
26 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Run-Time management of computation domains in field calculus

Publisher:

Published version:

DOI:10.1109/FAS-W.2016.50

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Institute of Electrical and Electronics Engineers Inc.

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1633420 since 2017-05-12T18:42:39Z

This is the author's version of the contribution published as:

G. Audrito, F. Damiani, M. Viroli and R. Casadei, "Run‐Time Management of Computation Domains in Field
Calculus," 2016 IEEE 1st International Workshops on Foundations and Applications of Self* Systems
(FAS*W), Augsburg, 2016, pp. 192‐197.

DOI: 10.1109/FAS‐W.2016.50

The publisher's version is available at:

http://ieeexplore.ieee.org/document/7789467/

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789467&isnumber=7789414

When citing, please refer to the published version.

The final publication is available at

http://ieeexplore.ieee.org

https://doi.org/10.1109/FAS-W.2016.50
http://ieeexplore.ieee.org/document/7789467/
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789467&isnumber=7789414

Run-time Management of Computation Domains in
Field Calculus

Giorgio Audrito∗, Ferruccio Damiani∗, Mirko Viroli† and Roberto Casadei†
∗Computer Science Department, University of Torino
Email: {giorgio.audrito, ferruccio.damiani}@unito.it

†DISI Department, University of Bologna
Email: mirko.viroli@unibo.it, roberto.casadei12@studio.unibo.it

Abstract—The field calculus is proposed as a foundational
model for collective adaptive systems, capturing in a tiny lan-
guage essential aspects of distributed interaction, restriction and
evolution, as well as providing ground for engineering resiliency
properties. In this paper, we investigate the interplay between
interaction and restriction: known as “domain alignment” in field
calculus, it is extremely powerful but can cause subtle bugs when
not handled properly. We propose a disciplined programming
approach based on the interplay between a weak and a strong
version of alignment, mixing static and dynamic checks. This
is exemplified to design a new reusable component dynamically
updating the strategy by which a device can extract information
from neighbours, which find applications, for instance, in the
on-the-fly evolution of metrics in smart mobility applications.

Index Terms—aggregate programming; computational field;
dynamic software updating; formal properties;

I. INTRODUCTION

In scenarios such as the Internet-of-Things, pervasive com-
puting, and swarm robotics, the increasing density of com-
puting devices we are witnessing make Collective Adaptive
Systems (CASs) become a more and more interesting approach
to face the challenge of scalability and adaptivity. However, it
is often difficult to find a good trade-off between the need of
building complex strategies to coordinate CASs, and the avail-
ability of engineering tools (languages, platforms) providing
formal guarantees of functional and non-functional correct-
ness. Traditionally, computer science addresses the problem by
foundation calculi: λ-calculus [1] for functional programming,
π-calculus [2] for interactive processes, Featherweight Java
[2] for object-oriented programming, and the Linda calculus
[3] or Klaim [4] for coordination models based on shared-
spaces: they all bring few key mechanisms of their respective
paradigm into a very small language (or calculus), over which
several static and dynamic properties can be investigated—just
to mention one, type-checking of Java generics in Java 5 has
been implemented after FGJ extensions to FJ [5].

What would be a suitable core calculus for CASs? Recent
works propose the field calculus [6], [7], a minimal model
describing computations of CASs in terms of global-level ma-
nipulation of a collective data-structure, called computational

This work is partially supported by project HyVar which has received
funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 644298, by ICT COST Action IC1402
ARVI, and by Ateneo/CSP project RunVar.

field [8] (or “field” for short). A field is a time-varying map
from devices to computational values, it is physically deployed
in the computational environment, and can be used to model
data produced by distributed sensors or feeding distributed
actuators, intermediate results of distributed computations, and
so on. The field calculus is at the root of the aggregate
computing approach [9], which promotes the construction of
reusable blocks of collective adaptive behaviour as field-to-
field computations, and whole complex applications as layers
of APIs constructed out of such blocks. Recently, the field cal-
culus has been successfully exploited to investigate properties
of self-stabilisation [10], device distribution independence [11]
and universality [12], and to build programming languages on
top, such as Protelis [13].

This paper follows the direction of such previous works,
and investigates the subtleties of the construct of field calculus
dealing with device-to-device interactions, operator nbr. It
essentially specifies an observation mechanism by which a
device gathers a map from neighbours to their value of
a given intermediate computation: such “observation maps”
(also called field values) are first-class data values, and are
amenable to combinations with others, and to reduction to
single data values. Crucially to the goals of aggregate com-
puting, this mechanism is fully declarative in the sense that it
supports compositionality of behaviour (interactions correctly
occur even when nbr is nested into deep levels of functional
composition) and restriction (nbr creates maps considering
only the neighbour devices that executed the same intermediate
program). One of the most basic and crucial safety features
of nbr is domain alignment, already introduced in [7], [14],
which ensures that observation maps are always “domain
coherent” with each other, and hence no unwanted interactions
between devices occur. However, checking domain alignment
at compile-time is a complex task: it requires extensive coding
effort, and can only be achieved at the expense of admitting
some domain-aligned expressions to be refuted by the system.
Often, when not treated carefully, this problem results in subtle
bugs.

In this paper we first technically examine two possible
strategies for run-time management of field domains: Strict
(strong domain alignment), throwing exceptions on domain
mismatch, ensuring run-time domain alignment; and Permis-

P ::= F e program

F ::= def d(x) {e} function declaration

e ::= x
∣∣ φ ∣∣ c(e)

∣∣ b
∣∣ d

∣∣ (x) =>e∣∣ e(e)
∣∣ nbr{e}

∣∣ rep(e){e} expression

Fig. 1. Syntax of field calculus.

sive (weak domain alignment), allowing fields with different
domains to be combined by restricting them to the largest
common domain (i.e. the intersection of their domains). Then,
after examining several examples, we show a programming
methodology that mixes these two strategies (strictness as
default, and permissiveness on-demand) and a disciplined
programming approach to selectively avoid alignment bugs
and exploit the full potentials of nbr. As a final result, we
put this approach in practice and develop a new building block
called “updatable metric”: during a system operation, it allows
one to dynamically update the logical (metric) structure of the
network so as to tweak system behaviour: for instance, one
could stretch the notion of distance into a system to navigate
people in complex environments, to take into account aspects
such as crowds, traffic jams, pollution, and favourable areas.

The remainder of this paper is organised as follows: Section
II presents the syntax and operational semantics of field
calculus; Section III introduces and examines the definitions of
weak and strong domain alignment and the restriction property,
Section IV presents examples clarifying the advantages and
disadvantages of strong domain alignment, Section V intro-
duces the new updatable metric building block, and Section VI
summarises the guidelines that emerge from the cases studied.

II. FIELD CALCULUS

Figure 1 presents the syntax of the field calculus in its
higher-order version—we refer to [7], [13] for a more de-
tailed presentation with examples. Following [5], the overbar
notation denotes metavariables over sequences and the empty
sequence is denoted by •. E.g., for expressions, we let e range
over sequences of expressions, written e1, e2, . . . en (n ≥ 0).

A program P consists of a sequence of function declarations
and of a main expression e. A function declaration F defines
a (possibly recursive) function, where d is the name, x are
the parameters and e is the body. Expressions e are the main
entities of the calculus, modelling a whole field (that is, an
expression e evaluates to a value on every device in the
network, thus producing a computational field). An expression
can be:

• a variable x, used as function formal parameter;
• a field value φ (which is allowed to appear in intermediate

computations but not in source programs);
• a data constructor c(e);
• a built-in function b;
• a declared function name d;
• an anonymous function (x) =>e (where x are the formal

parameters and e is the body);

• a function call e(e) (which is computed separately in
clusters i.e. regions of space holding the same result for
the functional expression e);

• a nbr-expression nbr{e}, modelling neighbourhood in-
teraction via extraction of “observation maps”;

• or a rep-expression rep(e){e}, modelling time evolu-
tion.

Figure 2 introduces the big-step operational semantics of
field calculus, according to the “local” viewpoint. Devices
undergo computation in fair and asynchronous rounds, per-
forming evaluation of the program with respect to the mes-
sages recently received from neighbours, and broadcasting
the outcome of the computation to neighbours for later use.
The result of evaluation is a value-tree θ ::= v〈θ〉, which
is an ordered tree of values tracking the result of any eval-
uated subexpression. The value-trees recently received from
neighbours are collected together into a value-tree environment
Θ ::= δ 7→ θ; which is navigated pointwise by the auxiliary
functions πi(Θ) (which selects the i-th branch corresponding
to the relevant subexpression) and ρ(Θ) (which selects the
outcome of the computation).

We use δ; Θ ` e ⇓ θ to mean “expression e evaluates
to value-tree θ on device δ with respect to the value-tree
environment Θ”, and δ;π(Θ) ` e ⇓ θ as a shorthand for
δ;π1(Θ) ` e1 ⇓ θ1 · · · δ;πn(Θ) ` en ⇓ θn.

Rule [E-LOC] and [E-FLD] model evaluation of local and field
values. Rule [E-B-APP] and [E-D-APP] model application of built-
in and user defined functions; where built-in application is
abstracted away via the auxiliary function LbMΘ

δ . Rule [E-REP]

models state preservation and through repeated updates, and
[E-NBR] models field construction from the values in the value-
tree environment.

Each rule is designed to grant that the environment Θ
corresponds to the expression currently being evaluated, by
iteratively matching each subexpression with the correspond-
ing branch in the value-trees. Two special precautions are
taken in order to ensure that no interference between different
subexpressions can happen:
• Rule [E-FLD] reduces the domain of a field φ (which might

have been computed in a larger context) to the set of
devices currently available in Θ;

• Rule [E-D-APP] reduces the value-tree environment Θ (for
the evaluation of the actual application) to only those
devices who applied the same function f in their last
evaluation round, so that no matching is attempted be-
tween different expressions.

Together, these rules ensure that any field created through
nbr{e} consists only of values that neighbours have evaluated
for e, and not for other subexpressions e′.

III. DOMAIN ALIGNMENT

Rule [E-D-APP] of field calculus together with the progressive
alignment through πi(Θ) ensures that fields created through
nbr{e} consists only of values that neighbours have evaluated
for the same subexpression e. Notice that for this property to

Auxiliary functions:
ρ(v〈θ〉) = v πi(v〈θ1, . . . , θn〉) = θi if 1 ≤ i ≤ n else • π`(v〈θ1, . . . , θn+2〉) = θn+2 if ρ(θn+1) = ` else •

For aux ∈ ρ, πi, π` :

{
aux(δ 7→ θ) = δ 7→ aux(θ) if aux(θ) 6= • else •
aux(Θ,Θ′) = aux(Θ), aux(Θ′)

args(d) = x if def d(x) {e} body(d) = e if def d(x) {e}
args((x) => e) = x body((x) => e) = e

Rules for expression evaluation: δ; Θ ` e ⇓ θ

[E-LOC]

δ; Θ ` ` ⇓ `〈〉
[E-FLD] φ′ = φ|dom(Θ)∪{δ}

δ; Θ ` φ ⇓ φ′〈〉
[E-B-APP] δ;π(Θ) ` e, e ⇓ θ, θ v = Lρ(θ)MΘ

δ (ρ(θ))

δ; Θ ` e(e) ⇓ v〈θ, θ〉

[E-D-APP] δ;π(Θ) ` e, e ⇓ θ, θ f = ρ(θ) δ;πf(Θ) ` body(f)[args(f) := ρ(θ)] ⇓ θ′
δ; Θ ` e(e) ⇓ ρ(θ′)〈θ, θ, θ′〉

[E-NBR] Θ1 = π1(Θ) δ; Θ1 ` e ⇓ θ1 φ = ρ(Θ1)[δ 7→ ρ(θ1)]
δ; Θ ` nbr{e} ⇓ φ〈θ1〉

[E-REP]
δ;π1(Θ) ` e1 ⇓ θ1 `1 = ρ(θ1)
δ;π2(Θ) ` e2[x := `0] ⇓ θ2 `2 = ρ(θ2)

`0 =

{
ρ(π2(Θ))(δ) if δ ∈ dom(Θ)
`1 otherwise

δ; Θ ` rep(e1){(x) => e2} ⇓ `2〈θ1, θ2〉

Fig. 2. Big-step operational semantics for expression evaluation

hold we don’t need rule [E-FLD] to (possibly) reduce the domain
of field values: however, this fact is needed in order to ensure
the following property.

Definition 1. We say that strong domain alignment1 holds iff
whenever a subexpression e evaluates in a device δ to a field
value φ, dom(φ) is equal to the set S formed of δ and all of
its neighbours which evaluated the same subexpression e in
their last evaluation round.

We say that weak domain alignment holds iff dom(φ) is any
subset of S containing δ.

Weak domain alignment is enforced by construction by the
evaluation rules of field calculus, thanks to rule [E-FLD] which
ensures that any field value is first restricted to fit into the
correct domain (together with the assumption that built-in
operators return fields with domain included in the set dom(Θ)
of aligned devices2).

Strong domain alignment could be statically enforced by
advanced typing rules. However, the problem of determining
exactly which expressions are guaranteed to comply with it is
in general not decidable, so some degree of approximation is
needed.

For example, consider an expression e(e) where e is a
functional expression of type T → F, where F is a field
type (i.e., holding an observation map), and assume that e

evaluates to a user-defined function f. By rule [E-D-APP], the
function application is performed in the restricted environment
of the devices which evaluated e to the same value f. Thus by

1In [7], strong domain alignment is referred to as domain alignment.
2Which (by induction) is always a superset of the domain of any input

fields passed to the built-in operator.

weak domain alignment the field φ which is the result of e(e)
has domain contained in the same restricted set of devices.
It follows that e(e) complies with strong domain alignment
whenever the expression e always evaluates to a same value
on neighbour devices; and such property cannot be statically
checked by a type system.

It follows that strong domain alignment can be enforced
without disallowing some unrecognised compliant expressions
only through dynamic run-time checks. We remark that this
is in fact the practical approach that is taken in most existing
implementations of field calculus (e.g. Protelis [13]). Domain
alignment is also justified and supported by the following
related property.

Definition 2. We say that the restriction property holds iff
whenever a (partially evaluated) subexpression e occurring at
some stage of the computation is evaluated, the final outcome
v is not influenced by the devices who did not evaluate the
subexpression e in their last evaluation round.

This property ensures predictable and correct composition
of expressions. In particular, it allows to (i) evaluate an
expression e in the restricted environment where a certain
boolean condition b holds, via the construct if(b){e}{e0};3
(ii) guarantee that fields arguments passed to a function f

do not contain values for devices not accessible inside the
function through nbr.

In other words, the restriction property is a feature of the
language both allowing convenient expressibility of domain

3In field calculus the if construct is defined in terms of mux and functional
application, thus it is not included in Figure 1.

restrictions and ensuring (partly) predictable domains for field
arguments. We can thus argue that the restriction property is
a reasonable requirement for any safe and modular aggregate
computing language. Interestingly enough, such property fol-
lows from weak domain alignment.

Theorem 1. The restriction property follows from weak do-
main alignment.

Proof sketch. Let e be a partially evaluated expression oc-
curring at some stage of the computation. By weak domain
alignment, any field subexpression of e has domain contained
into the set of neighbours which computed e. Since any
subexpression e′ of e can be influenced by neighbours only
via field values, the final outcome of e is not influenced by
non-aligned neighbours.

Since weak domain alignment is granted by field calculus
alone (without static advanced type checks), we can conclude
that the restriction property is also granted.

IV. ALIGNMENT STRATEGIES BY EXAMPLES

We now compare two possible implementations of field
calculus based on run-time management of field domains:
• Strict: throwing exceptions on domain mismatch, ensur-

ing run-time domain alignment;
• Permissive: allowing fields with different domains to be

combined by restricting them to the largest common
domain (i.e. the intersection of their domains).

In both cases, weak domain alignment and restriction property
will be granted. In the strict case, strong domain alignment will
also be checked at run-time, while in the permissive case fields
will be combined by incrementally decreasing their domain.
Thus in the permissive case there is no guarantee for a field
value to contain values other than at the current device. The
domain of such a field expression e can then be understood
as the set of devices that both (i) computed e at their last
evaluation round; (ii) computed the same subexpressions of e
of field type.

We now present four examples aimed at showing that a
strict approach is correctly able to rule out many incorrect
computations, while also forbidding few important correct
computations.

A. Average: Unpredictability of Composition

Consider the following function with a field argument:
def avg(x) { sum-hood(x)/sum-hood(nbr{1}) }

If avg is executed while ensuring strong domain alignment,
sum-hood(nbr{1}) gives 1 for each aligned neighbour and
then sums them, hence it counts the number of aligned
neighbours which is also equal to the size of the domain of
field x. If instead avg is executed in a permissive environment,
it will fail to correctly compute the average of x whenever x
has a domain which is not as large as possible. A formulation
of avg which is correct in a permissive setting is possible but
definitely more cumbersome:

def avg2(x) { sum-hood(x)/sum-hood(0*x + nbr{1}) }

In this case, 0·x is a constantly zero-valued field with the same
domain as x, which added with nbr{1} produces a 1-valued
field with the same domain. This example clearly shows that it
is often convenient for a programmer to assume strong domain
alignment in order to more easily produce correct programs.

B. Parametric Gradient: Vanishing of Domains

Consider the following function:
def G(source, metric) {

rep (inf) {
(dist) => mux(source, 0,
min-hood(metric()+nbr{dist}))

}
}

Given a function returning fields metric and a boolean
value source, function G computes the gradient [9], that
is, the minimum distance from the current device to a source
device computed through metric (a function returning an
observation of estimated distances from neighbours).

In an environment with strong domain alignment, the field φ
returned by metric will assign a distance to every neighbour-
ing device. With an implementation of metric which violates
strong domain alignment, however, φ might not be assigning
a distance to any device, thus effectively disconnecting the
network in unpredictable ways.

C. Combined Restriction: Code Redundancy

The restriction property ensures that a field parameter x can
be easily restricted (before being processed by a function f4)
on the subset of devices which agree on a certain boolean ex-
pression b via if(b){f(x)}{f(x)}. This “restriction operator”
is in fact a common building block in aggregate programming
[9]. However, if we want to restrict x to those devices which
agree on a whole sequence of boolean expressions b1, . . . , bn
in a strong domain aligned environment we need a program
emain as the following:
if (b1 and b2 and ... bn) {f(x)}

elif (not b1 and b2 and ... bn) {f(x)}
elif (b1 and not b2 and ... bn) {f(x)} ...

whose size is O(2n) and which might be infeasible even
for small values of n. On the other hand, if strong domain
alignment is dropped the above program can be more concisely
written as e′main:
f(x + if (b1) {nbr{0}} {nbr{0}}

+ if (b2) {nbr{0}} {nbr{0}} ...)

whose size is O(n). In this case, the domain of the i-th 0-
valued field will be equal to the set of devices which agrees
on bi; thus by intersecting all of them the resulting domain
will be equal to the set of devices which computed the same
values for each b1, . . . , bn.

4Restricted fields cannot be directly returned by an expression without
violating strong domain alignment: they first need to be processed into local
values.

This rather abstract example might be concretely instanti-
ated e.g. in case a function needs to be executed separately on
devices with different configurations. Even though the number
of possible configurations is exponential, e′main performs case
distinction with a linear code size if strong domain alignment
is not required.

D. Updatable Functions: Restricted Reusability

In field calculus [7] the following prototype of “updatable
function” is suggested:
def up(injecter) {
snd(rep(injecter()) {
(x) => {max-hood(injecter(),nbr{x})}

})
}

where injecter is a function returning a pair
〈version number, function code〉, and the built-in
operator max-hood selects the pair with the highest version
number among a local pair and a field of pairs.

Then up(injecter) defines an “updatable function” by
spreading functions with high version number throughout
devices. However, in a strict domain aligned environment it
can not be used to define an updatable function returning fields
(such as a metric). In this case, whenever a new function is first
injected it will be computed into the restricted environment
consisting of only current device, thus returning a field that
will not be aligned with respect to the calling context.

Even though up can still work under the assumptions that
new versions are injected at a slow rate (so that most of the
time no alignment is required), and an occasionally empty field
domain does not produce critical effects, in the next section
we shall seek for a better solution.

V. CASE STUDY: UPDATABLE METRIC

We now present a new building block: a refined updatable
function (see Figure 3) which can be applied to functions
returning field values, while guaranteeing the fields returned
to have full domain. This building block can be fruitfully
applied also to functions f not returning fields, providing
stability advantages whenever the execution of such f involves
communication between neighbours.

To enhance code readability, we expand field calculus with
let instructions and records (so that the elements of injected
pairs can be accessed via .ver, .fun), which are nonetheless
supported by Protelis [13] and can be simulated by function
abstractions. The following variables are used:
• procs: list of functions ever executed on the network

(as records with version number).
• max_p: the highest version number in procs.
• cur_p: the version number of the function used in the

previous round.
• n_num: the number of neighbours which called safeup.
• injecter: a built-in sensor returning a record with

function and version number.
• d_cur: the outcome of the currently considered version

of the metric.

• nxt: the outcome field and version selected among the
versions with higher version number.

In short, function safeup repeatedly updates the list
procs of all versions ever executed, by retrieving lists from
neighbours and possibly updating it with a new local version
obtained through injecter. Then it calls function exec
which in turn executes every function in the list which is not
older than any version currently used by a neighbour. Finally,
exec returns the outcome of the function with the highest
version number that is shared by all neighbours.

Since safeup only returns fields that have been calculated
by all neighbours, its output always satisfies strong domain
alignment. However, its intermediate results necessarily violate
it: whenever a new version is injected, it starts to be executed
on a device with no aligned neighbours and is returned by
nested exec calls (violating strong domain alignment) until
an older shared version is met. Thus safeup cannot be for-
mulated in a strict domain aligned environment, even though
it is provable that the not-aligned part of its computation is
always discarded.

We examine the behaviour of updatable metric in a case
study. Consider an environment in which shortest paths to a
source region are repeatedly computed through algorithm
CRF-Gradient [15] (a refinement of parametric gradient al-
lowing faster recovery from network changes) with parameter
v0 =∞. The metric used by CRF-Gradient is implemented by
the updatable paradigm, so that improved versions of the met-
ric5 can be injected dynamically without disrupting the system.
We inject the following versions: (t = 0) nbr-range with
a random 10% error in every device; (t = 30) nbr-range
without error in a random device; (t = 60) density-weighted
metric (discouraging crowded areas) in another random device.

We compare the behaviour of up and safeup for a
network of 1000 nodes, placed randomly with uniform dis-
tribution on a unit disc in order to produce a network 32
hops wide. Rounds are carried out asynchronously, where
subsequent firings of a same device are separated by a random
0.9 to 1.1 time units.

As shown in Figure 4, using algorithm up the values grow
to infinity (cropped to the top) after any injection of a new
function; while with algorithm safeup they change smoothly.
In particular, when the metric injected is a refinement of the
previous version (t = 30) the error of safeup does not rise.
The error peak in t = 60 is due to the sudden change of target
values, while computed values adapt gradually (as shown in
the left picture). Similar graphs can be obtained with simple
parametric gradient in place of CRF-Gradient, thus are not
shown here.

VI. CONCLUSION

In this paper we compared the Strict and Permissive ap-
proach to run-time management of field domains in field
calculus. In both cases, the basic safety guarantees of weak

5An updatable metric can correspond in practice to an updatable range-
detection driver, which is able to accomodate for bugfixes, general improve-
ments and addition of new functionalities.

def exec(procs, max_p, cur_p, n_num) {
let d_cur = if (min-hood(nbr{cur_p}) <= head(procs).ver) {head(procs).fun()} {nbr{0}};
let nxt = if (head(procs).ver < max_p) {exec(tail(procs), max_p, cur_p, n_num)} {pair(nbr{0},-1)};
mux(snd(nxt) < 0 and n_num = sum-hood(nbr{1}), pair(d_cur, head(procs).ver), nxt)
}

def safeup(injecter) {
4th(rep (nil, -1, -1, nbr{0}) {
(procs, max_p, cur_p, field) => {

let nmax_p, nprocs = max-hood(nbr{max_p, procs});
let nnmax_p, nnprocs = if (injecter().ver > nmax_p) {injecter().ver, append(nprocs, injecter())}

{nmax_p, nprocs};
let x = exec(nnprocs, nnmax_p, cur_p, sum-hood(nbr{1}));
(nnprocs, nnmaxp, snd(x), fst(x))
}
})
}

Fig. 3. A refined implementation of updatable function.

Fig. 4. Square mean relative error (left) and mean value (right) for safeup (solid line) and up (dashed line).

domain alignment and restriction property are granted. In
the strict case, strong domain alignment holds which is able
to prevent subtle errors occurring when composing different
expressions. In the permissive case, some additional relevant
functions are allowed, as the updatable metric.

Such expressions are needed often enough to leverage the
full power of field computations—however, a wide majority
of functions would benefit from strong domain alignment.

We then propose the following guidelines for development
of practical implementations of field calculus: (i) exceptions
on domain mismatch should be thrown by default; however
(ii) it must be possible for a programmer to explicitly allow
functions to handle domain mismatch in a Permissive fashion.
These guidelines translate in practice into providing two
overloads of built-in operators as pointwise operations on field
values: a throwing form and a (discouraged) non-throwing
form.

The results of this paper integrate smoothly with the work-
flow proposed in [10], where permissive functions are meant to
be used mostly as building blocks (and seldom for application-
specific internal features). The proposed examples (and in
particular the updatable metric) expand on the work on safe
code deployment in [7], and the properties studied (weak
and strong domain alignment, restriction property) refine the
corresponding notions introduced in [7], [14] and integrates
the results on safety properties for aggregate computing (self-
stabilisation [10], device distribution independence [11]).

REFERENCES

[1] A. Church, “A set of postulates for the foundation of logic,” Annals of
Mathematics, vol. 33, no. 2, pp. 346–366, 1932.

[2] R. Milner, J. Parrow, and D. Walker, “A calculus of mobile processes,
part I,” Information and Computation, vol. 100, no. 1, pp. 1–40,
September 1992.

[3] N. Busi, R. Gorrieri, and G. Zavattaro, “On the expressiveness of linda
coordination primitives,” Inf. Comput., vol. 156, no. 1-2, pp. 90–121,
2000.

[4] L. Bettini, V. Bono, R. D. Nicola, G. L. Ferrari, D. Gorla, M. Loreti,
E. Moggi, R. Pugliese, E. Tuosto, and B. Venneri, “The Klaim project:
Theory and practice,” in Global Computing 2003, ser. Lecture Notes in
Computer Science, vol. 2874. Springer, 2003, pp. 88–150.

[5] A. Igarashi, B. C. Pierce, and P. Wadler, “Featherweight Java: A minimal
core calculus for Java and GJ,” ACM Transactions on Programming
Languages and Systems, vol. 23, no. 3, 2001.

[6] F. Damiani, M. Viroli, and J. Beal, “A type-sound calculus of compu-
tational fields,” Science of Computer Programming, vol. 117, pp. 17 –
44, 2016.

[7] F. Damiani, M. Viroli, D. Pianini, and J. Beal, “Code mobility meets
self-organisation: A higher-order calculus of computational fields,” in
Formal Techniques for Distributed Objects, Components, and Systems,
ser. LNCS. Springer, 2015, vol. 9039, pp. 113–128.

[8] M. Mamei and F. Zambonelli, “Programming pervasive and mobile
computing applications: The tota approach,” ACM Trans. on Software
Engineering Methodologies, vol. 18, no. 4, pp. 1–56, 2009.

[9] J. Beal, D. Pianini, and M. Viroli, “Aggregate programming for the
internet of things,” IEEE Computer, vol. 48, no. 9, 2015.

[10] M. Viroli, J. Beal, F. Damiani, and D. Pianini, “Efficient engineering
of complex self-organising systems by self-stabilising fields,” in 2015
IEEE 9th International Conference on Self-Adaptive and Self-Organizing
Systems. IEEE, 2015, pp. 81–90.

[11] J. Beal, M. Viroli, D. Pianini, and F. Damiani, “Self-adaptation to device
distribution changes in situated computing systems,” in IEEE Conference
on Self-Adaptive and Self-Organising Systems (SASO 2016). IEEE,
2016, to appear.

[12] J. Beal, M. Viroli, and F. Damiani, “Towards a unified model of spatial
computing,” in 7th Spatial Computing Workshop (SCW 2014), AAMAS
2014, Paris, France, May 2014.

[13] D. Pianini, M. Viroli, and J. Beal, “Protelis: Practical aggregate program-
ming,” in Proceedings of the 30th Annual ACM Symposium on Applied
Computing, ser. SAC ’15. ACM, 2015, pp. 1846–1853.

[14] M. Viroli, F. Damiani, and J. Beal, “A calculus of computational
fields,” in Advances in Service-Oriented and Cloud Computing, ser.
Communications in Computer and Information Science. Springer Berlin
Heidelberg, 2013, vol. 393, pp. 114–128.

[15] J. Beal, J. Bachrach, D. Vickery, and M. Tobenkin, “Fast self-healing
gradients,” in Proceedings of the 2008 ACM symposium on Applied
computing. ACM, 2008, pp. 1969–1975.

	IEEE-FAS-W-Audrito-et-al-2016-COPERTINA.pdf
	main

