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Abstract

Scheduling support is very important for calendar man-
agement in order to automatize the execution of pos-
sibly complex reasoning tasks. However, an interactive
approach is desirable to enable the user to steer the allo-
cation of events, which is a rather personal and critical
kind of activity. This paper proposes a mixed-initiative
scheduling model supporting the user’s awareness dur-
ing the exploration of the solution space. The paper de-
scribes the temporal reasoning techniques underlying
MARA (Mixed-initiAtive calendaR mAnager), focus-
ing on the generation of scheduling options and on the
characterization of their properties, needed to present
the pros and cons of each possible solution to the user.

Keywords: mixed-initiative scheduling, temporal reason-
ing, constraint satisfaction.

Introduction

Calendar management is burdensome and challenging when
schedules are overconstrained or include items having mul-
tiple participants because it requires the verification of a pos-
sibly large number of temporal constraints. However, a fully
automated scheduling support is considered as hardly ac-
ceptable for this type of activity because it fails to keep the
user in control of the decisions to be taken; e.g., see (Berry
etal. 2011).

In the attempt to address this issue, we propose a new,
mixed-initiative scheduling model that enables the user to
temporally allocate multi-user events and tasks in coopera-
tion with the system. The paper also proposes a novel, con-
servative scheduling policy to suggest calendar revisions by
modifying small portions of the schedules, leaving the rest
as originally planned or with minor temporal shifts. The idea
is that of keeping the changes to the user’s plans as local as
possible in order to maintain stable daily plans.

Our scheduling model is applied in the MARA Mixed-
initiAtive calendaR mAnager, which exploits Temporal
Constraint Satisfaction Problem techniques for suggesting
safe scheduling solutions across multiple calendars. The
mixed-initiative interaction with the user is achieved by in-
voking the Interval-based TEmporal Reasoner (ITER) for
computing a synthesis of the solutions to be proposed to the
user, instead of presenting a possibly large number of alter-
native schedules to choose from. Such a synthesis is based

on the specification of admissible intervals for the allocation
of items and of the corresponding impact on the calendars of
the involved people. In this way, the user can analyze the so-
lution space at an abstract level and select the paths which
are worth to be explored in an informed way.

In the following, we first describe the mixed-initiative
scheduling support offered by MARA. Then, we discuss in
detail the temporal reasoning techniques adopted in ITER.
Finally, we present related research and conclusions.

Mixed-Initiative Scheduling in MARA
Calendar Management

MARA supports cross-calendar management providing the
user with an overview of the impact of her/his actions on
the schedules of all the involved actors. Figure 1 shows a
portion of the User Interface of the system. The table in the
upper right portion of the page shows the list of shared cal-
endars and enables the user to select those to be jointly visu-
alized. In order to let the user identify the actors involved in
a calendar item (e.g., a meeting), each item has associated a
number of vertical bars whose colors correspond to those of
the respective calendars; e.g., the participants of event CDD
in Figure 1 are Gianluca and Prof. Rossi.

While the user adds new items or revises the existing ones,
the system checks whether the temporal constraints of the
affected items are satisfied. If any conflicts occur, it notifies
the user; moreover, it helps her/him to incrementally explore
the solution space in order to quickly evaluate the available
options. Specifically:

e The system offers a “Where can I place the task?” feature
which helps the user to allocate calendar items. When the
user asks for help regarding an item M, MARA presents
in a calendar window an overview of the feasible time
intervals in which M could be allocated, possibly mov-
ing other existing items. Each interval [ provides the user
with information useful to evaluate its conveniency; i.e.:
(1) the names of the actors whose existing commitments
have to be revised if M is placed in [; (ii) the criticity
of placing M in I, given the existing commitments of the
involved actors (e.g., the criticity is high if at least one
high-priority commitment has to be shifted in order to al-
locate the item).
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Figure 1: Gianluca’s calendar, jointly visualized with Prof. Rossi’s one.

e The user can select a specific interval for scheduling the
item. At that point, the system further enables her/him to
steer the scheduling activity by presenting a few alterna-
tive revision hypotheses for the calendar; e.g., alternative
items might be shifted to allocate M. The user can ac-
cept one of the suggestions, in which case the involved
actors are informed and asked to confirm the change, or
(s)he can go back to the available options and investigate
further revision opportunities.

See (Ardissono, Segnan, and Torta 2013) for more informa-
tion about MARA’s User Interface and functionality.

System Architecture

MARA stores the information about calendars, items and ac-
tors as lists of objects. While the user revises a calendar,
the core of MARA invokes the following modules to check
whether the user’s actions violate any temporal constraints
and to suggest how such conflicts might be solved:

1. Every time an item is manually added/moved, a consis-
tency check module checks the consistency of the tem-
poral constraints associated to the item to verify whether
they are satisfied or not.

2. In case of inconsistency (or, more generally, when re-

quested by the user), the Interval-based TEmporal Rea-
soner (ITER) supports the addition/movement of an item
by identifying the feasible intervals where it could be al-
located and the consequent impact on the schedules of the
involved actors. Once the user chooses where to place the
item, this module generates the corresponding conserva-
tive calendar revisions

MARA is a Java Web application. The ITER module is de-
veloped in Perl using the Graph.pm extension module (Hi-
etaniemi 2010) for representing and manipulating STNs.
The minimization of the STNs is performed by invoking the
implementation of the Floyd-Warshall algorithm included in

Graph.pm. The Java Web application invokes ITER as a lo-
cal REST service via HTTP.

Temporal Reasoning Underlying MARA
Running example

In this section we will use the following scenario to illustrate
the temporal resoning performed by ITER. Our running ex-
ample refers to the calendar displayed in Figure 1.

Gianluca is a University staff member and he collaborates
with some colleagues (Liliana, Giovanna, Marino) and with
the Head of Department, Prof. Rossi.

Gianluca’s calendar includes teaching hours (e.g., Progr
I, SW), Department meetings (CDD, CCS), student sup-
port (Tutoring, Thesist Ugo / Ida), project meetings (e.g.,
Skype call PRIN, Meet Dr. Neri) and personal commitments
(e.g., Baseball, Plumber, Attorney). Some activities have a
fixed schedule; e.g., teaching hours and Department meet-
ings. Others are flexible and could be moved to other times
if needed; for instance, Gianluca is available for student sup-
port on Wednesday, Thursday and Friday.

Suppose that Gianluca has to schedule a 2-hours Staff
meeting with Prof. Rossi on Thursday. The event can start at
8.00 and must finish by 16.00 (deadline). In order to accom-
modate this meeting, the current calendar has to be revised.
By analyzing Prof. Rossi’s constraints, it can be seen that he
is available starting from 10.00 until 13.00. However, Gian-
luca is busy at that time because he teaches SW from 9.00
to 11.00 and then he meets two students (Thesist Ugo / Ida).
The SW lesson cannot be moved. Thus, the only solution is
to move Thesist Ugo and Thesist Ida to different times.

In a typical calendar manager this revision would imply
that Gianluca first analyzes all the relevant commitments (in-
cluding Prof. Rossi’s ones) in order to identify the items that
can be moved and their alternative times; then, he manually
moves the selected items; finally, he inserts the new item.
Considering that calendar revision is a frequent daily activ-
ity, it is worth saving as much effort as possible in it. Thus,



an automatic support to its execution is crucial. Our work
attempts to address this need.

Representation of Calendars Items

The ITER module exploits reasoning techniques based
on Temporal Constraint Satisfaction Problems (TCSP)
(Dechter, Meiri, and Pearl 1991). Specifically, ITER em-
ploys a subclass of TCSPs, the Simple Temporal Problems
(STPs) (Dechter, Meiri, and Pearl 1991), where all of the
constraints are binary and they do not contain any disjunc-
tions, i.e., they have the following format:

anginSb

This class of problems can be represented as a graph named
Simple Temporal Network (STN), whose consistency can
be checked in polynomial time (Planken, de Weerdt, and
van der Krogt 2011). Also the minimization of an STN (i.e.,
the computation, for each pair of variables X;, X, of an
interval [@in, bimin] Which guarantees the existence of a
global solution for the STN) can be done in polynomial time.

The scheduling of a set of calendars is done by reason-
ing on the joint set of constraints associated to their items. A
calendar item is represented as an object having several fea-
tures, among which the expected duration (number of hours
devoted to the item), the earliest start time for scheduling
it, the deadline for its completion/end, the schedule (current
temporal allocation), the list of participants and a priority
(low, medium, high) representing the importance of the com-
mitment.

Given such information, each calendar item M is inter-
nally represented by means of:

e Two numeric variables M and M., representing the start
and end time of M in a given schedule. For simplicity, we
assume that the value of a variable M (resp. M.) is the
number of one-hour slots between Monday 8.00 and the
start (respectively the end) of M. Note, however, that the
TCSP techniques we use are able to deal with real num-
bers, so that we could easily deal with finer granularities
of time.

e The temporal constraints on M and M, needed to sched-
ule M consistently with its earliest start time, duration
and deadline.

e The temporal constraints on M and M, needed to impose
precedence relations with respect to other calendar items.

For instance, given an item Staff Meeting (SM in Figure 1):

e The earliest start time, Thursday at 8.00, is expressed as
SM, > 36 because in the calendar there are 36 one-hour
slots between Monday 8.00 and Thursday 8.00.

e The deadline, Thursday 16.00, is expressed as SM, < 44.

e The duration, 2 hours, is SM, — SM, = 2 as the item
takes 2 time slots.

e A precedence relation among calendar items, e.g., the fact
that SM must take place after another event F, is ex-
pressed as SMg — E. > 0.

[T IR SR

With slight abuse we use the term deadline also to indicate
constraints on the exact end of a calendar item; e.g., the fact
that an item P must end exactly on Wednesday at 13.00 is
represented as P, = 29 (i.e., 29 < P, < 29).

ITER: Computing the Feasible Intervals

Given the temporal constraints of the calendar and an item
M to be added (or moved), ITER:

e Searches for feasible intervals for allocating M. For each
interval, it computes the criticity on the basis of the pri-
orities of the existing items which should be moved to
allocate M in the corresponding time window.

e Generates a schedule, given a (feasible) start time for M
selected by the user.

ALGORITHM 1: Feasible intervals for starting a new calendar
item M for a specific user U;.

input:
new item M
other Uj; items in current schedule order (75,1, . . ., Ti ki)
STN N; (temporal constraints for M, T; 1, ..., T; ki)

§; current schedule for T} 1, . . .
foreach C € {L,L, M, H} do
| Zf « mtervals(M, (Ti 1, ...
end
T; < DComp(Z;-, 75, TV | TH);
return Z;

N

T ki) Niy Si, ©)

Note that, different from a classic scheduler, ITER com-
putes a set of intervals within which the item can be placed,
instead of a set of specific places. In this way, ITER sup-
ports a compact and synthetic presentation of scheduling
options, to be further refined. As we shall see, each inter-
val corresponds to different revisions of the calendars, based
on which time point within the interval will be chosen by the
user, as well as additional user input.

The feasible intervals and the schedules that are computed
by ITER are restricted by conservativeness criteria. In gen-
eral, this means that placing M in a feasible interval does
not require a heavy revision of the current schedule. In our
current implementation, we adopt a simple conservativeness
criterion, requiring that the relative order of existing items
in the schedule can be maintained when A/ is added.

For simplicity, we will first consider feasible intervals
which do not require to move any already scheduled items
involving multiple users. The relaxation of this restriction
will be discussed later, in the section on handling existing
items involving multiple actors.

We introduce a notation in order to tag feasible intervals
with information about their criticity. Each computed inter-
val Iy ; will have an associated label:

U(Ins) = {UC,... . UC™)

where Uy,...,U,, are the users involved by M and the
C; superscripts denote the criticity of the interval for each
actor U;; i.e., the impact on U;’s calendar of allocating
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M in the interval Ips;, in terms of revisions. Specifically,
C; € {L1,L,M,H}, where:

e | means that the schedule of Uj; is not affected by M ;

e L: only low-importance commitments of U; have to be
shifted to allocate M;

e M: only medium- and low-importance commitments of U;
have to be shifted;

e H: at least one high-importance commitment of U; has to
be shifted;

The computation of the set of feasible intervals Z, for M is
split in two steps:

1. Computing the feasible intervals Z; = (I;1, ..., Lini)
for each user U;. BEach interval I; ; is assigned a label
I(I;;) = U7 with C; € {L,L,M H}; the label speci-
fies how critical is to allocate M in that interval, given the
temporal constraints of U;’s commitments.

2. Computing the joint feasible intervals Z; and their labels
from user intervals Z; in order to synthesize a (limited)
number of options to be considered for scheduling M by
its organizer.

Computing the User Intervals. Algorithm 1 (on the pre-
vious page) concerns a single user U; and implements the
first step. It takes as inputs: (i) the new item M to be allo-
cated; (ii) U;’s other items (7} 1,...,T; ;) in the order in
which they appear in the current schedule; (iii) an STN N;
encoding the deadline, duration and precedence constraints
for Tj1, ..., Tir; and M; and, (iv) the current scheduled
times S; for Tj 1, ..., Tj pi.

In the loop starting at line 1, the algorithm computes four
sequences of intervals Z;-, ZF, 7!, 7% by invoking proce-
dure Intervals, described below. Each sequence Z¢ contains
(k; + 1) intervals, one for each position where M can be
placed in the order of the existing items 75 1, ..., 1} ;. For
each position j, interval IZC] € Iic represents the set of time
points ¢ such that starting M at time ¢ requires to modify
U,’s schedule by shifting items of importance C' or lower.

The intervals in sequences Z;-, 7%, 7, 7! can overlap
both within the same sequence and among different se-
quences. Thus, in line 4 the algorithm invokes procedure
DComp to merge Z;-, 7%, T!', T into a single sequence T;
of labeled and ordered disjoint intervals. Each overlapping
portion is labeled with the lowest (i.e., best) criticity class to
which it belongs.

Procedure Intervals is called to generate a sequence of in-
tervals of given criticity C'. Therefore, it immediately adds
the scheduled times of tasks of classes C' > C to the tem-
poral constraints encoded by STN A/;, obtaining STN N
(line 2). With these added constraints, /\in ensures that no
task with criticity C' > C' can be moved.

Then, Intervals considers each possible positioning j of
M in the sequence of existing items T; 1, ..., T} p; involv-
ing U;. In this way a total order II is determined among
all the items, including M, and can be asserted as a set
of precedence constraints into the STN. The resulting STN

/\/'10] is then minimized, yielding a feasible interval Ifj =

© ® N U A W =

e

Procedure Intervals - feasible intervals of a given class C
for starting item M .

input:
new item M
other Uj; items in current schedule order (5,1, . .., Ti ki)
STN N; (temporal constraints for M, T; 1, ..., T; ki)
S; current schedule for T; 1, ..., T; s
C criticity class of the computed intervals
I « ()
NE < assert scheduled times of tasks of classes C' > C' in Ni;
forj=0...k do
O (Tip,... . Tig. M, Ty, - Tina):
N« assert order IT in N7
minimize N,
I « getinterval [min, maz] for M, from N:
¥« 17 - (IF)):
end
return Z¢

[37.41] [39,39]
37,37] [39,39]

M L
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O
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Figure 2: STN NE representing Gianluca constraints on
Thursday when Staff Meeting is placed between S3 and TU
and all existing items can be shifted.

[min, maz] for the start of M. As said above, for each posi-
tion j of M, such an interval represents the set of time points
t such that starting M at time ¢ requires to shift items having
importance C' or lower in U;’s schedule. Intervals IZO] are
added to sequence Iic and, after all the positions have been
considered, such a sequence is returned.

Example 1 Ler us refer to the running example and con-
sider the execution of Intervals when it is invoked on user
Gianluca for adding the Staff meeting S M on Thursday with
the class parameter C' set to H. That day, the items already
allocated for Gianluca include, in the order: Attorney (AT ),
SW/3 (83), thesist Ugo (T'U), thesist Ida (T'1) and Plumber
(PL).

Figure 2 shows a portion of the STN N¥ computed by
Intervals for user Gianluca. Such a network corresponds to
the iteration of the Intervals procedure when the for loop has
set position j = 2 (i.e., between S3 and TU ).

The z time point represents Monday 8.00 and the boldface
intervals on the arcs express the minimum and maximum



distance between the connected time points. For example,
interval [36,42] on the arc connecting z and SM; repre-
sents: 36 < SMy — z < 42; i.e., SM must start on Thurs-
day between 8.00 and 14.00. The dashed arcs represent the
precedence between two items T", T" in the current order 11.
Their associated intervals, omitted for readability, would be
[0, +00]; i.e., TY must follow T! by at least O hours. More-
over, each item is labeled with its importance; e.g., AT has
low importance and TU has medium importance.

The intervals after the minimization of N¥ are shown in
italics. Specifically, the intervals computed for SMs, SM,
are, respectively, [39,41] (Thursday 11.00 to 13.00) and
[41,43] (13.00 to 15.00). Indeed, when SM is positioned
between S3 and TU, it can start only after the end of S3
(11.00) and its latest end (15.00) must leave enough time for
TU, TI and PL to be completed by 20.00. The start inter-
val [39,41] is added to the sequence T of feasible intervals
with class H for Gianluca.

Let us now consider the interval for S M, when position
is j = 2 but the class C' is 1, i.e., scheduled items of impor-
tance M and H cannot be shifted. In such a case, the interval
for SM is () because TU cannot be moved (it has medium
importance); thus, SM cannot be allocated between S3 and
TU.

By repeating the process, it is easy to see that the non-
empty intervals of class H for user Gianluca are: [39,41]
(j = 2); [40,42] (j = 3); [41,42] (j = 4). The M intervals
are the same but the L and 1 intervals are empty.

Procedure DComp receives sequences Z;-, ZL, 7M TH
and composes them into a single sequence Z; of ordered,
labeled, disjoint intervals. In line 1, it orders the start and
end time points of each of the input intervals and it stores
them in a list 7. This operation consists of two steps:

1. Flatten each input list of intervals 7' = (I, ..., IT},)
into an ordered list of start and end time points (s(IEO),
) e(Ii,C,’ki));

2. Merge such ordered lists into list 7. In case of ties, put
start time points before end time points, and further order
start (resp., end) points in increasing (resp., decreasing)
order of their criticity classes (_L, L, M, H). In other words,
if several intervals start at the same time, the start of the
best (i.e., lowest class) is the first one in the order. More-
over, if several intervals end at the same time, the end of
the best interval is the last one.

In the procedure, line 2 initializes the output sequence Z;
to the empty list. Moreover it sets to O the counter n;,, of
input intervals and the counter n¢ of input intervals of class
C to which the elements of 7 belong. The loop starting at
line 3 considers each ¢ € 7. If ¢ is the start point of an
input interval If] (line 4), n;, and ne (intervals to which ¢
belongs) are incremented. Then:

e If n;, is equal to 1, ¢ corresponds to the start s(I) of a
new output interval I (line 7) whose label is set to UZC
because the input interval has class C'.

e If n;, > 1 but the class C' of the input interval is lower
than the label [ of the current output interval, a new output
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Procedure DComp - disjunctive composition of labeled in-
tervals.
input:

sequences Iil JIE, M T, each one containing intervals
IS,j=0,... ki

T < ordered list of time points s(If;), e(I{;) for all given I}
Zi + ();nin < 0;nc < 0,C € {L,...,H};l<—Uil;
foreach t € T do

if (t = s(I7;)) then // start of an input
interval

Nip — Nin + 15

nc +—nc +1;

if (ni, = 1) then // start of an output
interval

s(I) «t;

1+ Uf

elseif (C <) then // new output interval
with label C

e(I)«t1(I)«+ I

I+ 1; -1

s(I)«t;

1« UfF

end

end

if (t = e(IE;-)) then // end of an input interval
nc +—nc —1;

if (nin = 0) then // end of an output
interval

e(I)«t1(I)+ I

i+ 1;-1,

elseif (I = C') and (nc = 0)) then // new output
interval with label >C

e(I)«t1(I)« 1

T, 1;-I;

s(I) «t;

I+ UF™" where Chew = min{C' : ng > 0}

end
end

end
return Z;

interval has to be created after closing and adding to the
output sequence Z the current output interval (line 10).

If ¢ is the end point of an input interval 110] (line 17), n;,, and
nc are decremented.

e If n;y, is equal to 0, ¢ is the end e(I) of the current output
interval I (line 20), which has to be closed and added to
sequence Z.

e If n;, > 1 but the class C of the input interval is equal
to the label [ of the current output interval and ne = 0,
a new output interval has to be created after closing and
adding to the output sequence Z the current output interval
(line 23). In line 27 the label of the new ouput interval
is set to the minimum (best) class C),e, associated with
at least one input interval which includes %, i.e. such that
NCnew > 0.

97



98

Example 2 As shown in example 1, the H and M sequences
for Gianluca contain the following intervals: [39,41] (j =
2); [40,42] (j = 3); [41,42] (j = 4). The sequence T of
time points considered by DComp is therefore:

T = (397, 307, 407, 40, 417, 41%, 41%, 417, 427, 427, 42, 427

where we have marked each t € T with the class of its in-
terval and its role (start/end). When t = 39" is considered,
a new ouput interval I is started with I = 39 and label
GI" (for Gianluca). Time point t = 39" is skipped because
its class is higher than the current output class (line 10 of
DComp). For the same reason, time points 40%,40% 41" 41%
are skipped. Note that meanwhile the number n;y, of feasible
input intervals has grown to 6, with nyg = 3 and ny = 3. For
this reason also ending time points 41%,41" 425 428 49" gre
skipped (line 20 of DComp). When the last point t = 42"
is considered, n;y drops to 0 and the (only) output interval
[39, 42] with label GI" is returned in the sequence T; for Gi-
anluca.

Computing the Joint Intervals. For each user U; in-
volved in M, Algorithm 1 computes a sequence of ordered,
disjoint intervals Z; such that each interval I; ; has a label
I(I; ;) which takes values in Uic', Ce{Ll,L,MH}

Given that the involved users are {Ui,...,Un}, ITER
computes a single sequence of ordered, disjoint intervals
Inm = (Inma,-- .. Iu.n) such that each element Ips ; of Ty
represents a jointly feasible interval for starting M. Inter-
val Iz ; is labeled based on the labels of the user intervals
from which it is derived. Given 7, . .., Z,,, the sequence of
jointly feasible intervals 7y, satisfies the following condi-
tions:

e Two time points #,¢' belong to an interval Ips ; iff for
each involved user U; they belong to the same user in-
terval Ii,ji € 7.

e The label [(I ;) associated with interval Iy, ; is given
by Ui 1(1i.j.)-

The computation of Zj; is performed by a procedure
JComp (joint composition) analogous to DComp. The pro-
cedure receives the sequences of intervals Z; for all users
U; and produces the single sequence Zs of jointly feasible
intervals.

Example 3 As shown in Example 2, the only interval for
user Gianluca is [39,42] with label GI™. Let us assume that
Prof. Rossi’s BUSY3 cannot be moved and that BUSY4
could be postponed at 14.00. Then, for Prof. Rossi there
are two feasible intervals: [38,39] with label Ro™ (i.e., his
schedule has not to be modified) and [39, 40] with label Ro"
(medium importance task BUSY4 has to be moved). The in-
vocation of JComp on the sequences of intervals for Gian-
luca and Prof. Rossi returns a single interval [39,40] with
label { RO, GI™}. Indeed, [39,40] is the only feasible time
window for both Prof. Rossi and Gianluca; moreover, the
interval has impact M on both actors. Therefore, S M must
start at 11.00 or later and end by 14.00.

ITER: Computing Revisions to a Calendar

We briefly describe the computation of revisions to shared
calendars because it only requires to run again the Intervals
procedure used for computing the feasible intervals.

Let us consider the feasible interval [39,40] with label
{RM, GI"} computed for SM, and let us suppose that Gi-
anluca places SM at time point 40 (12.00 pm). In order
to compute the alternative revisions, Intervals has to be in-
voked with the additional constraints that SM starts at time
point 40 and that this allocation has impact M on Gian-
luca and Prof. Rossi’s calendars. For Gianluca, SM can be
placed between S3 and TU, or between TU and T'I; for
Prof. Rossi, between BUSY 3 and BUSY 4.

The first revision of Gianluca’s calendar is obtained by
considering the minimized STN computed by placing SM
between items S3 and T'U, which also contains feasible in-
tervals for the other items in the calendar. For each such item
we choose a start time point as close as possible to its cur-
rent schedule, which results in pushing 7°U at 14.00, T'I at
15.00, and PL at 16.00. The second revision of Gianluca’s
calendar and the only available revision of Prof. Rossi’s cal-
endar are computed in a similar way.

Handling existing items involving multiple actors

The results presented in the previous section hold when
existing items which involve multiple actors (henceforth,
meetings) cannot be anticipated nor postponed. However,
when looking for the feasible intervals for a new item M,
it is desirable to consider re-scheduling such items. Let us
assume that M involves a set of actors i = {Uy,..., Uy }.
The previous meetings of users ¢/ can be of two kinds:

1. They involve only (some of) the members of /.

2. They have additional participants ¢/’ which are not in-
volved in M.

Re-scheduling calendar items of the second kind can result
in a domino effect: actors in /' may have existing meetings
with yet other users 4", and so forth. Thus, adding M may
lead to revise schedules of people having an indirect con-
nection with users &/. While we believe this is an interesting
problem, that may likely involve some forms of automatic
negotiation, such propagations are out of the scope of this
paper. Thus, we add the following restriction: if an existing
calendar item which involves actors U/ also involves other
actors U’ , it can be only moved to time slots where the mem-
bers of U’ are available.

In the following we discuss how to handle the items in-
volving subsets of /. Handling additional users with the
above stated restriction trivially consists in pruning some of
the solutions computed for users ¢/, based on the free time
slots of users ¢{/’. Therefore, we do not discuss it.

In order to handle existing meetings among users U, we
first partition them in families Uy, ..., U, such that:

e Users U, U’ should be in the same family ¢/ if there is a
meeting involving U, U’.

e Families should be disjoint, i.e., if two families &', U"
share at least one user, they are replaced by a new family
u=uuvu".



The previously described techniques can be applied to this
case by computing the sequences of intervals Z; for each
family instead of for each user. Indeed, if users U7, ..., U, in
a family have an existing shared meeting M, each of them
has an item M/ in her/his calendar representing M’ and the
start/end times of items M/, i = 1, ..., ¢ must be equal. For
this reason, we have to build and use an STN that encodes
the calendar constraints of all the users in the family. After
the sequences for each family have been computed, they can
be merged with the previously described JComp procedure
for computing jointly feasible intervals.

We now explain how Algorithm 1, Intervals and DComp
are adapted to operate on families of users.

Let us start by considering the changes to Algo-
rithm 1. Instead of receiving a single sequence of items
(Ti1,.... T ) and a single schedule S; associated
with a user U;, the algorithm must receive a sequence
(Tin,- -, Ti i) and a schedule S; for each user U; in a fam-
ilyd = {Uy,...,U,}. Moreover, instead of an STN \; en-
coding the basic constraints for the items of an individual
user, it must receive an STN N, encoding the basic con-
straints for the items of all of the users in family ¥/.

Procedure Intervals returns a set of 47 sequences, each
one associating a class to a user in the family. For example,

if U = {Uy, U}, Intervals must return a sequence Iﬁl’lm,

a sequence Iéil“w, and so forth. Moreover, the number of
positions to be considered by Intervals for placing the new
meeting M (line 3) is now:

(k1 +1)-...-(kg+1)

For example, if the existing tasks of Uy are (711,71 2)
(k1 = 2) and the existing tasks of Us are (51,752, 15 3)
(k2 = 3), we must consider scheduling M at position “0 for
U, and 0 for Us” (i.e., before both 7' ; and 75 1), at position
“0 for Uy and 1 for Uy” (i.e., before T4 ; and between T ;
and 715 »), and so on.

Therefore, Intervals computes 47 sequences of size (k; +
1)-...- (kg + 1), and such sequences are passed as inputs to
DComp. DComp is almost unchanged but there is an impor-
tant point to make about the labels. While for the intervals of
a single user labels are totally ordered (as L < L < M < H),
this is no longer true for the intervals of a family. For exam-
ple, labels Uy UQJ"L (i.e., some low-importance tasks of Us
have to be shifted) and U, Ué’l (i.e., some low-importance
tasks of U; have to be shifted) are not ordered. As a conse-
quence, the if starting at line 7 of DComp should have one
additional branch, covering the case when the class C' of the
starting input interval is not comparable with the label [ of
the current output interval. In such a case, a new output in-
terval should be started with label (C;1).

Related Work

The importance of a mixed-initiative approach to schedul-
ing calendars was recognized in previous works, such as
(Cesta, D’aloisi, and Brancaleoni 1996) and (Berry et al.
2011). However, relatively little work has been done on this
topic so far.

Some recent calendar managers (e.g., Google Calendar
Smart Rescheduler (Marmaros 2010)) analyze the estimated
duration and temporal constraints of the items to be sched-
uled in order to identify the available time slots where they
could be allocated. However, they cannot suggest any sched-
ule revisions for addressing temporal conflicts.

Many task managers such as Things (Cultured Code
2011) and Standss Smart Schedules for Outlook (Standss
2012) manage tasks and deadlines but they have no schedul-
ing capabilities. Other ones are very powerful but they re-
quire too much information from the user for everyday activ-
ity management, and/or they only handle single-user tasks;
e.g., see (Refanidis and Yorke-Smith 2010).

Opportunistic schedulers synchronously guide the user in
the execution of activities; e.g., see (Horvitz and Subramani
2007). However, they cannot present an overview of long-
term schedules.

PTIME (Berry et al. 2011) adopts a mixed-initiative ap-
proach and generates personalized scheduling options by
learning the user’s preferences. A major difference with re-
spect to MARA is the fact that it proposes complete solu-
tions to choose from, instead of interacting with the user
during the exploration of the solution space, represented as
a set of feasibile intervals for adding/moving a task.

The TCSP-based classic techniques used in the paper
(Dechter, Meiri, and Pearl 1991) have been extensively
studied and extended in the temporal reasoning and plan-
ning/scheduling communities. Of particular interest for ex-
tensions of this paper are, among others, improved ef-
ficiency of STN consistency check (Planken, de Weerdt,
and van der Krogt 2011), consistency check of distributed
STNs (Boerkoel and Durfee 2010), incremental consistency
checks (Planken, de Weerdt, and Yorke-Smith 2011) and
temporal preferences (Peintner and Pollack 2004). While
these techniques could definitely improve the efficiency and
scalability of our approach, we are not aware of any exist-
ing work which exploits them in the way proposed in this
paper for improving the mixed-initiative user experience in
calendar management.

Finally, it is worth mentioning the works by Bresina
et al. on mixed-initiative planning of Mars rover missions
(Bresina and Morris 2006; 2007). In such works, however,
the role of the automated reasoner is that of helping the hu-
man to plan the daily activity for the rover by detecting (tem-
poral) inconsistencies and trying to explain them in terms of
previous commitments made by the user.

Conclusions

We presented the temporal reasoning support underlying
the Mixed-initiative cAlendaR mAnager. MARA exploits
Temporal Constraint Satisfaction techniques to generate safe
schedules across multiple calendars; it adopts a mixed-
initiative interaction model to guide the user in the explo-
ration of the solution space, providing her/him with infor-
mation about the available options and their impact on the
existing commitments of the involved actors. In this way, it
helps the user to quickly solve calendar management prob-
lems, leaving her/him in control of the scheduling activity.
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A preliminary test with users provided encouraging re-
sults on the efficacy and usefulness of MARA’s calen-
dar management features: users particularly appreciated its
awareness support because it enabled them to easily find the
allocation options for events and to select the most conve-
nient ones by previewing their impact on people’s commit-
ments, without analyzing all the possible solutions in detail.
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