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ABSTRACT
In the last few years, high-resolution imaging of vineyards, obtained by unmanned aerial
vehicle recognitions, has provided new opportunities to obtain valuable information for
precision farming applications. While available semi-automatic image processing algorithms
are now able to detect parcels and extract vine rows from aerial images, the identification of
single plant inside the rows is a problem still unaddressed. This study presents a new
methodology for the segmentation of vine rows in virtual shapes, each representing a real
plant. From the virtual shapes, an extensive set of features is discussed, extracted and
coupled to a statistical classifier, to evaluate its performance in missing plant detection within
a vineyard parcel. Passing from continuous images to a discrete set of individual plants results
in a crucial simplification of the statistical investigation of the problem.
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Introduction

Detection and localization of individual plants from
remotely sensed imagery might lead to new opportu-
nities in mechanization and precision farming technolo-
gies. This is especially true for precision viticulture.
However, the possibility to identify single plant is con-
strained by the peculiar structure of modern vineyards,
as in most cases vines are planted in rows and their
vegetation organized in continuous superposing cano-
pies (see Figure 1).

In viticulture, this organization of the vines, com-
monly referred as vine training, is aimed to facilitate
canopy management and to achieve a correct fruit/
vegetation balance. In these systems, despite the high
spatial resolution of the sensors currently employed, the
outcoming information, such as the vigour zoning, only
accounts for averaged data neglecting the contribution
of single vine (Arnó, Martínez Casasnovas, Ribes Dasi,
& Rosell, 2009). While row detection techniques saw a
great development in these last few years (Comba, Gay,
Primicerio, & Aimonino, 2015; Delenne, Durrieu,
Rabatel, & Deshayes, 2010; Puletti, Perria, & Storchi,
2014; Smit, Sithole, & Strever, 2010), a methodology for
single plant detection is still not available. Instead, the
ability to recognize automatically single vine within a
training row could remarkably improve the representa-
tion of the contribution of single plant to the canopy
curtain, enabling to detect specific plant pathologies in
the row and improving the accuracy of vigour zoning
(Lee et al., 2010; Naidu, Perry, Pierce, & Mekuria, 2009;

Sankaran, Mishra, Ehsani, & Davis, 2010). Single plant
representation could also provide complementary data
to recent studies of structure from motion vineyard
canopy modelling. (Mathews & Jensen, 2013) For cano-
pies with discrete spatial distribution, such as the goblet
training system, the problem has been already profit-
ably addressed with a point pattern analysis approach.
(Robbez-Masson & Foltête, 2005) Nevertheless, for the
more common training systems in which vines are
planted in rows, new robust and reliable techniques
need to be developed.

A common problem in trellising systems is the
occurrence of missing plants (also referred as voids)
along the regular sequence of vines along rows. This
is usually due to the premature death of a vine, and
apart from a consequent lowering in the vineyard
production, it poses some serious problem from a
remote sensing point of view. In fact, not only it
can be an obstacle to vine row recognition and thus
to the automatic processing of aerial map (Comba
et al., 2015; Rabatel, Delenne, & Deshayes, 2008) but
it can also induce errors in the estimation of vigour
zones inside vineyards, and affect the results of the
application of precision agriculture techniques in
vineyard management.

The simplest approach to identifying missing
plants would be to detect areas not covered by vine
vegetation along the row. Unfortunately, the zenithal
aerial photography is unable to identify the actual
situation under the top part of the canopy, and in
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the case of lack of a plant, the neighbouring plants
can extend their shoots and foliage up to occupy the
free space between two vines.

In order to improve canopy representation in
presence of missing plants, a possible approach
would be to analyse vegetation extension minima,
applying a threshold based on the standard devia-
tion of canopy thickness. Nevertheless, the perfor-
mance of this methodology is low because the
intrinsic variability of canopy patterns within a
crop can be very high, and locally the averages of
canopy thickness may differ significantly from the
global average.

It has been shown that vegetative and soil para-
meters show a positive spatial autocorrelation, as
points close to each other have similar values (Arnó,
Rosell, Blanco, Ramos, & Martínez-Casasnovas, 2011;
Baluja, Diago, Goovaerts, & Tardaguila, 2012;
Tardaguila, Baluja, Arpon, Balda, & Oliveira, 2011).
This leads to the idea of using local autocorrelation
coefficients, such as the Moran local index, or locally
weighted regressions to improve missing plant detect-
ability, as proposed for spatial data analysis by
Shekhar, Lu, and Zhang (2003) and Anselin, Syabri
and Kho (2006).

This paper addresses the issue of individual plant
representation along the vine rows, and explores the
feasibility of applying a machine learning process to
the characteristics of the extracted plants. An auto-
mated algorithm is used for vine rows detection,
followed by a segmentation procedure to extract sin-
gle plant from the vine row. From the plants images
an extensive set of features are discussed and
extracted. Finally, a multi-logistic model for the
detection of missing plants is implemented and vali-
dated in a real case-study vineyard, comparing the
results with field observations.

The paper is organized as follows: “Materials and
methods” presents the proposed approach and the

experimental site. The vine rows extraction step is
here only briefly exposed since it has been proposed in
Comba et al. (2015). The following steps of segmenta-
tion, parameters calculation and model construction
are instead described in detail, as they constitute a
new contribution. “Results and discussion” presents
the results of the application of the developed method
to a specific vineyard in Suvereto (Tuscany, Italy) with
the final recognition of missing plants. “Conclusions”
concludes the paper and presents future development of
this line of research.

Materials and methods

The vineyard chosen for the experimental testing,
Bulichella, is a flat clay-loam field located in
Suvereto (Leghorn, Italy) (43° 04′ N, 10° 41′ E) at
50 m a.s.l. It was planted in 1999 (cv. Sangiovese),
guyot trained, and has a between-row and within-
row spacing of 2.4 and 0.8 m, respectively, with a
north-south orientation. The field undergoes peri-
odic soil tillage. A set of 64 aerial images was
acquired at noon on the 9 July 2015, using an
unmanned aerial vehicle (UAV) octocopter (S1000,
DJI, Shenzhen, China) able to fly autonomously over
a predetermined waypoint course. The camera used
to acquire UAV images, a Coolpix P7700 camera
(Nikon, Shinjuku, Japan) equipped with a 12.2-
megapixel CMOS sensor (4000 × 3000 pixel), was
fitted with a 6-mm lens, allowing the achievement of
a 0.03-m ground spatial resolution with a 100-m
flight height.

A set of sixty 10 cm ground control points was placed
in the vineyard, and georeferenced using a Leica GS09
dGPS (Leica Geosystems A.G., Heerbrugg, Switzerland)
with a 3D resolution of 2 cm. Missing plants in the
vineyard appear either as an altogether missing vine or
as a failed (dry) reimplant (Figure 2).

The set of acquired images was mosaicked by
Autopano Giga 3.5 Software (Kolor SARL, Challes-les-
Eaux, France) and then georeferenced and orthorecti-
fied with QGIS software (Quantum GIS, 2011), inte-
grating the information provided by the set of ground-
referenced points. Finally, the position of voids along
the trellis system was recorded in situ with dGPS accu-
racy, counting a total amount of 211 missing plants.

The method for individual vine detection in aerial
RGB images (Figure 3(a)), herein introduced, can be
organized in two main steps:

● The vine rows detection and location in a vine-
yard aerial orthophoto, producing a binary mask
where only pixels representing vine rows have
been selected and providing a set of the end-
points coordinates of each row;

● The identification of individual plants along
each vine row by means of vine canopy

Figure 1. Typical vineyard managed with the guyot training
system. Vines are planted in rows and the vegetation is
organized in continuous canopies.

180 J. PRIMICERIO ET AL.



centroids applying a nearest neighbour geome-
trical segmentation procedure.

This methodology is then applied to the missing
plant detection problem. From each plant, area and
shape are extracted and a set of parameters describing
the plants’ main features is calculated. A detection
method based on generalized linear model (GLM) is
then implemented, and its performance tested match-
ing estimated missing plant positions with real obser-
vations in a case-study vineyard.

Vine row detection

The detection of vine rows in an aerial image of a
vineyard is carried out using the method proposed in
Comba et al. (2015). Firstly, through a dynamic-win-
dows segmentation procedure, a binary image is pro-
duced in which clusters of interconnected pixels mainly
represent vine rows. Since, at this step of the procedure,
a single cluster can still represent a group of near vine
rows, each cluster of pixels is projected in the Hough
Parameters Space to determine the set of the lines
that gives best fit, and eventually, to split a single
cluster in several sub-clusters. Finally, using a total
least squares approximation, the set of straight-lines
representing the optimal estimation of each vine row
alignment is calculated, discarding any possible
remaining cluster of pixel representing non-vine

vegetation. The output of this process is a binary
mask image (Figure 3(b)), of the same size of the
preprocessed one, where pixels representing vine
canopies, well distinguished from all the other ones
considered as background, are collected in clusters
Ci i ¼ 1; . . . ; n, one for each of the n vine rows. The
coordinates of the two endpoints Ai and Bi of the line
representing the optimal estimation of the i-th vine
row are expressed as:

Ai; �λi; �φi

� �
; andBi; λi;φi

� �
; (1)

where �λi; �φi; λi;φi are the longitude and latitude of
the ending points of the i-th vine row.

Identification of individual plants

The calculation of the trunks position along a vine
row can now be performed using the position of the
vine rows, provided by the previous step, and the
distance between the vines. Due to the small exten-
sion of a typical vineyard with respect to the Earth
radius, the great circle distance calculation can be
neglected and thus the distance di between the two
ending points Ai and Bi of each row can be calculated
as the Euclidean distance on an equirectangular pro-
jection (Gade, 2010; Snyder, 1997).

di ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ
¼
i � cosφ¼i � �λi � cos �φi

� �2

þ φ
¼
i � �φi

� �2

s
;

(2)

where R is the mean Earth radius.
Knowing the regular spacing s between the vine

trunks, the number of plants mi in the i-th row is the
result of the integer division of di by s:

mi ¼ di
s
: (3)

Figure 3. (left) Georeferred and orthorectified aerial image (right) Binary mask obtained in the vine row detection step.

Figure 2. Schematic representation of a vine row with trunk
positions.
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Then, the estimated position coordinates vk;i λ;φð Þ of
the k� th vine along thei� th row (counted starting
from Ai) can be defined as follows (Figure 2):

vk;i; �λiþ k�1
2

� �
Δλi
mi

;φiþ k�1
2

� �
Δφi

mi

� �
;
k¼1; . . . ;mi;
i¼1; . . . ;n

(4)

where

Δλi ¼ �λi � �λi;Δφi ¼ �φi � �φi: (5)

Since, in general, an aerial image of a vineyard
shows a continuous distribution of vegetation along
a vine row, the coordinates vk;i of the vine trunks
position calculated at this step are theoretical. Indeed,
the present calculation is correct only for vineyards
with a symmetrical distribution of the vegetative part
with respect to the trunk. In case of asymmetric
distributions, like in cordon-trained systems, the
vine trunks positions can be easily adjusted to reflect
the correct curtain disposition.

The assignment of a portion of the canopy envelope to
an individual plant is performed dividing the cluster of
pixels Ci of the i� th vine row into a set of sub-clusters,
one for each vine trunk previously determined. Every
pixel pj,i of cluster Ci is assigned to the canopy of a single
plant sub-cluster Wk;i on the base of its Euclidean dis-
tance from the vine trunk position vk;i, as follows:

pj;i 2 Wk;i $ d pi; vk;i
� �

< d pi; vz;i
� �"z ¼ 1; . . .mi; z�k

with j ¼ 1; . . . ; nCi

;

(6)

where nCi is the number of pixels belonging to Ci.

Missing plant detection

An application of the new information potential pro-
vided by the single plant identification of a vineyard
pattern, resulting from the proposed detection proce-
dure of individual plant extraction, is the missing
plant detection task.

A first rough approach to the problem of detecting
missing plants could be the selection of plants having
a canopy described by a small, or even null, amount
of pixels, adopting a simple threshold h on the car-
dinality of wk;i, that is,

missing plant at row i; vine k $ card wk;i
� �

<h:

(7)

This method, however, is a poor discriminating
tool, since often vine shoots tend to grow towards
and inside the voids left by missing plants, filling
them partially (see Figure 4). Moreover, the intrinsic
spatial variability of the vegetative vigour, typical of
the vineyards, may determine a huge range of foliage
densities and canopy extent within the same

vineyard, and vines from low-vigour zones may pre-
sent fewer curtain pixel than missing plants from
high vigour ones.

Starting from the virtual shapes wk;i, a machine
learning procedure has been adopted to properly
discern between the presence or absence of a plant
along a row. The required statistical classifier should
be based on a set of canopy descriptors, wider than
the sole canopy surface measurement. In order to
select the proper set of variables, a GLM is adopted,
where the depended (classification) variable is the
probability that a sub-cluster of pixels wk;i represents
a missing plant. More in detail, a Binary Multivariate-
Logistic Regression (BMLR) model (Glonek &
McCullagh, 1995) was selected which uses the logit
link-function, the logarithm of odds ratio (Hogland,
Billor, & Anderson, 2013).

The proposed set of potential descriptive variables
to be evaluated, in order to improve the classifier
robustness, is described in the following and orga-
nized in the Table 1 for sake of clarity.

The first parameter (here named Area) that can be
derived from the segmentation procedure is the num-
ber of pixels of each detected sub-cluster wk;i, poten-
tially representing the projection of the canopy area
of each individual plant to the ground. As noted
above, although the area alone cannot discriminate
the presence or absence of vines, it is highly probable
that a missing plant might cause a decrease in canopy
area. The next parameters are perimeter P and rough-
ness R. P-value consists of the pixel count of the
boundary of the single vine’s area, while R is a mea-
sure of its “compactness” calculated as in Tang and
Tian (2008) by using the following relation:

R ¼ 4πArea
P2

: (8)

These two variables describe the shape of the sin-
gle vine and account for possibly different patterns of
canopy cover in case of shoots and foliage originating
from neighbour plants.

Figure 4. A typical vine row in the Bulichella vineyard. The
vegetation from neighbour vines has partially covered the
missing plant position.
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As pointed out in the introduction, plants with
similar vigour, and thus having similar row width,
are not randomly distributed in the vineyard but tend
to be grouped as vigour patterns. In order to treat this
phenomenon statistically, two other informative
parameters are considered. I is the value of local
Moran index (Anselin, 1995) calculated considering
plants area and position inside the vineyard. Since it
is a deviance from local area averages, the analysis of
negative outliers in its values gives a measure of
spatial association concerning area parameter, as sug-
gested in Filzmoser, Ruiz-Gazen, and Thomas-Agnan
(2014). L is defined as the residual of a non-para-
metric locally weighted regression (LOESS) fitting of
the plant areas along every row, following the meth-
odologies described in Cleveland and Devlin (1988).
Since a larger residual is associated with an outlier in
the sequence of plants area, its rationale is the same
of I, this time enforcing the role of the vine row.

Finally, the last parameter considered is B, that is,
a geometrical parameter measuring the shortest
Euclidean distance of the vine trunk from the vine-
yard boundary. B takes into account potential bound-
effects of vineposition on plant missingness, since
plants near the boundaryexperiment different micro-
climate conditions fromthose inside the vineyard
(Matese et al., 2014). All statistical procedures pre-
sented in this work were carried out in R (R Core
Team, 2015) environment by using the specific R
packages Deducer (Fellows, 2012) and ROCR (Sing,
Sander, Beerenwinkel, & Lengauer, 2005).

The significance of the variables for the assessment
of a single plant absence has been investigated by the
Wald statistics as defined in Wasserman (2006). The
parameters of the BMLR model were calculated with
the maximum likelihood estimation method, and
became a tool able to provide a probabilistic descrip-
tion of the state of the dependent variable (classifica-
tion) for each single cluster wk;i (Hosmer &
Lemeshow, 2004). From the comparison of collected
field data with model estimation, a confusion matrix
and the receiver operation curve (ROC) plot were
built (Fawcett, 2006). Given the probabilistic nature
of the recognition, the ROC plot reports the sensitiv-
ity versus specificity for the possible cut-off

classification probability values. The model perfor-
mance was then evaluated analysing the Area Under
Curve (AUC) ROC curve’s parameter. ROC plots and
AUC scores are suitable tools to evaluate not only the
strength of classifier but also the validity of the para-
meters used, a point that represents undoubtedly one
of the goals of this work. More information on the
use of ROC in statistics is available in Mason and
Graham (2002).

Results and discussion

The proposed image processing workflow has been
applied to the mosaicked, georeferred vineyard sample
image (Figure 3(a)), successively defining the vine rows
binary mask, computing the set of trunk positions and
extracting the canopy shape of each individual plants.
For every plant, the whole set of parameters to be used
in the model was then calculated.

Vine row mask result from the RGB vineyard image
is shown in Figure 3(b). Although, the algorithm is able
to differentiate vines from the inter-row even in pre-
sence of grass, in the actual case, due to the clear
separation of soil and vegetation pixels in the original
image, a very precise extraction of the vine mask has
been obtained. All clusters of pixel representing vine
rows are clearly distinguishable, and the masking pro-
cess confirms the ground evidence that, apart from very
rare cases, the vine rows appears as continuous objects,
hiding the eventual missingness of a vine underneath.

The extraction of the individual plants was then
carried out. From every row, the number of vine
trunks and their coordinates were calculated for a
total counting of 2242 vines that resulted in a missing
plant incidence of 9.4%.

The feasibility of the voids determination adopting
a simple threshold h (Equation (7)) on the vine
canopy area has been tested for completeness.
Setting the h parameter to the value that provides
the numbers of missing plants equal to the in field
measured quantity (211), only 44.9% of the voids
positions were correctly recognized, showing that
the sole plant canopy areas measurement cannot reli-
ably discriminate plant missingness.

A stepwise selection inside the GLMhas been used to
evaluate the significance of each selected parameters in
a discrimination process between vine plant presence or
absence along the vine rows. The significant parameters
are presented in Table 2. As expected, area has a strong
influence in the predictive power of the model, and also
the roughness parameter R has a good significance.
What is interesting, in this case-study vineyard, is the
relative significance of I and L. Since Moran’s I is
sensible to local spatial effects and L measures these
effects along the row, the stronger influence of L in

Table 1. List of parameters for the BMLR model.
parameter
name Definition

Area Number of pixels of each single plant sub-cluster wk;i

P Number of pixels of the boundary of each single plant
sub-cluster wk;i

R wk;i roughness R ¼ 4π Area=P2

I Local Moran index of plant’s area
L Residual of LOESS fitting of plant’s area along each row
B Shortest Euclidean distance of the vine trunk vk;i from

the vineyard boundary
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the model predictive power can provide the hint that
the possible causes of plant missingness is a property
that propagates along the rows (as the case of treatments
and common vineyardmanagement) rather than spatial
effects (e.g. pedological qualities). Of course, while in
this case study some parameters do not show a signifi-
cant influence in the model, they could be important in
other applications, and only a deeper study of other real
cases and a model optimization step could prove their
real importance.

From the possible sets of parameters to be
included in the BMLR, the two that maximize the
Likelihood function are group A1 (Area,R,L) and A3
(Area,R,I). The ROCcurve in Figure 5 summarizes
classifier performances over a range of trade-offs
between true positive (TP) and false positive(FP)
error rates. The AUC gives a measure of the recogni-
tion power of the model. For model A1, it can be
interpreted to mean that a randomly selected plant
from the missing = 1 group has a test value larger
than that for a randomly chosen individual from the

missing = 0 group 95% of the cases. Table 3 presents
the confusion matrices for models A1 and A3, for
plants and voids TPs and FPs. Due to the probabil-
istic nature of the models, different threshold cut-offs
produce a variation in the TP/FP ratios for both
plants and voids. Lower thresholds discriminate bet-
ter the voids but produce a consequent increase in
plants FP (voids are correctly recognized, but more
plants are considered voids), while higher thresholds
recognize better plant presence but fail to detect voids
correctly.

Conclusions

The work presented in this paper has shown how
useful information for the vineyard modelling can
be profitably extracted from standard RGB images
obtained by UAV imaging, developing proper image
processing algorithms. In detail, the specific applica-
tion regarding missing plant detection has been dis-
cussed, but the proposed method can be adapted to
address other classes of problems such as the detec-
tion of plant pathologies in the rows and high preci-
sion vigour zoning.

The main feature of the proposed method is the
delineation of a set virtual shapes, by the definition of
exclusive pixels clusters within the vineyard aerial
image, which can be assumed to represent the vegeta-
tion canopy of each individual vine plant. A set of
descriptors, derived from each plant shape character-
istics, can be used for the detection of missing plants
and, in general, for the desired recognition model.
Indeed, passing from continuous images to a discrete
set of individual plants results in a crucial simplifica-
tion of the statistical investigation of the problem. It
has to be point out that some constraints and criti-
calities still remain, even adopting the proposed

Table 2. Significance of the variables of the binary multivariate-logistic regression model.
Estimate Std. error Z-value Pr (>|z|) Significance

(Intercept) 0.254827844 1.263975948 0.20161 0.84022308
Area −0.005726622 0.001589934 −3.6018 0.00031602 ***
R −3.92227221 1.649371184 −2.37804 0.01740489 *
I −0.714684828 0.393720632 −1.81521 0.06949196 *
L 0.046066561 0.003329973 13.83391 <2.22e-16 ***

Significance codes: 0“***”, 0.001“**”, 0.01“*”, 0.05“.”

Table 3. Confusion matrices for Models A1 and A3.
Model A1 Model A3

Plant TP Plant FP Void FP Void TP Threshold Plant TP Plant FP Void FP Void TP Threshold

53 378 13 198 0.05 1304 727 18 193 0.05
1804 227 23 188 0.1 1661 370 34 177 0.1
1867 164 32 179 0.15 1817 214 62 149 0.15
1908 123 36 175 0.2 1890 141 87 124 0.2
2025 6 134 77 0.8 2030 1 186 25 0.8
2027 4 154 57 0.9 2031 0 196 15 0.9

Figure 5. ROC plot for Model A1 and Model A3.
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method. For instance, this method can be applied
only to cases in which the spacing between the plants
and rows is constant, but this is not so critical,
because in almost all cases this solution is the most
convenient for the vineyard installation. In particular,
this is generally true in modern vineyards whose
implant is automatically and mechanically performed,
but an a priori check of this regularity should be done
in any case before applying the segmentation method.

The choice of the specific descriptor (or a combi-
nation of) to be used in this operation is a crucial
point. Since, the aim of this work was to explore the
viability of applying statistical modelling to a set of
automated object recognition processes, all possible
information from the extracted objects was consid-
ered, showing that this course of reasoning is a viable
one. Of course, the robustness and reliability of the
method will be substantially improved increasing
available data, for example, with the integration of
multispectral imaging and NDVI maps calculation
that would permit the extraction of single plant vig-
our and health status.

In the specific case of the detection of missing
plants, the method described in this paper allows to
put in evidence several complex factors that can
prove to be useful in the managing of the vineyards.
For instance, one could discriminate between situa-
tions in which missingness is uniformly (isotropi-
cally) distributed in the vineyard from cases in
which it follows definite patterns (e.g. its occurrence
seems to propagate along the rows, or it presents “hot
spots”). Of course, this information can be used to
infer the causes that originated the missingness.

With the possibility of detecting and removing
missing plants in high-resolution aerial maps, this
approach will permit in the future to solve some of
the problems of correct representation of vigour
zones inside vineyards. This is especially true in
situation where the incidence of missing plants may
alter all results, like vigour maps, that rely heavily on
averages and interpolations. Moreover, individual
plant representation will open the way to establishing
a new course in precision viticulture, with the intro-
duction of plant-specific application.
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