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* cristina.varese@unito.it

Abstract

Algae-inhabiting marine fungi represent a taxonomically and ecologically interesting group

of microorganisms still largely neglected, especially in temperate regions. The aim of this

study was to isolate and to identify the culturable mycobiota associated with Flabellia petio-

lata, a green alga frequently retrieved in the Mediterranean basin. Twenty algal thalli were

collected from two different sampling sites in the Mediterranean Sea (Elba Island, Italy). A

polyphasic approach showed the presence of a relevant alga-associated mycobiota with 64

taxa identified. The fungal isolates belonged mainly to Ascomycota (61 taxa), while only

three Basidiomycota were detected. The phylogenetic position of sterile mycelia and cryptic

taxa, inferred on the basis of LSU partial region, highlighted the presence of putative new

phylogenetic lineages within Dothideomycetes and Sordariomycetes. This work represents

the first quali-quantitative analysis of the culturable mycobiota associated to a green alga in

the Mediterranean Sea.

Introduction

Oceans harbour a broad diversity of habitats and a huge diversity of prokaryotes but also of

eukaryotic microorganisms, among which fungi are often dominant [1]. Marine fungi rep-

resent an ecological rather than a taxonomical defined group, comprising organisms

belonging to different orders or phyla that share eco-physiological features. They have been

retrieved from almost every kind of abiotic and biotic substrates, such as sediments,

sponges, corals, echinoderms, vertebrates, algae, in a tremendous diversity of habitats rang-

ing from coastal waters to the deep biosphere [2]. Albeit their diversity has recently been

estimated to exceed 10,000 species/phylotype, a recent update indicated that only 1,112 spe-

cies of marine fungi have been described, highlighting the gap of knowledge on marine

fungi with almost 90% of the diversity to be described, mostly from uncharted marine envi-

ronments [3]. In addition, basic knowledge on their distribution and ecological roles is still

in its infancy [3–5].
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Algae represent an important isolation source of marine fungi with almost one-third of all

known marine fungal species associated with these organisms [2, 6]. Algae-inhabiting fungi

represent a taxonomically diverse group of mutualists, endosymbionts, parasites, pathogens

and saprobes, which are of evolutionary, ecological and economical interest [7, 8]. A number

of studies have demonstrated that algae-inhabiting fungi were responsible for the production

of many bioactive secondary metabolites, previously attributed to the host [9, 10]. Despite

algal flora dominates marine habitats in temperate regions (9,200–12,500 described seaweeds),

relatively few species have been investigated for the presence of an associated mycobiota; con-

sequently further isolation efforts are required. Algicolous fungi associated to different sea-

weeds have been recently reviewed by Jones et al. [11] and Suryanarayanan [12].

Flabellia petiolata (Turra) Nizamuddin is a green alga commonly retrieved in the Mediter-

ranean basin that belongs to the Udoteaceae family (Chlorophyta, Bryopsidales) [13]. F. petio-
lata colonises rocky and coral substrates of the sublittoral zone, often in association with other

algae (e.g. Dictyopteris spp., Dictyota spp., Dilophus spp.). Moreover F. petiolata is one of the

main components of the phytocoenoses associated with the endemic and endangered sea grass

Posidonia oceanica [14, 15]. Compared to many other green algae, F. petiolata appears to be an

interesting species, since antibacterial, antiviral, antimitotic, antifungal and cytotoxic activities

have been detected in its raw extract [16]: whether the green alga or any associated organism

produces biocides has never been clarified.

Despite its ecological and potential biotechnological value, F. petiolata has never been

explored for its culturable mycobiota. This study aims (i) to isolate and identify marine fungi

associated with F. petiolata and (ii) to create an exhaustive collection of fungal strains with

putative future biotechnological applications.

Material and methods

Sampling procedures

Samples of F. petiolata were collected in March 2010 along the coasts of the Elba Island

(Livorno, Italy) in the Tyrrhenian Sea (NW Mediterranean Sea). Two sampling sites, charac-

terized by the presence of P. oceanica meadows associated with F. petiolata, were chosen:

Ghiaie (UTM WGS84 42˚49’04”N, 10˚19’20”E) and Margidore (UTM WGS84 42˚45’29”N,

10˚18’24”E); depth ranged between 5 and 15 m below sea level (bsl) (Fig 1). A total of 20 algal

thalli, 10 for each sampling site, were harvested. To avoid contaminations, algae were collected

in sterile containers and maintained at 4˚C during transportation. The samples were processed

within 36 h from sampling. Specific permissions to operate in the protected area of “Le Ghiaie”

(Ghiaie site) and to the freely accessible Margidore site were obtained by the port authority of

Portoferraio (Livorno, Italy). Field study did not involve endangered or protected species.

Fungal isolation

Each thallus was sonicated (30” each time) and serially washed (three times) in artificial steril-

ized SeaWater (SW, 3.4% w/v Sea Salt mix—Sigma-Aldrich, Saint Louis, USA—in ddH2O) to

remove unrefined sediments. Then it was homogenized in 20 mL of sterile filtered seawater by

means of a sterile device (Ultra-Turrax—IKA, Staufen, Germany). One mL of homogenate

was plated in 12 cm diameter Petri dishes containing 30 mL of the following media: Corn

Meal Agar SeaWater (CMASW) medium (17g CMA—Sigma-Aldrich, Saint Louis, USA—dis-

solved in 1 L of filtered SW) and Flabellia Agar SeaWater (FASW) medium (1g fw of F. petio-
lata in 100 mL of SW boiled for 30 minutes at 60˚C and filtered; 18 g agar; SW up 1L). Each

medium was autoclaved, supplemented with antibiotics (Gentamicin 80 mg/L, Piperacillin

and Tazobactam 100 mg/L—Sigma-Aldrich, Saint Louis, USA) and further sterilized by
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filtration to prevent bacterial growth. Three replicates per medium and per sample were per-

formed [17].

A total of 120 plates were incubated at 15˚C for 15 days (spring average temperature of the

Elba Island submerged meadows at depths between 5 and 15 m bsl) to allow the isolation of

psychrotolerant or psychrotrophic fungi. Plates were subsequently placed at 24˚C for 45 days

to allow the development of mesophilic colonies including the slow-growing ones. The num-

ber of colony forming units per gram of dry weight of each algal thallus (CFU/g dw) was

recorded. For filamentous fungi, CFU refer to individual colonies originating from a single or

a mass of cells or spores/conidia. Strains from each fungal morphotype and from each sam-

pling site were isolated in pure culture and preserved at theMycotheca Universitatis Taurinen-
sis (MUT, http://www.mut.unito.it/en; MUT codes are reported in the Results section).

Fungal identification

A polyphasic approach was employed to identify the isolated strains. First, fungi were identi-

fied according to their macroscopic, microscopic and physiological features (S1 Fig) on the

basis of specific taxonomical keys, following the indications provided from Dictionary of the

Fungi [18] and from the Mycobank databases (http://www.mycobank.org/). Subsequently,

molecular analyses were performed by sequencing specific genomic DNA regions.

DNA extraction and amplification

Genomic DNA was extracted following a modified protocol of Cubero et al. [19]. In detail, 100

mg of mycelium were gently scraped from an agar petri dish, placed in a 2 mL Eppendorf tube

and disrupted in a MM400 tissue lyzer (Retsch GmbH, Haan, Germany). A volume of 0.5 mL

of pre-warmed extraction buffer (1% w/v CTAB; 1M NaCl; 100 mM Tris; 20 mM EDTA; 1%

w/v polyvinyl polypyrolidone, PVPP added to the buffer immediately prior to use—Sigma-

Aldrich, Saint Louis, USA) was added to the ground material. Samples were vortexed and

Fig 1. Sampling sites. Elba Island (Livorno), Tuscany, Tyrrhenian Sea (Mediterranean Sea) Italy.

https://doi.org/10.1371/journal.pone.0175941.g001
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heated in a water bath for 30 min at 60˚C. Following, one volume of chloroform: isoamyl alco-

hol (24:1 v/v—Sigma-Aldrich, Saint Louis, USA) was added, samples were vortexed and cen-

trifuged for 3 min at 10,000 g at room temperature. The upper aqueous phase was collected in

a new tube and two volumes of precipitation buffer (1% w/v CTAB; 50 mM Tris-HCl; 10 mM

EDTA; 40 mM NaCl—Sigma-Aldrich, Saint Louis, USA) were added. The mixture was vor-

texed and centrifuged for 10 min at 14,000 g at room temperature. Supernatant was discarded,

the pellet was collected and resuspended in 350 μL of 3 M Sodium Acetate (CH3COONa—

Sigma-Aldrich, Saint Louis, USA), to which one volume of chloroform: isoamyl alcohol (24:1)

was added. Samples were vortexed and centrifuged for 3 min at 10,000 g at room temperature.

The upper phase was placed in a new tube and 660 μL of isopropanol were added prior to incu-

bation at -20˚C for 20 min. The final pellet was collected by centrifugation for 10 min at 14,000

g at 4˚C. Finally, the pellet was washed with 1 mL of 70% ethanol and recollected by centrifuga-

tion for 2 min at 14,000 g at 4˚C. The pellet was dried at 40˚C and subsequently resuspended

in 60 μL of TE buffer (10 M Tris pH 7.4, 1 mM EDTA—Sigma-Aldrich, Saint Louis, USA).

The quality and quantity of extracted DNA was measured by using NanoDrop 1000

(Thermo Scientific, Wilmington, USA). DNAs were stored at -20˚C.

Specific markers were amplified in a Biometra TGradient Thermocycler (Biometra, Göt-

tingen, Germany) as follows. PCR mixture consisted of 5 μL 10x PCR Buffer (15 mM MgCl2,

500 mM KCl, 100 mM Tris-HCl, pH 8.3) 0.4 mM MgCl2, 0.2 mM each dNTP, 1 μM each

primer, 2.5 U Taq DNA Polymerase (all reagents were supplied by Sigma-Aldrich, Saint Louis,

USA), 40–80 ng DNA, in 50 μL final volume. For more details about PCR cycles, see the S2

Table.

The nr DNA partial regions (ITS or LSU and SSU when necessary) were amplified using

the universal primers ITS1/ITS4 [20, 21], LR0R/LR7 [22], and NS1/NS4 [23]. For the strains

morphologically identified as Cladosporium spp. it was necessary to amplify the Actin gene

using primers ACT512F/ACT783R [24]. For those strains identified as Penicillium spp. the β-

tubulin gene was amplified using the primer pair Bt2a/Bt2b [25]. PCR products were purified

and sequenced at Macrogen Europe (Amsterdam, The Netherlands). Consensus sequences

were obtained by using Sequencer 5.0 (Gene Code Corporation, http://www.genecodes.com).

Taxonomic assignments were inferred by querying with the Blastn algorithm (default setting),

hosted at NCBI (National Center for Biotechnology Information—http://www.ncbi.nlm.nih.

gov) the newly generated sequences against the nucleotide database of NCBI (GenBank). Pair-

wise alignments were also performed at http://www.cbs.knaw.nl against the CBS-Knaw Fungal

Biodiversity Centre (Centraalbureau voor Schimmelcultures) database. Similarity values equal

or higher than 98% (e-value > e-100) were considered credible and the results were confirmed

morphologically. Sequences related to fungi isolated in this study were deposited at the NCBI

database (GenBank accession no. KP671714—KP671750; KR014346—KR014380; KT313376

—KT313393; KT587307—KT587334; KU315005—KU315009; KX988016—KX988018;

KY081460—KY081463; KY081637). When low sequence similarity (< 98%) did not allow

genus and/or species determination, or when the strain remains sterile in pure culture, the tax-

onomic position was inferred through phylogenetic analysis. A full phylogenetic analysis was

performed on LSU sequences, since comparable ITS and SSU sequences of fungi studied in

this paper are rare in public databases and/or poorly informative. Four sequences datasets

were properly composed following Suetrong et al. [26], and Hyde et al. [27] for Pleosporales

(127 sequences) and Capnodiales (85 sequences), Wang et al. [28, 29] and Nekoduka et al. [30]

for Leotiomycetes (71 sequences), and Tang et al., [31] for Sordariomycetes (165 sequences).

The complete dataset is provided in Supporting Information (see S1 Dataset). Alignments

were generated using MUSCLE, implemented in MEGA 6.0 (Molecular Evolutionary Genetics

Analysis, [32]), and manually refined (number of characters were 733, 776, 782, 814 for
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Leotiomycetes, Pleosporales, Sordariomycetes, Capnodiales, respectively). Phylogenetic analy-

ses were performed using both Bayesian Inference (BI; MrBayes 3.2.2; four incrementally

heated simultaneous Monte Carlo Markov Chains (MCMC), run over 10 million generations,

under GTR + Γ evolutionary model) and Maximum Likelihood (ML; RAxML v.7.3.2; 1,000

bootstraps replicates using the GTRGAMMA algorithm) approaches, as extensively described

in Gnavi and collaborators [33]. Since both phylogenetic models yielded the same topology

only the Bayesian trees were displayed. Bayesian Posterior Probability (BPP) values over 0.70

are reported in the resulting trees.

Statistical analysis

Statistical analyses were performed using PRIMER 7.0 (Plymouth Routines In Multivariate

Ecological Research [34]). The biodiversity within sampling sites was estimated by calculating

Shannon-Weaver’s index (H’), Gini-Simpson’s index (1-Lambda) and Pielou’s evenness (J’) on

presence/absence matrix (S3 Table). The difference between fungal abundance at the different

locations or on the isolation media was evaluated with PAST 3.x software [35] using F-test

(p� 0.05). The Non-Metric Multi Dimensional Scaling (NMDS) analysis was performed in R

(Vegan package) [36].

Results

Quantitative analysis

All the thalli of F. petiolata led to the growth of fungal isolates. The average fungal abundance

(CFUg-1dw) of the 10 thalli from each site ranged between 4.8 x 102 CFU g-1dw and 1.3 x 103

CFU g-1dw (Table 1). The CMASW medium led to a higher fungal load compared to FASW.

Most of the isolates required specific media and incubation temperatures: 28 taxa were exclu-

sively isolated from CMASW, 30 from FASW and only 6 were isolated from both media. Ten

taxa grew exclusively at 15˚C, 50 were isolated only at 25˚C, while the remaining four were

retrieved in both conditions (Table 1). All the biodiversity indexes used were similar in the two

sampling sites (Table 2).

Fungal diversity

A total of 143 fungal isolates, belonging to 64 taxa, were detected (Table 3). Since 23% of the

isolates remained sterile in pure culture and sequence similarity through BLASTn analysis did

not allow genus and/or species determination, a phylogenetic analysis based on LSU partial

region was used to provide a valid classification. Both phylogenetic models yielded the same

topology; therefore, only the Bayesian trees with BPP values are shown (Figs 2–5). In detail,

the phylogenetic analysis showed that 13 strains were affiliated to the Pleosporales order

(Dothideomycetes, Fig 2), 5 strains grouped in the Capnodiales (Dothideomycetes, Fig 3), 2

strains fell within the Helotiales (Leotiomycetes, Fig 4), and 13 within Sordariomycetes (Fig 5).

Within Pleosporales, MUT 4941 was identified as Pyrenochaetopsis sp., MUT 4859, 4886,

4971, 4977, 4966 clustered with Neoroussoella bambusae (Roussoellaceae family), MUT 4879 as

Arthopyrenia salicis, MUT 4884 as Roussoellaceae sp., MUT 4883 as Biatriospora sp., MUT

4887 asMassarina rubi, MUT 4863 and MUT 4860 asMassarina sp., and MUT 4858 was

assigned to Sporormiaceae (Fig 2).

As for Capnodiales, MUT 4991 was identified as Ramularia eucalypti, MUT 4958 and 5396

clustered in the Teratosphaeriaceae family; MUT 4891 was affiliated to Devriesia genus, close

to Devriesia strelitziae, and MUT 4857 as a Verrucocladosporium dirinae strain (Fig 3).

Flabellia petiolata culturable mycobiota in the Mediterranean Sea
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With respect to Helotiales, MUT 4963 was identified as Rhexocercosporidium carotae, while

MUT 4874 was assigned to Botrytis cinerea (Fig 4).

Finally, thanks to the phylogenetic analyses, almost all Sordariomycetes were identified at

species level: Beauveria bassiana (MUT 4865), Acremonium sclerotigenum (MUT 4872), Sedeci-
miella taiwanensis (MUT 5053), Valsonectria pulchella (MUT 4890),Microascus trigonosporum
(MUT 4885), Acrostalagmus luteoalbus (MUT 4778), Gibellulopsis nigrescens (MUT 4871),

Chaetomium globosum (MUT 4942),Myceliophthora verrucosa (MUT 4868 and 4878) and

Apiospora montagnei (syn. Arthrinium arundinis, MUT 4777). Moreover, MUT 4889 was iden-

tified as Hypocreales sp. and MUT 4861 clustered within the Microascaceae (Fig 5).

According to these analyses, identification was possible at species level for 17 taxa and at

genus level for 5 taxa; the remaining cryptic entities (12) were assigned to orders and families

on the basis of clade similarities (Table 3).

At a broader scale, almost all taxa (61) belong to Ascomycota (24 Dothideomycetes, 15

Eurotiomycetes, 2 Leotiomycetes, 20 Sordariomycetes) and 3 to Basidiomycota (Agaricomy-

cetes) (Table 3).

Although the biodiversity indexes were comparable, the isolated mycobiota associated to F.

petiolata was different in the two sites: 31 taxa were isolated exclusively from Margidore, 28

from Ghiaie and only 5 taxa were recorded in both areas. A. luteoalbus, C. cladosporioides, E.

minima andM. verrucosawere the most frequent taxa in in Ghiaie site, while A. phaeospermun
and P. commune were the most frequent taxa in Margidore samples. However, the NMDS

analysis (S2 Fig) revealed that this dissimilarity can not be ascribed to a site effect, but to a high

intragroup variability. In fact more than 80% of the isolated taxa were retrieved only in indi-

vidual thalli.

Discussion

The aim of this study was to describe, for the first time, the culturable mycobiota associated

with the green alga F. petiolata in the Mediterranean Sea. Although the approach employed

Table 1. Fungal load and number of fungal entities isolated from F. petiolata thalli in different sites, different media and incubation temperatures.

sites Ghiaie Margidore

media FASW CMASW FASW CMASW

CFU/g dw ± SE 5.4�102± 2.4�101 a 1.1 103± 3.5�101b 4.8�102± 2.0�101a 1.3�103± 3.8�101b

Exclusive taxa (per medium) 17 (0) 11 (2) 14 (3) 18 (5)

Exclusive taxa (per site) 28 31

Total taxa (per site) 33 36

Different lowercase letters indicate significant difference (p� 0,05, F-test) among the load on the same medium obtained in different sites. In brackets taxa

isolated exclusively at 15˚C. FASW, Flabellia Agar Sea Water; CMASW, Corn Meal Agar Sea Water; CFU, Colony-Forming Unit; dw, dry weight; SE,

Standard Error.

https://doi.org/10.1371/journal.pone.0175941.t001

Table 2. Biodiversity values at the two sampling sites.

sites taxa individuals H’ (log e) 1-Lambda J’

Ghiaie 33 44 3.37 0.98 0.97

Margidore 36 48 3.38 0.99 0.95

Shannon-Weaver’s index (H’), Gini-Simpson’s index (1-Lambda) and Pielou’s evenness (J’).

https://doi.org/10.1371/journal.pone.0175941.t002
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Table 3. Fungal entities isolated from F. petiolata: culture media, incubation temperature, area of sampling and accession numbers of the

obtained sequences.

MUT CODE Taxa Isolation media Incubation

temperature

Sampling area GenBank accession number

15˚C 25˚C Ghiaie Margidore ITS LSU SSU ACT TUBC

Agaricomycetes

4775 * Coprinellus sp. FASW x + KR014370 KP671736

4993 * Peniophora sp. FASW x + KR014375 KP671738 KT587326

4875 * Schizophyllum commune Fr. CMASW x + KX988018

Dothideomycetes

4772 Alternaria alternata (Fr.) Keissl. FASW x + KX988016

5071

4879 Arthopyrenia salicis A. Massal. FASW x + KR014347 KP671722

4976 Aureobasidium pullulans (de Bary) Arna. CMASW x + KR014373 KP671737 KT587333

4883 * Biatriospora sp. FASW x + KR014352 KP671728 KT587328

4774 Cladosporium allicinum Bensch, & Crous FASW x + KU315005

4985 Cladosporium cladosporioides (Fresen) V. CMASW, FASW x + KU315007

4996 KU315008

5402

4989 Cladosporium herbarum (Pers.) Link FASW x + KY081637

4776 Cladosporium sphaerospermum Penz. CMASW, FASW x x + + KU315006

5002 KU315009

5004

4891 * Devriesia sp. FASW x + KR014372 KP671742 KT587311

4887 * Massarina rubi (Fuckel) Sacc. FASW x + KR014359 KP671721 KT587318

4860 * Massarina sp.1 CMASW x + KR014362 KP671730 KT587325

4863 * Massarina sp.2 CMASW x + KP671719 KT587316

4941 * Pyrenochaetopsis sp. CMASW x + KR014354 KP671715 KT587320

4991 * Ramularia eucalypti Crous FASW x + KR014378 KT313376

4884 * Roussoellaceae sp. 1 FASW x + KP671726 KT587329

4859 * Roussoellaceae sp. 2 CMASW x + KR014355 KP671716 KT587315

4886 * Roussoellaceae sp. 3 CMASW x + KR014358 KP671720 KT587317

4966 * Roussoellaceae sp. 4 CMASW x + KR014366 KP671740 KT587309

4971 * Roussoellaceae sp. 5 CMASW x x + KR014367 KP671734 KT587331

4977 * Roussoellaceae sp. 6 CMASW x + KP671748

4858 * Sporormiaceae sp. FASW x + KP671731 KT587313

4958 * Teratosphaeriaceae sp. 1 CMASW x + KR014353 KP671744 KT587330

5396 * Teratosphaeriaceae sp. 2 CMASW x + KR014379 KT313377

4857 *Verrucocladosporium dirinae K. Schub., Aptroot & Crous FASW x + KR014361 KP671739 KT587307

Eurotiomycetes

5408 * Herpotrichiellaceae sp. FASW x + KR014371 KP671741

4979 * Knufia petricola (U. Wollenzien & de Hoog) Gorbushina & Gueidan FASW x + KR014376 KP671749

4962 Penicillium antarcticum Hocking & McRae CMASW, FASW x x + + KT313389

4967

4970 KT313390

4973

4974 KT313391

4980

4990

4994

4997

5000 KT313392

4960 Penicillium atramentosum Thom CMASW x +

4965 Penicillium brevicompactum Dierckx FASW x + KT313384

4987

5397 Penicillium chrysogenum Thom FASW x +

4856 Penicillium commune Thom CMASW x + KT313385

4968 KT313381

5001 KT313393

5399 KT313383

4964 Penicillium crustosum Thom CMASW x + + KT313380

4984 KT313378

(Continued)
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does not fully unfold the whole fungal biodiversity, a quali-quantitative analysis of what we

thought to be an exhaustive collection of marine fungal isolates was performed.

Abundance of F. petiolata-inhabiting fungi

Few species belonging to Chlorophyta have been previously investigated for their mycobiota;

those previous studies showed low fungal diversity associated to Chlorophyta, with an average

of 10–20 fungal taxa from each algal species [11, 37, 38]. According to Zuccaro and Mitchell

[38], the short life cycle of some of the green algal species and the peculiar slow growth of their

endosymbionts could partly explain the low fungal diversity harboured by green algae. Never-

theless, the present survey demonstrated that F. petiolata supports a relevant associated

Table 3. (Continued)

MUT CODE Taxa Isolation media Incubation

temperature

Sampling area GenBank accession number

15˚C 25˚C Ghiaie Margidore ITS LSU SSU ACT TUBC

4877 Penicillium expansum Link CMASW x + KT313388

4972 Penicillium palitans Westling CMASW x + KT313379

4983 Penicillium simplicissimum (Oudem.) Thom FASW x +

4978 Penicillium solitum Westling CMASW x + KT313382

4862 Penicillium sp. FASW x + KT313386

4870 Talaromyces variabilis (Sopp) Samson, Yilmaz, Frisvad & Seifert CMASW x + KT313387

4888 * Trichomeriaceae sp. FASW x + KR014348 KP671723

Leotiomycetes

4874 Botrytis cinerea Pers. CMASW x + KR014349 KP671724 KT587323

4963 * Rhexocercosporidium carotae (Årsvoll) U. Braun CMASW x + KR014374 KP671743 KT587310

Sordariomycetes

4780 Acremonium breve (Sukapure & Thirum.) W. Gams CMASW x + KY081463

4975

4872 * Acremonium sclerotigenum (Moreau & R. Moreau ex Valenta) W. Gams FASW x + KR014351 KP671727 KT587327

4779 Acremonium tumulicola Kiyuna, An, Kigawa & Sugiyama FASW x + KY081462

4778 Acrostalagmus luteoalbus Gams & Schroers CMASW, FASW x x + + KP671745 KT587308

4783

5047

4777 Apiospora montagnei Sacc. FASW x + + KP671750

4992

4986 Arthrinium mari Larrondo & Calvo CMASW, FASW x + KY081460

4995

4999 Arthrinium phaeospermum (Corda) M. B. Ellis CMASW x + KY081461

4865 Beauveria bassiana (Bals.-Criv.) Vuill. CMASW x + KR014380 KP671729

4942 * Chaetomium globosum Kunze FASW x + KR014363 KP671732 KT587334

4781 Emericellopsis minima Stolk FASW x + KR014377

4981

4982

4871 * Gibellulopsis nigrescens (Pethybr.) Zare, W. Gams & Summerb. CMASW x + KR014364 KP671747 KT587321

4855 Gliomastix masseei (Sacc. & Trotter) Matsush. FASW x + KX988017

4889 * Hypocreales sp. FASW x + KR014350 KP671725 KT587324

4861 * Microascaceae sp. CMASW x + KR014360 KP671746 KT587322

4864 Microascus cirrosus Curzi FASW x + KT587314

4885 * Microascus trigonosporus C.W. Emmons & B.O. Dodge FASW x + KR014356 KP671717 KT587319

4868 * Myceliophthora verrucosa (Stchigel, Cano & Guarro) van den Brink & Samson CMASW, FASW x + KR014346 KP671714

4878 KR014365 KP671733 KT587332

4998 Sarocladium strictum (W. Gams) Summerb. CMASW x +

5053 * Sedecimiella taiwanensis K.L. Pang, Alias & E.B.G. Jones CMASW x + KR014368 KP671735

4890 * Valsonectria pulchella Speg. CMASW x + KR014357 KP671718 KT587312

Sterile mycelia (*) underwent phylogenetic analyses; CMASW, Corn Meal Agar Sea Water; FASW, Flabellia Agar SeaWater; Sequence markers: ITS,

Internal Transcribed Spacer; LSU, Large ribosomal SubUnit; SSU, Small ribosomal SubUnit; ACT, actin; TUB; β-tubulin.

https://doi.org/10.1371/journal.pone.0175941.t003
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Fig 2. Bayesian phylogram of Pleosporales (Dothideomycetes) based on rDNA large subunit (LSU). Branch numbers indicate BPP over

0.70; ML bootstrap > 50%. Thirteen fungal isolates (indicated as MUT) are included. Strains from marine sources are labelled with symbolΨ.

Bar = expected changes per site (0.03).

https://doi.org/10.1371/journal.pone.0175941.g002
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Fig 3. Bayesian phylogram of Capnodiales (Dothideomycetes) based on rDNA large subunit (LSU). Branch numbers indicate BPP over

0.70; ML bootstrap > 50%. Five fungal isolates (indicated as MUT) are included. Strains from marine sources are labelled with symbolΨ.

Bar = expected changes per site (0.05).

https://doi.org/10.1371/journal.pone.0175941.g003
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mycobiota with a high fungal biodiversity (64 taxa isolated). The fungal abundance and species

richness recorded on this alga are comparable to those usually found on brown and red sea-

weeds, which are considered to be the richest in terms of fungal diversity [7, 8, 37, 38]. The

high number of taxa recorded is certainly due to the isolation procedure, which allowed the

isolation of many species never recorded before in the Mediterranean Sea. Only few species

were isolated on both media/temperatures, suggesting that most of them need specific growth

requirements. The use of media/temperatures mimicking the natural environment, allowed

the isolation of species that may be intimately associated with their host. This is the case of the

lichenicolous species Verrucocladosporium dirinae [39], isolated only from FASW, and the

Fig 4. Bayesian phylogram of Leotiomycestes based on rDNA large subunit (LSU). Branch numbers indicate BPP over 0.70; ML bootstrap > 50%.

Two fungal isolates (indicated as MUT) are included. Strains from marine sources are labelled with symbolΨ. Bar = expected changes per site; value

(0.04).

https://doi.org/10.1371/journal.pone.0175941.g004
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Fig 5. Bayesian phylogram of Sordariomycestes based on rDNA large subunit (LSU). Branch numbers

indicate BPP over 0.70; ML bootstrap > 50%. Thirteen fungal isolates (indicated as MUT) are included. Strains

from marine sources are labelled with symbolΨ. Bar = expected changes per site (0.07).

https://doi.org/10.1371/journal.pone.0175941.g005
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cryptic Roussoellaceae strains isolated exclusively from CMASW at 15˚C. Thus, the use of dif-

ferent media and incubation temperatures undoubtedly maximized the number of isolates and

allowed to reveal between 7 and 14 times more fungal isolates than previously observed on

other green algae [11, 12, 37]. However, a poor overlap was observed between the mycobiota

of the two sampling sites suggesting that the overall culturable fungal diversity associated to F.

petiolata is far from being fully resolved. A statistical analysis (NMDS, S2 Fig) revealed a huge

intragroup variability (among fungal isolates of each thallus); consequently, it is not possible to

detect any significant difference between the two diverse sites. Intriguingly, thallus S19 is

clearly different from the others. This could be due to a peculiar association and/or absence of

taxa in this sample. In addition, by inspecting the rarefaction curves relative to Ghiaie and

Margidore (data not shown), it was clear that the saturation was far from being achieved: a

much higher number of thalli would be necessary to estimate the richness of the culturable

mycobiota, leading to a clearer, precise and more complete view of the biodiversity occurring.

In particular, Ghiaie site is located in a marine protected area on the northern shore of the

island whose seabed is mainly composed of rocks alternating with limestone gravel. Margidore

site is instead located on southern shore, its bottom is a heterogeneous substrate formed by

serpentinite, gabbros, diabase and is subjected to an intense anthropic disturbance [40], that

may explain the higher fungal load retrieved in this area. In conclusion, we hypothesize that F.

petiolata mycobiota could be affected by several abiotic factors including hydrodynamic force,

geochemical substrate composition and anthropic disturbance.

Ubiquitous vs. host-specific fungi

Likewise Suryanarayanan et al. [37] who analysed the fungal communities associated with six

green algal species (Caulerpa spp., Halimeda macroloba and Ulva spp.), we observed that the

mycobiota of F. petiolata includes few dominant species (i.e. P. antarcticum) and many rare/

occasional ones. Unlike Garzoli and collaborators [41] who demonstrated high host specificity

for the red alga Asparagopsis taxiformis in the Mediterranean Sea, F. petiolata appeared to be

an easy substrate to colonize, as clearly highlighted by the high fungal biodiversity retrieved.

This divergence in “substrate specificity” may be due to the different metabolites produced by

red and green algae in response to different environmental and physical conditions [42]. For

instance, the red alga A. taxiformis, as well as other red and brown algae [43], is well known for

the production of several halogenated biocides [44] which can be involved in limiting the sub-

strate colonization. On the contrary, till now, no antimicrobial compound has been identified

in F. petiolata [45].

Diversity and putative ecological roles of algae-inhabiting fungi

Ascomycota was found to be the most common phylum, confirming that, in the marine envi-

ronment, algae-inhabiting fungi are mostly affiliated to the ascomycetes [4]. On the contrary,

basidiomycetes appear to be rare, probably due to their inability to colonize algae. In fact, in

algal thalli, lignin, the eligible substrate for basidiomycetes, is absent and is replaced with a

high concentration of cellulose [2]. Only three basidiomycetes have been retrieved here, i.e.
Coprinellus sp., Peniophora sp. and Schizophyllum commune. A strain of Coprinellus (C. radi-
ans) was already isolated from the zoanthid Palythoa haddoni [46] and S. commune was already

detected in association with P. oceanica [47] and mangroves [48] (S1 Table). Finally, different

fungal strains identified as Peniophora sp. were recently retrieved from an oil polluted marine

site in the Mediterranean Sea [49]. Interestingly, the isolation of species belonging to the gen-

era Peniophora and Schizophyllum from a cellulose substrate, such as F. petiolata, is in line with
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recent observations that demonstrated the ability of these basidiomycetes to produce cellulo-

lytic enzymes [50, 51].

Regarding Ascomycota phylum, the most representative classes were Dothideomycetes and

Sordariomycetes, followed by Eurotiomycetes (Table 3). This is in agreement with a recent

publication by Jones and Pang [2], who described Dothideomycetes and Sordariomycetes as

the most diffuse organisms (in terms of taxa) in these environments.

The high number of Dothideomycetes isolated from F. petiolata (38%) is not surprising.

Species belonging to this class occur on a wide range of aquatic and marine substrata as man-

grove wood, twigs and leaves, sea and marsh grasses [26, 27] and can be found in association

with brown and red seaweeds [11]. Pleosporales is the largest order in the Dothideomycetes,

comprising a quarter of all dothideomycetous species that occur in various habitat as epi-

phytes, endophytes or parasites of living leaves or stems, hyperparasites on fungi or insects,

lichenized, or saprobes of dead plant stems, leaves or bark [52]. The phylogenetic analysis of

pleosporalean sterile mycelia isolated from F. petiolata highlights the presence of a relevant

number of strains that may represent entities never described before. Within Rousoellaceae,

two new clades of marine origin were identified: (i) MUT 4859, 4886, 4966, 4971 and 4977

formed a distinct clade together with a strain isolated from P. oceanica [33], close to Neorous-
soella bambusae (a monotypic genus described by Liu et al. [53]), and may represent a new spe-

cies of the same genus; (ii) the other well supported clade included MUT 4884 and another

strain isolated from P. oceanica [33], both from Mediterranean Sea. Within Biatriosporaceae, a

Biatriospora sp. well supported clade was identified and included MUT 4883 and a P. oceanica
isolate [33]. Within Massarinaceae, MUT 4860 and 4863, which grouped closely to MUT 4887

Massarina rubi (a species occurring on at least eight plant families as saprotroph), represent

separate entities. Within Sporormiaceae, the strain MUT 4858 (Sporormiaceae sp.), fell

betweenWesterdykella and Preussia genera. However, the mycelium was sterile and the refer-

ence dataset still needs to be improved by more LSU sequences from type species deposited in

public collections.

Capnodiales mainly incorporates saprobes, plant and human pathogens, and endophytes,

comprising several lichenized species [54]. Here, the phylogenetic analysis was a powerful tool

to resolve the majority of the taxa belonging to this class. Interestingly, MUT 4958 and 5396

seem to form a new taxonomic cluster among the Teratosphaeriaceae [55], which represents a

taxonomically complex family with many species still to be phylogenetically resolved [38, 54–

57] and their geographic distribution and hosts to be better understood [58].

Sordariomycetes encompass 31% of isolated fungal strains and about 30% of the analysed

sterile mycelia; this is one of the largest classes in the Ascomycota, which includes endo-

phytes, plants and animal pathogens, and mycoparasites including several obligate marine

fungi [2, 59–61]. Marine Sordariomycetes are also known for their ability to synthesize

unique bioactive compounds [6]. Similarly to Pleosporales, the phylogenetic analysis under-

lines the presence of some putative taxa never described before. In detail, MUT 4889 could

represent a new species belonging to Niessliaceae, a family of saprotrophic fungi living on

leaves or wood, both in terrestrial and marine ecosystems [60, 62]. The isolate MUT 4861

(identified as Microascaceae sp.) fell within the Microascales, a small order of primarily

saprobic fungi of soils, also responsible for plant and human diseases [59, 60], but did not

cluster with other taxa, hence, it may represent a new fungal entity. Further analyses are

required for all the putative new taxa/lineages (sequencing of several genetic markers and

culturing on different media) to better understand their taxonomic position and enhance the

chance to visualize reproductive structures.

Finally, Eurotiomycetes represents the third most representative class, with 23% of the

recovered species. The high frequency of Eurotiomycetes recovery in the present study is
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concordant with many other marine substrata and sea ecosystems [47, 63, 64]. However, due

to their high growth rate and sporulation, their dominance could be overestimated.

Penicillium was the most frequently found genus in the present study. This genus is cosmo-

politan and shows tolerance to different environmental conditions, such as those shaping dif-

ferent kind of marine habitats. P. antarcticum, the most widespread species on F. petiolata, has

already been reported in marine waters, sediments and sponges [64–66]. All the other isolated

Penicillium species have already been reported from seawater, algae, sponges, sands, deep-sedi-

ments and/or other abiotic matrices collected from different marine habitats around the world

[64–69], confirming Penicillium genus as widespread in the marine environment.

Cladosporium spp. and Arthrinium spp. were also retrieved in both sampling sites. These

genera are frequently isolated from terrestrial environments [70, 71] but include species that

colonize marine substrata, saline and hypersaline environments [12, 41, 47–49, 72, 73].

Additionally, several taxa recovered in the present study represent new records for marine

environment: some of them usually behave as saprobes and are widespread in terrestrial habi-

tats (i.e. Acremonium sclerotigenum, Cladosporium allicinum, Gliomastix masseei,Myce-
liophthora verrucosa, Penicillium palitans) (S1 Table). Other fungal taxa are rare even in

terrestrial environments, i.e. Knufia petricola (syn. Sarcinomyces petricola), a meristematic-

black yeast living on stone as unlichenized fungus [74, 75], Ramularia eucalypti (anamorph of

Mycosphaerella thailandica), a species collected from several locations in Italy causing severe

leaf spotting symptoms of Eucalyptus trees [57, 58, 76] Valsonectria pulchella only know from

the type specimen isolated from decaying branches ofMelia azedarach [77] and Verrucoclados-
porium dirinae, a mycophycobiont isolated from lichen Dirina massiliensis [39, 54], and from

Italian monumental sites [74].

This work has highlighted the presence of a relevant number of taxa associated to F. petio-
lata and contributes significantly to the understanding of new phylogenetic lineages in impor-

tant fungal classes. Further studies dealing with marine algae as hotspots for marine fungi

would be needed. Knowing that many species are refractory to cultivation, an approach blend-

ing metagenomics and culturomics would definitely unveil complementary information on F.

petiolata-associated fungi, their ecological roles and functions [78, 79].

Finally, it must be underlined that several strains isolated in this work have been recently

shown to be an untapped source of secondary metabolites of biotechnological importance: i)

Roussoellaceae sp. 2 (MUT 4859),Massarina sp. 1 (MUT 4860), Microascaceae sp. (MUT

4861) B. bassiana (MUT 4865), K. petricola (MUT 4979) produce antimicrobial compounds

effective against Multi Drug Resistant Bacteria [80]; ii) Roussoellaceae sp. 2 (MUT 4859), A.

sclerotigenum (MUT 4872),M. verrucosa (MUT 4878), A. salicis (MUT 4879) secrete novel bio-

surfactants agents belonging to hydrophobins, class I and II [81]. These biological activities

indicate possible relevant ecological roles of algicolous fungi that should be further investigated.

Conclusions

The green alga F. petiolata represents a very promising and interesting substrate hosting an

uncharted and untapped high fungal diversity. Here, a quali-quantitative analysis of the cultur-

able mycobiota was performed and represents, to the best of our knowledge, the first report of

fungi associated to a green alga in the Mediterranean Sea. Several taxa reported in the present

study represent new records for the marine environment, for which physiological features and

ecological roles have yet to be clarified. Finally, since all the identified strains have been depos-

ited in a public Biological Resource Centre, this work contributes to our understanding of the

algal-inhabiting mycobiota and will allow the exploitation of such untapped resources for

putative biotechnological applications.
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S1 Dataset. List of sequences, with NCBI accession numbers, used to build each phyloge-

netic tree.

(DOCX)

S1 Fig. Marine fungal strains isolated from F. petiolata: (a) MUT 4979 Knufia petricola
sterile mycelium, hyphae with thick-walled cells; (b) MUT 4860 Massarina sp. 1, sterile

mycelium with thick-walled cells; (c) MUT 4963 Rhexocercosporidium carotae conidia; (d)

MUT 4861 Microascaeae sp., conidiogenous cells with immature (sx) and mature conidia

(dx); (e) MUT 4958 Teratosphaeriaceae sp. 1, pycnidium with conidia; (f) MUT 5053 Sede-
cimiella taiwanensis, hyphae, conidiogenous cells and conidia; (g) MUT 4941 Pyrenochae-
topsis sp., pycnidia; (h) MUT 4858 Sporormiaceae sp., pycnidia with conidia (sx),

immature conidial chains and mature conidiogenous cells with attached conidia (dx); (i)

MUT 4886 Roussoellaceae sp. 3, pycnidium with conidia; (j) MUT 4890 Valsonectria pul-
chella, conidiophores with phialides (sx), phialides with conidia (center), detail of the phia-

lid-conidiogenous cells (dx); (k) MUT 4863 Massarina sp. 2, colony on different media

after three weeks. Scale bars (a-j): 20 μm.

(TIF)

S2 Fig. Non-Metric Multi Dimensional Scaling (NMDS) analysis performed on the taxa

associated to each thallus per site. 1–10 algal thalli from Ghiaie (green); 11–20 algal thalli

from Margidore (red). The main group is highlited in the inset.

(PNG)

S1 Table. Marine fungal entities isolated from F. petiolata and recovered in other marine

substrates and environments.

(DOCX)

S2 Table. PCR amplification program details.

(DOCX)

S3 Table. Presence/absence matrix of the taxa retrieved in 10 thalli of F. petiolata per each

site analysed.
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36:959–68.

Flabellia petiolata culturable mycobiota in the Mediterranean Sea

PLOS ONE | https://doi.org/10.1371/journal.pone.0175941 April 20, 2017 18 / 20

https://doi.org/10.1073/pnas.1117018109
http://www.ncbi.nlm.nih.gov/pubmed/22454494
http://www.ncbi.nlm.nih.gov/pubmed/8341608
https://doi.org/10.3114/sim.2009.64.09
https://doi.org/10.3114/sim.2009.64.09
http://www.ncbi.nlm.nih.gov/pubmed/20169029
https://doi.org/10.1016/j.ympev.2006.05.031
http://www.ncbi.nlm.nih.gov/pubmed/16837216
http://www.ncbi.nlm.nih.gov/pubmed/17486981
https://doi.org/10.1093/molbev/mst197
http://www.ncbi.nlm.nih.gov/pubmed/24132122
https://doi.org/10.1186/2193-1801-3-508
http://www.ncbi.nlm.nih.gov/pubmed/25279300
http://CRAN.R-project.org/package=vegan
https://doi.org/10.3114/sim.2007.58.02
http://www.ncbi.nlm.nih.gov/pubmed/18490995
https://doi.org/10.1371/journal.pone.0175941


42. Harvey JBJ, Goff LJ, Genetic covariation of the marine fungal symbiont Haloguignardia irritans (Asco-

mycota, Pezizomycotina) with its algal hosts Cystoseira and Halidrys (Phaeophyceae, Fucales) along

the west coast of North America. Fungal Biol 2010; 114:82–95. https://doi.org/10.1016/j.mycres.2009.

10.009 PMID: 20965065

43. Cabrita MT, Vale C, Rauter AP, Halogenated compounds from marine algae. Mar Drugs 2010; 8:2301–

17. https://doi.org/10.3390/md8082301 PMID: 20948909

44. Genovese G, Tedone L, Hamann MT, Morabito M, The Mediterranean Red Alga Asparagopsis: a

source of compounds against Leishmania. Mar Drugs 2009; 7:361–6. https://doi.org/10.3390/

md7030361 PMID: 19841720
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