomeric Fe(III) species (highly photoactive) but increase degradation in the 

presence of soluble aggregates of Fe(III) (poorly photoactive).
58

  

The mechanistic understanding of the combined system iron-TiO2
58

 helps optimizing 

the water treatment process. Indeed, optimization is reached when each photocatalyst 

plays a specific role. Fe(III) aquacomplexes are the main sources of hydroxyl radicals 

and TiO2 is mainly used as a source of oxidative species for the oxidation of Fe(II) 

into Fe(III), thereby favoring the photocatalytic cycle Fe(III)/Fe(II). 

 

9.3.2.2 Fe(III) organic complexes 

The Fenton or photo-Fenton processes are efficient methods for the removal of many 

kinds of contaminants including pesticides, dyes, insecticides, pharmaceuticals, 

etc.
59-62

 However, there are some defects in the traditional Fenton or photo-Fenton 

processes. Firstly, low efficiency is usually observed when the process is taking place 

at neutral or alkaline pH. Secondly, high concentrations of iron salts and peroxide are 

necessary to achieve an efficient rate of removal of the substrate. In fact, as it is 

mentioned in the beginning of this chapter, most of the iron in natural waters exists in 

the form of insoluble ferric oxides and (hydr)oxides. Due to the insolubility of Fe(III) 
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at neutral pH, the Fenton or photo-Fenton processes are unstable under such 

conditions where they afford low generation of hydroxyl radicals in the presence of 

H2O2. In order to overcome this limitation, polycarboxylates such as citrate, malonate 

and oxalate or aminopolycarboxylates such as EDTA and NTA are used as organic 

ligands, to complex iron and maintain it in solution. Very recently and for the first 

time, our group used a strong complexing agent, ethylenediamine-N,N’-disuccinic 

acid (EDDS), in the homogeneous Fenton-like and photo-Fenton-like processes.
63,64

  

o Fenton-like process. 

The effect of H2O2 concentration, Fe(III)-EDDS concentration, pH value and oxygen 

concentration on the homogeneous Fenton degradation of Bisphenol A (BPA), used as 

a model pollutant, was investigated. The most significant effect was observed in the 

experiments carried out at different pH values. Surprisingly, the performance of the 

EDDS-driven Fenton reaction toward BPA oxidation was found to be much higher at 

near neutral or basic pH than at acidic pH (Figure 9.12). 

[Figure 9.12 near here] 

Inhibition and probe studies, with 2-propanol used as an hydroxyl radical scavenger 

and chloroform used as a superoxide radical anion (O2
•-

) scavenger, were conducted 

to ascertain the role of these radicals on BPA degradation. The two sets of experiments 

with both scavengers led to important conclusions on the mechanism involved in the 

Fenton-like process, using Fe(III)-EDDS complexes. The radical HO
•
 is mainly 

responsible for the BPA degradation. However, its formation from the Fenton process 

strongly depends (80 %) on the presence of the superoxide radical anion. Indeed, only 
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20% of HO
•
 formation results from the following classical reactions, where 

superoxide radical anions are not needed. 

2 2 2( ) ( )Fe III EDDS H O Fe II EDDS HO H
• +− + → − + +   (9.20) 

2 2( ) ( )Fe II EDDS H O Fe III EDDS HO OH
• −− + → − + +   (9.21) 

The other 80% of HO
•
 formation comes as well from the Fenton process but through 

the reduction of Fe(III)-EDDS into Fe(II)-EDDS by O2
−•

, in a similar way as what 

happens for Fe(III) aquacomplexes: 

2 2( ) ( )Fe III O Fe II O
•−+ → +    (9.22) 

The following figure summarizes this interesting result (Figure 9.13). 

[Figure 9.13 near here] 

The unexpected effect of pH on the Fenton reaction efficiency could be due to the 

formation of HO2
•
 or O2

•−
 radicals, but also to the presence of different forms of the 

complex Fe(III)-EDDS as a function of pH.
41

 Indeed, the reduction of Fe(III)-EDDS 

to Fe(II)-EDDS is a crucial step that governs the formation of hydroxyl radicals, 

mainly responsible for BPA degradation. In addition to its ability to maintain iron in 

soluble form, EDDS acts as a superoxide radical-promoting agent, enhancing the 

generation of Fe(II) (the rate limiting step) and therefore the production of HO
•
 

radicals. These results are very encouraging for the application of the EDDS-driven 

Fenton process in conditions of neutral pH, closer to natural conditions encountered in 

the environment. 

o Photo-Fenton-like process 

The same kinds of experiments were carried out in the photo-Fenton-like process, 
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assessing the effect of the Fe(III)-EDDS complex under irradiation. The main focus 

was on HO
•
 formation and BPA degradation. Figure 9.14 shows that Fe(III)-EDDS 

had important effects on both HO
•
 radical formation and BPA degradation in the 

photo-Fenton system at neutral pH.  

[Figure 9.14 near here] 

As it was demonstrated for the Fenton-like process, this is mainly due to the presence 

of EDDS, which can stabilize Fe(III) in aqueous solution between pH 3 and 9 and 

thus prevent its precipitation. In experiments carried out by varying concentrations, 

the increase of H2O2 and Fe(III)-EDDS were found to enhance the degradation rate of 

BPA. However, when the concentrations of Fe(III)-EDDS and/or H2O2 were too high, 

a competition for the reactivity of HO
•
 was observed between BPA and Fe(II)-EDDS 

or H2O2, thereby lowering BPA degradation. The experiments performed at different 

pH values demonstrated that BPA can be efficiently degraded at acidic, neutral and 

alkaline pH, which means that the addition of EDDS can widen the applicable pH 

range of the photo-Fenton system. It was also shown that oxygen is an important 

parameter for the oxidation of BPA.  

It was concluded that the addition of EDDS enhanced the production of HO
•
 and the 

degradation of BPA, which is very interesting for water treatment processes. The high 

efficiency of the photo-Fenton process using Fe(III)-EDDS as iron source allows for 

keeping complex and H2O2 concentrations low and for operating over a wider pH 

range, which is very encouraging for the application of the photo-Fenton process at 

neutral pH. 
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As for the Fenton-like process, the use of Fe(III)-EDDS makes this system an 

encouraging method for the treatment of organic pollutants in the natural aquatic 

environment. 

 

9.4 Conclusion  

In this chapter the complexity of iron chemistry in aqueous solution is discussed, but 

at the same time the significant impact of iron species on the chemical composition of 

different aquatic media is highlighted all along the chapter. To assess the role of iron 

compounds in aqueous solution it is really necessary to understand the speciation of 

iron. The main parameters influencing the iron speciation are the presence of organic 

complexing agents and the pH, which both govern the presence, the concentration and 

the formation of the different forms of iron complexes in aqueous solution. The use of 

iron in water treatment, through its introduction in different advanced oxidation 

processes and its positive effect in terms of pollutant removal, seems to be a very 

promising technique to preserve water quality. 
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Table Caption 

Table 9.1: Quantum yields of hydroxyl radical formation for different Fe(III) species. 

Table 9.2: Quantum yields of Fe(II) formation for different solutions of Fe(III). 

Table 9.3: Fe(III) or Fe(II) complexes stability constants with different organic 

compounds. 

Table 9.4: Quantum yields of FeNTA and 4-CP disappearance and Fe(II) formation at 

pH 4.0 and 6.0 and wavelengths 365 and 313 nm. The values in parenthesis 

correspond to the quantum yields in the absence of 4-CP. 
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Table 9.1: 

 

Fe(III) 

aquacomplex 
λirr [nm] 

 
Φ•OH Reference 

254  0.065 11 
Fe

3+
 

< 300  ~ 0.05 20 

280  0.31 20 

300  0.19 20 

313  0.14 20 
Fe(OH)

2+
 

373  0.065 20 

280  0.30 
Fe(OH)2

+
 

360  0.071 
21 

Fe2(OH)2
4+

 350  0.007 11 

 

 

Table 9.2: 

 

 λirr [nm]  ΦFe(II) Reference 

Fe2(OH)2
4+

 350  0.010 19 

Fe(OH)
2+

 313  0.140 

Presence of HO
•
 scavenger 360  0.017 

10 

[Fe
III

]0 = 1×10
-4

 mol.L
-1

 313  0.080 

92 % Fe(OH)
2+

 360  0.055 
22 

[Fe
III

]0 = 1×10
-4

 mol.L
-1

 313  0.020 

10 % Fe(OH)
2+

 365  0.008 
22 

 

 

Table 9.3: 

 

Complex Log K 

Fe(III) 

EDTA 25.7 

EDDS 22.0 

HEDTA 19.1 

Salicylic acid 16.3 
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NTA 15.9 

Citric acid 11.8 

Glycine 10.0 

Oxalic acid 9.4 

Tartaric acid 7.5 

Succinic acid 7.5 

Lactic acid 6.4 

Glycolic acid 4.7 

Propionic acid 3.4 

Formic acid 3.1 

Fe(II) 

o-phenantroline 21.3 

Ferrocine 16.2 

EDTA 14.3 

NTA 8.8 

Salicylic acid 6.5 

IDA 5.8 

Oxalic acid > 4.7 

Glutamic acid 4.6 

Glycine 4.3 

Citric acid 3.2 

 

 

Table 9.4: 

 

ΦΦΦΦFeNTA disappearance ΦΦΦΦFe(II) formation ΦΦΦΦ4-CP disappearance  

λλλλ(nm) pH = 4.0 pH = 6.0 pH = 4.0 pH = 6.0 pH = 4.0 pH = 6.0 

365 0.27 (0.25) 0.04 (0.03) 0.28 (0.21) 0.04 (0.02) 0.011 0.012 

313 0.50 (0.35) 0.17 (0.11) 0.46 (0.34) 0.16 (0.09) 0.018 0.030 
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Figure caption 

Figure 9.1: Diagram of distribution of monomer complexes of Fe(III) as a function of 

pH. Temperature = 298 K and ionic strength = 0.03 M. 

Figure 9.2: UV-visible absorption spectra of Fe(III) complexes, molar absorption 

coefficient as a function of wavelength.  

Figure 9.3: Energetic diagram of a transition metal complex. A: Metallic transition 

d-d due to the degeneration of the ligand field. B and C: ligand to metal charge 

transfer. D: intra-ligand transition. 

Figure 9.4: FeNTA Chemical structure of the two forms (molecular form and 

monohydroxyanion form with a pKa = 5.5), FeNTA UV-visible spectrum at pH 3.6 

and solar spectra during winter and summer.  

Figure 9.5: Photodegradation of the FeNTA complex ; from NTA to CO2. 

Figure 9.6: Comparison of (�) the toxicity EC50 evolution and the formation of the 

main primary photoproducts (�,�, �). 

Figure 9.7: Iron photchemical cycle in aqueous solution.  

Figure 9.8: Kinetics of 4-CP (0.2 mM) photodegradation at different FeNTA 

concentrations. pH = 4.0, λ irradiation = 365 nm. 

Figure 9.9: FeNTA photochemical process at longer wavelength. 

Figure 9.10: Effect of pH value on the degradation rate of 4-t-BP (5 × 10
-5

 M) in the 

presence of Fe(III)-EDDS (1 × 10
-4

 M) under polychromatic irradiation. 

Figure 9.11: Photochemical cycle of combined system iron-TiO2. 

Figure 9.12: Initial degradation rate of BPA 20 µM in the presence of Fe(III)-EDDS 

0.5 mM, H2O2 5 mM, at different pHs. The error bars represent the ±3σ based on the 
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fit of the experimental data. The solid line (sigmoid equation) represents only a visual 

guide. 

Figure 9.13: Simplified mechanism of Fenton acceleration attributed to the positive 

effect of the superoxide radical anion (O2
•−

) during regeneration of Fe(II) from Fe(III) 

at pH = 6.2 ± 0.1. 

Figure 9.14: BPA degradation in different photo-oxidation systems at pH 6.2. Initial 

concentrations were 20 µM BPA, 0.1 mM Fe(III)-EDDS, 0.1 mM Fe(III), and 0.1 mM 

H2O2. The lines show an exponential decay fit and are presented only to guide the 

eyes. 
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Figure 9.1: 

 



 42

Figure 9.2: 
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Figure 9.3: 
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Figure 9.4: 
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Figure 9.5: 
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Figure 9.6: 
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Figure 9.7: 
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Figure 9.8: 
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Figure 9.9: 
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Figure 9.10: 
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Figure 9.11: 
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Figure 9.12: 
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Figure 9.13: 
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Figure 9.14: 

 

 

 

 

 



Photochemical reaction kinetics in surface waters 

 

Davide Vione 

 

Department of Chemistry, University of Torino, Via P. Giuria 5, 10125 Torino, Italy. 

E-mail: davide.vione@unito.it Phone +39-011-6705296 

 

 

Abstract 
 

The photochemical transformation kinetics of xenobiotics in surface waters can be modelled, based 

on a number of photochemically significant parameters of the xenobiotic (absorption spectrum, 

direct photolysis quantum yield, second-order reaction rate constants with 
•
OH, CO3

−•
, 

1
O2 and 

3
CDOM*) and on some environmental variables (water depth, DOC, concentration values of nitrate, 

nitrite, carbonate and bicarbonate). The latter define the ability of the water body to attenuate 

sunlight in the water column and/or to photochemically produce reactive transient species, while the 

photochemical parameters of the xenobiotic measure its ability to react via the different 

photochemical reaction pathways. All of the above calculations can be carried out using the APEX 

software (Aqueous Photochemistry of Environmentally-occurring Xenobiotics). The software is 

also able to predict the seasonal trends of the phototransformation kinetics and to assess the 

uncertainty of the model output. 
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1. Introduction 

 

As seen in previous chapters, xenobiotics can undergo transformation in surface waters because of 

direct photolysis and indirect photochemistry, where the latter indicates the reactions with transient 

species that are photochemically generated upon sunlight absorption by the so-called 

photosensitisers. All such processes depend on water chemistry and depth, which determine the 

production and consumption of transients as well as the penetration of sunlight in the water 

column.
1-5 

This chapter will explain how one can model photochemical reactions in surface waters. The 

model describes the transformation kinetics of a substrate, a generic xenobiotic X, as a function of 

water chemistry/depth and substrate reactivity, via the main photochemical reaction pathways 

(direct photolysis and reaction with 
•
OH, CO3

−•
, 

1
O2 and 

3
CDOM*). The model may use actual data 

of water absorption spectrum or, in their absence, it can approximate the spectrum from the 

dissolved organic carbon (DOC) values. The different aspects of the model will be described in 

detail. First of all the seasonal variation of the sunlight spectrum will be introduced. The effects of 

the solar zenith angle on the path length of sunlight in water will also be discussed, together with 

the modelling of the water absorption spectrum. Afterwards, a kinetic treatment of the main 

photochemical processes in surface waters will be provided, with particular attention to the 

modelling procedures. Finally, a software will be described (APEX: Aqueous Photochemistry of 

Environmentally-occurring Xenobiotics) that includes all the reported equations to model the 

photochemical fate of pollutants in surface-water environments. 

 

2. A photochemical model for surface waters 

 

2.1. Sunlight spectrum at mid latitude 

 

The spectrum of sunlight at the ground undergoes important seasonal variations, not only in total 

irradiance but also as far as the ratio between its UVB, UVA and visible components is concerned. 

Indeed, the sunlight spectrum is highly affected by atmospheric absorption and, as a consequence, 

by the path length of sunlight through the atmosphere.
6-10

 If z is the zenith angle of sunlight and h 

the height of the atmosphere, the path length l is given by l = h (cos z)
−1

 (see Figure 1). Therefore, l 

is longer if z is higher, which happens in temperate regions in winter when the sun is usually low on 

the horizon. 

During winter, the high solar zenith angle causes the path length of sunlight through the 

atmosphere to be quite long. A first consequence is that the same sunlight energy is distributed over 

a surface that is proportional to (cos z)
−2

. Therefore, the irradiance of sunlight (energy per unit time 

and surface) is quite low in winter. A second consequence is that the elevated path length of 

sunlight in winter causes higher atmospheric absorption in the UV region and mostly notably in the 

UVB, which is absorbed more efficiently by the atmosphere. Therefore, during winter one has both 
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lower irradiance and a deficit of UVB radiation compared to the other spectral regions.
11

 Figure 2 

reports the mid-latitude spectra of sunlight in different months of the year. The solar spectrum may 

also change because of meteorological reasons (e.g. cloudy weather), but these issues cannot 

usually be taken into account in photochemical models. 

 

 

2.2. Solar zenith angle and sunlight path length in water 

 

When considering the path length travelled by sunlight in surface water, one should take into 

account both the solar zenith angle z and the refraction of sunlight at the air-water interface. Light 

reflection at the interface also takes place, but it is of lesser importance and can be neglected.
12

 The 

geometry of irradiation is reported in Figure 3. 

The solar zenith angle z (horizontal system of coordinates) is a function of sun declination δ 

(geocentric equatorial system of coordinates) and of the hour angle τ. The sun hour angle is defined 

as the difference between sun’s right ascension (geocentric equatorial system of coordinates) and 

the right ascension of a star on the local meridian. At local noon (when sun is on the local meridian) 

it is τsun = 0. Furthermore, every 1 h difference from the local noon gives τ ∼ 15°. This means that 

after 3 h from local noon, the sun has τ ∼ 45°. Assume ϕ as the latitude of the place and (δ,τ) for the 

sun as above. The following equation holds for the solar zenith angle:
13 

 

ϕδϕτδ sinsincoscoscoscos +=z       (1) 

 

Water has refraction index n ∼ 1.34 that undergoes relatively limited variation with wavelength. It is 

θsinsin nz = , from which the following relationship can be obtained between the path length l of 

sunlight and the water column depth d: 2)(sin1cos θθ −== lld .
12

 Therefore, for depth d and 

solar zenith angle z the optical path length l of sunlight inside the water body would be expressed as 

follows:
13 

 

212 )sin(1)(sin1 zn

dd
l

−−
=

−
=

θ
      (2) 

 

This means that water depth could be corrected by a factor ( ) 1
21 )sin(1

−
−−= znψ  (ψ > 1) that 

depends on latitude, hour and season. Under conditions relevant to a summer sunny day (15 July at 

45°N latitude), at the solar noon one has ψ = 1.05. At ± 3 h from noon, which makes a reasonable 

daily average, it is ψ = 1.17 (calculations of z were carried out with the Perseus software 
14

). 

Therefore, in a water body of depth d, on 15 July at 45°N latitude the path length of sunlight would 

be l = 1.17 d.  

Figure 4 reports the value of ψ at the solar noon, for different months of the year and for 

different latitudes. 
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2.3. Surface-water absorption spectrum 

 

It has already been mentioned that photochemical processes are controlled by water chemistry as 

well as depth. Water absorption spectrum, which depends on the chemical composition, is another 

key factor that influences photochemical reactions. A key issue here is that, while reasonable values 

for single chemical parameters can be easily suggested/imagined (e.g. nitrate, organic carbon, 

bicarbonate), the same cannot be true for a whole absorption spectrum. Considerable help comes 

from the fact that chromophoric dissolved organic matter (CDOM) is the major radiation absorber 

among the surface-water components, thus the water absorption spectrum can be approximated very 

well with the absorption spectrum of CDOM.
15-17

 Not surprisingly, it is possible to find a reasonable 

correlation between the absorption spectrum of surface waters and their content of dissolved 

organic matter, expressed as NPOC (Non-Purgeable Organic Carbon). The following equation 

holds for the water spectrum:
18

  

 

( ) ( ) λλ ⋅±−⋅⋅±= 0.0020.015

1 e0.040.45)(A NPOC     (3) 

 

where NPOC has mg C L
−1

 (or ppm C) units, and A1(λ) is the absorbance referred to an optical path 

length of 1 cm (taken by using a 1 cm cuvette or, more commonly, a longer cuvette and then 

dividing the measured absorbance data for the cuvette path length; A1(λ) has cm
−1

 units). Equation 

(3) can be used as the basis for the light-absorption calculations, whenever the actual absorption 

spectrum of water is not available. Moreover, it allows the water spectrum to be derived from easy 

guesses of the possible content of dissolved organic matter. This issue is particularly helpful when 

one wants to get insight into the photochemical fate of a given pollutant under reasonable 

environmental conditions, but without reference to a definite water body.  

Once the absorption spectrum of water (A1(λ)) is known, it is possible to address the problem of 

photochemical reactions in a system where multiple components can simultaneously absorb 

radiation. 

 

2.4. Modelling of direct photolysis processes in surface waters.
 

 

The process of direct photolysis of a xenobiotic X is triggered by the absorption of sunlight by X 

itself (in fact, compounds that do not absorb sunlight cannot undergo direct photolysis). The rate of 

photolysis is linked to the photon flux absorbed by X ( X

aP , which has units of Einstein L
−1

 s
−1

, 

where 1 Einstein = 1 mole of photons). The value of X

aP  has to be assessed in the presence of other 

compounds that absorb a considerable fraction of sunlight.
19,20 

The calculation of the photon flux absorbed by X requires taking into account the mutual 

competition for sunlight irradiance between X itself and the other water components (mostly 

CDOM, which is the main sunlight absorber in the spectral region of interest, around 300-500 nm). 
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Moreover, because both the incident sunlight and the absorption spectra are not monochromatic, but 

they rather span over a wide range of wavelengths, one cannot directly reason on the absorbed 

photon fluxes. In contrast, one has to consider first the absorbed photon flux densities ( )(λap ), with 

units of Einstein L
−1

 s
−1

 nm
−1

. Generally speaking, an absorbed photon flux is the integral over 

wavelength of the absorbed photon flux density. Under the Lambert-Beer approximation, at a given 

wavelength λ, the ratio of the photon flux densities absorbed by two different species is equal to the 

ratio of the respective absorbances. The same is also true of the ratio of the photon flux density 

absorbed by a species to the total photon flux density absorbed by the solution (pa
tot

(λ)).
21

 

Accordingly, the photon flux absorbed by X over an optical path length l (where l is expressed in 

cm) can be obtained by the following equations (note that A1(λ) is the specific absorbance of the 

surface water sample over a 1 cm optical path length, Atot(λ) the total absorbance of the water 

column, p°(λ) the spectrum of sunlight, εX(λ) the molar absorption coefficient of X, in units of M
−1

 

cm
−1

, and pa
X
(λ) its absorbed spectral photon flux density; it is also pa

X
(λ) « pa

tot
(λ) and AX(λ) « 

Atot(λ) in the very vast majority of environmental cases):
22,23 

 

lAAtot ⋅= )()( 1 λλ         (4) 

][)()( XlA XX ⋅⋅= λελ         (5) 

)101()()(
)(λλλ totAtot

a pp
−−⋅°=        (6) 

1)]([)()()( −⋅⋅= λλλλ totX

tot

a

X

a AApp       (7) 

 

Note that the sunlight spectrum p°(λ) in the calculations is referred to a UV irradiance of 22 W m
−2

 

(see Figure 5).
24

 The incident spectral photon flux density p°(λ) is computed per unit surface and 

has units of Einstein s
−1

 nm
−1

 cm
−2

. Once the )(λX

ap  values are known, the absorbed photon flux 

Pa
X
 can be determined as the integral over wavelength of the absorbed photon flux density:

21 

 

∫=
λ

λλ dpP
X

a

X

a )(         (8) 

 

An important issue is that p°(λ) is usually reported in units of Einstein cm
−2

 s
−1

 nm
−1

 (see Figure 5 

above), thus the absorbed photon flux densities are expressed in the same units. To express the rate 

of photolysis (RateX, see later) in M s
−1

, the absorbed photon flux Pa
X
 should be expressed in 

Einstein L
−1

 s
−1

. However, integration of pa
X
(λ) over wavelength gives units of Einstein cm

−2
 s

−1
 for 

Pa
X
, which represent the moles of photons absorbed per unit surface area and unit time. Assuming a 

cylindrical volume of unit surface area (1 cm
2
) and height l (expressed in cm), the rate of photolysis 

of X, expressed in M s
−1

 (moles per litre per second), can be obtained as follows: 

 

RateX = 10
3
 ΦX Pa

X
 l

−1
        (9) 
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where ΦX is the multi-wavelength, average photolysis quantum yield of X in the relevant 

wavelength interval, and l is expressed in cm (also note that 1 L = 10
3
 cm

3
). This approximated 

expression of RateX can be adopted if ΦX does not vary with wavelength, or if the detailed 

wavelength trend of ΦX is not known and only a single average value is available. Such an 

approximation holds if ΦX is referred to the same wavelength interval where the spectra of X and 

sunlight overlap. Once RateX is known, the pseudo-first order degradation rate constant of X (kX) 

can be obtained as the ratio between RateX and the concentration of X. From the pseudo-first order 

rate constant one can also obtain the lifetime tX:
21 

 

kX = RateX [X]
−1

         (10) 

tX = ln 2 (kX)
−1

         (11) 

 

The time tX is expressed in seconds of continuous irradiation under sunlight, at 22 W m
−2

 UV 

irradiance. It has been shown that the sunlight energy reaching the ground in a summer sunny day 

(SSD) such as 15 July at 45°N latitude corresponds to 10 h = 3.6⋅10
4
 s continuous irradiation at 22 

W m
−2

 UV irradiance.
25

 Accordingly, the half-life time expressed in SSD units would be given by: 

 

τSSD
X = (3.6⋅10

4
)
−1

 ln 2 (kX)
−1

 = 1.9⋅10
−5

 [X] l 10
−3

 (ΦX Pa
X
)
−1

 =  

= 1.9⋅10
−5

 [X] l 10
−3

 (ΦX ∫
λ

λλ dp
X

a )( )
−1

 =  

= 1.9⋅10
−5

 [X] l 10
−3

 (ΦX ∫
−⋅⋅

λ

λλλλ dAAp totX

tot

a

1)]([)()( )
−1

 =  

= 

∫
−

−

−°Φ

×

λ

λ λ
λ

λε
λ d

A
p

l

XlA

X
)(

)(
)101()(

109.1

1

)(

8

1

      (12) 

 

Note that 1.9⋅10
−8

 = 10
−3

 (ln 2) (3.6⋅10
4
)
−1

.  

If the photolysis quantum yield of X depends on the wavelength (ΦX(λ)), a different approach is 

to be followed. Instead of equations (8-12), one should apply equations (13,14):
24 

 

∫ Φ= −

λ

λλλ dplRate X

X

aX )()(10 13       (13) 

∫ Φ−°

×
=

−

−

λ

λ λ
λ

λε
λλ

τ
d

A
p

l

X
X

lA

SSD

X

)(

)(
)()101()(

109.1

1

)(

8

1

     (14) 

 

Note that )(λXΦ  depends on wavelength and it is to be included in the integral.  
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2.5. Modelling the formation and reactivity of 
••••OH in surface waters.  

 

The hydroxyl radical (
•
OH) is a transient that is produced by several photosensitisers and it is 

consumed by many water components. Because of the fast reactions it undergoes (its lifetime is in 

the µs range), 
•
OH cannot accumulate in solution and reaches a steady-state concentration that is 

extremely low when compared to other water components (usually below 10
−15

 M).
26

  

In natural surface waters under sunlight illumination, the main 
•
OH sources are (in order of 

average importance) CDOM, nitrite and nitrate.
25,27

 At the present state of knowledge it is 

reasonable to hypothesise that these three sources generate 
•
OH independently, with no mutual 

interactions. Therefore, the total formation rate of 
•
OH ( tot

OH
R• ) is the sum of the contributions of the 

three species: 

 
−

•

−

••• ++= 32 NO

OH

NO

OH

CDOM

OH

tot

OH
RRRR        (15) 

 

Various studies have yielded useful correlation between the formation rate of 
•
OH by the 

photoactive species and the respective absorbed photon fluxes of sunlight. In particular, it has been 

found that:
18,28,29

  

CDOM

a

CDOM

OH
PR ⋅⋅±= −

•

510)4.00.3(       (16) 

λλλ
λ

dpR
NO

a

NO

OH

NO

OH
)()( 222

−−

•

−

• ∫Φ=        (17) 

−−

• ⋅
+

+
⋅⋅±= − 33

0075.0][25.2

0075.0][
10)2.03.4( 2 NO

a

NO

OH
P

IC

IC
R     (18) 

where [IC] = [H2CO3] + [HCO3
−
] + [CO3

2−
] is the total amount of inorganic carbon. Note that the 

photolysis quantum yield of 
•
OH  by nitrite photolysis, )(2 λ

−

•ΦNO

OH
, depends on wavelength. The 

wavelength-dependent data of )(2 λ
−

•ΦNO

OH
 are reported in Table 1.

29 

The calculation of the photon fluxes absorbed by CDOM, nitrate and nitrite requires to take into 

account the mutual competition for sunlight irradiance, also considering that CDOM is the main 

absorber in the UV region where also nitrite and nitrate absorb radiation. 

Considering that the ratio of the photon flux density absorbed by a species i at the wavelength λ 

(pa
i
(λ), where i = CDOM, nitrate or nitrite) to the total photon flux density absorbed by the solution 

(pa
tot

(λ)) is equal to the ratio of the respective absorbances (Ai(λ) and Atot(λ), respectively),
21

 the 

following equations hold for the different 
•
OH sources: 

 

lAAtot ⋅= )()( 1 λλ         (19) 

][)()( 333

−
−− ⋅⋅= NOlA NONO λελ        (20) 

][)()( 222

−
−− ⋅⋅= NOlA NONO λελ        (21) 

)()()()()( 23 λλλλλ totNONOtotCDOM AAAAA ≈−−= −−     (22) 

)101()()(
)(λλλ totAtot

a pp
−−⋅°=        (23) 
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)()]([)()()( 1 λλλλλ tot

atotCDOM

tot

a

CDOM

a pAApp ≈⋅⋅= −     (24) 

1

2

2 )]([)()()( −
−

− ⋅⋅= λλλλ totNO

tot

a

NO

a AApp      (25) 
1

3

3 )]([)()()( −
−

− ⋅⋅= λλλλ totNO

tot

a

NO

a AApp      (26) 

 

The path length l is related to the water depth d, but it is not equal to d. It also depends on solar 

zenith angle and on radiation refraction by water, as already shown in section 2.2. The sunlight 

spectrum p°(λ) is referred to a unit surface area (units of Einstein s
−1

 nm
−1

 cm
−2

, see Figure 5), and 

the values of pa
i
(λ) are expressed in the same units. To avoid problems in rate calculation, the 

absorbed photon fluxes i

aP  (in Einstein L
−1

 s
−1

 units) should be obtained as follows (note that 1 L = 

10
3
 cm

3
):

30 

 

∫
−=

λ

λλ dplP
CDOM

a

CDOM

a )(10 13       (27) 

∫
−−− =

λ

λλ dplP
NO

a

NO

a )(10 2132        (28) 

∫
−−− =

λ

λλ dplP
NO

a

NO

a )(10 3133        (29) 

 

Accordingly, having as input data l, A1(λ), [NO3
−
], [NO2

−
] and p°(λ) (the latter referred to a 22 W 

m
−2

 sunlight UV irradiance, see Figure 5), it is possible to model the expected tot

OH
R•  of the sample. 

The photogenerated 
•
OH radicals could react either with X or with the natural scavengers present in 

surface water (mainly organic matter, bicarbonate, carbonate and nitrite). The natural scavengers 

have the following 
•
OH scavenging rate constant:

24 

 

Σi kSi [Si] = 2×10
4
 NPOC + 8.5×10

6
 [HCO3

−
] + 3.9×10

8
 [CO3

2−
] + 1.0×10

10
 [NO2

−
]  (30) 

 

where the units of Σi kSi [Si] are [s
−1

], NPOC is expressed in mg C L
−1

, and the other concentration 

values are in molarity. By applying the steady-state approximation to [
•
OH], the reaction rate 

between X and 
•
OH can be expressed by competition for the hydroxyl radical between X and the 

other scavengers, as follows:
24 

 

 
∑

•

•

•

=
i iSi

OHXtot

OH

OH

X
Sk

Xk
RR

][

][
,

        (31) 

 

where 
OHX

k •
,

 is the second-order reaction rate constant between X and 
•
OH and [X] is a molar 

concentration. Note that, in the vast majority of the environmental cases, one would have 
OHX

k •
,

 [X] 

« Σi kSi [Si]. The pseudo-first order degradation rate constant of X is OH

Xk
•

 = 
OH

XR
•

 [X]
−1

, and the 

half-life time of X for reaction with 
•
OH is OH

Xt
•

 = ln 2 ( OH

Xk
•

)
−1

. Note that OH

Xk
•

 is a pseudo-first 

order rate constant, while 
OHX

k •
,

 is a second-order one. The time OH

Xt
•

 is expressed in seconds of 
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continuous irradiation under sunlight, at 22 W m
−2

 UV irradiance. As already done in the case of 

the direct photolysis, it is possible to express the half-life time in SSD (summer sunny day) units, as 

follows:  

 

OHX

tot

OH

i iSi

OHX

tot

OH

i iSiSSD

OHX kR

Sk

kR

Sk

••••

•

∑∑ −⋅=
⋅

=
,

5

,

4,

][
109.1

106.3

][2ln
τ      (32) 

 

 

2.6. Modelling the formation and reactivity of 
3
CDOM* in surface waters.  

 

The formation of the excited triplet states of CDOM (
3
CDOM*) in surface waters is a direct 

consequence of radiation absorption by CDOM.
31-34

 In aerated solution, 
3
CDOM* could undergo 

thermal deactivation or reaction with O2, and a pseudo-first order quenching rate constant 
*3

CDOM
k  = 

5×10
5
 s

−1
 has been observed.

35
 The quenching of 

3
CDOM* would be in competition with the 

reaction between 
3
CDOM* and X: 

 

CDOM + hν → 
3
CDOM*        (33) 

3
CDOM* (O2)→ Deactivation and 

1
O2 production    (34) 

3
CDOM* + X → Products        (35) 

 

In the Rhône delta waters it has been found that the formation rate of 
3
CDOM* is 

*3
CDOM

R  = 

1.28×10
−3

 CDOM

aP .
36

 Considering the competition between the reaction (35) with X and other 

processes (reaction 34), and applying the steady-state approximation to [
3
CDOM*], the following 

expression for the degradation rate of X by 
3
CDOM* is obtained: 

 

*

*,

*

*

3

3

3

3 ][

CDOM

CDOMX

CDOM

CDOM

X
k

Xk
RR

⋅
⋅=       (36) 

 

where 
*,

3
CDOMX

k  is the second-order reaction rate constant between X and 
3
CDOM*. In a pseudo-

first order approximation, the first-order rate constant is *3CDOM

Xk  = 
*3CDOM

XR  [X]
−1

 and the half-life 

time is *3CDOM

Xt  = ln 2 ( *3CDOM

Xk )
−1

 (note again that *3CDOM

Xk  is a pseudo-first order reaction rate 

constant, while 
*,

3
CDOMX

k  is a second-order one). Considering the usual conversion (≈ 10 h) between 

a constant 22 W m
−2

 sunlight UV irradiance and a SSD unit, one gets the following expression for 

the half-life time of X upon reaction with 
3
CDOM* (remembering 

that ∫
−=

λ

λλ dplP
CDOM

a

CDOM

a )(10 13 ): 
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∫⋅
⋅

=

λ

λλ
τ

dpk

l
CDOM

aCDOMX

SSD

CDOMX
)(

52.7

*,

*,
3

3       (37) 

 

Note that 7.52 = (ln 2) 
*3CDOM

k  (1.28⋅10
−3

 ⋅ 3.60⋅10
4
 ⋅ 10

3
)
−1

. 

 

 

2.7. Modelling the formation and reactivity of 
1
O2 in surface waters. 

 

The formation of singlet oxygen in surface waters arises from the energy transfer between ground-

state molecular oxygen and the excited triplet states of CDOM (
3
CDOM*). Accordingly, irradiated 

CDOM is practically the only source of 
1
O2 in surface waters.

37-39
 The main 

1
O2 sink is the energy 

loss to ground-state O2 by collision with the water molecules, with a pseudo-first order rate constant 

2
1O

k  = 2.5⋅10
5
 s

−1
.
40

 The dissolved species, including the dissolved organic matter that is certainly 

able to react with 
1
O2, would play a minor to negligible role as sinks of 

1
O2 in the aquatic systems.

36
 

The main processes involving 
1
O2 and X in surface waters would be the following: 

 
3
CDOM* + O2 → CDOM + 

1
O2       (38) 

1
O2 + H2O → O2 + H2O + heat       (39) 

1
O2 + X → Products        (40) 

 

In the Rhône delta waters it has been found that the formation rate of 
1
O2 by CDOM is CDOM

O
R

2
1  = 

1.25⋅10
−3

 CDOM

aP .
36

 Considering the competition between the deactivation of 
1
O2 by collision with 

the solvent (reaction 39) and the reaction (40) with X, and applying the usual steady-state 

approximation to [
1
O2], one gets the following expression for the degradation rate of X by 

1
O2: 

 

2
1

2
1

2
1

2
1 ][

,

O

OXCDOM

O

O

X
k

Xk
RR

⋅
⋅=         (41) 

 

In a pseudo-first order approximation, the pseudo-first order rate constant is 2
1O

Xk  = 2
1O

XR  [X]
−1

 and 

the half-life time is 2
1O

Xt  = ln 2 ( 2
1O

Xk )
−1

. Considering the usual conversion (≈ 10 h) between a 

constant 22 W m
−2

 sunlight UV irradiance and a SSD unit, the following expression is obtained for 

the half-life time of X upon reaction with 
1
O2 (remembering that CDOM

O
R

2
1  = 1.25⋅10

−3
 CDOM

aP  and 

that ∫
−=

λ

λλ dplP
CDOM

a

CDOM

a )(10 13 ): 

 

∫⋅
⋅

==

λ

λλ
τ

dpk

l

kR CDOM

aOXOX

CDOM

O

SSD

OX
)(

85.381.4

2
1

2
1

2
1

2
1

,,

,
     (n.42) 
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Note that 3.85 = (ln 2) 
2

1O
k  (1.25⋅10

−3
 ⋅ 3.60⋅10

4
 ⋅ 10

3
)
−1

. 

 

2.8. Modelling the formation and reactivity of CO3
−−−−•••• in surface waters. 

 

The radical CO3
−•

 can be produced upon oxidation of carbonate and bicarbonate by 
•
OH, upon 

carbonate oxidation by 
3
CDOM*, and possibly also from irradiated Fe(III) oxide colloids and 

carbonate.
41-43

 However, as far as the latter process is concerned, there is still insufficient 

knowledge about the Fe speciation in surface waters to enable a proper modelling. The main sink of 

the carbonate radical in surface waters is the reaction with DOM, which is considerably slower than 

that between DOM and 
•
OH.

41,44
  

 
•
OH + CO3

2−
 → OH

−
 + CO3

−•
  [k43 = 3.9×10

8
 M

−1
 s

−1
]   (43) 

•
OH + HCO3

−
 → H2O + CO3

−•
  [k44 = 8.5×10

6
 M

−1
 s

−1
]   (44) 

3
CDOM* + CO3

2−
 → CDOM

−•
 + CO3

−•
  [k45 ≈ 1×10

5
 M

−1
 s

−1
]    (45) 

DOM + CO3
−•

 → DOM
+•

 + CO3
2−

  [k46 ≈ 10
2
 (mg C)

−1
 s

−1
]   (46) 

 

The formation rate of CO3
−•

 in reactions (43,44) is given by the formation rate of 
•
OH times the 

fraction of 
•
OH that reacts with carbonate and bicarbonate, as follows:

42 

 

][CO103.9][HCO108.5][NO101.0NPOC10.02

][CO103.9][HCO108.5
RR

2

3

8

3

6

2

104

2

3

8

3

6
tot

OH3
−−−

−−

⋅⋅+⋅⋅+⋅⋅+⋅⋅

⋅⋅+⋅⋅
⋅= •

•

•−

OH

CO
  (47) 

 

The formation of CO3
−•

 in reaction (45) is given by: 

 
CDOM

CO •−
3

R
CDOM

a

2

3

3 P][CO106.5 ⋅⋅⋅= −−
       (48) 

 

The total formation rate of CO3
−•

 is =•−

tot

CO3

R +
•

•−

OH

CO3

R CDOM

CO •−
3

R . The transformation rate of X by CO3
−•

 

is given by the fraction of CO3
−•

 that reacts with X, in competition with reaction (46) between 

CO3
−•

 and DOM (as usual, the steady-state approximation is applied to [CO3
−•

]): 

 

NPOCk

][kR
R

46

, 333

⋅

⋅⋅
=

•−•−•− X
COX

tot

COCO

X         (49) 

 

where •−
3,

k
COX

 is the second-order reaction rate constant between X and CO3
−•

. In a pseudo-first 

order approximation, the first-order rate constant is 
•−

3CO

Xk  = 
•−

3R
CO

X  [X]
−1

 and the half-life time is 
•−

3CO

Xt  = ln 2 (
•−

3CO

Xk )
−1

. Considering the usual conversion (≈ 10 h) between a constant 22 W m
−2

 

sunlight UV irradiance and a SSD unit, the following expression is obtained for the half-life time of 

X upon reaction with CO3
−•

: 
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⋅

⋅
⋅⋅=

•−•−

•−

−

33

3

,

tot

465

, kR

NPOCk
109.1

COXCO

SSD

COX
τ        (50) 

 

Note that 1.9⋅10
−5

 = ln 2 (3.6⋅10
4
)
−1

. 

 

 

2.9. Formation of intermediates from the xenobiotic X  

 

In the photochemical process ph (direct photolysis or reaction with 
•
OH, 

1
O2, CO3

−•
, 

3
CDOM*), the 

compound X could produce the intermediate I with yield ph

IXy → , experimentally determined as the 

ratio between the initial formation rate of I and the initial transformation rate of X. The pseudo-first 

order rate constant of I formation in the process ph is ph

X

ph

IX

ph

IX kyk →→ =)'( , where ph

Xk  is the (model-

derived) first-order transformation rate constant of X in the process ph. The production of I from X 

often takes place via more than one process. Therefore, the overall rate constant of I formation is:
45

  

 

∑∑ →→→ ==
ph

ph

X

ph

IXph

ph

IXIX kykk )(')()'(       (n.51) 

 

One can also obtain the overall yield of I formation from X ( IXy → ), as: 

 

∑
∑ →−

→ ==
ph

ph

X

ph

ph

X

ph

IX

XIXi
k

ky
kky

)(
)()'( 1

      (n.52)    

 

2.10 The meaning of water depth in the model 

 

An important issue is that the model was not designed to make depth profiles of the transformation 

kinetics of X or of the formation of intermediates. Therefore, when setting depth (d, which defines 

the sunlight path length l) as a variable, one actually compares different water bodies, each with its 

own depth value. This means that for, e.g., 1 m depth the model returns the average Xk  or Xτ  in the 

first 1 m of the water column. It should be underlined that they are the average rate constant and 

half-life time in the first 1 m of the column and not the point values at 1 m. The transformation 

kinetics of dissolved species is obtained in the hypothesis of thorough mixing in the water column, 

because the model applies to well-mixed shallow waters or to the top mixing layer of stratified 

water bodies. A key issue is that, if one wants to determine the photochemical reaction kinetics in 

the first 1 m of the water column, the needed value is the average Xk  or Xτ  (as determined by the 

model), and not the point value at 1 m (which is only referred to that depth and not to the whole 

water column). 
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2.11. Main approximations of the model 

 

Surface waters represent an extremely complex and varied series of environments and the present 

attempt to describe their photochemical behaviour had to include a number of assumptions and 

approximations. The main ones are listed below. 

 

• The model considers well-mixed water. Therefore, it applies to shallow water environments and 

to the well-mixed epilimnion of stratified ones. 

• The Lambert-Beer approximation does not take radiation scattering into account. Therefore, the 

model applies to clear waters rather than to highly turbid ones. 

• The data on which the modelling of surface-water absorption spectrum is based (equation 3) 

were obtained for lake water in NW Italy.
18

 There is evidence that applicability is much wider, 

but one will obtain more accurate results for a particular environment if the actual water 

spectrum is available. 

• The quantum yields for the formation of 
•
OH by CDOM are average values for NW Italian 

lakes.
18

 Those of 
1
O2 and 

3
CDOM* have been obtained in the Rhône delta (S. France),

36
 that of 

CO3
−•

 formation from 
3
CDOM* is from Lake Greifensee (Switzerland).

41,42
 In different 

environments, different values may be found. The best scenario is obviously the availability of 

data measured in the water environment that one wants to study. 

• The scavenging rate constants of 
•
OH and CO3

−•
 by DOM are average values from the 

literature.
18,25,41,42

 The same consideration as above also applies here. 

 

Despite its approximations, the model could be quite useful for laboratory scientists who measure 

the photochemical degradation of pollutants, and who would like to have an assessment of the 

environmental significance of their findings. The possibility to model the water absorption spectrum 

instead of having to use experimentally measured data could be particularly useful, if one wants to 

see the significance of different photochemical pathways under variable conditions. 

In contrast, if one wants to describe a particular environment, the best way to increase the 

accuracy of the results is to use measured values from that environment. Such values are water 

absorption spectrum, formation quantum yields of 
•
OH, 

1
O2, CO3

−•
 and 

3
CDOM* by CDOM, and 

scavenging rate constants of 
•
OH and CO3

−•
 by DOM. 
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2.12. Seasonal corrections at mid latitude 

 

The standard time unit used in the model output is the SSD, summer sunny day, corresponding to 

fair-weather 15 July at 45°N latitude.
25

 Therefore, half life times are expressed in SSD units and 

first-order rate constants in SSD
−1

. As a consequence, the results apply to mid-latitude summertime 

conditions. 

If an (approximated) insight is needed into the behaviour that a compound may have at mid 

latitude in different seasons, it is possible to take into account the monthly variations of sunlight 

irradiance. Assume p°(λ) as the incident spectral photon flux density of sunlight at mid latitude in a 

given month of the year (15
th

 day of that month).
11

 The incident photon flux Po can be calculated as 

the integral over wavelength of p°(λ) for different spectral ranges:
21

 290-320 nm (UVB), 320-400 

nm (UVA) and 300-450 nm, where most absorption of sunlight by CDOM takes place. The July 

results are equivalent to a SSD and the results for the other months can be normalised to those of 

July. Therefore, one can obtain a SSD-normalised photon flux ℘°  for the relevant spectral range, 

which represents the numerical value by which the July rate constants should be multiplied and the 

July half-life times divided to obtain representative photoreactivity values in a given month. The 

equations used to calculate ℘°  are reported below. 

 

λλ
λ

dpP monthmonth ∫ °=° )]([][         (52) 

July

month
month

P

P

][

][
][

°

°
=℘°          (53) 

 

The following Table 2 reports the values of ℘°  for the different months of the year at mid latitude, 

for three spectral ranges. Note that ℘°  = 1 at 15 July (where 1 day = 1 SSD). The ℘°  values 

reported in Table 2 are referred to different spectral ranges that affect different photosensitisers. In 

fact, the UVB values can be applied to nitrate photolysis, the UVA ones to nitrite and those at 300-

450 nm to CDOM. In the case of reactions induced by 
1
O2 and 

3
CDOM* that are produced by 

CDOM, rate constants should be multiplied by the ℘°  values at 300-450 nm (and half-life times 

divided by the same values). In the case of 
•
OH that is produced by nitrate, nitrite and CDOM, the 

three different contributions should be corrected by the UVB, UVA and 300-450 nm values, 

respectively. The radical CO3
−•

 is mostly produced by oxidation of carbonate and bicarbonate by 
•
OH, thus the corrections for CO3

−•
 are the same as for 

•
OH. Finally, in the case of direct photolysis 

the correction would depend on the spectral range where the relevant compound mostly absorbs 

sunlight (UVB, UVA or extended into the visible). Depending on compound absorption, the most 

relevant ℘°  value should be chosen. 
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2.13. Model validation 

 

The model described so far has been applied to the photochemical fate of a variety of xenobiotic 

compounds in surface waters. It was validated by comparison between its predictions and field data 

of photochemical transformation, when available. Table 3 reports the comparisons that have been 

carried out so far, which show a good agreement between model predictions and the available field 

data. 

 

 

3. The APEX software (Aqueous Photochemistry of Environmentally-occurring 

Xenobiotics) 

 

APEX is a software tool to model photochemical processes in surface waters. It is based on Octave, 

an Open Source and freely available mathematics software (http://www.gnu.org/software/octave).
54

 

APEX is freely available as Electronic Supplementary Information (ESI) of Ref. 24. For using 

APEX, Octave should be downloaded and installed. It has been developed for Linux, but Windows 

versions of Octave are also available for free download. After download and installation, one has to 

launch Octave and run APEX within Octave.  

APEX is based on a series of functions: plotgraph.m (data input and 3D graph plot), savetable.m 

(data input and generation of a table with numerical output data), apex.m (model calculations), 

Integral.m (numerical integration). In addition, apexvec.m is used to produce the output format by 

both Plotgraph and Savetable. Finally, part of the input data are contained in a .csv file [24]. Figure 

6 gives insight into the flow of information within APEX.  

Two additional files (Excel sheets) are provided in the APEX package, namely Apex_Season.xls 

(which computes seasonal data based on the approach reported in section 2.12) and Apex_Errors.xls 

(which computes the model uncertainty). Among the input data, those concerning the 

photochemical reactivity of the target compound are derived from experiments and they are affected 

by error. Further uncertainty is related to the experimentally-derived values of quantum yields of 

photochemical reactions used in model calculations (referred to CDOM, nitrate and nitrite), and to 

the values of scavenging or deactivation rate constants for 
•
OH, CO3

−•
, 

1
O2 and 

3
CDOM*. All the 

relevant error sources combine to produce an overall uncertainty that can be assessed at the σ level 

by use of Apex_Errors.xls. 

 

3.1. Input data for APEX 

 

Key input data for the software are those describing the photochemical reactivity of the xenobiotic 

compound of interest: absorption spectrum, photolysis quantum yield and second-order reaction rate 

constants with 
•
OH, CO3

−•
, 

1
O2 and 

3
CDOM*. In some cases the needed data are available from the 

literature.
32,41,55

 To fill up possible gaps, an experimental protocol has been developed for the 
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experimental determination of all needed parameters.
56

 Such a protocol has been applied for 

instance to all the compounds listed in Table 3 and it is described in the relevant references. It is 

possible to adapt the protocol to compounds undergoing acid-base equilibria in the environmental 

pH range, as it is the case for instance of the sunlight filter benzophenone-4 (pKa ~ 7).
57 

Some input data depend on the wavelength, such as the absorption spectrum (molar absorption 

coefficients) of the target compound. These data are included in tabular form in an input .csv file, 

which also contains the molar absorption coefficients of nitrate and nitrite, the wavelength trend of 

the quantum yield of 
•
OH generation by nitrite, and a standard spectral photon flux density of 

sunlight (the same of the model, see Figure 5).
 

In the .csv input file it is also possible to include, if available, the photolysis quantum yield of 

the target compound (with the possibility to report wavelength-dependent values if applicable or 

known) and the absorption spectrum of water, expressed as the absorbance over an optical path 

length of 1 cm. Considering that photochemical reactions are faster near the water surface,
58

 the 

absorption spectrum of a water sample taken from the surface layer should be inserted here, if 

available. If such a spectrum is not available, the software will model it on the basis of the content 

of dissolved organic carbon (DOC, also named NPOC, non-purgeable organic carbon). Water 

spectrum modelling uses equation (3), which predicts an exponential decrease of the absorbance 

with increasing wavelength, as usually observed.
59

 To tell the software that the absorption spectrum 

is to be modelled instead of taken from the input file, one should insert “-1” overall in the file 

column related to the water absorbance. 

As far as the direct photolysis quantum yield of the xenobiotic compound is concerned, there is 

the possibility to insert wavelength-dependent values, a constant value throughout, or to define the 

quantum yield as a variable if its value is not known. Definition of the quantum yield as variable 

should be made within the plotgraph and savetable functions. To enable this, one should insert “-1” 

in the whole quantum yield column of the input .csv file, otherwise the software will read with 

priority the data contained in that column.  

 

3.2. Plotgraph function  

 

This function is provided as a file (plotgraph.m) that can be opened and modified with standard 

text/notepad applications. Use of word processors is not recommended because they could add text 

strings when saving the files, which could cause errors when running APEX. 

The plotgraph function draws a 3D plot, and the X and Y variables have to be chosen among 

parameters of water chemistry and photochemical reactivity of the target compound. The relevant 

water parameters are the path length of sunlight (depth dependent, see Figure 4), the molar 

concentration values of nitrate, nitrite, carbonate and bicarbonate, and the DOC or NPOC value 

(units of mg C L
−1

). The reactivity parameters are the photolysis quantum yield (if not already 

specified in the input .csv file), the second-order reaction rate constants between the target 

compound and 
•
OH, CO3

−•
, 

1
O2 and 

3
CDOM*, and (if available) the formation yields of an 
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intermediate via the relevant photochemical pathways. Note that the reactivity data of the parent 

compound are needed to calculate intermediate formation kinetics, while the yields of the 

intermediate are not required to compute the transformation kinetics of the parent compound. 

For each of the parameters related to water chemistry, compound photoreactivity or 

intermediate formation, one should either insert a known (or hypothesised) numerical value, or 

define the relevant quantity as X or Y variable (the label of the X variable is "-1" for the selected 

quantity, and "-2" for Y). For X and Y one should also define the range of variation, namely 

minimum and maximum values as well as step size. The format is minimum:step:maximum. The 

step size defines the grid density of the plot. A smaller step (higher density) enables better 

resolution but it also requires longer computational time. Indeed, if the step size of both X and Y is 

decreased by a factor of 10, the number of calculations (and time as a consequence) is multiplied by 

100. 

The Z variable to be plotted as a function of X and Y can be chosen within a list of 36 possible 

options (half-life times, pseudo-first order decay constants, fractions of degradation accounted for 

by a particular photochemical pathway, rate constants and yields of intermediate formation), which 

are referred to either a single photochemical pathway (e.g. 
•
OH or 

1
O2) or to the overall 

photochemical behaviour of the substrate or intermediate. Note that the time unit of APEX is the 

summer sunny day (SSD). 

Within plotgraph one should also specify the name of the input .csv file. At this point, in most 

cases the procedure is over. However, the file also contains values of the quantum yields of 
•
OH, 

CO3
−•

, 
1
O2 and 

3
CDOM* generation by irradiated CDOM. They have been derived from studies 

dealing with irradiation of natural water samples,
36,41,60

 but the relevant values could change in 

different environments. Therefore, if one needs to use CDOM-related quantum yields that have 

been measured in a particular environment, the existing data can be modified. 

 

3.3. Savetable function 

 

This function is intended to produce a table instead of a plot, out of the same calculations. Many 

issues already cited in the case of plotgraph hold here as well: choice of the X and Y variables and 

definition of their range and step size; introduction of numerical values for the additional 

parameters related to water chemistry and substrate photoreactivity/intermediate formation; 

definition of the name of the input .csv file. The savetable.m file can be opened, modified and saved 

with the same applications used for plotgraph.m. 

The main difference is that here one has not to choose the Z variable, because all the possible 

output quantities (half-life times, pseudo-first order rate constants, steady-state concentrations and 

so on) will appear in the output table. An advantage that can be connected with the use of savetable 

compared to plotgraph is the availability of the actual numerical values. These values allow further 

calculations to be carried out, including model errors and seasonal trends as well as the possible 

photochemical formation and reactivity of additional transient species not included in the original 
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model (e.g. 
•
NO2, Br2

−•
 and Cl2

−•
).

57,61-63 

A further similarity with plotgraph is that the formation quantum yields of 
•
OH, CO3

−•
, 

1
O2 and 

3
CDOM* by CDOM are also reported in savetable. If needed, the existing values can be modified 

with new ones, derived for instance by irradiation of water samples from a definite environment. 

This will improve the accuracy of model predictions for photochemical processes taking place in 

that environment. 

 

3.4. Application of APEX to the phototransformation of atrazine 

 

Atrazine is transformed in surface waters mainly by direct photolysis (quantum yield of 

(1.6±0.2)⋅10
−2

) and reactions with 
•
OH (second-order rate constant of (2.7±0.3)⋅10

9
 M

−1
 s

−1
) and 

3
CDOM* ((1.4±0.1)⋅10

9
 M

−1
 s

−1
). The intermediate DEAOH (4-amino-2-hydroxy-6-

isopropylamino-1,3,5-triazine) is formed from ATZ by direct photolysis (yield 0.10±0.01) and 

reaction with 
•
OH (yield (8.6±4.6)⋅10

−2
). The DEAOH yields of other processes are negligible.

53 

Figure 7 shows the modelling of atrazine transformation and DEAOH formation, as a function 

of nitrate concentration and DOC. The plots were obtained by applying the plotgraph function, with 

the above photochemical parameters and the atrazine absorption spectrum. The pseudo-first order 

rate constant of ATZ transformation (Figure 7a) has a minimum as a function of DOC, because of 

the prevalence of direct photolysis and 
•
OH reaction at low DOC and of 

3
CDOM* at high DOC. 

Indeed, organic matter inhibits both direct photolysis and reaction with 
•
OH, the former because of 

competition for irradiance between ATZ and CDOM and the latter because of 
•
OH scavenging by 

DOM. Furthermore, high DOC also implies high CDOM that understandably enhances the 
3
CDOM*-mediated processes. The fact that 

3
CDOM* is not involved in DEAOH formation 

explains why, differently from ATZ, the DEAOH rate constant steadily decreases with increasing 

DOC (Figure 7b).  

The used time unit (SSD) is referred to mid-latitude summertime conditions. The 

photodegradation kinetics in different seasons is understandably slower,
64,65

 and it can be 

approximately assessed by using the file Apex_Season.xls. An example of the results that can be 

obtained by use of the Apex_Season.xls file is reported in Figure 8 for atrazine, where the half-life 

time is plotted in the different months (the ±σ error bars are obtained by using the Apex_Errors.xls 

file for each monthly value of the half-life time).  
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4. Conclusions 

 

This chapter has shown that is it possible to model the photochemical transformation kinetics of 

xenobiotics in surface waters, based on a number of photochemically significant parameters 

concerning the xenobiotic itself (absorption spectrum, direct photolysis quantum yield, second-

order reaction rate constants with 
•
OH, CO3

−•
, 

1
O2 and 

3
CDOM*) and on environmental variables 

(water depth, DOC, concentration values of nitrate, nitrite, carbonate and bicarbonate). The 

environmental variables define the ability of the water body to attenuate sunlight in the water 

column and/or to photochemically produce reactive transient species, while the photochemical 

parameters of the xenobiotic compound measure its ability to react via the different photochemical 

reaction pathways. Furthermore, if the formation yields of an intermediate of interest through the 

various photochemical processes are known, it is possible to predict its formation kinetics in the 

same environment. 

All of the above calculations can be carried out using the APEX software (Aqueous 

Photochemistry of Environmentally-occurring Xenobiotics). The software is also able to predict the 

seasonal trends of the phototransformation kinetics and to assess the uncertainty of the model 

output. 
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Table 1. Values of the quantum yield of 
•
OH photoproduction by nitrite, for different wavelengths 

of environmental significance. 

 

λ, nm )(2 λ
−

•ΦNO

OH
 λ, nm )(2 λ

−

•ΦNO

OH
 λ, nm )(2 λ

−

•ΦNO

OH
 

292.5 0.0680 315.0 0.061 350 0.025 

295.0 0.0680 317.5 0.058 360 0.025 

297.5 0.0680 320.0 0.054 370 0.025 

300.0 0.0678 322.5 0.051 380 0.025 

302.5 0.0674 325.0 0.047 390 0.025 

305.0 0.0668 327.5 0.043 400 0.025 

307.5 0.066 330.0 0.038 410 0.025 

310.0 0.065 333.3 0.031 420 0.025 

312.5 0.063 340.0 0.026 430 0.025 

 

 

 

 

Table 2. Values of ℘°  (SSD-normalised photon flux) for different spectral ranges and different 

months. 

 

SSD-normalised photon flux ℘°  (mid latitude) 
Month 

UVB (300-320 nm) UVA (320-400 nm) 300-450 nm 

January 0.0673 0.197 0.214 

February 0.168 0.352 0.370 

March 0.389 0.596 0.604 

April 0.720 0.862 0.860 

May 0.924 0.979 0.966 

June 1.05 1.03 1.01 

July 1.00 1.00 1.00 

August 0.985 0.934 0.928 

September 0.596 0.664 0.671 

October 0.303 0.421 0.439 

November 0.101 0.220 0.238 

December 0.040 0.129 0.143 
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Table 3. Comparison between model predictions and field data, for different compounds and 

different locations. 

 

Substrate 
t½, model 

(days) 
t½, field (days) Location Reference 

2,4-Dichloro-6-

nitrophenolate 

 
6.3±2.3 8.4±0.5 Rhône delta (S. France) 46 

 

Ibuprofen 

 
58±9 60-110 Greifensee (Switzerland) 47, 48 

4-Chloro-2-

nitrophenolate 

 
5.5±1.5 6.4±0.3 Rhône delta (S. France) 49, 50 

 

Carbamazepine 

 
115±40 140±50 Greifensee (Switzerland) 45, 48 

 

MCPA 

 
12±1 10±2 Rhône delta (S. France) 51 

Atrazine 
17±4 

64±18 

20-21 

67-100 

Chesapeake Bay, MD, 

USA (2 sites) 
52, 53 
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Figure 1. Left: schematic of the sunlight path length in the atmosphere. Right: dependence of the l/h 

ratio on the solar zenith angle z. 

 

 

  

 

Figure 2. Sunlight irradiance at the ground in different months of the year (50°N latitude). 
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Figure 3. Refraction of sunlight at the air-water interface. z: solar zenith angle; θ: refraction angle; 

d: water depth; l: path length of sunlight in water. 



 26

 

 

 

 

Figure 4. Values of ψ as a function of month and latitude, for the local solar noon. The latitude 

value (northern hemisphere) is specified near each curve.  

 

 

 

 

 

Figure 5. Sunlight spectral photon flux density at the water surface per unit area. The 

corresponding UV irradiance is 22 W m
−2

. 
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Figure 6. Structure of the APEX software. 

 

 

 

 

 

Figure 7. (a) Pseudo-first order degradation rate constant of atrazine (ATZ) as a function of nitrate 

concentration and of DOC. Other conditions: 2 m path length, 1 µM nitrite, 1 mM 

bicarbonate, 10 µM carbonate. 

(b) Pseudo-first order formation rate constant of 4-amino-2-hydroxy-6-isopropylamino-

1,3,5-triazine (DEAOH) as a function of nitrate and DOC. Other conditions are as above. 
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Figure 8. Modelled half-life time of atrazine in different months of the year. Water conditions: 2 

mM nitrate, 20 µM nitrite, 1 mg C L
−1

 DOC, 1 mM bicarbonate, 10 µM carbonate, 4.3 m path 

length of sunlight. 



11.1. Introduction

Photoalteration processes are known to

TS:1

play an important role in regards
to the abiotic transformatAQ:2 ion of organic micro-pollutants. Numerous
studies have documented the photochemical fate of a wide array of micro-
pollutants, such as pesticides, pharmaceuticals, sunscreens, UV-filters, via
direct and/or indirect pathways.

Direct photolysis occurs when a contaminant directly absorbs light and
undergoes a chemical reaction depending on its chemical structure. The
presence of aromatic rings and conjugated p systems, as well as various
functional groups and heteroatoms, facilitate the direct absorption of solar
radiation.1 Indirect photolysis proceeds when chemical species (photo-
sensitizers) absorb light and become electronically excited and either react
directly with the contaminant or form reactive intermediates which further
transform the micro-pollutant. Indirect photolysis mechanisms play an
important role in the overall photolytic fate of organic contaminants, espe-
cially for those that do not appreciably absorb light above 290 nm.2 It is
apparent that indirect processes in natural waters are more complicated and
are much harder to predict, as contaminants can react viamultiple pathways
through interaction with naturally occurring photo-generated transient
species. Many studies have shown that dissolved organic matter (DOM),
nitrate/nitrite, iron ions, as well as bi/carbonate and halide ions, play an
important role in the photolytic behavior of organic micro-pollutants and
may either enhance or inhibit their phototransformation.3–5

In this context, studies regarding indirect photolysis of a molecule are
rather difficult, and usually the methods utilized to study the photochemical
fate were based on univariate analysis. In order to provide a more realistic
description of real-life photoinduced transformations in natural waters,
multivariate methods have been set forth based on response surface
methodology (RSM) and experimental design (chemometric methods).6,7

Such statistical analyses are more efficient, since they account for inter-
action effects between the studied variables and may explain more accurately
the relevant environmental data to understand and/or predict photolytic fate
processes of organic micro-pollutants in natural systems.

Recently, studies on organic micro-pollutant degradation in real or
simulated natural waters have been carried out to examine the interactions
between organic micro-pollutants and natural components in water.8–12

To this end, in the present chapter the sequential steps of RSM are
highlighted and an attempt was made to emphasize the study of diuron
phototransformation in natural waters, capitalizing on the potency of
chemometrics. Diuron, N0-(3,4-dichlorophenyl)-N,N-dimethylurea (DCMU) is
a herbicide derived from urea and is considered a priority hazardous sub-
stance by the European Commission.13 Diuron, is also used as an organic
booster biocide in some antifouling paint formulations and is reported
to be persistent in seawater, with reported half-lives ranging from 43 to
2180 days.14
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11.2. Building a Response Surface Methodology

11.2.1. Selection of Response Variables and Screening Experiments

A variable that can provide the necessary information in the assessment
of the performance of the process must be selected to be subjected to the
optimization procedure.

In experiments where photodegradation/phototransformation processes
are investigated, possible response(s) – dependent variable(s) – could be
percent of degradation, photodegradation rate constant or half-life (t1/2). On
the other hand, variables that affect the response – independent variables –
could be aqueous matrix (e.g. tap water, distilled, natural waters), photo-
sensitizers such as DOM, nitrate/nitrite, iron ions, as well as bi/carbonate
and halide ions. Among a multitude of parameters, it is important to select
the most important, whose effect on the process is most significant
(screening design). For this purpose, fractional factorial and Plackett–
Burman designs, all of them at two levels for each factor (k), are the most
widely used in the step of selection of variables.15

11.2.2. Choice of Optimization Design for Response Surface Methodology

The most important part, before applying the RSM methodology, is the
selection of an appropriate design of experiment (DOE). Several design
methods have been applied for optimization processes including pho-
tolysis, among them full factorial at three levels, central composite and
Box–Behnken. The main features of these DOEs used in RSM are presented.

11.2.2.1. Full Three Level Factorial Design
Three level full factorial design is a common experimental design where
input variables are set at three levels: low (ÿ), medium or center (0) and high
(þ). However, the bottleneck of the 3k design (3 levels, k parameters) is the
need for a large number of experimental runs, which may produce unwanted
high order interactions. Therefore 3k full factorial design is suggested to be
more appropriate if factors are less than five.

11.2.2.2. Central Composite Design
The central composite design (CCD) yields as much information as the 3k

full factorial design with a smaller number of experimental runs, and
therefore CCD is the most frequently used fractional factorial design for the
construction of a second-order response surface model. CCD consists of
three types of points: cube points that come from factorial design, axial
points and center points; therefore, the total number of experiments (N)
needed can be determined by N¼ 2kþ 2kþC0, where k is the number of
factors, 2k cubic runs, 2k axial runs and C0 center point runs. The center
point of CCD is often used to calculate experimental error. The main
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drawback of using CCD is time consuming design with large numbers
of factors.

11.2.2.3. Box–Behnken Design
Box–Behnken (BBD) design is for three levels of variables that are
evenly spaced. The number of experiments required (N) is given by
N¼ 2k(kÿ 1)þC0, where k is the number of variables and C0 is the number
of center points. The main advantage of using BBD is that this design avoids
extreme conditions of experiments. BBD is slightly more labor efficient
compared to CCD, however, it is restricted by the fact that the number of
experimental variables has to be equal to or higher than three, and it could
not be employed for fitting equations other than second-order polynomial.

11.2.3. Model Fitting

It is important to fit a mathematical model equation in order to describe the
behavior of the response in the experimental domain by selected DOE. As
RSM is mainly based on a second-order polynomial model, the experi-
menters should sequentially fit the first-order model to a second-order
polynomial model. The first-order model will be applicable when the
approximation of true functional relationship between response and the set
of independent variables has a relatively small region of interest. In another
sense, a first-order model uses a low-order polynomial model to divulge
some part of the response surface.AQ:3 Generally, this model is appropriate for
describing a flat surface, according to the equation:

R¼ b0þS biXiþ e (11.1)

In eqn (11.1), R is the response, b0 is the constant term, bi represents the
coefficients of the linear parameters, Xi represents the variables and e is the
random error or noise to the response. Sometimes, it is called main-effects
model because it includes only the main effects of the variables.

If interaction terms are included, the first-order model can then be rep-
resented as follows:

R¼ b0þSbiXiþSbijXiXjþ e (11.2)

where bij represents the coefficients of the interaction parameters Xi and Xj

and ioj.
If first-order or factor interaction models are not adequate for the

representation of true functional relationships with independent variables,
then a more highly structured, flexible and diversified functional forms
model, such as a second-order model, may be studied in order to locate the
optimum point. The second-order model can be expressed as follows:

R¼ b0þSbiXiþSbijXiXjþSbiiXi
2þ e (11.3)

where bii represents the coefficients of the quadratic parameter and ioj.
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of independent variables has a relatively small region of interest. In another
sense, a first-order model uses a low-order polynomial model to divulge
some part of the response surface.AQ:3



However, obtaining a significant model does not necessarily mean that it
explains correctly the variation in the data. Therefore, in order to determine
the adequacy of the model, analysis of variance (ANOVA) statistics, such
as residual analysis, F-test, t-test, R2, adjusted-R2, lack of fit, should be
evaluated.

11.2.4. Optimization

The traditional ‘‘trial-and-error’’ or univariate approach for optimization has
lots of drawbacks in relation to the absence of interaction effects, as well as
the efficiency to predict the true optimum.

The RSM is mainly based on second-order models; so a suitable way to
find the optimal location is through the graphical representation of the
model. The optimal value may correspond to a maximum, a minimum or a
value that can be determined by visual inspection of the predicted model
by either the three dimensional space graph or the two dimensional
contour plot.

However, this approach is more complicated when more than one re-
sponse is involved during the optimization process since the optimal values
for each response may be localized in different experimental regions. In such
cases, the desirability function is employed for optimization of multiple
responses. Harrington16 first developed the desirability function, which was
later modified by Derringer and Suich17 for specifying the relationship be-
tween predicted responses on a dependent variable and the desirability of
the responses.

The desirability is an objective function (D) that ranges from zero (low)
outside of the limits to one (maximum) at the goal. The numerical
optimization finds a point that maximizes the desirability function. The
characteristics of a goal may be altered by adjusting the weight or import-
ance of the factors based on experimenter desire. For several responses and
factors, all goals are transformed into one desirability function:

D¼ d1�d2�d3:::dnð Þ1 = n ¼
Y

n

i¼ 1

di

 !1=n

(11:4)

where di indicates the desirability of the response and n is the number of
responses in the measure.AQ:4 According to this, eqn (11.4) can be extended to

D¼ dv1
1 � dv2

2 � ::::::�dvn
n

� �1=n
; 0 � vi � 1 i¼ 1; 2 ::::: nð Þ;

X

n

i¼ 1

vi ¼ 1 (11:5)

where di indicates the desirability of the response yi (i¼ 1, 2, 3. . ..n) and vi
represents the importance of responses that varies from the least important
(vi¼ 1) to the most important (vi¼ 5). So, the maximum overall desirability
function, D, depends on the vi value.
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11.3. Photolytic Degradation of Diuron

11.3.1. Experimental

An analytical grade standard of diuron of high purity was obtained from
Riedel-de-Häen, (Seelze-Hannover, Germany) and was used without further
purification. A stock standard solution was prepared at 2000mg Lÿ1 in
methanol (HPLC grade). Sodium hydrogencarbonate (NaHCO3) and sodium
nitrate (NaNO3) were purchased from Riedel-de-Häen, while DOM was isol-
ated from Pamvotis Lake using the IHSS isolation method pre-established by
Thurman and Malcolm in 1981, by the so-called XAD technique.18 HPLC
analysis grade solvents were obtained from Merck (Darmstadt, Germany).
NaNO3, HCO3

ÿ and DOM stock solutions were diluted to achieve the re-
spective concentrations outlined in the experimental section. Natural water
samples used in the experiments were collected from the Epirus region of
NW Greece with the following physicochemical characteristics: Louros River,
DOM¼ 2.9mg Lÿ1, nitrate¼ 3.3mg Lÿ1, bicarbonate¼ 3.5 mM; Pamvotis
Lake, DOM¼ 10.3mg Lÿ1, nitrate¼ 11.1mg Lÿ1, bicarbonate¼ 4.4 mM.

11.3.2. Analysis

The LC system comprised a Shimadzu online DGU-14A degassing system
coupled to an FCV-10AL controller unit and an LC-10AD high-pressure solvent
delivery pump, with a 20 mL sample loop injector and a Shimadzu SPD-M10A
UV/diode-array detector (used at 250nm). The column material was a Dis-
covery C18 (Supelco), with 5 mm particles (25 cm – 4.6mm i.d.) with a guard
column of the same material (8mm – 3mm). The mobile phase consisted of
acetonitrile : water (HPLC-grade) 40 : 60% mixture. The flow rate was 1mL
minÿ1 and the volume injected 20 mL. The oven temperature was set to 40 1C.

11.3.3. Photolysis in Aqueous Solutions Under Simulated Solar Irradiation

The photochemical stability of diuron was tested using a Suntest CPSþ
photosimulator from Heraeus (Hanau, Germany), equipped with a xenon arc
lamp (1500 W) and special glass filters restricting the transmission of
wavelengths below 290 nm. The light source was on the top of the reactor
and an average irradiation intensity of 750 W mÿ2 was maintained
throughout the experiments, measured by an internal radiometer. Chamber
and black panel temperatures were regulated by a pressurized air-cooling
circuit and monitored using thermocouples supplied by the manufacturer.
The temperature of samples did not exceed 25 1C, using a tap water cooling
circuit for the photo-reactor.

Irradiation experiments were carried out by exposing 50mL of the aque-
ous solutions of diuron (10mg Lÿ1) under artificial solar irradiation
(Table 11.1). A dark control experiment was also conducted in this series of
experiments.
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11.3.4. Design of Experiment

An experimental factorial design of the reaction system was performed for
the photolytic transformation of diuron to assess the effect of natural water
constituents, namely nitrate, bicarbonate and DOM, on the photolytic
degradation rate. Multivariate design was performed according to the
methodology of response surface following the methodology described by
Fernandez et al.19 The initial concentrations of the photoreactants were
considered as the experimental variables and their actual and coded values
taken for the calculations appear in Table 11.1. DOM concentration range
was considered between 0.1 and 9.9mg Lÿ1, nitrate concentration range
varied from 0.1 to 19.9mg Lÿ1, while bicarbonate was selected between
0.8 and 4.2 mM. The above concentrations of photosensitizers were chosen
in order to resemble those commonly present in surface waters. Dark control
experiments showed no loss of diuron as it does not react with nitrate,
bicarbonate or DOM and there is no biodegradation.

The modeled response (Y) was the degradation percentage (%) of diuron
calculated after 48 h of simulated solar irradiation. The generation of the
experimental design, as well as the statistical evaluation of the results, was
performed by the STATISTICA 7.0 (StatSoft Inc., Tulsa, OK, USA) statistical
package.

The main effects – interaction effects as well as quadratic effects – were
evaluated through analysis of variance (ANOVA). p-values were used to
identify the significance of each variable on the photolytic degradation of
diuron. An effect was considered significant when it was above the standard

Table 11.1. Design matrix for three test variables in coded and natural units along
with the observed and the predicted responses of diuron photodegradation after 48 h

of simulated solar irradiation.

Bicarbonate (x1)
mM

Nitrate
(x2)mg Lÿ1

DOM
(x3)mg Lÿ1

Degradation%
(Yobs)

Degradation%
(Ycalc)

1 (ÿ1) 4.1 (ÿ1) 2.1 (ÿ1) 22 24
4 (þ1) 4.1 (ÿ1) 2.1 (ÿ1) 28 33

1 (ÿ1) 15.9 (þ1) 2.1 (ÿ1) 35 32

4 (þ1) 15.9 (þ1) 2.1 (ÿ1) 53 61

1 (ÿ1) 4.1 (ÿ1) 7.9 (þ1) 60 55
4 (þ1) 4.1 (ÿ1) 7.9 (þ1) 46 52

1 (ÿ1) 15.9 (þ1) 7.9 (þ1) 75 73

4 (þ1) 15.9 (þ1) 7.9 (þ1) 90 91
2.5 (0) 10.0 (0) 5.0 (0) 53 53

2.5 (0) 10.0 (0) 5.0 (0) 55 53

0.8 (ÿ1.68) 10.0 (0) 5.0 (0) 37 43

4.2 (þ1.68) 10.0 (0) 5.0 (0) 75 65
2.5 (0) 0.08 (ÿ1.68) 5.0 (0) 25 22

2.5 (0) 19.9 (þ1.68) 5.0 (0) 62 61

2.5 (0) 10.0 (0) 0.1 (ÿ1.68) 44 38

2.5 (0) 10.0 (0) 9.9 (þ1.68) 86 88
2.5 (0) 10.0 (0) 5.0 (0) 50 53

1

5

10

15

20

25

30

35

40

45

232 VASILIOS A. SAKKAS



error at the 95% confidence level, which is denoted by the vertical line on the
Pareto chart (Figure 11.1). A low p valAQ:5 ue (po0.05) indicated a high signifi-
cance. The results of statistical analysis showed that all three linear terms
(x1-bicarbonate: p¼ 0.0108, x2-nitrate: p¼ 0.0034, x3-DOM: p¼ 0.0021) are signifi-
cant (po0.05). With regards to the interaction effects, the results have shown
that simultaneous changes of bicarbonate and nitrate concentrations (x1x2,
p¼ 0.0288) have a significant effect on the photolytic degradation of diuron,
while DOM (x3) and nitrate (x2) displayed significant quadratic effects.

Table 11.1 shows the experimental results for the response factor (Y)
corresponding to diuron degradation (%) after 48 h of irradiation, varying
the bicarbonate (x1), nitrate (x2) andAQ:6 DOM (x3) concentration in a defined
range of realistic environmental concentrations. The fourth column in
Table 11.1 presents the observed values obtained for the response factor
(Yobs) and the last column presents the calculated values by way of the
modeling procedure (Ycalc).AQ:7

Solving the matrix of data presented in Table 11.1, a second grade poly-
nomial was obtained in terms of significant coded variables [eqn (11.6)] that
describes the photolytic degradation of diuron under given conditions. The
coefficients in the polynomial represent the weight of each coded variable
(x1, x2, x3) – corresponding to bicarbonate, nitrate and DOM concentration,
respectively, as well as the interaction between them.

Y¼ 52.91þ 6.51 x1þ 11.66 x2þ 14.91 x3ÿ 4.09 x2
2þ 3.51 x3

2þ 5.12 x1x2
(11.6)

Figure 11.1. Pareto Chart of Standardized Effects of the main effects for diuron
degradation% after 48 h of simulated solar irradiation. The vertical dashed line

indicates the level of significance at p¼ 0.05.
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Lack of Fit, which measures the failure of the model to represent data in
the experimental domain at points that are not included in the regression,16

was also checked and was shown to be not significant relative to the pure
error, indicating good response to the model. The model coefficient of de-
termination (R2¼ 0.94) is in reasonable agreement with the experimental
results. As well, the adjusted determination coefficient (adjusted R2¼ 0.87)
also advocates for a high significance of the model. The values obtained by
the model (Ycalc, Table 11.1, last column) are compared with those of ex-
perimental data (Yobs, Table 11.1, 4th column). These values were in good
agreement, indicating a correspondence between the mathematical model
and experiment (Figure 11.2).

Analyzing eqn (11.6) and taking into consideration only the first-order
effect, the experimental parameters for the highest photolytic degradation of
diuron seemed to be when DOM (x3), nitrate (x2) and bicarbonate (x1) have a
high value, since the highest numerical value of diuron degradation% (Y)
corresponds to such conditions. The accelerated degradation of the model
compound in such conditions could be attributed to oxidation reactions
triggered by reactive species such as singlet oxygen (1O2), peroxyl radicals
(ROO�), hydroxyl radicals (�OH) and carbonate radicals (CO3

�ÿ).3 It is well
known that DOM (humic and fulvic acids) present in natural waters can act
as sensitizers, giving rise to highly reactive molecules promoting indirect
photolysis.4 On the other hand, DOM can also react with, and serve as the
sink for, these excited species3 and/or exert an optical filter effect, thereby
attenuating the direct photolysis. In our study, when low amounts of DOM
were introduced, the photodegradation rate of diuron was increased;

Figure 11.2. Actual vs. predicted plot.AQ:8
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however, at higher concentrations this effect tends to level off, as
indicated by the low coefficient of the quadratic term [x3, eqn (11.6)],
suggesting that light attenuation is important at high DOM concentrations.
This observation is in agreement with the findings of Shankar et al.
(2008),5 who reported an inhibition effect of humic acids (HA) during
diuron photodegradation, attributed to a screening effect and/or radical
scavenging, at HA concentrations higher than those commonly found in
natural waters.AQ:9

Concerning the interaction effects, ANOVA indicated a significant effect
between bicarbonate and nitrate that is illustrated as a 2D contour plot in
Figure 11.3. When tAQ:10 he reaction was performed at very low concentrations
of photoreactants, the photolytic reaction was significantly diminished
(degradation%o30%). A sensitization effect in the nitrate–bicarbonate sys-
tem (at fixed DOM concentration of 5mg Lÿ1) was observed at higher con-
centrations of both reactants and is attributed to the fact that bicarbonate
acts as a �OH scavenger, and the reaction of �OH with bicarbonate is con-
sidered to be a major source of carbonate radical in aquatic systems.20 The
latter is a highly selective oxidizing agent, particularly for N-containing
compounds.3,4 The explanation for the bicarbonate-enhanced nitrate system
is not straightforward, and it is believed that scavenging of �OH by
bicarbonate prevents �OHþ �NO2 recombination, resulting in a
higher generation rate of �OH and carbonate radical in the presence of
bicarbonate than for �OH alone.3 However, it should be noted that, for

Figure 11.3. Contour plot of simulated 2-parameter interaction – bicarbonate vs.
nitrate in terms of coded values (Table 11.1). The fitted surface represents the
photolytic degradation efficiency of diuron after 48 h of simulated solar irradiation.
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This observation is in agreement with the findings of Shankar et al.This observation is in agreement with the findings of Shankar
5(2008),5 who reported an inhibition effect of humic acids (HA) during

diuron photodegradation, attributed to a screening effect and/or radical
scavenging, at HA concentrations higher than those commonly found in
natural waters.AQ:9
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compounds that are not sufficiently reactive toward carbonate radicals, their
photodegradation rate may be inhibited by carbonate and bicarbonate be-
cause of the scavenging of hydroxyl radicals.20

With the aid of the desirability function, the model predicted the con-
centrations of the photoreactants for which the highest photolytic degrad-
ation rate would be observed: carbonate 3.8 mM, nitrate 16.1mg Lÿ1 and
DOM 9.8mg Lÿ1.

The above observations were confirmed by the results of diuron photo-
degradation in distilled water, as well as natural waters such as the Louros
River and Pamvotis Lake (Figure 11.4). Photolysis in distilled water
generally proceeded much slower than photolysis in other natural aqueous
solutions. In particular, while the degradation of diuron alone (distilled
water) after 48 h of simulated solar irradiation was 22%, in natural waters
it was 4-fold faster (87%) for lake, and 1.6-fold faster (35%) for river, re-
spectively, over the same irradiation period. This acceleration effect was
more pronounced at higher concentrations of these naturally occurring
components (Pamvotis Lake) suggesting that, in natural surface waters,
NO3

ÿ, HCO3
ÿ and DOM all contribute to indirect photodegradation of the

parent molecule, showing the importance of these constituents when
considering indirect photodegradation processes and the fate of organic
micro-pollutants.

Figure 11.4. Photolytic degradation% of diuronAQ:11 in distilled water and natural
waters under simulated solar irradiation (48 h).
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11.4. Conclusion

Experimental design followed by response surface methodology (RSM) play
an important role for multivariate optimization of processes, including the
photolytic ones. The use of chemometrics as a tool to assess photoreaction
photodegradation is still scarce. Therefore, besides the basic theory of che-
mometric tools, an example of diuron phototransformation in the presence
of photosensitizers is presented, with the belief that the new trends in
photolytic processes will be focused towards RSM optimizations based on
factorial design.

References

1. A. L. Boreen, W. A. Arnold and K. McNeill, Aquat. Sci., 2003, 65, 320.
2. J. K. Challis, M. L. Hanson, K. J. Friesen and C. S. Wong, Environ. Sci.: Processes

Impacts, 2014, 16, 672.
3. X.-H. Wang and A. Y.-C. Lin, Environ. Sci. Technol., 2012, 46, 12417.
4. C. Goncalves, S. Perez, V. Osorio, M. Petrovic, M. F. Alpendurada and D. Barcelo,

Environ. Sci. Technol., 2011, 45, 4307.
5. M. V. Shankar, S. Nelieu, L. Kerhoas and J. Einhorn, Chemosphere, 2008, 71, 1461.
6. D. L. Giokas and A. G. Vlessidis, Talanta, 2007, 71, 288.
7. V. A. Sakkas, K. Shibata, Y. Yamaguchi, S. Sugasawa and T. Albanis, J. Chromatogr.

A, 2007, 1144, 175.
8. J.-K. Im, Y. Yoon and K.-D. Zoh, J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst.

Environ. Eng., 2014, 49(4), 422.
9. S. S. Walse, S. L. Morgan, L. Kong and J. L. Ferry, Environ. Sci. Technol., 2004,

38, 3908.
10. L. A. Tercero Espinoza, M. Neamtu and F. H. Frimmel,Water Res., 2007, 41, 4479.
11. J. Huang and S. A. Mabury, Environ. Toxicol. Chem., 2000, 19, 2181.
12. S. Lofts, E. Tipping and J. Hamilton-Taylor, Aquat. Geochem., 2008, 14, 337.
13. S. Malato, J. Blanco, C. Richter and M. I. Maldonado, Appl. Catal., B, 2000, 25, 31.
14. A. Moncada, 2004. DPR report: environmental fate of diuron. DPR pesticide

chemistry database. Environmental Monitoring Branch, Department of Pesticide
Regulation, 2003 ohttp://www.cdpr.ca.gov/docs/empm/pubs/fatememo/diuron.
pdf4.

15. G. E. P. Box, J. S. Hunter and W. G. Hunter, Statistics for Experimenters: Design,
Innovation, and Discovery, 2nd edn, Wiley Interscience, New Jersey, 2005.

16. E. C. Harrington, Ind. Qual. Cont., 1965, 21, 494.
17. G. Derringer and R. Suich, J. Qual. Technol., 1980, 12, 214.
18. E. M. Thurman and R. L. Malcolm, Environ. Sci. Technol., 1981, 15, 463.
19. J. Fernandez, J. Kiwi, C. Lizama, J. Freer, J. Baeza and H. D. Mansilla, J. Photo-

chem. Photobiol., A, 2002, 151, 213.
20. D. Vione, S. Khanra, S. Cucu Man, P. Reddy Maddigapu, R. Das, C. Arsene,

R.-I. Olariu, V. Maurino and C. Minero, Water Res., 2009, 43, 4718.

1

5

10

15

20

25

30

35

40

45

USE OF CHEMOMETRICS AS A TOOL 237



12.1. Introduction

The identification oAQ:2 f potential water pollutants is

TS:1

essential for maintaining a
safe drinking water supply and a healthy aquatic habitat/environment.
Approximately 2.6 billion people worldwide do not have access to safe
drinking water.1 Water pollution occurs when waste or hazardous material
of some kind is discharged directly into a natural body of water without
satisfactory remediation. Potential pollutants that lead to adverse health
effects are classified into two general groups: chemicals, and pathogens.
Pathogens are removed from polluted water by filtration and disinfection by
chlorine, hypochlorite, or ozone. Water disinfection with chlorine was
carried out in North America as early as 1908.2 Chemical contamination did
not become a major public health concern in the United States until 1970,
culminating in the passage of the Safe Drinking Water ActAQ:3 of 1974.3 The
determination of new water pollutants is perhaps one of the greatest
challenges we face currently, given that there are more than 91million
compounds currently listed in the Chemical Abstracts registry with
approximately 15 000 being added per day.4 When compounds enter the
environment they may transformed into species with truly unknown,
unanticipated structures. Here, we describe a new analytical approach based
on full scan tandem mass spectrometry for the detection of unknown pol-
lutants, based on structural features that suggest their possible toxicity.

12.1.1. Current Analytical Strategies for the Analysis of Water Pollutants

Analytical strategies used presently for the analysis of water pollutants are
classified as either targeted or untargeted compound analysis. Targeted
analyses are carried out by tandem mass spectrometry based on detection of
two fragmentation reactions, one for quantification and the second transi-
tion for verification.5 A known amount of an isotopically-labeled standard
having the same structure as the analyte is analyzed simultaneously with the
target compound to provide quantification. A second analytical strategy is
focused on the determination of ‘‘known unknowns’’.6 In this non-target
screening approach, wastewater and/or natural water extracts are analyzed
by full scan techniques that provide accurate mass data for potential pol-
lutants that can be verified by database matching. The empirical formulas
suggested by the m/z values of the ions detected are searched in databases to
determine the identities of the compounds detected. Average molecular
weights may be used to search the Chemical Abstracts Service Registry using
the web-based version of SciFinder Scholar and the ChemSpider database.7

Smaller databases that are routinely queried for molecular formulas
include the NIST, Merck, and PubChem databases.8 User-defined libraries
containing compounds of environmental relevance have been created often
for the purpose of identifying pollutants of a particular compound
class. These libraries often contain retention time and fragmentation
data to help differentiate isomers.9 The most common mass spectrometer
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used for the analysis of ‘‘known unknowns’’ is a quadrupole time-of-flight
mass spectrometer (Q-TOF MS)10,11 because it combines high mass
resolution (m/Dm¼ 30 000) with fast-scanning to yield well-resolved
chromatograms.

These untargeted analyses are often carried out to detect pollutants that
are regarded as ‘‘emerging contaminants’’.12 Emerging contaminants are
pollutants that have only recently been detected in the environment and no
standard methods exist to quantify them presently. Data regarding their
environmental or human health effects are yet unknown.13 Wastewater
effluent (treated wastewater that is released back into the environment) is
frequently screened in non-target analyses to gain insight into how effective
water treatment facilities are in removing these compounds.14,15

Despite the growth of databases for the identification of water pollutants
by mass spectrometry methods, there is evidence to suggest that a large
number of potential pollutants remain unidentified in untargeted analyses.
One of the most extensive examples of non-targeted pollutant identification
with a user defined database was carried out with an effluent water sample
(treated wastewater that will be released into a river or stream) using high
resolution Q-TOF analysis.15 A user-defined database was assembled with
accurate mass data, molecule ion isotopic pattern data, product ion data,
and retention times of over 3000 pesticides and 87 pharmaceuticals. When
retention time data were considered with the accurate mass data to identify
potential pollutants, 51 compounds were identified.

12.1.2. New Strategy for the Analysis of Unknown Water Pollutants Based on

Full Scan Tandem MS Over Short, Consecutive Mass Ranges

We are postulating that many, potentially harmful water pollutants, whose
chemical and physical properties are not present in a database and perhaps
have unknown chemical structures, may be present in natural water (lakes,
rivers, etc.). We wish to identify the most persistent of these unknown pol-
lutants so that fundamental questions regarding their potential toxicity may
be addressed. We are suggesting that full scan tandem mass spectrometry
may be used to detect unknown pollutants (m/z value and corresponding
retention time) based on structural features that suggest their potential
toxicity. Once a potential water pollutant is detected, possible structures may
be inferred from accurate mass and product ion analysis. Ultimately, the
structure of an unknown pollutant can be determined by comparing its
chromatographic and spectroscopic properties with a set of synthetic
standards.

The key feature of this strategy is the use of precursor ion scanning (based
on the detection of chloride ion at m/z 35) over narrow, consecutive mass
ranges (m/z 200 to 205, m/z 205 to 210, etc.) with sequential injections of
sample. Such a strategy allows the determination of the molecular weights
and retention times of potentially all (and only) chloride-containing
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compounds with sensitivity approaching most multiple reaction monitoring
experiments carried out with a triple quadrupole mass spectrometer. Tan-
dem MS applications such as constant neutral loss, precursor ion scanning
are well-known, but applications of such methods have been limited due to
lack of sensitivity associated will full scan analyses conducted with triple
quadrupole instruments. Sensitivity is less of a concern in our application
because we are able to acquire sufficiently large volumes of water when a
particular location is sampled (wastewater treatment plant, Chicago River, or
Lake Michigan) to analyze all chlorinated species over a large mass (m/z)
range. We currently extract four liters of water to analyze all ions that frag-
ment to give a chloride ion over a 400 dalton mass range (typically m/z 200–
600) using 80 individual injections.

We have chosen to focus our studies on chlorinated compounds for two
principal reasons. One, there is substantial historical evidence to suggest
that the chlorinated compounds we detect may degrade aquatic ecosystems
or pose human health risks. Organochlorine compounds known to be toxic
include chlorophenols, polychlorinated biphenyls (PCBs), dioxins, or-
ganochlorine pesticides such as DDT (dichlorodiphenyltrichloroethanes)
and HCH (hexachlorocyclohexanes).16 The risks of these types of chlorin-
ated compounds may be intensified because many are known to accumu-
late in the environment due to the stability of the carbon–chlorine bond.
The EPA still monitors many of these compounds despite the fact that their
manufacture was halted over 40 years ago. There are two relatively new
sources of chlorinated compounds that are now of environmental concern.
These include pharmaceuticals and water disinfection by-products (DBPs).
Chlorine atoms are often incorporated in pharmaceuticals because the
lipophilicity and polarizability they impart to these molecules often en-
courages receptor binding in the targeted tissues that facilitates pharma-
cological function and also because chlorine atoms block metabolism.
Eight of the top 40 selling drugs worldwide contain at least one chlorine
atom.17 In addition, many water DBPs contain chlorine atoms. Chlorinated
DBPs can form when water is chlorinated to destroy disease-causing
pathogens and microorganisms. Six hundred different disinfection
products have been identified thus far and many are regarded as carcino-
genic.18 It is anticipated that the number of DBPs will increase as
different methods of disinfection involving chlorine (i.e., chloroamine) are
implemented.19

The second reason we chose to study chlorinated compounds is that
the formation of an m/z 35 or 37 ion during a fragmentation reaction is
specific for the chloride ion. Neutral losses of 36 daltons during a
fragmentation reaction are specific for HCl. These are the only logical
elemental compositions corresponding to these masses. Therefore, our
precursor ion studies are truly specific for chlorine-containing com-
pounds.20 Accurate mass analysis is not necessary to verify the presence of a
chloride ion in a precursor ion scan or the loss of HCl in a constant neutral
loss analysis.
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12.2. Experimental

12.2.1. Extraction of Chlorinated Compounds

Chlorinated compounds are isolated by solid phase extraction (SPE) imme-
diately after collection. Water samples are filtered through Whatman 1.6 mm
glass fiber filter papers to remove particulate matter. Typically, 250mL of
filtered water are passed through a single 200mg Oasis HLB cartridge
(Waters Corp., Milford, MA, USA), as described previously for the analysis of
targeted chlorinated compounds.21 The eluate from the cartridge is evap-
orated to near dryness after elution with methanol. The residue is
reconstituted in a 200 mL autosampler vial for analysis by LC/MS/MS.

12.2.2. LC/MS/MS Analyses

Precursor ion and constant neutral loss scans are carried out over con-
secutive, 5.0 dalton mass ranges per 15 mL injection on an Agilent 6460 triple
quadrupole mass spectrometer interfaced to an Agilent 1290 Infinity UPLC
system (Santa Clara, CA, USA). Eighty individual injections are required to
analyze a 400 dalton mass range. Typically, eight cartridges are prepared
from 2–4 liters of treated effluent wastewater or natural water to analyze
chlorine-containing compounds over a 400 dalton mass range. LC/MS/MS
analyses have been carried out using a 30 minute water/methanol gradient
with a 2.1�100mm (5 mm) C18 column that is preceded with a guard
column (Phenemonex Inc., Torrance, CA., USA). Accurate mass molecular
weight (and accurate mass product ion spectra) are acquired with a Waters
Synapt Quadrupole Time-of-Flight mass spectrometer interfaced to a Waters
2690 HPLC at the University of Illinois-Chicago’s Research Resource Center
(RRC). Sucralose (early eluting, retention time 10.5 minutes) and Triclosan
(late eluting, retention time of 23.5 minutes) are used as retention time
markers (and as MS tuning compounds) to compare elution profiles of dif-
ferent ions analyzed with the triple quadrupole and Q-TOF MS.

12.2.3. Synthesis of Dichlorohydroxybenzene Sulfonic Acid Standards

All six isomeric dichlorophenols were purchased from Sigma Aldrich
Chemical (St. Louis, MO, USA) and used without further purification. The
dichlorophenols were sulfonated using a modification of the methods of De
Wit and Cerfontain.22 Dichlorophenol (1mmol) was treated with sulfonating
reagent (per Method A, B, or C) at room temperature for 18 hours. The re-
action mixture was cooled too5 1C and ice-cold deionizedAQ:4 water (0.5mL) was
added. The resulting slurries were filtered; the wet cake solids were washed
with cold deionized water (2�0.5mL) and dried in vacuo at 40 1C to afford
the dichlorohydroxybenzene sulfonic acid. Each of the three methods may
be summarized as follows. One millimole of dichlorophenol was treated
with 2mL of (Method A) 95–98% sulfuric acid or 2mL of (Method B) a 1 : 1
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mixture of fuming sulfuric acid (20% SO3) and 95–98% sulfuric acid. Method
C involved treating 1mmol of dichlorophenol with 1mL of fuming sulfuric
acid (20% SO3). Individual reaction products were isolated by Agilent 1200
HPLC using a 10 mM K3PO4 water/acetonitrile gradient using a 4.6 �100mm
C18 (5 mm) Waters Symmetry shield column. Proton NMR spectra of isolated
reaction products were acquired to verify structures using a Bruker 400MHz
Avance NMR.

Standard compounds were analyzed in conjunction with environmental
samples to enable the determination of the structure(s) of the compound(s)
indicated to be dichlorohydroxybenzene sulfonic acids by accurate mass and
product ion analysis. Cochromatographic analyses were carried out under
isocratic conditions (98% water/2% methanol) to differentiate the structures
of standard compounds and compounds isolated from different water
samples.

12.2.4. Sampling Strategy

Water samples were acquired at different times from ten different locations
around the Chicago, IL, USA metropolitan area. Effluent water samples were
acquired from the Stickney, IL wastewater treatment plant. The Chicago
metropolitan area within Cook County, IL has an estimated population of
5.2million people.23 The sampling sites were selected with the help of Mr
David Treering, a geographic information specialist in Loyola University’s
Institute of Environmental Studies. Sampling sites were selected based, in
part, on the population density around the immediate area and ease of ac-
cess to the shoreline (Figure 12.1). An individual ‘‘pooled’’ sample is com-
posed of many combined discreet samples taken over 100 meters of
shoreline around a Lake Michigan pier or coast area along one of the rivers
in the area. Normally six liters of water are acquired and combined at the
time of collection.AQ:5

The flow of the Chicago and Calumet Rivers (Figure 12.1) was diverted to
the Illinois River and away from Lake Michigan in the early part of the 20th
Century to prevent sewage from contaminating drinking water intake cribs
in Lake Michigan. However, raw sewage may be released into Lake Michigan
or natural waterways when sewers overflow during a rainstorm. A large part
of the sewer system in the Chicago area was built well over a hundred years
ago, before the age of wastewater treatment. These sewers originally carried
waste and runoff directly into the rivers running through the Chicago area.

As wastewater treatment plants were built, a new sewer system was put in
place (referred to as an intercepting sewer) to drain the flow from the old
sewage line and direct it to the water treatment plant. Sewer configurations
like the one in Chicago are common in older cities around the world.24 If the
intercepting sewers reach capacity during a heavy rainfall, then the local
sewer may drain into a waterway or Lake Michigan. Therefore, it is possible
that potentially harmful pollutants can bypass the water treatment system en
route to natural water sources.
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12.3. Results and Discussion

12.3.1. Precursor Ion Scanning of Water Extracts

We have analyzed wastewater effluent and water samples acquired from a
number of different natural water sources for the presence of chlorinated
compounds. Water sample extracts were analyzed by precursor ion scans
carried out over consecutive, five dalton mass ranges for the presence of m/z
35. Thus far, water samples have been analyzed for chlorine-containing
compounds over anm/z 200 tom/z 600 mass range. The ions most frequently
detected (based on m/z value and retention time) at different sampling sites
are analyzed further to determine their structures in order that questions
regarding their potential human or environmental toxicity may be ad-
dressed. The following discussion concerns the structure determination of a
dichlorohydroxybenzene sulfonic acid that has been detected in natural
water and wastewater effluent and the Chicago River over the period from
April 2011 through July 2014.

Figure 12.2 shows extracted ion chromatograms derived from a typical
precursor ion scan for m/z 35 ions, conducted over an m/z 240–245 mass
range in the analysis of an effluent wastewater sample.

Figure 12.1. Map of Chicago area LakeAQ:6 Michigan shoreline and waterways. Sam-
pling sites are indicated by drops (CSSC¼Chicago Sanitary and Shipping Canal).
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The extracted ion chromatograms (Figures 12.2A–C) taken together sug-
gest the presence of a compound with two chlorine atoms. Three transitions
involving m/z 241–244 to m/z 35 are suggested to have the same retention
time. The ions at m/z 241 and m/z 242 (C13 peak) have two chlorine-35 atoms
(Figures 12.2A and B), while the ion at m/z 243 and m/z 244 (C13 peak) has
one chlorine-35 and one chlorine-37 atom (Figures 12.2C and D). The ion at
m/z 245, contains only chlorine-37 atoms, so it is not observed in this
experiment. This dichlorinated species, eluting with a retention time of five
minutes in the initial precursor ion analyses, has been detected in water
samples acquired at Stickney wastewater treatment plant (effluent), the
Chicago River at Erie street and the Chicago Sanitary and Shipping Canals
(CSSC-Figure 12.1) at Daley Park and Cicero on three separate occasions and
once at Willow Springs SSC over the last three years. We have not detected
the dichlorinated species at the two Lake Michigan sampling sites along the
coast, specified in Figure 12.1, to date.

12.3.2. Accurate Mass and Product Ion Analyses of Dichlorinated Compounds

Accurate mass data were acquired to determine the empirical formula of this
particular chlorinated compound. The high resolution LC-Time-of-Flight
mass spectrum is shown in Figure 12.3 for a wastewater effluent sample. The
exact masses (and errors) of the ions observed at m/z 241.9135 (2.4 ppm),
243.9110 (0.0 ppm), and 245.9081 (4.1 ppm) are consistent with the empir-
ical formula C6H3Cl2SO4. The relative abundances of these three ions

Figure 12.3. Q-TOF mass spectrum of chlorinated ions at m/z 241 and m/z
243 indicated by accurate mass analysis to contain two chlorine atoms.
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strongly suggest the presence of two chlorine atoms in this compound as
well. The valences of the atoms in the empirical formula (rings-plus-double
bonds analysis) suggest that these ions are (M–H)ÿ ions derived from a
compound with the empirical formula C6H4Cl2SO4 containing four elements
of unsaturation.

Product ion spectra of the m/z 240.9 ion acquired on the triple quadrupole
mass spectrometer suggest that this ion is an aromatic sulfonic acid
(Figure 12.4). The major ion formation processes of the main m/z values
observed in this spectrum are indicated in Figures 12.4A and 12.4B. Product
ion spectra are shown for the m/z 241 ion extracted from the wastewater
effluent sample (Figure 12.4A) and a sample taken from Daley Park Sanitary
and Shipping Canal (Figure 12.4B). Product ion spectra from these two
samples were chosen for Figure 12.3 because thesAQ:7 e samples provided the
most abundant m/z 241 ions in the original precursor ion scans (scanning in

Figure 12.4. Product ion mass spectra of m/z 240.9 ion from a wastewater effluent
sample eluting at 6.3 minutes acquired on a triple quadrupole mass spectrometer
(A) extracted from wastewater treatment plant effluent and (B) a Chicago river water

sample taken from the Daley Park Sanitary and Shipping Canal.

1

5

10

15

20

25

30

35

40

45

NEW ANALYTICAL APPROACHES 249



the m/z 240 to m/z 245 mass range). Both product ion spectra show the same
five major fragment ions at similar relative abundances, suggesting that
the compounds extracted from the two different water samples may have the
same chemical structure. The neutral losses and/or the identities of the
fragment ions formed in the collision process are labeled in the Figure 12.4
product ion spectra.

These five fragment ions are m/z 35 (chloride ion), m/z 80 (the SO3
ÿ ion),

m/z 113 (formed by neutral losses of H2O, HCl, and SO2), m/z 177 (formed by
the neutral loss of SO2), and m/z 205 (formed by the loss of HCl). There is no
apparent fragmentation pathway that involves the breaking of a carbon–
carbon bond, suggesting the presence of a benzene ring. This observation,
taken with the fragmentation pathways specified in the Figure 12.4 product
ion spectra, suggest a substituted benzene ring structure. The product ion
mass at m/z 80 is consistent with an SO3

ÿ ion, which is a signature for a
sulfonic acid group. The loss of water is consistent with the presence of a
phenol. The Figure 12.4 product ion spectrumAQ:8 suggests that this compound
is a dichlorobenzene phenol sulfonic acid. We then proceeded to identify
this chlorinated sulfonic acid using synthetic standards.

12.3.3. Product Ion Analyses of Dichlorohydroxybenzene Sulfonic Acid

Standards

We set out to identify the unknown dichlorinated compound by comparing
retention time and spectroscopic properties with a set of synthetic stand-
ards. The implicit assumption here is that the correct standard compound
will have the same structure as the unknown pollutant detected in natural
and/or effluent wastewater. If one simply considers the number of different
permutations of four groups (two chlorines, one hydroxyl, and one sulfate),
there are 16 possible isomers for all possible dichlorohydroxybenzene sul-
fonic acids. Four structures are 1,4-phenolsulfonic acids (para-substituted),
six are 1,3-phenolsulfonic acids (meta-substituted), and another six are
1,2-phenolsulfonic acids (ortho-substituted). Three of the four possible para-
substituted compounds were generated by sulfonation. Sulfonation of 3,5-
dichlorophenol to prepare 2,6-dichloro-4-hydroxybenzene sulfonic acid
(the fourth para-substituted isomer) was unsuccessful due to the high ortho

deactivating effect of the chlorine atoms of 3,5-dichlorophenol. No meta

isomers were generated (phenol groups are ortho,para-directing). All six
ortho-substituted isomers were formed in varying amounts.

We first acquired product ion spectra and retention times of the standard
compounds with the same gradient used for discovery of unknown chlor-
inated pollutants. All six of the ortho-phenol, substituted sulfonic acids
eluted at much longer retention times (between 11.5 and 17.5 minutes) than
the environmental samples (ca. five minutes) when analyzed with the
30 minute water/methanol gradient. Also, the product ion spectra of the
ortho-substituted isomers are distinctly different than the product ion
spectra of them/z 240.9 derived from the natural water samples. The product
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ion spectra of the ortho-substituted hydroxybenzene sulfonic acids are
dominated by an ion atm/z 161, which is formed by the inductive cleavage of
the SO3 from the benzene ring. The product ion spectra of 3,5-dichloro-2-
hydroxybenzene sulfonate are shown in Figure 12.5.

This compound is used as a colorimetric indicator compound in different
over-the-counter test kits for glucose and lactose.25 No m/z 161 is observed in
the product ion spectra of the m/z 240.9 ion suggested to be a hydro-
xybenzene sulfonic acid in the extracted water samples (Figure 12.4) ana-
lyzed or in the product ion spectra of the para-substituted hydroxybenzene
sulfonates. Therefore, the sulfonic acids detected in natural water or treat-
ment plant effluent are suggested to be ortho-substituted hydroxybenzene
sulfonic acids. The m/z values and relative abundances of the product ions
observed in Figure 12.5B (m/z 1134m/z 2054m/z 1774m/z 80¼m/z 35) are

Figure 12.5. Product ion spectra of the (M–H)ÿ ion derived from m/z 241 for (A) 3,5-
dichloro-2-phenolsulfonic acid and (B) synthesized 3,5-dichloro-4-hydroxybenzene

sulfonic acid.
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consistent with the product ion spectra of the m/z 241 ion isolated from
effluent wastewater and the Chicago River shown in Figure 12.4.

12.3.4. Cochromatography Analyses of Dichlorinated Ions Isolated from Water

Samples and para-Hydroxysulfonic Acid Standards

Our next set of experiments was carried out to identify the dichlorohydroxy-
benzene sulfonic acid detected in these different water samples by comparing
the retention times of the unknown dichlorinated species in different water
samples with those of the three para-hydroxybenzene sulfonic acids. The
composition of the gradient was adjusted to lengthen the retention times
and to separate the dichlorinated compounds with different structures.
Chromatograms showing the retention times of the m/z 241 ions isolated
from three different water samples are shownAQ:9 in Figure 12.6.

Figure 12.7 shows the retention times of the three 1,4-hydroxybenzene
sulfonic acid standard compounds. The chromatograms in Figures 12.6 and
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Figure 12.6. Chromatograms of dichlorinated m/z 241 ion isolated from water
samples taken from (A) Stickney wastewater effluent, (B) Cicero SSC, (C) Erie SSC,
and (D) Daley SSC. The standard deviation associated with the retention times (N¼ 3)

is � 0.06 minutes.

1

5

10

15

20

25

30

35

40

45

252 QIAN WANG ET AL.



F
ig
u
re

1
2
.7
.

C
h
ro
m
at
o
g
ra
m
s
o
f
(A
)
3
,6
-d
ic
h
lo
ro
-
(B
)
2
,3
-d
ic
h
lo
ro
,
an

d
(C
)
3
,5
-d
ic
h
lo
ro
-4
-h
yd

ro
xy
b
en

ze
n
e
su

lf
o
n
ic

ac
id

st
an

d
ar
d
s.

1

5

10

15

20

25

30

35

40

45

NEW ANALYTICAL APPROACHES 253



12.7 suggest that the dichlorinated hydroxyl-benzeneAQ:10 sulfonic acids isolated
from water samples taken from different places around Chicago have re-
tention times similar to 3,5-dichloro-4-hydroxybenzene sulfonic acid with a
retention time of ca. 14.4 minutes. The other two standards, 2,5-dichloro-
and 2,3-dichloro-4-hydroxybenzene sulfonic acid eluted with retention times
of 11.3 and 11.6 minutes under these conditions. Therefore, we conclude
that the dichlorohydroxybenzene sulfonic acid detected in the effluent
wastewater and natural water samples is 3,5-dichloro-4-hydroxybenzene
sulfonic acid.

There is evidence to suggest that 3,5-dichloro-4-hydroxybenzene sulfonic
acid is a by-product of the dye industry.26,27 This compound may be attached
to a dye molecule or some other intermediate as a phenol ester. This phenol
ester functions as a leaving group when the dye is attached to another
substrate. Another possibility is that 3,5-dichlorophenol-4-sulfonic acid may
be formed during the water treatment process. 4-Hydroxybenzene sulfonic
acid is a by-product of the electroplating industry.28 The 3,5-dichloro-
hydroxybenzene sulfonic acid would be the favored dichlorination product
based on the activating/deactivating directing properties of the hydroxyl and
sulfonic acid groups attached to the benzene ring. If chlorination of the
4-phenolsulfonic acid was a significant source of 3,5-dichlorophenol-4-sul-
fonic acid, one might expect to find the monochloro product as well. We
have not observed any ion suggested to be a monochlorophenol sulfonic acid
in any single reaction monitoring analysis of extracted natural or effluent
wastewater samples to date.

The six 1,3-hydroxybenzene sulfonic acids and 3,5-dichloro-4-benzene
sulfonic acids were not included in this study as standard compounds be-
cause there are no published synthetic methods or commercial sources for
any of these compounds to date. Therefore, we cannot state with absolute
certainty that they are not present in any of the water samples analyzed;
however, the difficulty and expense of generating the 1,3 isomers would
suggest that they are not present in the environment as pollutants. The
synthesis of these meta-substituted isomers would require more individual
synthetic steps than the preparation of the ortho- and para-hydroxybenzene
sulfonic acids, given that phenols are ortho- and para-directing, again sig-
nificantly decreasing the likelihood that they would be used industrially
on such a scale to be detected in the environment. The production of the
meta-substituted isomers would be precluded in wastewater treatment, in
consideration of well-known patterns of electrophilic aromatic substitution.
1,3-Hydroxybenzene sulfonic acid as a starting material for the production
of the dichloro-1,3-hydroxybenzene sulfonic acids is relatively expensive
(ca. $2,950 per gram),29 therefore it is not likely that large quantities of this
material would be released into the environment on a large scale as a
manufacturing by-product. The generation of 3,5-dichloro-4-hydroxybenzene
sulfonic acid as a synthetic product with any starting material is unlikely
because it requires two chlorine atoms be adjacent to the sulfonic acid group
on the benzene ring.
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12.4. Conclusion

We have demonstrated an analytical method based on full scan tandem
mass spectrometry for the detection of potential pollutants in different water
sources. The key feature of this strategy is the use of precursor ion scanning
over narrow, consecutive mass ranges with sequential injections of sample.
Such a strategy allows the determination of the molecular weights and re-
tention times of all chlorine-containing compounds with sensitivity ap-
proaching most multiple reaction monitoring experiments carried out with a
triple quadrupole mass spectrometer. Potential pollutants detected by full
scan tandem mass spectrometry analysis may then be subjected to accurate
mass and product ion analysis to determine their empirical formulas and
primary structural characteristics. Identification is ultimately achieved by
comparing retention time and spectroscopic characteristics of the com-
pounds isolated from water samples to those of synthetic standards. This
approach to unknown analysis is demonstrated by the identification of 3,5-
dichloro-4-hydroxybenzene sulfonic acid in wastewater effluent and the
Chicago River. Once potential pollutants have been identified, their toxicity
may be assessed and their persistence in the environment quantified using
isotopically-labeled standard compounds. The success of this full scan
tandem mass spectrometry method that we are using for the analysis of
chlorinated molecules may eventually be extended to other compounds with
functional groups that make them well-suited for constant neutral loss or
precursor ion studies, including glucuronides (176 dalton neutral loss),
bromine-containing compounds (precursor ion scans for bromides ions at
m/z 79 or 81), as well as molecules that contain nitroso/nitro groups (m/z 30,
m/z 46), sulfates (m/z 80), or cyano groups (m/z 26).
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13.1. Introduction

Environmental studies on the fate of organic compounds

TS:1

generally refer to
different compartments with distinct physicochemical properties, whose
interactions and movements (between river,AQ:2 estuary, sea, atmosphere,
groundwater and land) are studied through mathematical models.1,2 In each
compartment, and also in diverse sites of a single compartment, different
chemical reactions could take place due to changeable conditions (pH, pE,
temperature, light, etc.). Risk management associated with hazardous or-
ganic compounds in the environment requires detailed knowledge of the
extent of their degradation. An evaluation of the contribution of natural
biodegradation or abiotic transformation processes in different environ-
mental matrices, such as surface or groundwater, soil and sediments, is
critical for the legislation and registration of man-made chemicals. Since the
1990s, increasing attention has been focused on the micropollutant class of
so-called ‘‘emerging pollutants’’ (ECs),AQ:3 defined as natural or synthetically
occurring substances that are not commonly monitored in the environment
but that can induce known or suspected undesirable effects on humans and
ecosystems,3–6 and on their introduction to and transformation within the
environment.7–9 Their concentrations have been assessed in many countries
at parts-per-billion (ppb) and parts-per-trillion (ppt) in wastewater, surface
water, as well as drinking water.10,11 Although these levels are much lower
than those used in human applications, the related potential toxic effects are
still poorly known and cannot be discarded. Some of these compounds show
long environmental persistence, being only partially or slowly biodegrad-
able. Other compounds have rather less persistence but, due to their con-
tinuous release into the environment or to the formation of transformation
products (TPs) arising from their degradation, they may impact on the
aquatic ecosystem and human health.

The growing awareness of this new form of environmental contamination
led the scientific community to address an increased interest particularly in
pharmaceutical products; their presence (and fate) is of great concern, as
they are ubiquitous environmental pollutants that contaminate the en-
vironment through a number of point sources.12,13 Even if the concentration
of these residues in the aquatic environment is too low to pose a very acute
risk, it is unknown whether other receptors in non-target organisms are
susceptible to individual residues or if the combination of drugs sharing a
common mechanism of action could exhibit synergistic effects.14 As a con-
sequence of the discharge of substances subjected to human consumption,
products formed through metabolic, abiotic processes and abiotic trans-
formation of products formed through a metabolic process could be found
in the environment. Metabolic pathways include phase I and phase II re-
actions, and both classes of reaction often occur in parallel. Abiotic deg-
radation includes hydrolysis, oxidation, reduction and photolysis pathways,
while biotic degradation is defined as the transformation of substances
caused by microorganisms (predominantly by bacteria).
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A thorough understanding of the pollutant fate therefore requires a
comprehensive evaluation of all pathways. However, the information avail-
able about the fate of these ECs in aquatic systems appears rather
limitedAQ:4 .15,16 At present, systematic data are scarce and insufficient for an
environmental risk assessment.15 This goal is particularly hard to reach and
could be achieved only by employing a combined theoretical and experi-
mental approach. In this chapter, an overview of the strategies adopted to
overcome this limit, trying to recognize the possible transformation routes
occurring in the environment, is presented.

13.2. Strategies to Simulate the Overall Transformations

The main difficulty associated with conducting degradation studies in en-
vironmental matrices, in general, is linked with the very low concentrations
of the pollutants, which require very sensitive analytical instrumentation.
Another important issue is related to the complexity (i.e. wastewater) of the
matrices, which can affect analytical performance and degradation kinetics
of the pollutants.

To predict the fate of persistent organic pollutants in the environment,
several aspects have to be considered carefully: their basic physical and
chemical properties, distribution, transport within and among compart-
ments, biotic and abiotic transformation processes, as well as effects on living
organisms, including humans. Several methodologies have, at present, been
explored to comprehend the fate of this new generation of pollutants.

Laboratory simulation of the processes that control the chemical behavior
of organic compounds in the environment is often desirable for deeper
understanding, as well as for determination of the basic characteristics
required for successful environmental modeling.

An experimental methodology could be applied by combining a laboratory
study followed by in-field analyses. Several studies were aimed at en-
lightening the fate of selected drugs, focusing on the identification of their
TPs and trying to recognize the main transformation routes followed by
these drugs when discharged in the environment. In most cases, the iden-
tification of TPs was done by high performance liquid chromatography/high
resolution mass spectrometry (HPLC/HRMS)AQ:5 . The goal can be attained in
two steps. Firstly, laboratory experiments can be performed by using
heterogeneous photocatalysis and/or river water spiked with drug(s) under
dark or simulated solar light. Secondly, all the possible main and secondary
TPs have to be searched for in natural samples. Another approach to
simulate the fate of compounds in the environment may consist of the use of
the quantitative structure–activity relationship (QSAR) method. The father of
the concept of the QSAR is Hansch, who published a free-energy related
model to correlate biological activities with physicochemical properties.17 A
QSAR is a statistical model that relates a set of structural descriptors of a
chemical compound to its biological activity.
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The principal purposes of the QSAR include:

� to predict biological activity and physicochemical properties by
rational means;

� to comprehend and rationalize the mechanisms of action within a
series of chemicals;

� to provide savings in the cost of product development;
� to reduce the requirement for lengthy and expensive animal tests.

The QSAR modeling process consists of five main steps that are reportedAQ:6

in Figure 13.1.
There are a large number of applications of these models within industry,

academia and governmental (regulatory) agencies, which comprise:

(1) the estimation of physicochemical properties, biological activities
and understanding the physicochemical features behind a biological
response in drug design;

(2) the rational design of numerous other products such as surface-active
agents, perfumes, dyes and fine chemicals;

(3) the prediction of a variety of physicochemical properties of molecules;
(4) the prediction of the fate of molecules that are released into the

environment;
(5) the identification of hazardous compounds at early stages of product

development, the prediction of toxicity to humans and the
environment.

Figure 13.1. QSAR modeling process.
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13.2.1. QSAR

The primary source of information about the degradability or persistency of
chemicals in different compartments is data arising from contaminated
sites as a result of industrial and agricultural activities, discharge of waste-
water, accidents, firefighting, military operations, etc. Although these field
data truly reflect the fate of contaminants, the environmental conditions are
very different from each other in terms of the physical or/and chemical
conditions (temperature, salinity, pH, radiation, oxygen concentration,
presence of nutrients), media (surface or ground water, soil, sediments) and
microbial consortia.

In order to approach a systematic assessment of chemicals’
biodegradation, predictive test methods have been developed by different
organizations such as the Organisation for Economic Co-operation and
Development (OECD), International Standards Organization (ISO), Ministry
of Economy, Trade and Industry (MITI) Japan, EU, US Environmental
Protection Agency (US EPA) and ASTM (formerly the American Society for
Testing and Materials). These methods can be classified into three groups:18

(1) Ready biodegradability tests: stringent screening tests, conducted
under aerobic conditions, in which a high concentration of the test
substance (in the range of 2 to 100mg Lÿ1) is used and biodegradation
is measured by non-specific parameters like dissolved organic carbon
(DOC), biochemical oxygen demand (BOD) and CO2 production;

(2) Inherent biodegradation tests: aerobic tests that possess a high
capacity for degradation to take place and in which biodegradation
rate or extent is measured. The test procedures allow prolonged
exposure of the test substance to microorganisms at a low ratio of test
substance to biomass;

(3) Simulation tests: aerobic and anaerobic tests that provide data for
biodegradation under specified environmentally relevant conditions.
These tests simulate the degradation in a specific environment by
using indigenous biomass, media, relevant solids (i.e. soil, sediment,
activated sludge or other surfaces) to allow sorption of the chemical
and a typical temperature which represents the particular environ-
ment. A low concentration of test substance is used in tests designed
to determine the biodegradation rate constant, whereas higher con-
centrations are normally used for identification and quantification of
more abundant TPs.

In these tests, the experimental conditions mimic quite realistically the
environmental compartments such as surface water, sediments and soil.
Obviously, the complexity of and cost to perform these tests limit their use.

A time and cost-effective alternative to assess the degradation potential of
substances is represented by (quantitative) structure–activity relationships
((Q)SARs).

1

5

10

15

20

25

30

35

40

45

262 PAOLA CALZA AND DEBORA FABBRI



The first attempts to predict the biodegradability of substances on the
basis of their chemical structures were developed in the 1980s19 with a series
of statistical correlations named quantitative structural–biodegradation re-
lationships (QSBRs). The use of molecular descriptors such as connectivity
indexes, physical/chemical descriptors and descriptors generated from
quantum mechanical procedures allowed a very large number of chemicals
to be dissected into a few hundred functional groups.

Multiple regression analysis, principal component analysis, partial least
squares and different variants of artificial neural networks were used in the
computational approaches to derive these QSBRs.20

Nowadays, the most popular models are those based on the group
contribution approach.21 Here, the presence or absence of specific
‘degradable’ groups (linear methanedylAQ:7 , aliphatic alcohol, ester, etc.) and
‘non-degradable’ groups (chlorine or fluorine atoms, aromatic nitro group,
quaternary carbon atom, quaternary amine, etc.) are used to estimate the
susceptibility of a target compound to undergo abiotic or microbial
degradation. This approach takes into account the effect of molecular weight
and the frequency of appearance of these groups on the degradation process.

However, these models are thus unable to provide any detail about the
formation of persistent or reactive TPs.

The first system attempting to combine in a single model the simulation
of metabolism with quantitative assessment of chemical biodegradability
and toxicity of chemicals based on simulated metabolism was CATABOL.22,23

CATABOL, from the simulation of metabolism, generates a single
‘preferred’ transformation pathway which was explicitly implemented in the
models to predict biodegradation.

In this case, the use of pairs of fragments (source fragments and prod-
uct(s)) in rule-based models preserves all the advantages of group contri-
bution methods and allows the identification of TPs of the target chemical.
A simulation of metabolism and the generation of the metabolic tree can be
obtained from recursive application of the transformations.

The common parts of metabolism simulators are a set of transformations
and a system of rules that control the application of these transformations.
Transformations are more oriented to represent the chemistry, while the
rules are focused to reflex the logic of applicationAQ:8 of these rules.

In the CATALOGIC approach, each transformation consists of a reaction
center and corresponding products, which are described by chemical frag-
ments that contain atoms and bonds.

Compared with CATABOL, the stochastic nature of metabolism simulation
is replaced in the CATALOGIC approach with a well-organized dynamic
chemical specific system of rules and options reflecting the current theoretical
and empirical knowledge about the control and goal of the metabolism.

Atom type, hybridization, valence, attached hydrogen or heavy atoms,
charge and bond type (i.e. single, double, aromatic, ionic, etc.) are part of the
atomic and bond characteristics used to define the reaction center and the
corresponding products. In order to better simulate the metabolic process, a
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series of implemented information, empirical or theoretical, was added to
each transformation (type of transformation, reaction center, products, local
and global forbidden fragments, intrinsic probability of occurrence, list of
impossible transformations, list of only possible transformations, list of
enzymes associated with the transformation and transformation reliability).

The transformations are separated into two major classes: non-rate de-
termining and rate determining reactions. The first class includes abiotic
and biologically mediated transformations, which occur at very high rate
compared with the duration of the biodegradation tests.

The generation of the metabolic tree depends on the hierarchy of trans-
formations: the highest hierarchy is ascribed to non-rate determining
transformations, the second level of hierarchy depends on the intrinsic
transformation probabilities. By a set of the ‘‘general and local options’’ in
combination with the transformation hierarchy, CATALOGIC controls the
application of transformation and mimics the logic of metabolism.

Based on the available theoretical and empirical knowledge, this method,
with a mechanistic background and mathematical formalism, allows as
much information as possible to be extracted for the degradation potential
of chemicals, i.e. biodegradability (BOD or CO2 production), primary and
ultimate half-lives, biodegradability within a 10 day window, and quantities
of TPs.

13.2.1.1. Some Case Studies

Mahmoud et al.24 carried out a study about the environmental fate of
thalidomide (TD), a sedative, hypnotic, immune-modulating and anti-
inflammatory pharmaceutical compound. The new increased use of this
substance in the treatment of some types of cancer and inflammatory dis-
eases poses a risk to the aquatic environment due to the pharmacological
activity of TD and unknown chemical properties of its TPs.

This study investigated the photolytic degradation employing two differ-
ent light sources and the aerobic biodegradability using two tests from
the Organization for Economic Co-operation and Development guidelines
(OECD).25

In order to investigate the degradation pathway of TD, the detection,
quantification and elucidation of structures of its photo-abiotic and bio-
degradation products were performed by HPLC-UV–Fluorescence-MSn.

The experimental data were compared with the results obtained from five
silicon prediction programs (QSAR MODELS): the EPI Suite Software (EPIWEB
4.1) from US Environmental Protection Agency (US EPA, 2004),26 two models
of Oasis Catalogic software V.5.11.6TB from the Laboratory of Mathematical
Chemistry, University Bourgas, Bulgaria (Laboratory of Mathematical
Chemistry U’AZBB)27 and Case Ultra V 1.4.5.1 (MultiCASAQ:9 E Inc.).28

In good accordance with QSAR data, the biodegradation results showed
that TD and its stable dead-end TPs are not readily degraded, indicatingAQ:10 that
silico prediction programs can be helpful to assess the biodegradability
potential in the environment.
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In the study of Ioele et al.,29 a quantitative structure–property relationship
(QSPR) model was built correlating the photostability of the 1,4-dihydropyr-
idine (1,4-DHP) drugs with global and structural fragment descriptors.

The photodegradation rates, obtained by exposing the drugs to a xenon
lamp, combined with a series of descriptors related to the chemical structures,
were computed by partial least squares (PLS) multivariate analysis. The in-
fluence of different substituents on both benzene and pyridinic rings has
been evaluated in terms of hydrophobic, electronic and steric parameters.

The QSPR model was fully cross-validated and then optimized with an
external set of novel 1,4-dihydropyridine drugs. The good agreement be-
tween predicted and measured photodegradation rate demonstrated the
high predictive ability and robustness accuracy of the QSPR model for esti-
mating the photosensitivity of the drugs belonging to this class.

The model was finally proposed as an effective tool to design new con-
generic molecules characterized by high photostability.

UV-Vis degradation of iprodione, a pesticide, and the estimation of the
acute toxicity related to its photodegradation products were carried out by
Lassalle et al.30

In silico QSAR toxicity predictions, conducted with the Toxicity Estimation
Software Tool (T.E.S.T.), revealed that all photoproducts were potentially
more toxic and mutagenic than iprodione. An in vitro assay on Vibrio fischeri

confirmed the increase of toxicity of an aqueous iprodione solution after
irradiation, in particular due to the formation of phenolic compounds.

13.2.2. Laboratory Simulations and In-field Analysis Based on Laboratory

Simulations

Laboratory simulations may involve the use of heterogeneous photocatalysis,
employing TiO2

31,32 or MnO2
33 as photocatalysts, as it is known to be used to

artificially produce degradation compounds similar to those formed through
oxido/reductive metabolic and environmental pathways.34–36 Key reactions
occurring at the catalyst surface are schematized in Figure 13.2.

Following irradiation with proper light, holes anAQ:11 d electrons are generated
and can migrate at the oxide surface or directly react with oxygen or organic
compounds; thus, a combination of oxido/reductive reactions occur and
promote the transformation of organic compounds. SuchAQ:12 a photocatalytic
process was employed in several studies as a model system. Typical reactions
involve hydroxylation, dealkylation, dehalogenation and molecule breakage.
It has to be underlined that the employment of different semiconductor
oxides, characterized by a diverse position of the valence and conductive
bands, may promote different reactions.

MnO2-mediated abiotic transformation may be an important chemical
process, helpful in understanding what is occurring at the soil–water
interface. MnO2 is typically present in soils and sediments and is among the
most important naturally occurring reactant or catalyst in the organic
transformation of soil and sediments. It has a high reaction potency with
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several organic pollutants, including anilines, phenols, antibacterial agents,
atrazine and acetaminophen.37–42 These works tried to achieve an
understandingAQ:13 of the transformation processes of pollutants in the MnO2

system and to evaluate the factors influencing their transformation by
MnO2. The mechanistic information helps as a useful foundation for pre-
dicting the reactivity of selected pollutants in the soil–water environment
and the potential fate and impact of their TPs.

Several studies reported the uAQ:14 se of TiO2 to simulate abiotic transformation of
pollutants in surface as wellAQ:15 . Extensive use of TiO2 as a photocatalyst is due to
the favorable position of the valence and conduction band on the energy scale
(the holes are powerful oxidants, reducing the conduction electrons well),
which allows the oxidation of most organic compounds in the presence of
dissolved oxygenAQ:16 . In order to characterize the overall TPs and the role of biotic
and abiotic processes, a possible approach may entail a sequence of experi-
ments aimed at discriminating the role of photoinduced reactions from those
involving biotic processes occurring in the dark. In severAQ:17 al cases, laboratory
experiments were performed by using river water spiked with the selected
pollutant under dark or simulated solar light, in the presence or absence of a
photocatalyst. We focus here on key examples where TiO2 was used to simulate
the fate of some drugs included in the priority list of pharmaceutical products
and of a ubiquitous pollutant, N,N-diethyl-m-toluamide (DEET).

13.2.2.1. DEET

The use of a TiO2-mediated process permitted a total of 51 unknown TPs to
be produced following DEET degradation, all identified and characterized
via HPLC-HRMS,43 and TPs’ structural attributions were done by taking into
account their MS spectrum, product ions and retention time. These

Figure 13.2. Main reactions occurring at the surface of a semiconductor oxide.
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compounds could be similarly formed in aquatic systems and consequently
their presence was monitored firstly in river waters enriched with DEET just
after sampling and then verified in the field on river water sampled at several
sampling points along the Po River tract (Northern Italy).

Under illumination in spiked river water, DEET was degraded and trans-
formed into numerous organic intermediate compounds, 37 of which could be
identified; then, 14 of them were also found in natural river water.36 It is worth
noting that these detected compounds coincide with TPs formed at a higher
rate (and amount) in the laboratory experiments. Conversely, TPs formed in
low amounts in the laboratory simulation were not detected in the natural
samples, even if their evolution profiles are compatible with those followed by
the detected species, suggesting their formation was below the detection limit.

DEET environmental transformation involved dealkylation, mono- and
poly-hydroxylation followed by oxidation of the hydroxyl groups and cleavage
of the alkyl chains; all the recognized TPs may be linked through the
transformation pathways summarized in Scheme 13.1. Their formation

Scheme 13.1 Transformation products formed from DEET in Po river water
(scheme adapted from ref. 36).
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could occur through a combination of biotic and abiotic pathways; two TPs,
namely I and V, were mainly formed in dark conditions, while the others are
chiefly produced through indirect photolysis processes mediated by natural
photosensitizers such as dissolved organic matter, nitrite and nitrate ions,
H2O2 and iron species.44

13.2.2.2. Pharmaceuticals

The aqueous environmental fate of three antibiotics, spiramycin, lincomycin
and clarithromycin, and an antiepileptic drug, carbamazepine, is discussed.

Clarithromycin, lincomycin and carbamazepine were detected in river
samples, together with a number of degradation compounds previously
characterized through a photocatalytic process coupled with HPLC/HRMS
analysis,45,46 allowing the monitoring of the drug presence and its TPs in
environmental analysis. Interestingly, carbamazepine appears at higher
concentrations than the other two drugs: this is consistent with the deg-
radation tests conducted in the laboratory that have shown how carbama-
zepine has longer persistence in the aquatic compartment.

Eight TPs identified in the laboratory simulation were also found in nat-
ural river water from carbamazepine degradation, three from clarithromycin
and two from lincomycin. Their transformation mainly involved mono- and
poly-hydroxylation followed by oxidation of the hydroxyl groups.

Considering carbamazepine, TPs could be formed following three initial
pathways, summarized in Scheme 13.2,47 and involving hydroxylation
(pathway A), hydroxylation and ring contraction (pathway B) and hydration
on the double bond (pathway C). A qualitative assessment can highlight that
the main TPs were those arising from hydration on the C10–C11 double bond
and monohydroxylation.

Based on the peak areas, the sum of all TPs found was roughly 50% of the
drug amount, underlining that almost 50% of the drug was degraded. The
temporal profiles show similar kinetics of formation/disappearance for all
the detected TPs, such that, by analysing their relative ratios, it is possible to
understand which are the predominant transformation pathways followed
in river water. CompouAQ:18 nds 253, 269 and 285 are closely related through a
hydroxylation mechanism that involves a sequence of hydroxyl additionAQ:19 ; the
lower amount detected is due to the consecutive pathways depicted in
Scheme 13.2. Compounds 271 and 287 could be formed through human
metabolism9,16 or photolysis as well. Analysis of the relative TP ratios ob-
tained in laboratory and in-field samples show that the ratio 253/271 passed
from 1.33 (laboratory data) to 0.7 for field samples. This could be the
expression of a remarkable effect of human metabolism in the drug trans-
formation, particularly for pathway C. Nevertheless, even if compound 253-

B, formed through pathway A, could be formed as a human metabolite, di
and tri-hydroxy-carbamazepine formation should be attributed to a photo-
chemical process, in agreement with the carbamazepine modeled fate.48

This permits these compounds to be considered as markers of a photo-
initiated carbamazepine transformation in the aquatic environment.
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Considering the case of spiramycin, a widely used veterinary macrolide
antibiotic, the aqueous environmental fate of this antibiotic compound in
the first stage was studied through laboratory simulation performed on river
water spiked with the drug, where drug decomposition and the identifi-
cation of the main and secondary TPs were monitored by HPLC/HRMS.35

Laboratory experiments permitted assessment that, even if biotic degrad-
ation contributed to the drug’s disappearance, aqueous photolysis is rapid
and will be the main route of degradation in aquatic systems exposed to
sunlight. Furthermore, both direct and indirect photolysis processes took
part in spiramycin degradation. Under illumination, spiramycin was de-
graded rapidly and transformed into numerous intermediate compounds, of
which 11 could be identified; these TPs could be formed through five initial
transformation routes, collected in Scheme 13.3.

These laboratory simulation experiments were then verified in-field in Po
River water (N-Italy) at several sampling points. Spiramycin was found at

Scheme 13.2 Transformation products formed from carbamazepine in Po river water.
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traceable levels (ng Lÿ1 range), together with five previously identified TPs,
marked in red in Scheme 13.3. Again, it is worth noting that these com-
pounds coincide with the TPs formed at a higher rate (and amount) in the

Scheme 13.3 Transformation products formed from spiramycin under different
conditions.
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laboratory experiments. The transformation occurring in the aquatic system
involved hydroxylation, demethylation and the detachment of forosamine or
mycarose sugars. Three of them seem to be formed through a direct pho-
tolysis process and involve detachment of mycarose/mycaminose (namely B),
detachment of forosamine (namely D) and demethylation (namely K). The
other two TPs, hydroxyl-spiramycin, namely I, and neospiramycin, namelyH,
had already been detected during photocatalytic experiments, but not
through direct photolysis, so their formation in the Po River samples could
be attributed to indirect photolysis processes mediated by natural species.44

13.3. Conclusions

From decades ago to recent research, QSAR methods have been applied in
the development of the relationship between properties of chemical sub-
stances and their biological activities to obtain a reliable statistical model for
prediction of the activities of new chemical compounds.

Moreover, several publications described development of QSAR/QSPR
models to rapidly assess a substance’s environmental fate, toxicity and
biodegradation. The results of the predictions, in many cases in very good
agreement with the experimental evidence, suggest that these approaches
can be employed as a highly promising tool for the fast and efficient as-
sessment of the environmental fate of different compound classes.

On the other hand, the photocatalytic process demonstrated itself as
helpful to produce a number of degradation compounds, identified by
HRMS combined with HPLC, whose measurement gives a useful tool to
monitor drug presence and transformation in environmental analysis.

This approach has not only permitted assessment of the selected drug’s
presence in natural waters but also identification of which of the transfor-
mation routes recognized in simulation experiments also occurred in the
aquatic environment. Some of them seem to be formed through a biotic or
abiotic process. Specifically for the case of carbamazepine, it was possible to
find some key TPs that could be considered as markers for its photochemical
environmental transformation in the aquatic environment.
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Abstract 

The degradation behavior of the pesticide Irgarol 1051 in pure (Milli-Q) and river water samples 

in response to photolysis and Fenton reactions was investigated and the hydroxyl radical (
•
OH) 

formation rate was determined. Irgarol photolysis was found to occur at a much slower rate in 

both types of water in terms of the half-life (t1/2) and degradation rate constant (k). Prolongation 

of photolysis did not lead to complete degradation, even after 480 min. Conversely, Irgarol was 

rapidly degraded in pure water at pH 3 after 12 and 16 min of irradiation via the photo-Fenton 

reaction (Fe
2+

/H2O2/UV-Vis) and photo-Fenton-like reaction (Fe
3+

/H2O2/UV-Vis), respectively, 

because of the generation of additional 
•
OH. Irgarol was also completely degraded by the 

Fe
2+

/H2O2/UV-Vis and Fe
3+

/H2O2/UV-Vis reactions in river water at pH 3 after 60 min, while it 

disappeared after 180 min of irradiation by the Fe
2+

/H2O2/UV-Vis reaction at pH 5. The 

photodegradation rates of Irgarol in pure and river water were consistent with the 
•
OH generation 

rates in both types of water. Mineralization of 96.9 and 92.9% of the Irgarol was achieved in pure 

water at pH 3 after 16 h of irradiation by the Fe
3+

/H2O2/UV-Vis and Fe
2+

/H2O2/UV-Vis systems, 

respectively. Overall, these results indicate that photo-Fenton reactions are useful for treating 

Irgarol-contaminated water. 

 

Keywords: Fenton reactions, pesticide, 
•
OH, mineralization, water. 
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1. Introduction 

 

The s-triazine herbicide Irgarol 1051 (N'-tert-butyl-N-cyclopropyl-6-(methylthio)-1,3,5-triazine-

2,4-diamine) was introduced as an alternative antifouling paint booster biocide to tributyltin 

(TBT) compounds, which were banned in 2003 (IMO, 2001) because of their adverse effects on 

non-target species (Alzieu, 2000). The Anti-Fouling System Treaty of the International Maritime 

Organization (IMO), which entered into force in 2008, completely prohibited the use of 

organotin-based antifouling paints on ships of any size (Dafforn et al., 2011). Antifouling paints 

are applied to the hulls of boats and ships, as well as to submerged structures such as oil rig 

supports, pipes, buoys and fish cages to prevent adhesion and colonization by aquatic organisms, 

especially mollusks and algae (Evans et al., 2000; Koutsaftis and Aoyama, 2007). Irgarol is 

highly effective against freshwater and marine algal fouling because it inhibits photosynthetic 

electron transport within the chloroplasts of photosystem II (Hall and Gardinali, 2004).  

Irgarol 1051 is currently one of the most widely applied booster algicides in copper-based 

antifouling paint formulations (Sapozhnikova et al., 2013). Accordingly, it is the antifouling paint 

booster biocide most often found in aquatic environments because of permanent leaching from 

painted ship hulls (Carbery et al., 2006; Zhou, 2008; Sapozhnikova et al., 2013; Kim et al., 2014; 

Saleh et al., 2014) Irgarol 1051 is highly toxic to macrophytes, phytoplankton and periphyton 

(Okamura et al., 2003; Mohr et al., 2008), and is also relatively persistent, with a half-life in 

seawater of 24 to 100 days (Liu et al., 1999; Konstantinou and Albanis, 2004). Owing to its toxic 

and persistent nature, Denmark, the Netherlands, Sweden, and the UK, have restricted its use 

(Thomas and Brooks, 2010). 

The existence of persistent pesticides in water should be investigated to enable their 

elimination. While many traditional technologies are effective, they are often costly and time-
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consuming (Schwarzenbach et al., 2006). Advanced oxidation processes (AOPs) have received 

increased attention as potential alternatives because of their ability to degrade a wide range of 

refractory contaminants found in the environment (Doria et al., 2013). According to Pirkanniemi 

and Sillanpää (2002), homogeneous AOPs such as the Fenton reaction have the potential for use 

in water treatment and remediation processes. The Fenton reaction, which involves H2O2 and 

ferrous iron (Fe
2+

), has been shown to be effective at degrading a wide spectrum of organic and 

inorganic pollutants via the formation of hydroxyl radicals (Pignatello et al., 2006). If ferrous 

iron is replaced by ferric iron (Fe
3+

), it is called a Fenton-like reaction, while it is referred to as a 

photo-Fenton reaction when complemented with UV/visible radiation. Hydroxyl radical (
•
OH) is 

capable of oxidizing and mineralizing almost any organic molecule to yield CO2, H2O, and 

corresponding mineral acids (Macounova et al., 2003). However, little information is available 

regarding the photodegradation of Irgarol by Fenton reactions. 

Accordingly, this study was conducted to compare the efficiency of different Fenton systems 

and extend their optimal pH toward neutral conditions, to enable the greatest degradation and 

mineralization of Irgarol from water. Moreover, the rate of 
•
OH formation under different Fenton 

systems was determined to evaluate the role of this radical in the degradation of Irgarol.  

 

2. Materials and methods 

 

2.1. Chemicals 

 

Irgarol 99% and commercial phenol standard stock solution (100 mg L
−1

 of phenol) were 

purchased from Sigma-Aldrich, Japan. Hydrogen peroxide (30%) was obtained from Cica-

reagent, Kanto Chemical Co., Inc., Japan. Acetonitrile, benzene (HPLC grade, >99.5%) and 
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ferrous sulfate (FeSO4·7H2O) (99%) were obtained from Nacalai Tesque Inc., Japan. Ferric 

chloride (FeCl3·6H2O) (99%) was acquired from Katayama Chemicals, Japan. 2-

Nitrobenzaldehyde was purchased from Tokyo Kasei Kogyo. All solutions were prepared with 

ultra-pure water obtained from a Milli-Q Plus system, Japan (Millipore; ≥ 18 MΏ cm). 

 

2.2. River water analysis 

 

Surface river water samples were collected from the Kurose River at the Ochiai bridge site, next 

to the water treatment facility that serves the City of Higashi Hiroshima, Japan (34°23′10.8″ N, 

132°43′24.5″E). The water samples were filtered through a glass fiber filter (GC-50, 47 mm 

diameter, 0.5 µm pore size, Advantec), after which the anions (Cl
–
, NO2

–
, NO3

–
 and SO4

2–
) and 

cations (Na
+
, NH4

+
, K

+
, Mg

2+
 and Ca

2+
) were analyzed using a Dionex ion chromatography 

(Dionex ICS-1600, Japan). In addition, dissolved organic carbon (DOC) and conductivity were 

measured using a total organic carbon analyzer (TOC analyzer, TOC-VCSH, Shimadzu Co., 

Kyoto, Japan) and a pH meter (Model D-51, Horiba Co., Japan), respectively. The chemical 

composition of river water is given in Table (1). It was also confirmed that the river water 

samples contained no detectable Irgarol. 

 

2.3. Photodegradation experiments 

  

For the irradiation experiments, Irgarol was added to pure and river water (50 mL aliquot 

volume) at an initial concentration of 0.1 mg L
–1

, after which Fe
2+

 or Fe
3+

 and H2O2 were added 

at specific concentrations. The pH of the reaction mixture was then adjusted by the addition of 

dilute aqueous HCl or NaOH. Next, samples were transferred to a quartz cell and irradiated using 
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a solar simulator (Oriel model 81160-1000, Oriel Corp.) equipped with a 300-W Xenon lamp 

(ozone free, model 6258, Oriel Corp.) and special glass filters restricting the transmission of 

wavelengths below 300 nm. The emission wavelengths of the xenon lamp range from 300 to 800 

nm, which is very close to that of natural sunlight (Durand et al., 1991). 

During irradiation, the sample solution was well mixed with a stirring bar and the 

temperature was kept at 20°C. Aliquots of the irradiated samples were removed at regular 

intervals and filtered through a 0.45-µm Ekicrodisc syringe filter, after which samples were 

subjected to HPLC analysis using a system composed of a PU-2089 plus pump (Jasco, Japan) and 

a Rheodyne injection valve (Cotati, California, USA) with a 50-μL sample loop. The column was 

an Ultron VX-ODS (Supelcosil LC-18, particle size 5 μm; Supelco) with a length of 250 mm and 

an inner diameter (ID) of 4.6 mm. A guard column (Supelcosil LC-18, 5 μm, 10 mm × 4.6 mm 

ID) was fitted in the front of the analytical column. A mixture of acetonitrile and pure water 

(60/40, v/v) was applied as the mobile phase at a flow rate of 1 ml min
−1

 and samples were 

detected at 223 nm using a UV-VIS detector (SPD-10A, Shimadzu). The Irgarol retention time 

under the aforementioned conditions was 10.97 min. Calibration was conducted based on the 

peak areas of standard samples, analyzed under the same HPLC conditions.  

Similar procedures were followed for dark Fenton reactions. The detection and quantification 

limits for Irgarol were 0.496 and 0.827 μg L
-1

 in water samples, respectively. The degradation of 

Irgarol followed first-order kinetics, and the half-life values (t1/2) were calculated using the 

equation t1/2 = ln2/k (Moye et al., 1987), where k is the degradation rate constant. 
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2.4. Determination of 
•
OH radical formation rate 

 

Hydroxyl radical formation rates under different Fenton systems (Fe
2+

/H2O2/UV-Vis, 

Fe
3+

/H2O2/UV-Vis, Fe
2+

/H2O2/Dark and Fe
3+

/H2O2/Dark) in both pure and river water were 

determined after the addition of benzene as a chemical probe to water in a reaction cell. Phenol 

produced by the reaction between 
•
OH and the benzene added to the water sample was 

determined by HPLC as a function of time to quantify the 
•
OH formation rate in the presence and 

absence of simulated sunlight. At the beginning of each experiment, an aliquot of aqueous 

benzene stock solution (2×10
−2

 M) was added to water to give an initial benzene concentration of 

1.2 mM. The solution was then spiked with Fenton’s reagent (Fe
2+

 or Fe
3+

 and H2O2), stirred to 

mix the solution, transferred to a quartz cell (60 mL) and irradiated (if applicable) using the solar 

simulator.  

The initial pH of the diluted solution was adjusted to 3 with HCl in all experiments (Huston 

and Pignatello, 1999). During irradiation, the solution in the quartz cell was mixed well with a 

stirring bar and the temperature was kept at 20°C. Aliquots were removed from the irradiated 

samples at regular intervals for HPLC analysis. All experimental conditions were the same both 

in the presence and in the absence of simulated sunlight. 

Phenol was analyzed by HPLC using a system with a fluorescence detector (Shimadzu, RF-

10AXL) operated at 270 and 298 nm for excitation and emission, respectively. Analytical signals 

were recorded by an integrator (Shimadzu, CR-6A). The detection limit of phenol using this 

HPLC system was 2×10
−9

 M. The 
•
OH formation rate (ROH) was determined as follows: 

Rphenol

Y phenol X Fbenzene,OH

ROH =  
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where Rphenol is the photoformation rate of phenol in water samples (M s
−1

), Yphenol is the 

yield of phenol formed per benzene oxidized by 
•
OH (mean ± standard deviation = 0.75 ± 0.07, 

Arakaki and Faust, 1998), and Fbenzene,OH is the fraction of 
•
OH that reacts with benzene, which 

was assumed to be 1.00 in the present study. It should be noted that the actual Fbenzene,OH value 

may be slightly lower than 1.00 because of possible reactions of 
•
OH with other scavengers such 

as H2O2 and Fe used for the Fenton reagent. In contrast, the effects on 
•
OH scavenging of other 

chemical species present in the experimental aquatic systems (e.g., river water) used for the 

Fenton reactions in the present study were very limited, compared to benzene. For these reasons, 

it can be assumed that Fbenzene,OH = 1.00 with excellent approximation. 

 

2.5. Light intensity determination 

 

The irradiation light intensity for each day of the photochemical experiments was determined 

using 2-nitrobenzaldehyde (2-NB) as chemical actinometer (Kuhn et al., 2004), in the same 

reaction cell that was used to quantify 
•
OH. The 2-NB photolysis rate constant (J2-NB) was 

determined by HPLC with a UV detector set to a wavelength of 260 nm. The column, mobile 

phase and flow rate were the same as for the determination of Irgarol and 
•
OH. The value of J2-NB 

obtained in the present study was 0.0058 s
−1

. For this study, the 
•
OH photoformation rates were 

normalized to J2-NB = 0.0093 s
−1

, which was determined at noon, under clear-sky conditions in 

Higashi Hiroshima (34°N) on October 7
th

, 2002 (Takeda et al., 2005). It is important to note that 

the photochemical reaction depends on both the light intensity and the wavelength of the light 

source. However, this normalization using the 2-NB photolysis rate constant enables a 

comparison to be made between datasets, as well as a quantitative discussion on the contribution 

from each 
•
OH source. 
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2.6. Mineralization 

 

The trend of mineralization in the irradiated solutions, with an initial Irgarol concentration of 2.5 

mg carbon L
-1

, was monitored by measuring the TOC concentration at regular intervals after 

Ekicrodisc filtration. It was used a Shimadzu TOC-VCSH analyzer, which works according to the 

thermal catalytic oxidation principle. Platinum was used as a catalyst to carry out the combustion 

reaction at 680°C, while oxygen was applied as the carrier gas at a flow rate of 150 mL min
−1

. 

The detection was carried out using a non-dispersive infrared (NDIR) detector. Calibration of the 

analyzer was carried out using potassium hydrogen phthalate standards.  

All experiments were conducted in triplicate, and data are reported as the average ± the 

standard deviation (SD). Analyses were conducted using SPSS (Statistical Package for the Social 

Sciences, version 16.0; SPSS Inc., Chicago, IL, USA).  

 

3. Results and discussion 

 

3.1. Photolysis of Irgarol 

 

In this study, direct photolysis experiments were carried out using both pure and river water at 

pH 3, 5 and 7. As shown in Fig. (1), Irgarol showed greater degradation in pure water than in 

river water, as well as at pH 3 than at pH 5 or 7 in both types of water. Irgarol completely 

disappeared after 6 h in pure water at pH 3 (t1/2 = 86.6 min; k = 0.008 min
–1

), while it was not 

completely degraded in river water at the same pH, even after 8 h of irradiation (t1/2 = 93.7 min; k 

= 0.0074 min
–1

). These findings indicate that the water type plays an important role in the 
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photolysis of Irgarol. Conversely, 10.6 and 75.7% of the parent compound remained after 8 h of 

irradiation at pH 7 in pure water (t1/2 = 217 min; k = 0.0032 min
–1

) and river water (t1/2 = 1200 

min; k = 0.00058 min
–1

), respectively. Interestingly, no noticeable hydrolysis of Irgarol occurred 

at 20°C in aqueous solutions at pH 3, 5 and 7 in both pure and river water over a period of 30 d 

(data not shown). These findings indicate that the hydrolytic processes of Irgarol during the 

course of the photolysis experiments can be ignored. Photolysis is one of the major 

transformation processes that influence the fate of pesticides in the aquatic environment (Durand 

et al., 1992). These results agree with those obtained by Okamura et al. (1999), who found that 

Irgarol is rather stable toward hydrolysis, but undergoes sunlight-induced photodegradation in 

aqueous solution. Similar results were also observed by Zamy et al. (2004), who demonstrated 

that the photolysis of profenofos and isofenfos in water from the Capot River occurred more 

slowly than in purified water. However, shorter photolysis half-lives were obtained in this study 

for Irgarol than it has been previously reported. Sakkas et al. (2002) indicated that the half-life of 

Irgarol was 29 h in distilled water. Under irradiation within the range of 300 to 450 nm, less than 

50% of Irgarol (10
–5

 M) in MilliQ water (pH 6.5) was transformed after 48 h (Amine-Khodja et 

al., 2006). It is possible that such differences are accounted for by the different irradiation 

intensities of the used lamps. 

  

3.2. Optimization of Fe
2+

, Fe
3+

 and H2O2 concentrations for the removal of Irgarol from pure 

water using the photo-Fenton systems 

 

The photodegradation kinetics of Irgarol (0.1 mg L
−1

) at various concentrations of Fe
2+

 (0.0032, 

0.0063 and 0.013 mM) and H2O2 (0.064, 0.13 and 0.25 mM) were studied in pure water at pH 3 

to evaluate the effects of reactants concentration on the degradation rate. The Fenton reagent was 
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also applied to degrade Irgarol at three concentrations of Fe
3+

 (0.025, 0.05 and 0.1 mM) and H2O2 

(0.126, 0.5 and 1.0 mM), to examine the oxidation rates in pure water at pH 3. As shown in Fig. 

(2a), Irgarol photodegradation at the highest concentrations of Fe
2+

 and H2O2 (t1/2 = 0.61 min; k = 

1.13 min
–1

) was better than that at the middle concentration levels (t1/2 = 1.06 min; k = 0.651 min
–

1
), while photodegradation at the lowest concentrations was far slower compared to the other two 

cases (t1/2 = 4.15 min; k = 0.167 min
–1

). As shown in Fig. (2b), similar results were observed for 

the photo-Fenton-like reaction (Fe
3+

 + H2O2). Overall, complete disappearance of Irgarol was 

achieved after 8, 16 and 32 min at the highest, middle and lowest concentrations of Fe
3+

 and 

H2O2, respectively.  

The middle concentrations of Fe
2+

, Fe
3+

 and H2O2 were used hereafter in this study for 

economic and practical reasons, and because higher concentrations of Fe and H2O2 have been 

shown to lead to less effective degradation of organic pollutants through self-scavenging of 
•
OH 

(Catastini et al., 2002; El-Morsi et al., 2002). Moreover, the use of a much higher concentration 

of Fe results in the need for its removal after treatment, which should be avoided. 

 

3.3. Irgarol degradation using Fenton reactions 

 

As shown in Fig. (3), Irgarol was rapidly degraded in pure water at pH 3 after 12 (t1/2 = 1.06 min; 

k = 0.65 min
–1

) and 16 (t1/2 = 1.86 min; k = 0.37 min
–1

) min irradiation by photo-Fenton reaction 

[Fe
2+

 (0.0063 mM)/H2O2 (0.126 mM)/UV-Vis] and photo-Fenton-like reaction [Fe
3+

 (0.05 

mM)/H2O2 (1 mM)/UV-Vis], respectively. Moreover, it was fully decomposed by the same 

reactions after 315 (t1/2 = 61.9 min; k = 0.011 min
–1

) and 405 (t1/2 = 83.5 min; k = 0.0083 min
–1

) 

min in the dark, respectively. Degradation of Irgarol in pure water under simulated solar light by 

photo-Fenton reactions was significantly faster than under dark conditions. The great 
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enhancement in degradation under light conditions was due to the higher rate of 
•
OH generation 

(vide infra), as well as to photochemical reactions. 

As shown in Fig. 3, the degradation of Irgarol was faster during the photo-Fenton reaction  

than in the photo-Fenton-like reaction at lower molar concentrations of iron and H2O2. When 

ferrous salts are used in the Fenton reaction, hydroxyl radicals are produced immediately by the 

rapid reaction between ferrous iron and hydrogen peroxide (Eq. 1; Walling, 1975). With ferric 

salts, the hydroxyl radical is produced in a two-stage process. Specifically, there is a slow 

reaction between ferric ion and hydrogen peroxide (Eq. 2), followed by a rapid reaction between 

the produced ferrous ion and additional hydrogen peroxide (Kiwi et al., 1993): 

Fe2+ + H2O2  Fe3+ + •OH + OH−        (1) 

Fe
3+

 + H2O2  Fe
2+

 + HO2
•
 + H

+
          (2)  

The hydroxyl radicals thus formed react rapidly and non-selectively with most organic 

compounds (Eq. 3), through three types of reactions: additions to double bonds, abstraction of a 

hydrogen atom, or electron transfer (Buxton et al., 1988; Haag and Yao, 1992). The consequence 

is the chemical decomposition of the organic substrate via the following general pathway: 

•
OH + Organic compounds Degradation products        (3) 

Irgarol degradation in river water at pH 3 under simulated solar light was significantly faster than 

under dark conditions (Fig. 4). Irgarol was completely degraded by Fe
2+

/H2O2/UV-Vis (t1/2 = 15.1 

min; k = 0.046 min
–1

) and Fe
3+

/H2O2/UV-Vis (t1/2 = 8.32 min; k = 0.0833min
–1

) in river water at 

pH 3 after 60 min. Conversely, Irgarol decomposition was found to be markedly slower under 

dark conditions, and it id not proceed to completion at the investigated time scale. Indeed, 14.5 

and 32.2% of Irgarol remained in river water after 12-h treatment with Fe
3+

/H2O2 (t1/2 = 280 min; 

k = 0.0025 min
–1

) and Fe
2+

/H2O2 (t1/2 = 408 min; k = 0.0017 min
–1

), respectively. 
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An attempt to extend the optimum pH range for these processes toward neutral conditions 

was also made. The degradation of Irgarol by the photo-Fenton reactions in pure water was more 

efficient than in river water at pH 5 (Fig. 5). Specifically, Irgarol was completely degraded by 

Fe
2+

/H2O2/UV-Vis (t1/2 = 5.37 min; k = 0.129 min
–1

) and Fe
3+

/H2O2/UV-Vis (t1/2 = 35.2 min; k = 

0.0197 min
–1

) in pure water at pH 5 after 45 and 90 min, respectively. Additionally, it 

disappeared after 180 min of irradiation in river water via the Fe
2+

/H2O2/UV-Vis reaction (t1/2 = 

29.7 min; k = 0.0233 min
–1

). However, it was not completely decomposed with Fe
3+

/H2O2/UV-

Vis (t1/2 = 86.8 min; k = 0.00799 min
–1

) after 360 min of irradiation in river water at pH 5.   

The photo-Fenton degradation of Irgarol was slower in river water than in pure water. This 

may be attributed to the intense competition for 
•
OH between the degradable portion of dissolved 

organic matter in the water body and Irgarol itself (Amon and Benner, 1996; Sakkas et al., 2002). 

Similar results were reported in an investigation of linuron degradation by the photo-Fenton 

process conducted by Katsumata et al. (2005), who found that the degradation percentage of 

linuron increased rapidly as pH increased to 4, and then it decreased at higher pH. This occurred 

because the main species at pH 3, Fe(OH)
2+

(H2O)5, has the largest light absorption coefficient 

and quantum yield for 
•
OH radical production, as well as for Fe(II) regeneration. 

The photo-Fenton process is advantageous because iron ions are abundant, non-toxic, and 

easily removed from water (Safarzadeh-Amiri et al., 1996), and H2O2 is easy to handle and 

environmentally friendly (Benitez et al., 2007); however, the Fenton reaction is sensitive to pH. 

The efficiency of the photo-Fenton reactions at pH 5 was found to be lower than at pH 3 in this 

study. Similar findings were reported by Maezono et al. (2011), who indicated that the generation 

of 
•
OH radical in the photo-Fenton oxidation process was high at solution pH values of 3.0, while 

it decreased as the solution pH increased. The main reason for the lower reactivity at pH 5 than 

pH 3 would be the precipitation of Fe(III) as the hydrous oxyhydroxide, Fe2O3·nH2O, which 
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inhibits the recycling of Fe(III)/Fe(II) (Georgi et al., 2007). As a result, the optimum pH for 

Fenton oxidations is usually around 3 (Pignatello et al., 2006). However, water may possess high 

buffer capacity and the need to acidify the reaction medium can limit the applicability of the 

Fenton process (Georgi et al., 2007). Consequently, this study examined the possibility to extend 

the optimum pH range for this process toward neutral conditions, to enhance its economical 

feasibility. 

 

3.4. Hydroxyl radical formation rate 

 

The results indicated that Fe
3+

/H2O2/UV-Vis (photo-Fenton-like reaction) was likely to be the 

most important source of 
•
OH because of the higher rate of

 •
OH generation in this system (4150 

and 3450 nM min
-1

 in pure and river water, respectively) compared to Fe
2+

/H2O2/UV-Vis (3270 

and 2870 nM min
-1

, respectively) and Fe
2+

/H2O2/Dark (61.7 and 272 nM min
-1

, respectively). In 

the system Fe
3+

/H2O2/Dark, it was observed 46.7 and 277 nM min
-1

 of 
•
OH formation in pure and 

river water, respectively. The measured 
•
OH photoformation rates in river water were lower than 

in pure water samples, probably because of the presence in the former of 
•
OH radical scavengers 

such as bicarbonate, carbonate and dissolved organic matter (DOM), which are common in river 

water samples. Indeed, DOM is known to play a major role as 
•
OH sink in freshwater (White et 

al., 2003). 

Hydroxyl radicals (
•
OH) play an important role in the degradation of organic compounds in 

water (Andreozzi et al., 2003), because of their high reactivity with organic compounds in the 

aqueous phase (Buxton et al., 1988). The non-selective nature of hydroxyl radicals makes them 

useful for degrading a broad range of pollutants to give mineral end-products (Lindsey and Tarr, 
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2000). The effectiveness of 
•
OH in the degradation of organic compounds depends on its steady-

state concentration (Nakatani et al., 2004). 

  

3.5. Irgarol mineralization 

 

To verify the mineralization (complete disappearance of the total organic carbon, TOC) of Irgarol 

in pure water using photo-Fenton reactions, the TOC time trend was assessed over 16 h of 

irradiation from an initial TOC concentration of 2.5 mgC L
−1

. As shown in Fig. (6), the 

mineralization of Irgarol in the Fe
3+

/H2O2/UV-Vis system was slightly faster than in the 

Fe
2+

/H2O2/UV-Vis system, with 96.9 and 92.9% mineralization, respectively, occurring after 16 h 

of irradiation at pH 3. Additionally, mineralization was lower at pH 5, with values of 85.6 and 

81.3% being observed following the aforementioned reactions, respectively. These results are 

consistent with the 
•
OH generation rate, suggesting an increasing contribution of the photo-

Fenton-like reaction in Irgarol’s mineralization due to the production of additional 
•
OH (4150 nM 

min
-1

, compared to 3270 nM min
-1

 for Fe
2+

/H2O2/UV-Vis). The total mineralization of Irgarol 

(i.e., complete disappearance of TOC) was a longer process than the disappearance of the 

substrate, which indicates that persistent intermediate products generated during the photo-

Fenton processes are difficult to mineralize (Malato et al., 2003; Katsumata et al., 2005). 

 

4. Conclusions 

 

The photo-Fenton system is advantageous because it uses reagents that are environmentally 

friendly and relatively inexpensive. Moreover, the reaction can be initiated by application of a 

renewable source of energy such as sunlight, to overcome the relatively high costs of xenon 
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lamps and electrical energy, especially in areas where solar irradiation is readily available. Based 

on these findings, the system evaluated in this study has the potential for widespread application. 

However, further investigations should be conducted to confirm the present conclusions.  
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Table 1: Chemical analysis of river water
* 

collected for Irgarol degradation 

Analytical item Concentration ± S.D. 

Cl
-
 43.6±3.78 mg l

-1
 

NO2
-
 0.54±0.04 mg l

-1
 

NO3
-
 3.89±0.39 mg l

-1
 

SO4
2-

 70.0±6.68 mg l
-1

 

Na
+
 35.5±3.41 mg l

-1
 

NH4
+
 3.28±0.24 mg l

-1
 

K
+
 4.29±0.35 mg l

-1
 

Mg
2+

 1.42±0.13 mg l
-1

 

Ca
2+

 25.2±2.74 mg l
-1

 

Conductivity 355±11.5 µS cm
-1

 

DOC 3.49± 0.24 mg Cl
-1

 

pH 7.29±0.23 
*Kurose River water, Hiroshima, Japan (Ochiai bridge sampling site). 
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Figures Captions 

 

Figure 1. Influence of solution pH on the direct photolysis of Irgarol (0.1 mg L
-1

) in pure and 

river water. C0 is the initial concentration of Irgarol and C is its residual concentration at a 

specific time. 

Figure 2. Degradation of Irgarol (initial concentration 0.1 mg L
−1

) at pH 3 in pure water, under 

different concentrations of a) Fe
2+

 and H2O2 during photo-Fenton reaction, and b) Fe
3+

 and 

H2O2 during photo-Fenton-like reaction. 

Figure 3. Effect of Fenton and photo-Fenton reactions on the degradation of Irgarol (0.1 mg L
−1

) 

at pH 3 in pure water. 

Figure 4. Effect of Fenton and photo-Fenton reactions on the degradation of Irgarol (0.1 mg L
−1

) 

at pH 3 in river water. 

Figure 5. Effect of photo-Fenton reactions on the degradation of Irgarol (0.1 mg L
−1

) at pH 5 in 

pure and river water. 

Figure 6. Mineralization of 2.5 mg C L
-1

 of Irgarol by photo-Fenton reactions at pH 3 in pure 

water. 
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