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Abstract: Capsaicin, the pungent ingredient of the hot chili pepper, is known to act on the transient
receptor potential cation channel vanilloid subfamily member 1 (TRPV1). TRPV1 is involved in
somatic and visceral peripheral inflammation, in the modulation of nociceptive inputs to spinal cord
and brain stem centers, as well as the integration of diverse painful stimuli. In this review, we first
describe the chemical and pharmacological properties of capsaicin and its derivatives in relation to
their analgesic properties. We then consider the biochemical and functional characteristics of TRPV1,
focusing on its distribution and biological effects within the somatosensory and viscerosensory
nociceptive systems. Finally, we discuss the use of capsaicin as an agonist of TRPV1 to model acute
inflammation in slices and other ex vivo preparations.
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1. Introduction and General Concepts

1.1. Chemical Features of Capsaicin

Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide—C18H27NO3) is a naturally occurring
substance derived from the plants of the genus Capsicum, family Solanaceae. Capsaicin is a vanilloid as
it contains a vanillyl group in its formula. Vanilloids belong to a class of organic chemicals referred to
as protoalkaloids, i.e., alkaloids where nitrogen is located in the side chain. Alkaloids are a wide and
rather heterogeneous group of compounds that are generally made of carbon, hydrogen and nitrogen.
In addition to these, alkaloids often contain other elements among which is oxygen, as is the case for
capsaicin. The first isolation of the vanilloid from paprika and cayenne dates back to 1876 and was
reported by Thresh [1]. The first study on capsaicin structure dates back to 1920 [2].

The commercial production of capsaicin from natural sources primarily involves its isolation
from Capsicum spp. Capsaicin can also be produced by the reaction of vanillylamine with
7-methyloct-5-ene-1-carboxylic acid chloride. The vanilloid appears in the form of a highly volatile,
pungent, hydrophobic, colorless and odorless white crystalline powder. Once absorbed by the body,
capsaicin is likely metabolized by dehydrogenation, giving rise to specific macrocyclic, -diene and
-imide metabolites.

1.2. Natural Sources of Capsaicin

In the world, there are five known domesticated varieties of Capsicum spp.: C. annuum, C. frutescens,
C. chinense, C. baccatum and C. pubescens. C. annuum (also known as red chili, paprika, gendot, curly
chili) and C. frutescens (rawit) are very similar, to the point that some authors do not consider the two
as different species [3]. The fruit of all these plants has a hot taste that derives from its content in

Molecules 2016, 21, 797; doi:10.3390/molecules21060797 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
http://www.mdpi.com/journal/molecules


Molecules 2016, 21, 797 2 of 33

capsaicinoid compounds: a group of amide acids from vanilinamine and fatty acid chain branched at
C9 and C11. Capsaicinoids in Capsicum spp. for the most contain capsaicin, and, in lesser quantities,
dihydrocapsaicin, homocapsaicin and homodihydrocapsaicin. Analysis of the levels of capsaicin in
various Capsicum fruits showed that green paprika, yellow paprika and red paprika contained no
capsaicin, while chili tanjung, red chili, red gendot, green gendot, green curly, japlak rawit, red curly,
red rawit and green rawit (cayenne) contained 0.38; 0.83; 0.87; 0.88; 1.05; 1.09; 1.14; 1.85 and 2.11%
capsaicin (w/w), respectively [4].

1.3. Cloning, General Distribution, Functional Properties and Biological Effects of the Capsaicin Receptor
in Mammals

1.3.1. Cloning and General Distribution of TRPV1

The capsaicin receptor, named transient receptor potential vanilloid 1 receptor (TRPV1), was
cloned in 1997 from rat dorsal root ganglia (DRGs) using a functional screening strategy for isolating
candidate complementary DNA (cDNA) clones [5]. This newly cloned cDNA was initially named VR1,
for vanilloid receptor subtype 1. Later, VR1 was identified to be a member of the transient receptor
potential (TRP) family of cation channels and the nomenclature TRPV1 was adopted to denote this
association. To date, TRPV1 has been cloned from human, guinea pig, rabbit, mouse and porcine
tissues. Its distribution was mainly investigated in tissues and organs from human, rat and mouse,
but also several other mammals among which are the other aforementioned species [6]. By reverse
transcription-polymerase chain reaction (RT-PCR), TRPV1 was localized to human DRGs, brain, kidney,
pancreas, testis, uterus, spleen, stomach, small intestine, lung and liver [7]. In rats, with an array
of techniques including in situ hybridization, northern blotting, RT-PCR and immunocytochemistry
(ICC), the receptor was localized in numerous areas of the central nervous system (CNS) including the
cerebral cortex, striatum, hippocampus, central amygdala, thalamus, hypothalamus, cerebellum, locus
cerulean, cochlear nuclei, spinal nucleus of the trigeminal nerve (SNTN), inferior olive and spinal
cord [8]. In the peripheral nervous system (PNS), TRPV1 was detected in rat trigeminal ganglion
(TG) and DRGs. Other rat organs expressing the receptor were the kidney, pancreas, placenta and
urinary bladder [5,7,9]. In mice, TRPV1 was localized to similar districts of the CNS and PNS than in
rats [10–14]; and a subset of smooth muscle cells in small arteries [15]. In the above localizations and
species, TRPV1 was not only detected in intramural nerve fibers and plexuses, providing the visceral
innervation to the organs and tissues listed above, but also in the mucosal epithelial cells. The latter
are not the only non-neural cells expressing the receptor, as some cells of the immune system, e.g.,
the T-cells and the mast cells; the keratinocytes of the epidermis; the cells of inner root sheet and the
infundibulum of hair follicles; differentiated sebocytes; the cells of sweat gland ducts and the secretory
portion of eccrine sweat glands; and the vascular endothelium also express TRPV1 [16].

1.3.2. Functional Properties and Biological Effects of TRPV1

Initial studies on isolated cells demonstrated that capsaicin and other natural substances, as well
as some physical activators and protons, activated TRPV1. Functionally, capsaicin, resinferatoxin
(RTX) and heat activated Human Embryonic Kidney 293 (HEK 293) cells transfected with human or
rat TRPV1 vector [5,7]. Mouse DRG neurons were activated by the same substances in patch-clamp
whole- or single-cell recordings [17]. Capsaicin and acidic pH in Xenopus laevis oocytes injected with
the human TRPV1 cDNA [7] effectively opened the receptor channel in two-electrode voltage clamp
experiments. In addition, intracellular Ca2+ imaging provided further evidence that the receptor
was activated by capsaicin, anandamide, olvanil, RTX and pH in HEK 293 cells transfected with
rat [18], mouse [19] or human [20] TRPV1 cDNA. In neurons, cation (Ca2+) influx through TRPV1
causes membrane depolarization, leading to the activation of voltage-gated sodium channels and
the generation of an action potential. It was very recently reported that the capsaicin-evoked action
potentially follows a physical interaction between TRPV1 and anoctamin 1, a calcium-activated chloride
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channel, resulting from the entry of Ca2+ through the TRPV1 pore and that such interaction is relevant
for the enhancement of nociception [21].

Broadly speaking and in the more complex in vivo or ex vivo context, TRPV1 has been linked to
thermo-sensation (heat), autonomic thermoregulation, nociception, food intake regulation and multiple
functions in the gastrointestinal (GI) tract [22]. Specifically in CNS, the receptor has also been involved
in growth cone guidance, long-term depression, endocannabinoid signaling and osmosensing, the
latter by a particular TRPV1 variant [16].

Notably, TRPV1 is also up regulated in several human pathological conditions including
vulvodynia [23], GI inflammation, Crohn’s disease and ulcerative colitis [24,25].

In the light of the aforementioned observations, it is not surprising that capsaicin has been
clinically used and proven to be of some benefit in obesity, cardiovascular and GI pathologies, various
types of tumors, neurogenic bladder and certain dermatologic conditions, although many of these
pharmacological effects appeared to be TRPV1-independent [22].

1.3.3. Other Molecular Targets of Capsaicin

Some of the TRPV1-independent pharmacological effects have led a debate on the possible
existence of other receptor targets of capsaicin. There is contrasting evidence regarding the possibility
that capsaicin may be an inhibitor of signal transducer and activator of transcription 3 (STAT3),
although the lowest active dose (50 µM) necessary to inhibit STAT3 is significantly higher than the
concentration (1–5 µM) usually required to stimulate TRPV1 [26].

It seems also possible that—at least under certain conditions—neurokinin 1 (NK1) and neurokinin
2 receptor-mediated mechanisms are involved in the induction of phosphorylated extracellular
signal-regulated kinase (pERK) after stimulation of primary sensory neurons (PSNs) with capsaicin,
an effect not solely directly linked to the binding of the vanilloid to TRPV1 channels [27]. However,
as PSNs release substance P in response to capsaicin challenge, such a possibility still needs to be
confirmed in full.

Very recently, additional potential targets of capsaicin were predicted by reverse docking and
confirmed via chemical-protein interactome and molecular docking. By this approach capsaicin was
identified as an inhibitor of carbonic anhydrase 2 [28].

1.4. Nociception and Pain

Nociception is the encoding of a noxious stimulus i.e., an actual or potential tissue damaging
event [4] and its transduction into electric signals. Noxious stimuli are detected by nerve endings
found throughout the body and originating from the PSNs, which represent the first element of
a polyneuronal chain leading to the perception of pain. A class of PSNs, the nociceptors, respond to
nociceptive stimuli but under certain conditions can be activated also by innocuous forms of the same
stimulus e.g., in the case of heat and cold nociceptors. Nociceptors are polymodal receptors as they
respond to stimuli of a heterogeneous nature: mechanical (e.g., high pressure), thermal (too high or
too low temperatures) and chemical.

Once activated by an adequate stimulus, nociceptors in skin, muscles, joints or viscera generate
a nerve signal (action potential) that is ultimately transferred to the somatosensory cortex, the
parieto-insular cortex and to the anterior cingulate cortex where the sensation of pain is perceived.
Nociceptive stimuli conveyed from somatic and visceral organs to cortical centers follow different
routes. In particular, the trigeminal and spinal nerves solely provide somatic sensory fibers to the
skin and the organs of locomotion, whereas most viscera have two distinct types of sensory nerves
originating from the sympathetic (via the white communicating branches of the thoracic and lumbar
nerves) and parasympathetic (via certain cranial nerves) divisions of the autonomic nervous system.
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1.5. Basic Organization of Somatic and Visceral Pain Pathways

1.5.1. Somatic Pain Pathways

Somatic pain pathways collect stimuli from the skin, muscles, joints, ligaments and bones. With
the exception of the head and the proximal regions of the neck which are innervated by the peripheral
projections of the trigeminal PSNs, nociceptive stimuli from all other parts of the body are encoded
by the PSNs of the DRGs. The main somatic pain pathways are the trigeminothalamic and the
spinothalamic pathways. They are critical for the sensory discriminative aspects of pain perception.
Both consist of a polysynaptic chain of three main neurons, often referred to as first, second and
third order somatic sensory neurons. First order sensory neurons (the PSNs) are located in the TG,
the proximal ganglia of the glossopharyngeal and vagus nerves, or the DRGs. Second order sensory
neurons lie in the spinal cord dorsal horn, or the SNTN. These projection neurons give rise to axons that
cross the midline and travel ascending all along the spinal cord and brainstem to reach the thalamus.
Finally, third order sensory neurons reside in the ventral postero-lateral nucleus of the thalamus and
eventually send their axons to the cerebral cortex (Figure 1). Modulation of nociceptive signals can
occur all along this polyneuronal chain, primarily at the level of the substantia gelatinosa of the spinal
cord dorsal horn or the SNTN and by several descending pathways that exert inhibitory or facilitatory
effects onto the trigeminothalamic or the spinothalamic neurons.

Other ascending pathways are also important for the general dimension of pain and pain
control, as they convey stimuli related to motivational and cognitive aspects (spinoreticular
tract and spinoparabrachial tract), motor responses and affectivity (spinomesencephalic tract and
spinoparabrachial tract) and neuroendocrine/autonomic responses (spinohypothalamic tract). Notably,
the spinoparabrachial pathway is an important route of convergence of somatic and visceral nociceptive
stimuli (Section 1.5.2). For a general description of all these pathways, see [29].

1.5.2. Visceral Pain Pathways

Visceral pain arises from the internal organs including the heart and vessels, airway structures,
GI tract and urinary and reproductive organs [30,31]. However, visceral pain is not evoked from
all viscera and it is not always linked to a factual visceral injury [32,33]. The diffuse nature and
difficulty in locating visceral pain is due to a relatively low density of visceral sensory innervation
and extensive divergence of visceral input within the CNS. While in somatic pain, nociceptive C-fibers
make synaptic contacts with second-order projection neurons in the upper laminae of the dorsal horn
spinal cord and the substantia gelatinosa (lamina II) interneurons [34], input from the viscera has
a more diffuse and less topographic distribution and specifically, reaches lamina I and the deep dorsal
horn [31,35]. In patients, pain from different visceral organs can have differing areas of presentation,
e.g., bladder to perineal area or heart to left arm and neck. Therefore, visceral pain is often localized to
distant structures and thus, known as referred pain. Development of symptoms may entail referred
pain to somatic structures within the same metameric field as the affected viscera [33]. In addition,
secondary hyperalgesia of superficial or deep body wall tissues might occur due to viscerosomatic
convergence [32,33,36,37]. Finally, visceral pain is often associated with marked motor and autonomic
reflexes such as profuse sweating, nausea, vomiting, GI disturbances and changes in body temperature,
blood pressure and heart rate [32,33,36,38,39].

Primary afferent fibers innervating the viscera project to the CNS through autonomic sympathetic
and parasympathetic nerves. The sympathetic innervation follows the hypogastric, lumbar and
splanchnic nerves which traverse both prevertebral and paravertebral ganglia, until they reach the
thoracolumbar region of the spinal cord. The parasympathetic innervation is mediated by vagal and
pelvic afferents that terminate in the brainstem and lumbosacral cord, respectively [40,41].
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Figure 1. Illustration depicting TRPV1 receptor distribution in body organs and the main visceral 
and somatic pain pathways. TRPV1 is found in several body organs and when its expression 
increases, it contributes to the development of visceral and somatic pain. Afferent fibers innervating 
the viscera project to the CNS following the course of autonomic sympathetic and parasympathetic 
nerves. Afferent sympathetic fibers originating from the thoracolumbar DRGs follow the 
hypogastric, lumbar  and splanchnic nerves (SN) after traversing the sympathetic prevertebral 
(celiac ganglion—CG, superior mesenteric ganglion- SMG and inferior mesenteric ganglia—IMG) 
and paravertebral ganglia (in magenta). Ascending projections from lamina I neurons in the spinal 
cord travel along the spinoparabrachial pathway (SPBP) to the parabrachial nucleus (PBN), whereas 
projections from deep dorsal horn neurons (STTN) travel along the spinothalamic tract (STT) to 
thalamic nuclei (VPMN and VPLN). The parasympathetic sensory innervation (in green) follows the 
vagus and pelvic nerve that terminate in the brainstem and lumbosacral cord, respectively. The 
gastrointestinal tract also has its own autonomic intrinsic nervous system—the enteric nervous 
system (ENS) — constituted by the submucosal (Meissner’s) and myenteric (Auerbach’s) plexuses. 
Enteric plexuses play a key role for communication with the autonomic extrinsic nervous system in 
several GI functions. Nociceptive somatic inputs from all the parts of the body, except the head, are 
transmitted to spinothalamic projection neurons in the dorsal horn of the spinal cord. These neurons 
in turn, reach the neurons in the ventro-postero lateral nucleus of the thalamus (VPLN) through the 
STT. Nociceptive somatic inputs (for simplicity, only the skin is depicted but these inputs also derive 
from the muscles, tendons, bones and joints) from the head are relayed to the spinal nucleus of the 
trigeminal nerve (SNTN) and then, along the trigeminothalamic fibers to the ventro-postero medial 
nucleus of the thalamus (VPMN). Finally, nociceptive input is transferred to the sensory cortex 
where it is perceived as pain. Affective, emotional and autonomic aspects of pain are processed in 
other cortical areas (black). 

Visceral pain is primarily signaled by spinal afferents, while vagal afferents signal non-painful 
sensations such as hunger, satiety, fullness and nausea [39]. Although, vagal afferents may not signal 
pain directly, several studies have documented that stimulation of the vagus nerve attenuates 
somatic and visceral pain [39]. Vagal afferents originate from PSNs in nodose ganglion that project 

Figure 1. Illustration depicting TRPV1 receptor distribution in body organs and the main visceral and
somatic pain pathways. TRPV1 is found in several body organs and when its expression increases,
it contributes to the development of visceral and somatic pain. Afferent fibers innervating the
viscera project to the CNS following the course of autonomic sympathetic and parasympathetic
nerves. Afferent sympathetic fibers originating from the thoracolumbar DRGs follow the hypogastric,
lumbar and splanchnic nerves (SN) after traversing the sympathetic prevertebral (celiac ganglion—CG,
superior mesenteric ganglion- SMG and inferior mesenteric ganglia—IMG) and paravertebral ganglia
(in magenta). Ascending projections from lamina I neurons in the spinal cord travel along the
spinoparabrachial pathway (SPBP) to the parabrachial nucleus (PBN), whereas projections from deep
dorsal horn neurons (STTN) travel along the spinothalamic tract (STT) to thalamic nuclei (VPMN and
VPLN). The parasympathetic sensory innervation (in green) follows the vagus and pelvic nerve that
terminate in the brainstem and lumbosacral cord, respectively. The gastrointestinal tract also has its
own autonomic intrinsic nervous system—the enteric nervous system (ENS) — constituted by the
submucosal (Meissner’s) and myenteric (Auerbach’s) plexuses. Enteric plexuses play a key role for
communication with the autonomic extrinsic nervous system in several GI functions. Nociceptive
somatic inputs from all the parts of the body, except the head, are transmitted to spinothalamic
projection neurons in the dorsal horn of the spinal cord. These neurons in turn, reach the neurons
in the ventro-postero lateral nucleus of the thalamus (VPLN) through the STT. Nociceptive somatic
inputs (for simplicity, only the skin is depicted but these inputs also derive from the muscles, tendons,
bones and joints) from the head are relayed to the spinal nucleus of the trigeminal nerve (SNTN) and
then, along the trigeminothalamic fibers to the ventro-postero medial nucleus of the thalamus (VPMN).
Finally, nociceptive input is transferred to the sensory cortex where it is perceived as pain. Affective,
emotional and autonomic aspects of pain are processed in other cortical areas (black).

Visceral pain is primarily signaled by spinal afferents, while vagal afferents signal non-painful
sensations such as hunger, satiety, fullness and nausea [39]. Although, vagal afferents may not signal
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pain directly, several studies have documented that stimulation of the vagus nerve attenuates somatic
and visceral pain [39]. Vagal afferents originate from PSNs in nodose ganglion that project to the
nucleus tractus solitarius (NTS) in the brainstem. Spinally-converging visceral afferents instead,
synapse onto the second order neurons within the dorsal horn, which in turn project to higher centers
through the dorsal column pathway, the parabrachial pathway and the spinothalamic tract (STT) [31].
Superficial dorsal horn projections, mostly form the spinoparabrachial pathway [42], are associated
with autonomic and affective responses to painful stimuli [43]. Along with NTS projections from vagal
afferents, spinoparabrachial projections are transmitted to limbic and cognitive higher relay centers
including those parts of the brain involved in affectivity, such as the amygdala, hypothalamus and
periaqueductal grey (PAG) [31,43]. Visceral spinothalamic projections travel contralaterally from the
deep dorsal horn to the main thalamic projections located in the ventroposterior medial and lateral
nuclei of the thalamus. The medial thalamic nuclei eventually project to the areas of the prefrontal
cortex that are correlated with visceral pain [44–46] (Figure 1).

Furthermore, the GI tract besides its extrinsic innervation as mentioned above, has its own
intrinsic nervous system, the enteric nervous system (ENS), composed by the submucosal (Meissner’s)
and myenteric (Auerbach’s) plexuses [47]. Myenteric plexus lies between the longitudinal and circular
muscle layers, whereas the submucosal plexus is found in the submucosa and relays sensory and
motor responses to the myenteric plexus, prevertebral ganglia and spinal cord [47,48]. The ENS
works autonomously but the digestive function requires communication with the parasympathetic and
sympathetic innervations (Figure 1). The ENS contains sensory peptides, primary afferent neurons,
interneurons and motor neurons and together with the extrinsic system, controls motor activity,
secretion, absorption, blood flow and interactions with other organs such as the pancreas or gallbladder.
This way, the gut provides sensory information to the CNS and the CNS can affect GI function [47,48].

1.6. Capsaicin as an Analgesic Medication

There is widespread use of capsaicin and other capsaicinoids in traditional medicine, not only
in pain therapy but also in body temperature regulation, anti-obesity treatments, anticancer therapy
and as antioxidant and antimicrobial agents [49]. In several South-American, African and Asian
countries, the leaves and fruits of Capsicum spp. have long been in use in the treatment of painful
menses, toothache and muscle pain [50]. After the discovery of TRPV1, capsaicin and numerous
other natural and synthetic receptor agonists have attracted the attention of the academic and pharma
community for their potential in the relief of chronic pain [22]. In national pharmacopoeias, topical
capsaicin medications are registered for the treatment of painful states derived from neuralgia, diabetic
neuropathy, osteoarthritis and rheumatoid arthritis. Capsaicin-based preparations are also in use to
treat pain due to pruritus, psoriasis, mastectomy and bladder disorders.

2. The Capsaicin Receptor in Nociceptive Pathways

2.1. Structure and Physiology of the Capsaicin Receptor

2.1.1. Structure and Splice Variants of TRPV1

The painful sensations induced by capsaicin are consequent to its binding TRPV1. As mentioned
in Section 1.3.1, TRPV1 is part of the TRP multigene superfamily that encodes a wide number of integral
membrane ion channel proteins [16]. Ligand binding and activation profiles of these receptors are
closely related but unique to each TRPV subfamily member. The formation of multimeric species [51]
and/or heteromultimers among members of the family may increase their functional diversity. For
example, TRPV1 and TRPV2 are co-expressed in the IV-VI layer neurons of the adult rat cerebral cortex,
with occurrence of multimeric receptor complexes upon receptor activation in vitro [52].

Alternative splicing also occurs in the TRP gene family, expanding the number of functionally
distinct TRP proteins and potentially providing tissue-specific regulation. Several TRPV1 splice



Molecules 2016, 21, 797 7 of 33

variants have been reported in mice, rats and humans [53–55]. While the biological roles of these
variants are unclear, the reported deletions lead to nonfunctional channels (mTRPV1b, VR.5'sv and
TRPV1VAR) or channels with distinct properties, when examined in recombinant or native expression
systems [56]. TRPV1α and TRPV1β are two cDNA variants of TRPV1 as a result of alternate splicing.
TRPV1β is a dominant-negative regulator of TRPV1 responses, since it is not functional by itself but
inhibits TRPV1α function during co-expression. The recently identified splice variant of the TRPV1
molecule, TRPV1b, produces a negative-dominant effect on the responsiveness of the TRPV1 channel
which is increased by peripheral inflammatory processes. TRPV1b has been cloned from mouse DRG
neurons, human and rat cDNA libraries respectively. TRPV1b is not sensitive to capsaicin and protons
but responsive to heat. Furthermore, TRPV1b but not TRPV1, is expressed on sensory neurons which
respond to heat but are not activated by capsaicin. Moreover, when co-expressed with TRPV1, TRPV1b
reduces the responses to TRPV1 channel activators in a ratio-dependent manner [57].

2.1.2. Biochemistry and Physiology of TRPV1

TRPV1 is a non-selective cation channel that, similarly to all TRPVs, prefers calcium. The receptor
is activated by capsaicin and noxious temperatures with a threshold in vitro of approximately 43 ˝C [5].

The threshold of activation in vitro suggests that TRPV1 is inactive at normal body temperature.
However such a threshold is dynamically regulated and significantly lowered during inflammation [22].
TRPV1 is also activated, among others, by moderate heat, protons and anandamide, an endogenous
ligand of both vanilloid and cannabinoid receptors [5,58]. The full list of natural substances to date
reported to be capable of activating/sensitizing the receptor, aside from capsaicin, is reported in Table 1.
To these, numerous other synthetic compounds should be added [59].

Like other TRP channels, TRPV1 is a putative six-transmembrane-spanning protein with
a pore region localized between transmembrane segments 5 and 6 [5,60]. Numerous studies have
led to the identification of the receptor regions and key amino acids involved in specific functions
(multimerization, capsaicin action, proton action, heat activation, desensitization, permeability and
phosphorylation and modulation by lipids and ATP) [61].

Activity of TRPV1 is positively regulated inside the cell after phosphorylation [5], as its
N-terminus has several phosphorylation sites for protein kinases, among which is the calcium and
calmodulin-dependent protein kinase II (CaMK II kinase). Some activators listed in Table 1, such
as prostaglandins, bradykinin and prokineticin, modulate the activity of the receptor indirectly by
activating several different protein kinases inside the cell [61]. Cleavage of phosphatidylinositol
4,5-bisphosphate (PIP2) by phospholipase C (PLC) is another intracellular activation pathway [62–64].
Besides PIP2, other negative regulators are intracellular calcium and calmodulin [61]. Instead,
phosphatases desensitize TRPV1 after its dephosphorylation [65].

Depending on functional conditions, once activated TRPV1 may become sensitized or enter
a refractory state. Studies on these phenomena were mainly carried out in vitro and their relevance
in vivo still needs confirmation for the development of new medications. On cultured human
respiratory epithelial cells, sensitization of TRPV1 receptors by antagonists’ pretreatment was shown
to be a consequence of the translocation of existing receptors from the endoplasmic reticulum to the cell
surface [66]. As an additional possibility, once activated by capsaicin, TRPV1 enters a long refractory
state [67]. Refractoriness is a consequence of conformational changes in the receptor protein that
depend on extracellular calcium and ultimately, close the channel pore [68].

It should be also mentioned that there seems to exist a marked difference in pharmacological
responses between TRPV1 and native capsaicin receptors for the presence of regulatory proteins
associated with TRPV1 in vivo, among which is Fas-associated factor 1 (FAF1). Notably, FAF1 was
demonstrated to constitutively modulate the sensitivity of TRPV1 to various noxious stimuli in sensory
neurons by forming an integral component of the vanilloid receptor complex [69].
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2.2. Localization and Activation of TRPV1 in Pain Pathways

2.2.1. PSNs and Non-Neural Cells

Activation of TRPV1 during Neurogenic Inflammation of Skin and Mucosae

The sensitivity of TRPV1 to numerous physical and chemical activators and its widespread
distribution indicate that the receptor may be crucial to the onset of inflammation. Activation of
TRPV1 on the terminal endings of the sensory fibers derived from somatic and visceral PSNs and some
non-neural cells (see Section 1.3.1) produces a calcium and sodium influx that ultimately results in
the release of a cocktail of neuropeptides. Among these, the tachykinins substance P and neurokinin
A (NKA) and the calcitonin-gene-related-peptide (CGRP) are of particular relevance. Epithelial,
endothelial and smooth muscle cells, as well as resident immune cells, respond to these neuropeptides
and give rise to a complex series of events collectively referred to as neurogenic inflammation. The
main features of neurogenic inflammation, i.e., redness, swelling and pain, are a consequence of the
vasodilation, plasma extravasation and hyperalgesia that follow binding of NKA, substance P and
CGRP to their cognate receptors on the endothelial and smooth muscle cells [70]. In response to the
release of these neuropeptides, mast cells, epithelial cells and immune cells release pro-inflammatory
cytokines (e.g., IL1b, IL6, IL8, and TNFα) further contributing to the maintenance of the inflammatory
state. The central role played by TRPV1 in the initiation and modulation of neurogenic inflammation
suggests that the same factors which influence its functional expression or numbers, could also
influence the organism’s response to inflammatory xenobiotics [71].

Table 1. Natural activators/agonists of TRPV1 receptor. Some of these molecules not only act
as receptor agonists but also as channel blockers. Abbreviations: DkTx = Double-knot toxin;
HPETE = hydroperoxyeicosatetraenoic acid; NADA = arachidonoyl-dopamine; NGF = nerve growth
factor; RTX = resinferatoxin; VaTx = vanillotoxins.

Activators of TRPV1 Receptor Action Refs

Physical activators
Depolarization (V 1

2
~ 0 mV at 35 ˝C) activator [59]

Noxious heat (> 43 ˝C at pH 7.4) activator [59]

Endogenous
activators

Protons Mild acidification (extracellular H+ pEC50 5.4 at 37 ˝C) activator [58,59,72]

Small
molecules

Adenosine and ATP activator [73]

Polyamines activator [74]

Lipids, lipid
metabolites or

derivatives

lipoxygenase products (12-HPETE, 15-HPETE)
agonist

[75]

leukotriene B4 [76]

5-(S)-hydroxyeicosatetraenoic acid [59]

NADA
N-oleoyldopamine channel blocker [77]

anandamide (arachidonoylethanolamide) channel blocker [78]

prostaglandins activator [79]

Peptides,
proteins and

growth factors

bradykinin activator [80–82]

prokineticin activator [83]

protein kinase C activator [84]

NGF [81]

Exogenous
activators

Plant products
or derivatives

RTX (active compound from the cactus Euphorbia resinifera) agonist [20]

piperine (pungent component in black pepper) agonist [85]

camphor (terpenoid extracted from Cinnamomum camphora) agonist [86]

Venoms

from jellyfish (crude extracts from Aiptasia pulchella,
Cyanea capillata, Physalia physalis and Chironex fleckeri) agonist [87]

VaTx1-3 (Tarantulas’ toxins from Psalmopoeus cambridgei) agonist [88]

DkTx (from the Chinese earth tiger tarantula
Chilobrachys guangxiensis) activator [89]
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Other Effects of TRPV1 Activation in PSNs

At first, intradermal capsaicin injection into the plantar skin of the hind paw in mice contributes
to the development of thermal and mechanical hyperalgesia [5]. Capsaicin also evokes a mechanical
allodynia that could be reversed by both G protein and protein kinase inhibitors [90]. At the cell level,
the activation of protein kinase A and C evoked by capsaicin results in the phosphorylation of the
NMDA receptor subunit NR1 at Ser890/897 and Ser896 respectively, which could be blocked with
specific inhibitors [91]. A role for protein kinase B (PKB)/Akt in DRG neurons was also demonstrated
using the intradermal capsaicin model [92].

As a consequence of these cellular changes, not only the activation of TRPV1 releases NKA,
substance P and CGRP from the peripheral terminals of PSNs contributing to the onset of pain and
inflammation but it also blocks the axoplasmic transport of these and other neuropeptides [93], thereby
depleting terminals of their neuropeptide content. This block of nociception by the exhaustion of
its main mediators at periphery was initially believed to be primarily responsible for pain relief
after local capsaicin treatment. However it was more recently understood that the analgesic effect
of capsaicin is mainly a consequence of a loss of function of the somatic nociceptive fibers [94]. In
fact, the capsaicin-induced defunctionalization of these fibers not only derives from the depletion of
neuropeptides but also from the loss of membrane potential, the block of neurotrophic factor axonal
trafficking, and a reversible retraction of cutaneous terminals [94]. Nerve endings collapse because of
the calcium overload induced by activation of TRPV1, with loss of mitochondrial function, metabolic
inhibition and disruption of the integrity of the terminal membrane [94]. These observations are fully
in line with previous studies on TRPV1-bearing cells in vitro that, after challenge with nontoxic doses
of capsaicinoids, RTX or olvanil, downregulated their TRPV1 expression and ultimately underwent cell
death [95,96]. In keeping with these in vitro studies, RTX causes the loss of unmyelinated C fibers and
a significant damage to myelinated Aδ fibers in adult rats. The agonist also depletes TRPV1 expressing
neurons in DRGs with reduced thermal pain perception [97]. Therefore, the defunctionalization that
follows the activation of TRPV1 by capsaicin and its agonists/activators causes long-term functional
and structural alterations that are not limited at the peripheral terminals of the PSNs.

Finally, it needs to be mentioned that repeated topical application of capsaicin also leads to
degeneration of the cutaneous autonomic nerve fibers [98]. As a result, there is a reduction of pain by
a still not clearly understood additional mechanism that, likely involves a TRPV1-mediated calcium
influx and glutamate release from these fibers [99].

2.2.2. Somatic Pathways

First-to-Second Order Neuron Synapses and Modulation in Substantia Gelatinosa

The painful effects of the administration of capsaicin to the skin occur very soon after an
intradermal injection of the vanilloid, but the intensity of pain decreases progressively within twenty
minutes. At the site of injection, the desensitization or defunctionalization of TRPV1-expressing
primary afferents (see Section 2.1.1) results in a region of hypoalgesia. However, near the injection
site, primary mechanical and heat hyperalgesia rapidly develop and last for about one day. It is
widely agreed that primary mechanical and heat hyperalgesia are a consequence of the sensitization
of PSNs [100]. Secondary mechanical hyperalgesia and allodynia instead appear in a progressively
larger skin area after about fifteen minutes, to then slowly decrease in a few hours (allodynia) or in
about one day (hyperalgesia) [101]. PSNs innervating the skin in a region of secondary mechanical
allodynia and hyperalgesia are not sensitized by the capsaicin injection and thus, have a normal
level of excitability. Therefore, an enhanced responsiveness (central sensitization) of the second order
nociceptive STT or trigeminothalamic tract neurons is responsible for secondary mechanical allodynia
and hyperalgesia [100].

The burning pain or sometimes itch, produced by the activation of peripheral TRPV1s [102]
follows the discharge in polymodal C and mechano-heat Aδ cutaneous nociceptors. As mentioned
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in Section 2.2.1, these PSNs release a cocktail of neuropeptides at periphery. However, in the excited
state, the central terminals of the PSNs release the same cocktail of neuropeptides and the fast amino
acid transmitter glutamate in the spinal cord dorsal horn or the SNTN. These neurotransmitters act
onto two main targets: the second order sensory STT projection neurons and the interneurons of the
dorsal horn substantia gelatinosa [103]. Analogous effects are elicited onto the second order sensory
trigeminothalamic tract neurons and the interneurons of the SNTN substantia gelatinosa. Notably,
it was also the GABAergic interneurons to be affected by a topical injection of capsaicin into the skin,
as demonstrated in vivo by the increased expression of proto-oncogene c-Fos in GABA-immunoreactive
(IR) neurons following a challenge with the vanilloid [104].

Second-to-Third Order Neuron Synapses and Other Brain Areas Involved in Pain Control

In comparison to the enormous mass of data on first-to-second order neuron synapses, few studies
have addressed the distribution and physiology of TRPV1 in supraspinal centers and more specifically,
in STT synapses. Among the several areas of the brain that are directly or indirectly involved in
the modulation of ascending nociceptive stimuli, TRPV1 has been localized in the somatosensory
cortex, anterior cingulate cortex, insula, rostroventral medulla, PAG, amygdala and NTS [52,105,106].
Functionally, the role of the receptor is not totally clear, as capsaicin microinjected in the ventrolateral
PAG had both hyperalgesic [107] and antinociceptive effects in rats [108–110]. The mechanisms of
TRPV1 activation, function and sensitization of hypothetical supraspinal synapses in health and
pathological pain conditions are discussed in [111].

Activation of TRPV1 during Pain Perception

Several lines of evidence converge to demonstrate that TRPV1 has indeed a role in bona fide pain
perception. In a mouse model of neuropathic pain, a TRPV1-dependent glutamate-mediated cross talk
among the prelimbic and infralimbic cortex neurons and glia participates to the generation of pain. In
addition, single-unit extracellular recordings in vivo, following electrical stimulation of the basolateral
amygdala or application of pressure on the hind paw, showed increased excitatory pyramidal
neuron activity in these cortical areas, which also contained higher levels of the endocannabinoid
2-arachidonoylglycerol [112]. In another study, N-arachidonoyl-serotonin, which is a hybrid TRPV1
antagonist and fatty acid amide hydrolase inhibitor, normalized the imbalance between excitatory and
inhibitory responses in the medial prefrontal cortex neurons, resulting in pain inhibition [113].

2.2.3. Visceral Pathways

Visceral pain represents a major clinical problem, yet far less is known about its mechanisms
compared to somatic pain. Since viscera are not normally exposed to noxious heat or capsaicin, the
presence of TRPV1 renders the visceral afferents sensitive to the mediators of inflammation, thus
functionally serving as nociceptors. As it will be further discussed, TRPV1 expression is found
widespread in visceral innervation of all body organs and, when upregulated, TRPV1 correlates
significantly with the degree of visceral pain. The importance of TRPV1 in visceral innervation is
also supported by the painful effects of capsaicin application in several animal models and reports of
human studies.

TRPV1 Expression and Function in the Urinary Tract—Upper Urinary Tract

TRPV1 immunoreactivity is present in nerve terminals that course both the mucosa and muscular
layer of the renal pelvis [114], with the exception of the rat kidney parenchyma [114]. TRPV1 may
have a protective role in situations of exaggerated renal function and structural injury by attenuating
the progression of renal fibrosis, possibly through down-regulation of the TGF-β/Smad2/3 signaling
pathway [115]. In addition, TRPV1 attenuates renal inflammatory responses in mice subjected to
DOCA-salt hypertension [116]. In the ureters, TRPV1 is detected in nerve terminals that course both
the mucosa and muscular layer [114], where CGRP released from capsaicin-sensitive fibers acts as
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inhibitory transmitter, contributing to ureteral motility [117,118]. However, capsaicin also induces an
inflammatory response in the ureters [45].

TRPV1 Expression and Function in the Urinary Tract—Lower Urinary Tract

In the lower urinary tract, TRPV1 expression is well documented not only in a large subpopulation
of nerve fibers but also in non-neuronal cells [114]. In the rat bladder mucosa, most IR fibers are in close
proximity to the basal cells of the transitional epithelium, while in the vesical muscular layer TRPV1-IR
fibers impinge on the surface of the smooth muscle cells. Functional TRPV1 channels in urothelial cells,
including the basal, intermediate and large superficial umbrella cells, have been confirmed in rodents
by either RT-PCR or immunolabeling [9,119]. In the human bladder, TRPV1-IR was detected in nerve
fibers coursing in the suburothelial connective tissue and in muscular layer [120–122]. Charrua et al.
confirmed the presence of TRPV1 channels in human urothelial cells by measuring TRPV1 mRNA
levels in tissue extracts [123]. TRPV1-IR has also been reported in the interstitial cells of the human
bladder [124] which form a suburothelial network that may contribute to a fast spread of smooth
muscle contractions [125]; in the smooth muscle cells; endothelium of capillaries and arteries (but not
of veins); and mast cells [120].

Given its extensive distribution, TRPV1 is important in regulating normal lower urinary tract
function, and studies involving the desensitization of bladder sensory fibers by capsaicin and RTX
have contributed to elucidate its mechanisms of action [126–129]. During bladder inflammation or
spinal cord injury, TRPV1, substance P and CGRP expression is elevated [130] and this allows for the
development of bladder overactivity and pain [126,129,131–133] (Figure 2). Pretreatment of rats with
SDZ 249-665, a vanilloid compound reproducing capsaicin desensitization, attenuates inflammatory
bladder hyperreflexia, referred hyperalgesia [134] and behavioral pain responses to intraperitoneal
acetic acid in rats [135]. In mice with lipopolysaccharide (LPS)-induced bladder inflammation, an
increase of the pain-evoked fos gene expression in sacral spinal cord neurons of wild type (WT) but not
TRPV1 knock-out (KO) mice is observed, an effect that was accompanied by an increase of bladder
reflex contractions [126,132,136]. Specifically, TRPV1 KO mice display greater short-term voluntary
urination and abnormal urodynamic responses, with an increase in the frequency of non-voiding
contractions, increased bladder capacity and inefficient voiding [136].

However, in the rat the density of TRPV1-IR fibers coursing in the mucosa or in the muscular
layer was shown to be rapidly and markedly reduced after application of capsaicin or RTX [114,137] or
even after TRPV1 antagonists [57,126,132,138], which significantly enabled an improvement of bladder
function after inflammation or spinal cord injury. Similar findings were reported after intra vesical
RTX application in patients with neurogenic detrusor over activity [121,139].

TRPV1 is also localized in nerve terminals within the mucosa and muscular layer of the
urethra [114,122]. In keeping with this observation, application of capsaicin produced an inhibitory
effect on the nerve-mediated contractions of the rat proximal urethra, promoting its relaxation and
thus, facilitating urine voiding [140]. However, capsaicin also induces an urethral inflammatory
response [141].

TRPV1 Expression and Function in the Digestive Apparatus

TRPV1 in the digestive apparatus has been well documented in the afferents originating from
PSNs in the DRGs, TG and nodose ganglion [142,143]. In general terms, TRPV1-IR fibers play
an important role in modulating several physiological gut functions including motility, secretion,
circulation and nociception [144,145]. However, TRPV1 is also emerging as a potential mechanosensor
that mediates pain in various GI diseases [136,146,147].
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Figure 2. Schematics of TRPV1 localization and function in the urinary bladder and its contribution 
to bladder dysfunction. In the urinary bladder, TRPV1 can be found in sensory afferents and in the 
urothelium. Upon mechanical injury or inflammation TRPV1 levels are increased together with those 
of substance P and CGRP (stored in large granular vesicles—LGVs—large gray spheres) Nerve 
growth factor (NGF—orange spheres) is also released by the detrusor smooth muscle and the 
urothelium (orange arrows). NGF activates tropomyosin-related kinase A (TrkA) receptors 
expressed on afferent terminals, contributing to sensitization of neuronal TRPV1. The TrkA-NGF 
complex is internalized and retrogradely transported (dashed line) to neurons in lumbosacral dorsal 
root ganglia (DRGs), where de novo transcription of TRPV1 and additional sensory ion channels 
(including purinergic P2X3 receptor for ATP—small red spheres) is initiated. These newly 
synthesized ion channels are anterogradely transported back to afferent terminals to contribute to 
peripheral hypersensitivity. The urothelium also potentially produces brain-derived nerve factor 
(BDNF—blue spheres), which binds to tropomyosin-related kinase B (TrkB) receptors, further 
contributing to sensitization. This also participates to the development of bladder over activity, as 
shown by the increase number of bladder contractions in the graph at bottom right of the figure. 

Esophagus 

Retrograde tracing and multiple labeling immunofluorescence studies have revealed that 
TRPV1-IR neurons projecting to the rat esophagus are located in the DRGs and the nodose ganglion 
[148]. TRPV1-IR nerve fibers deriving from these neurons are found in both the submucosal and 
myenteric plexuses of the esophagus. These fibers also express CGRP/substance P and neuronal 
nitric oxide synthase (nNOS) in the myenteric plexus of mice [149], and can be activated by capsaicin 
[150]. After exposure of the rat esophagus to acids, TRPV1 increases in DRGs [148,151]. In rats with 
chronic esophagitis, muscle afferent fibers exhibit a significantly greater response to capsaicin 
compared to non-inflamed naive animals [152]. This sensitized response is possibly due to an 
increase in the expression of TRPV1 channels in vagal afferent fibers after esophagitis. Activation of 
cervical and thoracic DRG neurons by intra-esophageal acid in vivo is lost in TRPV1 KO mice, 
suggesting that TRPV1 channels are required for acid-induced esophageal pain [153]. In keeping 
with this observation, TRPV1 KO mice develop a significantly less severe esophagitis after acid 

Figure 2. Schematics of TRPV1 localization and function in the urinary bladder and its contribution
to bladder dysfunction. In the urinary bladder, TRPV1 can be found in sensory afferents and in the
urothelium. Upon mechanical injury or inflammation TRPV1 levels are increased together with those
of substance P and CGRP (stored in large granular vesicles—LGVs—large gray spheres) Nerve growth
factor (NGF—orange spheres) is also released by the detrusor smooth muscle and the urothelium
(orange arrows). NGF activates tropomyosin-related kinase A (TrkA) receptors expressed on afferent
terminals, contributing to sensitization of neuronal TRPV1. The TrkA-NGF complex is internalized
and retrogradely transported (dashed line) to neurons in lumbosacral dorsal root ganglia (DRGs),
where de novo transcription of TRPV1 and additional sensory ion channels (including purinergic
P2X3 receptor for ATP—small red spheres) is initiated. These newly synthesized ion channels are
anterogradely transported back to afferent terminals to contribute to peripheral hypersensitivity. The
urothelium also potentially produces brain-derived nerve factor (BDNF—blue spheres), which binds
to tropomyosin-related kinase B (TrkB) receptors, further contributing to sensitization. This also
participates to the development of bladder over activity, as shown by the increase number of bladder
contractions in the graph at bottom right of the figure.

Esophagus

Retrograde tracing and multiple labeling immunofluorescence studies have revealed that
TRPV1-IR neurons projecting to the rat esophagus are located in the DRGs and the nodose
ganglion [148]. TRPV1-IR nerve fibers deriving from these neurons are found in both the submucosal
and myenteric plexuses of the esophagus. These fibers also express CGRP/substance P and neuronal
nitric oxide synthase (nNOS) in the myenteric plexus of mice [149], and can be activated by
capsaicin [150]. After exposure of the rat esophagus to acids, TRPV1 increases in DRGs [148,151]. In
rats with chronic esophagitis, muscle afferent fibers exhibit a significantly greater response to capsaicin
compared to non-inflamed naive animals [152]. This sensitized response is possibly due to an increase
in the expression of TRPV1 channels in vagal afferent fibers after esophagitis. Activation of cervical
and thoracic DRG neurons by intra-esophageal acid in vivo is lost in TRPV1 KO mice, suggesting that
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TRPV1 channels are required for acid-induced esophageal pain [153]. In keeping with this observation,
TRPV1 KO mice develop a significantly less severe esophagitis after acid exposure [154]. Moreover,
capsaicin causes enhanced relaxation of smooth muscle contraction in the esophagitis model, which
supports the fact that acid reflux increases the expression of TRPV1 in primary afferent nerves [149].
In TRPV1 deficient mice, reflux promoting surgery induces significantly less mucosal injury and
inflammation than in WT mice and pretreatment with the TRPV1 antagonist capsazepine in WT
mice significantly inhibits esophagitis [152]. In cat spinal afferents, capsaicin-evoked stimulation of
epithelial TRPV1 induces hypersensitivity and esophagitis due to the release of substance P and CGRP
from esophageal sensory nerve endings [155].

Expression of TRPV1 is up-regulated also in human patients with esophagitis, gastro-esophageal
reflux disease and non-erosive reflux disease [156–158]. The increase in the expression of TRPV1
correlates to intra-esophageal up regulation of nerve growth factor (NGF) and glial-cell-derived
neurotrophic factor (GDNF) [157], which are important mediators involved in neuroplastic events and,
therefore, contribute to enhancement of sensitization of the esophageal nerve fiber network.

Stomach

In rodents, most stomach-innervating neurons in nodose ganglia and DRGs have been shown to
be IR for TRPV1 (80% and 71%, respectively) [142,151]. Furthermore, numerous TRPV1-IR nerve fibers
were detected in the myenteric plexus, at the level of the fundus and the antrum. These fibers are in
close contact with the myenteric ganglionic neurons. TRPV1-IR fibers were also observed within the
circular and longitudinal muscle layers and at the level of the lamina propria of the mucosa. In these
locations, TRPV1 has been found to co-localize with CGRP and substance P [159,160]. In humans,
TRPV1 labeling was found in intra-cytoplasmic granules of the glandular parietal cells, in the gastric
cells, in intramural ganglionic neurons and fibers, the latter being numerous in the submucosa and
mucosa and, often, ending close to the parietal cells [161]. In addition, expression of TRPV1 protein
and mRNA in a rat gastric mucosal epithelial cell line as well as in the mucosa of the intact rat stomach
by Western blotting and RT–PCR, respectively, suggest that TRPV1 plays a protective role in these
cells [162].

However, acute exposure of the rat gastric mucosa to a noxious HCl concentration has been shown
to raise TRPV1 protein but not mRNA in DRG neurons innervating the stomach [151]. Capsaicin
pre-treatment of rats prevents the behavioral pain reaction to gastric acid challenge [163]. In addition,
central injection of capsaicin and anandamide stimulates gastric acid secretion in rats, via TRPV1
coupled with non-NMDA and GABAA receptor systems [164,165].

In humans, the intragastric administration of capsaicin increases the sensitivity to proximal gastric
distension [166], and ingestion of capsaicin capsules induces gastric sensations of pressure, heartburn
and heat [167].

Small Intestine

Intense labeling of TRPV1-IR nerve fibers is found surrounding the myenteric neurons within the
enteric ganglia of jejunum and ileum. Fibers can be found also in interganglionic tracts and they diverge
within myenteric ganglia to wrap around cell bodies of the myenteric neurons [143]. Occasionally,
TRPV1-IR nerve fibers can also be located within the circular muscle layer, surrounding the enteric
neurons, and the blood vessels of the submucosal plexus. Retrograde labeling and immunofluorescence
studies in DRGs revealed high degrees of co-localization between TRPV1 and CGRP, substance P or
nNOS, in neurons supplying the mouse jejunum [168]. TRPV1-IR nerve fibers in the rat jejunum derive
from extrinsic neurons, and activation of TRPV1 produces a relaxation response that is in part, due to
the release of CGRP [169].

In general, capsaicin stimulates, most likely via TRPV1, the extrinsic afferents of the gut [150]
and its administration into the lumen of the alimentary canal evokes pain in mice [170]. Capsaicin
is thought to evoke intestinal pain by stimulation of jejunal chemoreceptors, presumably expressing
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TRPV1 [171]. Afferent jejunal nerve fibers can be activated by capsaicin, but this effect is obviously lost
in TRPV1 KO mice [147]. Patients with uninvestigated dyspepsia have been found hypersensitive to
intrajejunal capsaicin infusion [172]. In addition, administration of capsaicin into the ileum of patients
with an ileal stoma has been reported to cause mechanical hypersensitivity [173].

Large Intestine

About three quarters of the colonic splanchnic afferents express TRPV1 and show capsaicin
responsiveness [174]. Notably, the TRPV1-IR area in the rectum is the largest in the isolated mouse
lower GI tract. Numerous TRPV1-IR nerve fibers were found in the mucosa, submucosal layer (around
blood vessels), in the myenteric plexus and in the circular and longitudinal muscle layer; these fibers
were found to contain CGRP, substance P and nNOS [175]. In the distal colon, TRPV1 fibers were half
of that in the rectum, and in the transverse and proximal colon their density was even lower [175–177].

During pathological conditions the levels of TRPV1 increase in colonic tissues of rodents
and humans, in parallel with a hypersensitivity of the large intestine [146,178–180] that could be
inhibited by antagonist administration [181,182]. Rats pretreated with capsaicin do not present
the inflammation-induced hypersensitivity that follows experimental colonic distension [183,184].
In a rat model of dextran sulfate sodium (DSS) colitis, neonatal animals chemically deprived of
TRPV1-expressing fibers by treatment with capsaicin, as well as those given a TRPV1 antagonist
(JNJ 10185734) were both protected from the damaging effects of DSS [179]. In keeping with these
observations, Jones et al. found that the zymosan-induced sensitization of colonic afferents was
absent in TRPV1 KO mice [146]. A mouse post-inflammatory chronic hypersensitivity model using
intracolonic trinitrobenzene sulphonic acid (TNBS), which induces colitis, also showed TRPV1 as
an important mediator of mechanical and chemical visceral hyperalgesia [182,185]. Furthermore,
several studies have reported elevated expression of TRPV1-IR nerve fibers in large intestine biopsies
from patients with irritable bowel syndrome and painful Crohn’s disease [25,180,186], Hirschprung
disease [187], rectal hypersensitivity and fecal urgency [180]. Also, the density of TRPV1-positive
nerve fibers in the rectosigmoid colon correlates with pain severity in patients with irritable bowel
syndrome [186].

Pancreas

Through retrograde labeling of pancreatic nerves and immunostaining, it has been possible to
localize the pancreatic afferents expressing TRPV1 in the mouse T9-T12 DRGs (75% of neurons) and the
nodose ganglion (35% of the neurons) [188]. Within the glandular parenchyma, TRPV1-IR nerve fibers
originating from these neurons are in close proximity to pancreatic acini [189]. Also in pancreatic nerve
fibers, TRPV1, CGRP and substance P were found to be co-expressed. Capsaicin injection into the
pancreatic duct promotes substance P and CGRP release in the dorsal horn neurons upon stimulation
of pancreatic sensory nerves [189–191]. In turn, substance P has been shown to stimulate plasma
extravasation from pancreatic post capillary venules [192]. In keeping with this observation, blocking
substance P with specific NK1 receptor antagonists, or genetic deletion of the NK1 receptor, reduces
pancreatic edema and neutrophil infiltration [192,193].

Capsaicinized animals incur in a much less severe pancreatic inflammation compared to
non-capsaicinized animals, as the capsaicin-sensitive neurons expressing TRPV1 were destroyed [194].
However, administration of capsazepine significantly reduces inflammation and pancreatic injury
in a model of caerulein-induced acute pancreatitis [195]. Injection of capsaicin into the pancreatic
duct of rats has also been shown to induce expression of fos in the neurons of the spinal dorsal horn,
contributing to pancreatic pain [196].

TRPV1 Expression and Function in the Respiratory Tract

Fine axons expressing TRPV1 are diffusely distributed in the respiratory tract, specifically within
the epithelium of the respiratory organs, including the trachea, bronchi, bronchioles and pulmonary
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alveoli. In these locations, TRPV1-IR fibers are also seen below the epithelium, surrounding the
smooth muscles and blood vessels and around the alveolar wall [197]. Furthermore, most TRPV1-IR
axons within the intrapulmonary airways co-express substance P and CGRP within and beneath the
epithelium, around blood vessels, within airway smooth muscle and alveoli. However, only a small
proportion of the nerves in the tracheal epithelium and only half the number of TRPV1 axons are
immunopositive for substance P and CGRP [198].

During inflammation, lipoxygenase products, such as 15-HPETE, 15-HETE and leukotriene
B4 (LTB4) released from the airways epithelial cells can directly activate TRPV1, thus contributing
to neuronal hypersensitivity [199]. Increased production of NGF during asthma can potentiate
inflammation through TRPV1 sensitization. In addition to these inflammatory mediators, acidic
pH associated with inflammation can contribute further to TRPV1-mediated airway hypersensitivity
during asthma [200].

TRPV1 Expression and Function in the Genital Tract

In the male genital tract, rat TRPV1 mRNA is detected in the testicles, prostate and penis [201].
Similarly, transcripts for human TRPV1 were isolated from the testicles, seminiferous tubules, corpus
cavernosum, glans and its overlying skin, scrotal skin and prostate [201]. In addition, TRPV1 could
be found in Sertoli cells, where it regulated the acidity of extracellular microenvironment, which is
crucial to maintain male fertility [202]. TRPV1 KO mice present testicular hyperthermia, which results
in massive germ cell depletion from the seminiferous tubules [203]. In the human prostate, TRPV1 has
also been described in primary afferents that course the urethral mucosa, verumontanum, ejaculatory
ducts and periurethral prostatic acini, both by immunocytochemistry and western blotting [204].
The rich TRPV1 sensory innervation found in the human prostate plays an important role in the
development of chronic prostatitis (Chronic Prostatitis/Chronic Pelvic Pain Syndrome—CP/CPPS).
Burning pain sensation is the main description of pain in patients with CP/CPPS, either upon urination
or ejaculation and is directly related to activation of TRPV1-IR fibers [204,205]. In addition, CP/CPPS
patients have increased heat sensitivity in the perineal area [206]. TRPV1 immunoreactivity is also
found in the epithelial cells of the prostate [207], where application of capsaicin and RTX causes a
calcium inflow, revertible by capsazepine [208]. Notably, although low levels of TRPV1 mRNA are
detected in the prostate, high levels of the protein occur in both the epithelium and smooth muscle
cells of the gland [209].

In the female genital tract, TRPV1 is expressed in the vagina [210] and myometrium of the uterus.
Rat uterine cervical afferents in the hypogastric nerve express TRPV1 [211] and estrogens amplify
the responses to painful stimuli of the uterine cervix due to an increase of TRPV1 expression in PSNs
innervating the uterus [212]. On the other hand, the activation of nerve fibers in the uterine horn is
reversed by intrauterine pretreatment with capsazepine [212,213].

In a study investigating TRPV1 innervation of the human uterus during pregnancy and labor,
TRPV1-IR fibers were observed scattered throughout the stroma and around blood vessels and
appeared more frequently in the subepithelium of the cervix uterus. An almost complete disappearance
of TRPV1-IR fibers was observed in the pregnant uterus, but the cervical innervation remained high
throughout pregnancy and labor and was likely responsible for pain during cervical ripening [214].
In addition, TRPV1-expressing fibers significantly increased in the vulvar epidermis and superficial
dermis [23].

3. Experimental Modeling Nociception Using Capsaicin in Vitro and ex Vivo

Under normal conditions in vivo, capsaicin and capsaicinoids only have access to cutaneous and
mucosal TRPV1-expressing sensory fibers of the digestive tract, the airways and the conjunctiva.
However, given the widespread expression of the receptor in tissues and organs, the molecule has
been used as an agonist of TRPV1 in numerous in vitro and ex vivo studies. Most studies on isolated
cells have been fundamental to understand the biology and function of TRPV1 as summarized in
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Sections 1.3.2 and 2.1. Other studies in vitro led to a better understanding of the cellular pathways that
are activated following receptor activation by the vanilloid.

It is well established that assessment of functional activity of TRPV1 can be evaluated by
quantification of ATP release by capsaicin stimulation. In urothelial cells, this process was shown to be
potentiated by NGF treatment and dependent on TrkA activation via phosphatidylinositol-3-kinase
(PI3K) and protein kinase C signaling [215]. The relation between TRPV1 channels and NGF-induced
pain is well established in somatic and visceral pain, and studies in heterologous expression systems
contributed to demonstrate the biochemical mechanism through which bradykinin and NGF produce
hypersensitivity and might explain how the activation of PLC regulates the activity of other members
of the TRP channel family in PSNs [81].

Ex vivo systems are less commonly in use but they are very promising as a bridge, linking
intracellular pathways studies and functional anatomy. In general, these preparations include at least
bundles of primary fibers and a target organ, such as the intestine or the skin. For example, using
an ex vivo colon-pelvic nerve-L6 DRG-and spinal cord preparation, mechanically sensitive colonic
afferents were shown to segregate into high firing and low-firing frequency fibers based on firing
frequency and distension response thresholds. Notably, nearly all low frequency afferents expressed
TRPV1 and could be sensitized by luminal application of capsaicin, in contrast to the high-frequency
ones [178].

Using acute jejunal preparations, capsaicin induced typical excitatory responses on sensory
afferents of WT mice, which lasted briefly and were followed by desensitization with higher
concentration of capsaicin. In contrast, capsaicin had neither excitatory nor desensitizing effects
on jejunal nerves of TRPV1 KO mice [147].

Finally, capsaicin-evoked action potentials on isolated skin-nerve preparations were significantly
decreased in cannabinoid 1 receptor KO mice [216].

Spinal cord slices (Figure 3) are another type of ex vivo preparation that proved to be useful
for a better understanding of the central modulatory effects of TRPV1. Most diffuse are acute
spinal cord slices, at times with attached dorsal roots and/or DRGs. However, the spinal cord
was also organotypically cultivated thereby leading to deafferentation and disappearance of the
primary sensory input to the spinal cord dorsal horn [217]. Initial studies on acute spinal cord
slices were carried out with an electrophysiological approach and were focused onto lamina II,
given its pivotal role in the modulation of nociception. Experiments aiming to establish whether
the central and peripheral effects of capsaicin onto the internalization of the preferred substance
P receptor NK1 had different mechanisms led to the demonstration that capsaicin produced
neurokinin release by a direct action, i.e., a TRPV1-mediated influx of Ca2+, on primary afferents
terminals. The vanilloid also increased the firing of action potentials, and the first effect but
not the second largely bypassed NMDA and GABAB modulatory mechanisms [218]. These
observations were consistent with the previous demonstration that capsaicin induced a strong rise
of [Ca2+]i in rat spinal cord slices during the course of laser scanning confocal microscope imaging
experiments [219]. Converging to the demonstration of a cross-talk between central TRPV1 and peptide
release, N-(4-tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl)tetrahydropryazine-1(2H)-carbox-amide,
a selective TRPV1 antagonist, inhibited the capsaicin-induced release of CGRP and substance P in rat
spinal cord slices [220]. Subsequent electrophysiological observations showed that primary afferent
stimulation with capsaicin differentially potentiated excitatory and inhibitory inputs to spinal lamina
II outer and inner neurons [221]. Moreover, in another study, administration of capsaicin to lamina
II neurons in slices from mice pups resulted in an increase of spontaneous inhibitory postsynaptic
currents. GABAergic inhibitory interneurons in laminae I, III and IV were excited because of the release
of substance P, which, in turn, reduced the activity of lamina II neurons [14]. Experiments on lamina I
neurons also demonstrated that purinergic P2X receptor-expressing fibers were capsaicin-sensitive
nociceptive afferents [222].
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Figure 3. Schematic drawing of the spinal cord slices preparations exploiting the agonist action of
capsaicin onto TRPV1 expressing neurons and fibers in the dorsal horn. Top panel shows at left the
laminar distribution of primary afferent terminals originating from different classes of nociceptors in
DRG neurons; at right the distribution of TRPV1 in peptidergic terminals (yellow dots) originating from
skin and viscera in laminae I-II. Receptors are less densely localized in the outer part of lamina II (IIo) as
compared to lamina I and the inner part of lamina II (IIi). Lamina II also contains TRPV1-IR interneurons
that are spared in organotypically cultured slices (bottom panel). For simplicity, proprioceptive muscle
afferents are not represented. In acute slices (middle panel) primary afferents are severed at dorsal roots
but their terminals remain functional for several hours allowing performing electrophysiological
recording, calcium imaging and proto-oncogene c-Fos/pERK immunocytochemistry. The black
dots indicate the distribution of proto-oncogene c-Fos/pERK-IR neurons after capsaicin challenge.
White dots exemplify the location of the cells responding to the vanilloid with increased intracellular
calcium concentration in real-time confocal imaging. In organotypic cultures (bottom panel) sectioned
primary afferents degenerate and thus, only the TRPV1-IR lamina II neurons are spared. This type
of preparation is useful to isolate the effects of TRPV1 activation on these neurons, in the absence of
primary afferent input.

Other investigators used a different approach exploiting the use of capsaicin as a tool to stimulate
peptidergic primary afferents in acute slices. This approach was based on the immunocytochemical
localization of pERK or expression of the proto-oncogene c-Fos. ERK phosphorylation is known to
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occur in central sensitization and capsaicin stimulation of C fibers induced eight to tenfold increase
of pERK in superficial dorsal horn neurons [223]. The effect was similar to that obtained after direct
electrical stimulation of these fibers or intraplantar injection of capsaicin in an intact animal. More
recently, a study has compared the pERK and proto-oncogene c-Fos responses of mouse spinal cord
slices subjected to octreotide administration. Octreotide is a synthetic antinociceptive analog of
somatostatin, one of the neuropeptides involved in the negative modulation of pain signals in the
dorsal horn. In acute slices, octreotide reduced the response to capsaicin as measured by expression of
proto-oncogene c-Fos and pERK, and it was concluded that the use of Fos and pERK immunoreactivity
in vitro was a valuable tool in investigating the activation of spinal nociceptive pathways and to test
potentially antinociceptive molecules [224].

Other ex vivo approaches were based on the use of real-time confocal imaging of cell-permeant
calcium indicators or voltage-sensitive dyes. The strong calcium response induced by capsaicin was
used in acute rat or mouse slices to mimic the central effects of inflammation and to study the ying
and yang of BDNF and GDNF in the modulation of the excitatory and inhibitory input to lamina II
interneurons [225,226]. Finally, the neurotoxic effects of neonatal capsaicin were exploited to prepare
slices from C fibers’ depleted rats and to study the effects of GABA and excitatory amino-acid receptors
antagonists on the primary afferent excitatory input to the spinal dorsal horn, by imaging slices from
young pups after anterograde labeling with a voltage-sensitive dye from the dorsal root attached to
the spinal cord slice [227].

4. Therapeutic Use of Capsaicin

Capsaicin has been used in several clinical settings as a topical medication to treat pain derived
from different conditions. The USA regulatory authorities have approved capsaicin as an 8% dermal
patch for treating local pain. These patches contain 640 mcg/cm2 synthetic capsaicin with a total dose
of 179 mg in one patch [228]. Lower doses showed no clinical benefits [229–231] or only short-term
efficacy [232,233]. In general, it seems that the vanilloid is effective in the treatment of neuropathic but
not inflammatory pain. For example, capsaicin was not effective against inflammatory osteoarthritic
pain [234], and a high-dose capsaicin patch was of no benefit in targeting persistent pain after inguinal
herniorrhaphy [235]. However, instillation of 15 mg capsaicin (Anesiva 4975) immediately prior to
wound closure displayed some efficacy in controlling pain after total knee arthroplasty [236], and
the vanilloid reduced abdominal pain of patients affected by irritable bowel syndrome after oral
administration [237]. Notably, zucapsaicin, a synthetic cis isomer of natural capsaicin [238] was shown
to be therapeutically effective in relieving pain deriving from knee osteoarthritis. The mechanism
of action and clinical indications of zucapsaicin are similar to that capsaicin, but zucapsaicin is
better tolerated. Therefore, zucapsaicin could become a valuable drug for treating certain forms of
inflammatory pain such as osteoarthritic or intestinal pain and headaches.

An 8% capsaicin patch was reported to be safe and effective in controlling neuropathic pain
resulting from several conditions, with clear improvement in pain attacks, sleep duration and quality
of life [239]. Local pain and erythema were the commonest adverse effects in about 10% of the patients.
Capsaicin patch preparations (NGX-4010 or Qutenza®) were also of benefit in post-herpetic neuralgia
and painful HIV-associated distal sensory polyneuropathy, alone [239–248] or in association with 4%
lidocaine topical preparations [249,250]. Notably, the outcomes of a recent interdisciplinary expert
workshop lead to the conclusion that response rates in patients with or without lidocaine pretreatment
were comparable [251]. According to Derry et al. 2013 [252], high-concentration topical capsaicin is
similar to other therapies for chronic pain. However, the high cost of single and repeated applications
suggest that such a therapy should be preferentially used when other available therapies have failed.
Moreover, the same authors concluded that this type of treatment should not be used repeatedly
without substantial documented pain relief as, even when efficacy is established, there are unknown
risks of repeated application for long periods, especially on epidermal innervation. In addition, it
should be mentioned that a revision of the Special Interest Group on Neuropathic Pain (NeuPSIG)
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recommendations for the pharmacotherapy of neuropathic pain, based on the results of a systematic
review and meta-analysis of existing clinical data, only led to weak recommendation for the use and
proposal as second line therapy of capsaicin high-concentration patches [253].

Injectable capsaicin preparations are also in the course of clinical evaluation. Adlea
(ALGRX-4975) is an injectable highly purified form of capsaicin formulated for long lasting pain
relief [254]. It is currently under investigation for treatment of intermetatarsal neuromas [255], lateral
epicondylitis [256] and end stage osteoarthritis [257]. However, a recent study has tested the effects of
intradermal capsaicin in healthy volunteers and led to the conclusion that an injection of capsaicin at
different depths in the skin had effects on heart rate and blood pressure but not on pain [258]. Authors
worried that their results might have implications for the pharmacology and analgesic predictive value
of the model of intradermal capsaicin.

Palvanil (N-palmitoyl-vanillamide) is a non-pungent capsaicin- like compound found in low
amounts in Capsicum plants [259]. Palvanil has slower kinetics of TRPV1 activation and is a stronger
desensitizer of TRPV1 than capsaicin [259]. When administered systemically at analgesic doses in
mice, it produced significantly fewer aversive effects on body temperature and bronchoconstriction as
compared to capsaicin [260]. These observations have a potential for subsequent translational studies.
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Abbreviations

The following abbreviations are used in this manuscript:

12-HPETE 12-hydroperoxyeicosatetraenoic acid
ATP Adenosine triphosphate
CaMK II kinase Calmodulin- dependent protein kinase II
CGRP Calcitonin Gene-Related Peptide
CP/CPPS Chronic Prostatitis/Chronic Pelvic Pain Syndrome
DNA Deoxyribonucleic acid
DRG Dorsal Root Ganglion
ENS Enteric Nervous System
GABA γ-Aminobutyric acid
GI tract Gastrointestinal tract
HEK 293 Human Embryonic Kidney 293
IR Immunoreactive
15-HPETE 15-hydroperoxyeicosatetraenoic acid
BDNF Brain Derived Neurotrophic Factor
cDNA complementary DNA
CNS Central Nervous System
DkTx Double-knot toxin
DOCA Deoxycorticosterone acetate
DSS Dextran sulfate sodium
FAF1 Fas-Associated Factor 1
GDNF Glial cell-Derived Neurotrophic Factor
HCl Acid chloride
ICC Immunocytochemistry
KO Knock-out
LB4 Leukotriene B4
LPS Lipopolysaccharide
NADA Arachidonoyl-dopamine
NGF Nerve Growth Factor
NKA Neurokinin A
NMDA receptor N-methyl-D-aspartate receptor
NOS Nitric Oxide Synthase
NTS Nucleus Tractus Solitarius
PAG Periaqueductal grey
Palvanil N-palmitoyl-vanillamide
pERK Phosphorylated Extracellular signal-Regulated Kinase
PI3K Phosphatidylinositol-3-Kinase
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PIP2 Phosphatidylinositol 4,5-bisphosphate
PKB/Akt Protein Kinase B/Akt
PKC Protein Kinase C
PNS Peripheral Nervous System
PSNs Primary Sensory Neurons
RT-PCR Reverse Transcription-Polymerase Chain Reaction
RTX Resinferatoxin
SNTN Spinal Nucleus of the Trigeminal Nerve
STAT3 Signal Transducer and Activator of Transcription 3
STT Spinothalamic Tract
TG Trigeminal Ganglion
TNBS Trinitrobenzene sulphonic acid
TrkA Tropomyosin kinase A receptor
TRP Transient Receptor Potential
TRPV1 Transient Receptor Potential cation channel Vanilloid subfamily member 1
VaTx Vanillotoxins
VR1 Vanilloid Receptor subtype 1
WT Wild Type
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