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Abstract 

 

The carbonate radical (CO3
−•

) is a photoinduced transient species occurring in surface waters, which 

is involved in the transformation of electron-rich substrates such as anilines, phenols and organic 

sulphur compounds. Here we show that the reaction between peroxynitrite and carbon dioxide is a 

potentially significant source of CO3
−•

 in sunlit surface waters, and it could account for up to 10-

15% of the total CO3
−•

 formation. The peroxynitrite pathway to CO3
−•

 would be most significant at 

pH 7-8, and its relative importance would be enhanced in waters with elevated nitrate and low 

alkalinity. Therefore, the proposed process could add to the known photochemical sources of CO3
−•

 

in surface-water environments. 

 

Keywords: Environmental photochemistry; indirect photolysis; modelling; sunlit waters; pollutant 

photodegradation. 

 

 

1. Introduction 

 

The carbonate radical (CO3
−•

) is a transient species that occurs in sunlit natural waters and can be 

involved in the transformation of natural compounds and man-made xenobiotics (Larson and Zepp 

1988; Huang and Mabury 2000a), such as electron-rich anilines, phenols and sulphur-containing 

compounds (Huang and Mabury 2000b; Canonica et al. 2005; Bouillon and Miller 2005). The 

species CO3
−•

 is formed upon bicarbonate oxidation by the hydroxyl radical (
•
OH) and upon 

carbonate oxidation by 
•
OH and 

3
CDOM* (the excited triplet states of chromophoric dissolved 

organic matter; Canonica et al. 2005). The scavenging of CO3
−•

 mainly occurs by reaction with the 

natural dissolved organic matter (DOM), which is also a major 
•
OH sink (Larson and Zepp 1988; 

Canonica et al. 2005). The formation rate of CO3
−•

 in natural waters is usually lower than that of 
•
OH, but the scavenging of CO3

−•
 by DOM is much slower than the corresponding 

•
OH process. As 
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a result, CO3
−•

 usually has higher steady-state concentration than 
•
OH, which may sometimes 

compensate for its lower reactivity (Sulzberger et al. 1997, Huang and Mabury 2000a).
 

The radical CO3
−•

 can also be formed by reaction between peroxynitrite (ONOO
−
) and dissolved 

CO2. A possible formation route of ONOO
−
 is nitrate photoisomerisation (Thogersen et al. 2009), 

and nitrate is an important photoactive agent in surface waters (Chen et al. 2013). To our 

knowledge, the possible importance of this pathway for the formation of CO3
−•

 in surface waters 

has not been assessed so far. To fill this knowledge gap, a kinetic model was derived to describe the 

formation of CO3
−•

 via the reaction between ONOO
−
 and CO2. The potential environmental 

significance of the process was then evaluated, by comparison with the known CO3
−•

 production 

pathways.  

 

2. Methods 

 

To carry out the comparison under conditions relevant to surface waters, it was used the software 

APEX (Aqueous Photochemistry of Environmentally-occurring Xenobiotics) (Bodrato and Vione 

2014). APEX predicts photochemical reactions (including the formation rates of transient species) 

based on water chemistry and depth, under summertime irradiation conditions. To get insight into 

the environmental significance of the process, a wide range of environmental conditions was 

obtained from the Global Environment Monitoring System (http://www.GEMStat.org), which 

reports the chemical composition of surface waters from many monitoring stations around the 

world. To have comparable values of sunlight irradiance, mid-latitude stations were chosen (40-50° 

N latitude) and, for each station for which summertime data of nitrate, DOC, inorganic carbon and 

pH were available (an issue that restricted the study zone to Europe), average values of these 

parameters were used. Summertime data were chosen because photochemical reactions are most 

important during the summer season (Tixier et al. 2002). 

 

3. Results and Discussion 

 

Peroxynitrite, together with its conjugated acid ONOOH (peroxynitrous acid), can be formed upon 

nitrate photoisomerisation. This process is quite efficient in the UVC range (Mark et al. 1996), 

while its occurrence at higher wavelengths is more controversial. There are reports excluding that 

the reaction occurs effectively above 280 nm under monochromatic irradiation (Goldstein and 

Rabani 2007), and findings that peroxynitrite can be formed by irradiation of basic nitrate solutions 

under a broadband UVB lamp (Borghesi et al. 2005). Possible reasons for this inconsistency are that 

nitrate has very low absorbance around 280 nm, and that the intensity of monochromatic radiation is 

usually quite low compared to broadband sources. Further evidence of the UVB-induced formation 

of ONOOH/ONOO
−
 from nitrate is the formation of 2-nitronaphthalene (and the lack of formation 

of 1-nitronaphthalene) upon UVB irradiation of naphthalene and nitrate. It would be difficult to 
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account for the occurrence of the 2-nitroisomer alone, without hypothesizing the occurrence of 

ONOOH/ONOO
−
 as nitrating agent (Vione et al. 2005). 

Peroxynitrous acid has pKa ∼ 7, it is unstable and undergoes transformation to both NO3
−
 + H

+
 

(approximately 70% of the total) and 
•
OH + 

•
NO2 (∼30%) (Drexler et al. 1991; Coddington et al. 

1999). In contrast, ONOO
−
 transformation follows a completely different route (reaction with CO2, 

having rate constant k1 = 3.0⋅10
4
 M

−1
 s

−1
, without production of 

•
OH) (Meli et al. 2002; Lymar and 

Hurst 1995; Pryor et al. 1997; Carballal et al. 2014). Direct formation of 
•
OH from irradiated nitrate 

takes place via reaction (1), with quantum yield Φ1 ∼ 0.01. The 
•
OH yield of this process could 

decrease with pH, but only around pH 12 (Warneck and Wurzinger 1988). 

 

NO3
−
 + hν → 

•
O

−
 + 

•
NO2   

•
OH + 

•
NO2  [pKa(

•
OH) ∼ 12]  (1) 

 

The experimental pH trend of 
•
OH photoproduction upon nitrate photolysis showed a ∼50% 

decrease between pH 6 and 8 (Vione et al. 2009), which might be due to the occurrence of 
•
OH-

producing ONOOH at pH 6, and of ONOO
−
 at pH 8. If this is the case, at pH 6 the ONOOH 

pathway would produce about as much 
•
OH as reaction (1). From the 

•
OH yield of ONOOH (η∼ 

0.3) and with Φ1 ∼ 0.01, one estimates 
−

Φ 3NO

ONOOH  ∼ Φ1 η
−1

 ∼ 0.03 as the formation quantum yield of 

ONOOH from irradiated nitrate. 

ONOO
−
 might react with ONOOH, H2S and nitrite. However, given the reaction rate constants 

and the typical concentrations of the relevant species in surface waters, these processes can be 

safely neglected compared to the CO2 reaction (Kissner and Koppenol 2002; Molina et al. 2013; 

Gupta et al. 2009; Verma et al. 2015; Maurer et al. 2003; Carballal et al. 2011). The latter process 

yields ONOOCO2
−
, which can evolve into either nitrate and CO2 or the radicals CO3

−•
 and 

•
NO2 

(see scheme (2) below) (Drexler et al. 1991; Coddington et al. 1999). The production of 
•
NO2 might 

account for the formation of phenol nitroderivatives upon UVB irradiation of nitrate and 

bicarbonate (Chiron et al. 2009).
 

 

   (2) 

 

The equilibrium ONOO
−
 + CO2 � ONOOCO2

−
 is likely shifted to the right, because CO2 

significantly inhibits the nitration reactions induced by ONOO
−
 (Denicola et al. 1996), thereby 

excluding a significant back transformation of ONOOCO2
−
 into ONOO

−
 + CO2. The recombination 

of the radicals CO3
−•

+ 
•
NO2 is also little likely, because of their low steady-state concentrations and 

of the fast hydrolysis of 
•
NO2 in aqueous solution (Logager and Sehested 1993). Finally, the 



 4

reaction yields of NO3
−
 + CO2 and of CO3

−•
 + 

•
NO2 have been determined as, respectively, ∼95% 

and ∼5% (Meli et al. 2002). With these approximations and considering a steady-state 

[ONOOCO2
−
], the generation rate of CO3

−•
 from ONOO

−
 + CO2 would be 

][][)( 2

1

3221
3

COONOOkkkkR
ONOO

CO

−−
+=

−

•− , where 1

322 )( −
+ kkk  = 0.05.  

The formation rate of ONOO
−
 upon nitrate photolysis is −

−−

−

−

− Φ=
ONOO

NO

a

NO

ONOO

NO

ONOO
PR α333 , where 

−

−Φ 3NO

ONOO
∼0.03 (see above), 

−
3NO

aP  is the photon flux absorbed by nitrate, and −
ONOO

α  is the 

peroxynitrite fraction resulting from the acid-base equilibrium with ONOOH (where ONOOHα  + 

−
ONOO

α  = 1). When considering the reaction with CO2, the steady-state [ONOO
−
] can be expressed 

as: 1

21

1

21 ])[(])[(][ 33 −−−
−

−−

−− Φ== COkPCOkRONOO
ONOO

NO

a

NO

ONOOONOO
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−

−
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The value of 
−
3NO

aP  depends on the irradiation wavelength(s), on nitrate concentration and on the 

occurrence of other radiation-absorbing species in solution. Under conditions relevant to surface 

waters, 
−
3NO

aP  can be assessed with APEX. The software also calculates 
−

•−

ONOOno

CO
R

3

, namely the 

formation rate of CO3
−•

 via the "traditional" production processes (reaction between 
•
OH and 

HCO3
−
, 

•
OH and CO3

2−
, and 

3
CDOM* and CO3

2−
). In this context, the fractional contribution of 

peroxynitrite to the total formation rate of CO3
−•

 is 1)(
3333

−−

•−

−

•−

−

•−

−

•− +=
ONOO

CO

ONOOno

CO

ONOO

CO

ONOO

CO
RRRf . 

−

•−

ONOO

CO
R

3

 

is determined with equation (3), and the total formation rate of CO3
−•

 is tot

CO
R •−

3

 = 
−

•−

ONOOno

CO
R

3

+
−

•−

ONOO

CO
R

3

. 

Figure 1 reports the fractions of CO3
−•

 produced by the different processes, as a function of pH. 

Used water conditions are 0.1 mM nitrate, 2 mgC L
−1

 dissolved organic carbon (DOC), 0.5 m 

depth, and 1.7 mM inorganic carbon (dissolved CO2, HCO3
−
, CO3

2−
). The figure reports the 

fractions of CO3
−•

 formation, while the total formation rate tot

CO
R •−

3

 increases with increasing pH 

because the CO3
2−

 reactions are more effective than the HCO3
−
 ones. The 

•
OH + HCO3

−
 process is 

the most important at pH < 8.5, while 
•
OH + CO3

2−
 prevails at higher pH. Interestingly, 

•
OH has a 

major role in the production of CO3
−•

, despite the 
•
OH scavenging carried out by DOM (here 

quantified as the water DOC). The ONOO
−
 process would be most important at pH 7-8, where it 

could account for around 10% of tot

CO
R •−

3

 under the assumed water conditions. Interestingly, the pH 

range 7-8 is very common in surface waters (Polesello et al. 2006). At pH < 7 the importance of the 

peroxynitrite pathway would decrease because of the decreasing −
ONOO

α  fraction (ONOO
−
 is 

protonated to ONOOH). At pH < 6, however, the decreasing −
ONOO

α  is compensated for by the 

protonation of HCO3
−
 (Martell et al. 1997), with the consequence that 

−

•−

ONOO

CO
R

3

 and tot

CO
R •−

3

 undergo a 

parallel decrease. Therefore, 
−

•−

ONOO

CO
f

3

 stabilises at around 5%. At pH > 8 both −
ONOO

α  and 
−

•−

ONOO

CO
R

3

 

are approximately constant, but tot

CO
R •−

3

 increases with pH and 1)(
333

−
•−

−

•−

−

•− =
tot

CO

ONOO

CO

ONOO

CO
RRf  decreases as 

a consequence. A final comment concerns the reaction of 
3
CDOM* with CO3

2−
: it is less important 
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than the 
•
OH reactions under most conditions, but its importance would be higher than shown (and 

the role of 
•
OH correspondingly lower) at more elevated DOC values (Canonica et al. 2005).

 

A wider geographical outlook was obtained from the data of the Global Environment 

Monitoring System. On this basis, the APEX software could compute 
−

•−

ONOOno

CO
R

3

 and 
−
3NO

aP , from 

which 
−

•−

ONOO

CO
R

3

, tot

CO
R •−

3

 and 
−

•−

ONOO

CO
f

3

 were derived as explained above. Figure 2a reports the ratio 

1)(
333

−
•−

−

•−

−

•− =
tot

CO

ONOO

CO

ONOO

CO
RRf  for the different stations, which are represented by their respective pH 

values to enable a direct comparison with Figure 1. The ONOO
−
 process could account for ∼10% 

(and up to 20%) of CO3
−•

 photoproduction at 7.4 < pH < 8.6, in overall agreement with Figure 1. 

Interestingly, the highest value of 
−

•−

ONOO

CO
f

3

 (almost 25%) was obtained at pH ∼ 6.9 that is quite far 

from the optimum pH conditions. The reason is that, in the relevant sample, the nitrate 

concentration was quite high (∼0.17 mM) and its absorbed photon flux (
−
3NO

aP ) was also elevated. 

Moreover, the low alkalinity (that is, low carbonate and bicarbonate) at pH ∼ 6.9 would limit the 

role of 
•
OH as source of CO3

−•
. All these issues would offset the relatively low −

ONOO
α  at that pH 

value . Figure 2b shows the geographic distribution of the sampling stations. Most of the useful data 

were from Belgium and Switzerland, with slightly higher values of 
−

•−

ONOO

CO
f

3

 in the latter country. 

 

4. Conclusions 

 

The reaction between ONOO
−
 and CO2 could account for a significant fraction of the CO3

−•
 

formation in surface waters, in the pH interval 7-8 and/or in the presence of elevated nitrate/low 

alkalinity (∼10% of tot

CO
R •−

3

 in the tested scenarios, and in one case even up to ∼25%). Therefore, it is 

a potentially novel route to CO3
−•

 in surface-water environments. The present assessment was based 

on a formation quantum yield of ONOO
−
 from nitrate (

−

−Φ 3NO

ONOO
 ∼ 0.03) that was indirectly estimated 

from experimental data under UVB irradiation, and on the hypothesis that CO2 is the main ONOO
−
 

sink. The latter issue is very reasonable under physiological conditions, but the occurrence of 

additional ONOO
−
 sinks (e.g. dissolved organic matter) in surface waters is presently unknown. 
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Figure 1. Fractions of CO3
−•

 formation accounted for by the different pathways, as a function of 

pH. Water conditions: 0.1 mM nitrate, 2 mgC L
−1

 DOC, 0.5 m depth, 1.7 mM total 

carbonates (dissolved CO2 + HCO3
−
 + CO3

2−
). Note the important role of the 

•
OH 

reactions and the maximum of 
−

•−

ONOO

CO
f

3

 between pH 7.5 and 8. 

 

 

 

        

 

Figure 2. Left: Fraction of CO3
−•

 formation accounted for by the ONOO
−
 pathway (

−

•−

ONOO

CO
f

3

), as a 

function of pH. Water chemistry data were taken from the Global Environment 

Monitoring System database (http://www.GEMStat.org), for a water column depth of 0.5 

m. Overall, there is an optimum 
−

•−

ONOO

CO
f

3

 at pH values between 7.5 and 8, coherently with 

Figure 1 data. Right: Map showing the geographic distribution of the relevant sampling 

stations and of the associated 
−

•−

ONOO

CO
f

3

 values. Note the relatively elevated 
−

•−

ONOO

CO
f

3

 in 

Swiss rivers. 


