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TRUNCATED MODULES AND

LINEAR PRESENTATIONS OF VECTOR BUNDLES

ADA BORALEVI, DANIELE FAENZI, AND PAOLO LELLA

Abstract. We give a new method to construct linear spaces of matrices of constant rank, based
on truncated graded cohomology modules of certain vector bundles. Our method allows one to

produce several new examples, and provides an alternative point of view on the existing ones.

Introduction

A space of matrices of constant rank is a vector subspace V , say of dimension n+ 1, of the set
Ma,b(k) of matrices of size a× b over a field k, such that any element of V \ {0} has fixed rank r.
It is a classical problem, rooted in work of Kronecker and Weierstrass, to look for examples of such
spaces of matrices, and to give relations among the possible values of the parameters a, b, r, n.

One can see V as an a × b matrix whose entries are linear forms (a “linear matrix”), and
interpret the cokernel as a vector space varying smoothly (i.e. a vector bundle) over Pn. In
[EH88, IL99, Syl86] the relation between matrices of constant rank and the study of vector bundles
on Pn and their invariants was first studied in detail. This interplay was pushed one step further
in [BFM13, BM15], where the matrix of constant rank was interpreted as a 2-extension from the
two vector bundles given by its cokernel and its kernel. This allowed the construction of skew-
symmetric matrices of linear forms in 4 variables of size 14×14 and corank 2, beyond the previous
“record” of [Wes96]. In this paper we turn the tide once again and introduce a new effective
method to construct linear matrices of constant rank; our method not only allows one to produce
new examples beyond previously known techniques, but it also provides an alternative point of
view on the existing examples.

The starting point of our analysis is that linear matrices of relatively small size can be cooked
up with two ingredients, namely two finitely generated graded modules E and M over the ring
R = k[x0, . . . , xn], admitting a linear resolution up to a certain step. Here, the module G should
be thought of as a “small” modification of E, namely G should be Artinian. Then, under suitable
conditions, the kernel F = ker(µ) of a surjective map µ : E → G will only have linear and quadratic
syzygies; by imposing further constraints we obtain a presentation matrix for F that is not only
linear, but also of smaller size than that of E, as the presentation matrix of G is “subtracted” from
that of E. The key idea here is that, in order for E to fit our purpose, it is necessary to truncate
it above a certain range, typically its regularity, which ensures linearity of the resolution, while
leaving the rank of the matrix presenting E unchanged. To connect this result with linear matrices
of constant rank, one takes E and G such that their sheafifications are vector bundles over Pn;
this, together with one more technical assumption, guarantees that the presentation matrix of E,
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as well as that of any of its higher truncation, actually has constant rank. This is the content of
our two main results, Theorems 1.1 and 1.2.

In order to obtain interesting matrices via our method, we analyze Artinian modules G with
pure resolution, exploiting some basic results of Boij-Söderberg theory [BS08, EFW11, ES09, ESS].
Note that the choice of where one needs to truncate is arbitrary here; in this sense we define a
tree associated with any linearly presented module E, rooted in E, whose nodes are the possible
forms of linear matrices whose sheafified cokernel is Ẽ, and whose edges correspond to the Artinian
modules with pure resolution that we use in the construction of the matrices.

To appreciate the validity of our approach one should compare it with previously known tech-
niques, namely “ad hoc” constructions and projection from bigger size matrices. Our graded
modules go above and beyond, and in particular allow one to achieve the construction of matrices
with “small constant corank” with respect to the size, which is where the projection method fails,
and which is one of the hardest tasks in this type of problems, especially so when n > 3. (See
section 2 for such a comparison, as well as a more precise definition of small corank.)
In addition to this, via our algorithms one can recover some sought-after examples of n + 1-
dimensional spaces of matrices of size (kn + 1) × (kn + n − 1) and rank kn, that are the subject
of the entire paper [Wes90]. The reader can find an explicit example in sections 4.1.

One of the goals of this paper is to provide a list of matrices of constant rank arising from vector
bundles over projective spaces. We concentrate here on the most classical constructions (instantons,
null-correlation bundles and so forth). To our knowledge however, among the examples of matrices
of constant rank that we construct from these bundles, very few were known before. All this is
developed in §4.

The last subject are linear matrices of constant rank with extra symmetry properties: we
examine the conditions needed for a constant rank matrix A constructed with our method to
be skew-symmetric in a suitable basis (we call such matrix skew-symmetrizable). This is tightly
related with the results of [BFM13]; indeed the outcomes of this section should be seen as a
parallel of those of [BFM13] which complements and explains the techniques used there, relying
on commutative algebra rather than derived categories.

Another advantage of our technique is that it is algorithmic, and can be implemented in a very
efficient way, as computations sometimes work even beyond their theoretical scope. This not only
provides a detailed explanation of the algorithm appearing in [BFM13, Appendix A], but allows
to construct infinitely many examples of skew-symmetric 10× 10 matrices of constant rank 8 in 4
variables; up to now, the only example of such was that of [Wes96].

Finally, let us note that all these examples, and many more, can be explicitly constructed
thanks to the Macaulay2 [GS] package ConstantRankMatrices implementing our algorithms. The
interested reader can find it at the website www.paololella.it/EN/Publications.html.

1. Main results

1.1. Notation and preliminaries. Let R := k[x0, . . . , xn] be a homogeneous polynomial ring
over an algebraically closed field k of characteristic other than 2. The ring R comes with a grading
R = R0 ⊕R1 ⊕ . . ., with R0 = k, and is generated by R1 as a k-algebra.

All R-modules here are finitely generated and graded. If M is such a module, and p, q are
integer numbers, we denote by Mp the p-th graded component of M , so that M = ⊕pMp,
and by M(q) the qth shift of M , defined by the formula M(q)p = Mp+q. Finally, the module
M>m = ⊕p>mMp is the truncation of M at degree m.

A module M is free if M ' ⊕iR(qi) for suitable qi. Given any other finitely generated graded
R-module N , we write HomR(M ,N) for the set of homogeneous maps of all degrees, which is
again a graded module, graded by the degrees of the maps. Since graded free resolutions exist, this
construction extends to a grading on the modules ExtqR(M ,N). The same holds true for M⊗RN
and Tor(M ,N). For any R-module M , we denote by βi,j(M) the graded Betti numbers of the
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minimal resolution of M , i.e.

· · · −→
⊕
ji

R(−ji)βi,ji −→ · · · −→
⊕
j1

R(−j1)β1,j1 −→
⊕
j0

R(−j0)β0,j0 −→M −→ 0.

For p� 0, the Hilbert function dimk Mp is a polynomial in p. The degree of this polynomial,
increased by 1, is dimM , the dimension of M . The degree of M is by definition (dimM !) times
the leading coefficient of this polynomial.

We say that M has m-linear resolution over R if the minimal graded free resolution of M reads:

· · · −→ R(−m− 2)β2,m+2 −→ R(−m− 1)β1,m+1 −→ R(−m)β0,m −→M −→ 0

for suitable integers βi,m+i. In other words, M has a m-linear resolution if M r = 0 for r < m, M
is generated by Mm, and M has a resolution where all the maps are represented by matrices of
linear forms. In the case where only the first k maps are matrices of linear forms then M is said
to be m-linear presented up to order k, or just linearly presented when k = 1.

A module M is m-regular if, for all p, the local cohomology groups Hp
m(M)r vanish for r =

m−p+1 and also H0
m(M)r = 0 for all r > m+1. The regularity of a module is denoted by reg(M)

and can be computed from the Betti numbers as max{j−i | βi,j 6= 0}. Note that M>reg(M) always
has m-linear resolution.

1.2. Main Theorems. Let E and G be finitely generated graded R-modules with minimal graded
free resolutions as follows:

· · · −→ E1 e1−→ E0 e0−→ E −→ 0, and

· · · −→ G1 g1−→ G0 g0−→ G −→ 0.

A morphism µ : E → G induces maps µi : Ei → Gi, determined up to chain homotopy. Note
that, in case E and G are linearly presented up to order j, the maps µi are uniquely determined
for i 6 j − 1.

Theorem 1.1. Let E and G be m-linearly presented R-modules, respectively up to order 1 and 2.
Let µ : E → G be a surjective morphism and consider the induced maps µi’s. Then F = ker(µ) is
generated in degree m and m+ 1, and moreover:

(i) if µ1 is surjective, F is generated in degree m and has linear and quadratic syzygies. Fur-
thermore β0,m(F ) = β0,m(E)− β0,m(G);

(ii) if moreover µ2 is surjective, F is linearly presented and β1,m+1(F ) = β1,m+1(E)−β1,m+1(G).

Proof. Set J i = im(ei) and Ki = im(gi). The map µ induces an exact commutative diagram:

0 J1 E0 E 0

0 K1 G0 G 0

ν1 µ0 µ

Note that E0 → G is surjective. Hence also µ0 has to be surjective for otherwise the generators
of G lying in G0 and not hit by µ0 would be redundant, contradicting the minimality of G0 → G.

Setting α0 = β0,m(E) and γ0 = β0,m(G), we have E0 = R(−m)α0 and G0 = R(−m)γ0 because
E and G are m-linearly presented. So by the obvious exact sequence

0 −→ ker(µ0) −→ R(−m)α0 −→ R(−m)γ0 −→ 0,

we deduce ker(µ0) ' R(−m)α0−γ0 . Hence, applying snake lemma to the previous diagram, we get:

(1.1) 0 −→ ker(ν1) −→ R(−m)α0−γ0 −→ F −→ coker(ν1) −→ 0.
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The R-module J1 is generated in degree m+1 and coker(ν1) is a quotient of J1, so also coker(ν1)
is generated in degree m + 1. Therefore, by (1.1), we get that F is generated in degree m and
m+ 1, which proves the first statement.

Let us now prove (i). Assume that µ1 is surjective, and write the exact commutative diagram:

0 J2 E1 J1 0

0 K2 G1 K1 0

ν2 µ1
ν1

Snake lemma this time shows that ν1 is surjective as well, so that coker(ν1) = 0. By (1.1), this
says that F is generated in degree m. Moreover, we obtain β0,m(F ) = α0− γ0, indeed ker(ν1) sits
in J1, which is minimally generated in degree m+ 1, so R(−m)α0−γ0 → F is minimal.

Setting α1 = β1,m+1(E) and γ1 = β1,m+1(G), as before we get ker(µ1) ' R(−m − 1)α1−γ1 .
Again by snake lemma we obtain the exact sequence:

(1.2) 0 −→ ker(ν2) −→ R(−m− 1)α1−γ1 −→ ker(ν1) −→ coker(ν2) −→ 0.

As before, coker(ν2) is generated in degree m+ 2, so that F has linear and quadratic syzygies,
whereby proving (i).

Finally, to prove (ii), if µ2 is surjective then coker(ν2) = 0, and therefore F is linearly presented
by (1.2). Moreover β1,m+1(F ) = β1,m+1(E) − β1,m+1(G). Note that the presentation of F is
necessarily minimal in this case. �

Example 1.1. In this example, we show that the rank of µ2 depends on the map µ and on the
module E in a rather subtle way, even assuming µ1 surjective and G = k, the residual field. It
is exactly this subtlety that, in a previous version of this paper, lead us to the false belief that
this surjectivity condition, and the subsequent inequality on the Betti numbers of E and G, were
sufficient for F to have linear presentation.

Let n = 2 and consider positive integers a and b with b − a > 2. Let E be defined by a linear
matrix A of size a× b of constant rank b−a, so that E is a linearly presented module of rank b−a.
The module E is associated with a Steiner bundle E of rank b − a on P2, see §4.2. Take G = k.
Any non-zero map µ : E → k is surjective and is uniquely defined by the choice of a non-zero
linear form θ : kb → k representing a linear combination of the rows of A.

The kernel of the obvious Koszul syzygy R(−1)3 → R of k is the module associated with the
sheaf of differential forms ΩP2 . The map µ1 : R(−1)a → R(−1)3 commuting with this syzygy
is defined by a scalar matrix ka → k3, whose image is nothing but the linear span in k3 of the
linear forms θA : R(−1)a → k. Indeed, the desired map ka → k3 is just the a × 3 matrix of the
coefficients of θA.

The possible values for the corank v of this map sit between max{0, 3− a} and 2. Indeed, the
map is non-zero (i.e. v 6 2) as otherwise two rows of A would be linearly dependent and E could
not be locally free of rank 2. But A may have the same linear form appearing in every entry of
the first row, in which case choosing θ as (1, 0, . . . , 0) we get v = 2, and so forth. As the value v
changes, we get a minimal resolution for ker(µ) of the form:

0 −→ R(−3) −→ R(−2)3 ⊕R(−1)a+v−3 −→ R(−1)v ⊕Rb−1 −→ ker(µ) −→ 0.

In terms of vector bundles, this reads:

0 −→ ΩP2 ⊕OP2(−1)a+v−3 −→ OP2(−1)v ⊕Ob−1P2 −→ E −→ 0.

The cokernel of the map ν2 is Rv, so this is Artinian if and only if v = 0. In this case, the linear
matrix R(−1)a−3 → Rb−1 has constant rank b− a+ 2.
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The previous example does not comply with condition (ii) of Theorem 1.1, so we cannot produce
a second linear matrix of constant corank 2. However, the linear part of the presentation matrix
of ker(µ) still has constant rank. This is explained by our next main result.

Theorem 1.2. In the assumptions and notations of Theorem 1.1(i), suppose furthermore that:

(i) the sheaves E = Ẽ and G = G̃ are vector bundles on Pn of rank r and s respectively;
(ii) the map ν2 has Artinian cokernel.

Set a = β0,m(E)− β0,m(G) and b = β1,m+1(E)− β1,m+1(G). Then the presentation matrix A of
F = ker(µ) has a linear part of size a × b and constant corank r − s. Moreover the sheafification

F = F̃ of F is isomorphic to the kernel of µ̃ : E → G.

Proof. The module F has a minimal generators, all of degree m, by Theorem 1.1. We have also
seen that the syzygies of these generators are precisely the module ker(ν1), and that coker(ν1) = 0.
For i > 0, set αi = βi,m+i(E) and γi = βi,m+i(G). From the proof of Theorem 1.1, we extract the
following commutative diagram:

(1.3)

0 0 0

ker(ν2) R(−m− 1)b R(−m)a F 0
A

J2 R(−m− 1)α1 R(−m)α0 E 0

K2 R(−m− 1)γ1 R(−m)γ0 G 0

µ1 µ0 µ

0 0 0coker(ν2)

ν2

Here, exactness of the diagram takes place everywhere except on the first line, where the kernel
of the surjective map R(−m)a → F is the module ker(ν1) which fits into the exact sequence (1.2).
Equivalently, coker(ν2) is the middle homology of the complex:

(1.4) 0→ ker(ν2)→ R(−1−m)b → R(−m)a → F → 0.

Recall that coker(ν2) has generators of degree m + 2, so the linear part of the presentation of
F is the a× b matrix A appearing in the diagram. Note that this holds independently of E being
locally free.

Now since coker(ν2) is Artinian, specializing (1.4) and (1.3) to any closed point of Pn we see
that the matrix A presents F = ker(µ̃) as a coherent sheaf over Pn. The fact that A has constant
corank r− s follows. Indeed, the sheaves E and G are locally free and the induced map µ̃ : E → G
is surjective, so also F = ker(µ̃) is locally free, clearly of rank r − s. Also, since A presents F

modulo the Artinian module coker(ν2), we have F ' F̃ , a locally free sheaf of rank r− s. In other
words, A has constant corank r − s. �

Remark 1.1. We will mostly use this theorem in the case G = 0, i.e. when G is also Artinian. Of
course, a way to guarantee that ν2 has Artinian cokernel is to assume that µ2 is surjective as in
Theorem 1.1.

2. Comparison with other strategies

As suggested in the introduction, the idea of using vector bundles to study and then explicitly
construct linear matrices of constant rank dates back to the 80’s. Indeed an n + 1–dimensional
linear space of a× b matrices of constant rank ρ gives rise to an exact sequence of vector bundles
on Pn:

(2.1) 0 −→ K −→ OPn(−1)b
A−→ OaPn −→ E −→ 0,
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where K = kerA has rank r = b− ρ and E = cokerA has rank s = a− ρ.
It is well known that the smaller the difference n− r is, the easier it becomes to find indecom-

posable (nontrivial) rank r bundles on Pn, see for example [OSS80, Chapter 4]. As a consequence,
one has more hopes to construct examples of the type we are after by first building a bigger matrix
of size α × β and constant rank ρ, and then projecting it to a smaller a × b matrix of the same
rank ρ. Cutting down columns (respectively rows) is equivalent to taking a quotient of the rank
β − ρ bundle K (resp. the rank α− ρ bundle E), as shown in the following commutative diagram
(or in an equivalent one for cutting down rows):

0 0

Ob−βPn (−1) Ob−βPn (−1)

0 K ObPn(−1) OaPn E 0
A

0 Q OβPn(−1) OαPn coker(A′) 0
A′

0 0

This technique was used for example in [FM11, BM15]. So what is the advantage of our method
over that of projecting bigger matrices? The following Proposition answers the question.

Proposition 2.1. Let A be a linear space of a×b matrices of constant rank ρ, and dim(A) = n+1.
A induces by projection a space A′ of α × β matrices of the same constant rank ρ and dimension
n+ 1 for any α > ρ+ n and β > ρ+ n.

Proposition 2.1 generalizes a similar result for skew-symmetric matrices appearing in [FM11].
An immediate consequence is that n + 1-dimensional spaces of matrices of constant rank cannot
be constructed via projection as soon as n is bigger than min{α − ρ, β − ρ}; on the contrary, our
method works for many such cases, as shown in the next sections. We will call the examples where
n > min{α− ρ, β − ρ} of small corank.

Proof. We will prove the result working on the number of columns; the other proof is identical.
The space PA lies in the stratum

σρ(Seg(Pa−1 × Pb−1)) \ σρ−1(Seg(Pa−1 × Pb−1)) ↪→ P(ka ⊗ kb)

of the ρth secant variety to the Segre variety Seg(Pa−1×Pb−1) minus its singular locus. We prove
that PA can be isomorphically projected to σρ(Seg(Pa−1 × Pn+ρ)).

Taking a quotient Q of the bundle K as above corresponds to projecting Pb−1 onto Pβ−1 from
the span of b − β independent points O := 〈x1, . . . , xb−β〉; let us call this projection πO. This in

turn induces a projection πSO
: P(ka⊗kb)→ P(kα⊗kb), whose center SO is the image of Pa−1×O

in P(ka ⊗ kb) through the Segre embedding.
Now let ω ∈ PA be any point; then ω = [v1⊗w1 + . . .+ vρ⊗wρ] where vi⊗wi are independent,

and in particular w1, . . . , wρ are independent vectors in kb. Thus they generate a subspace Lω in
Pb−1 of dimension ρ− 1.

Claim. Given O ⊂ Pb−1 such that PA ∩ SO = ∅, the matrices πSO
(PA) have constant rank ρ if

and only if O does not intersect the union of the spaces Lω, as ω varies in PA.
To prove the claim, notice that πSO

(PA)(ω) = [v1 ⊗Mw1 + . . . + vρ ⊗Mwρ], where M is the
matrix representing πO. But then its rank is strictly less than ρ if and only if the wi’s can be chosen
in a way that some summand vi⊗Mwi vanish. On the other hand, the entry locus of ω is exactly
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the Segre variety Seg(Pa−1 × Lω) ↪→ Seg(Pa−1 × Pb−1). So a point of Seg(Pa−1 × Pb−1) belongs
to some ρ-secant plane to the Segre, and containing ω, if and only if it belongs to Seg(Pa−1×Lω).

In other words the existence of a choice of w1, . . . , wρ such that some vi ⊗ Mwi vanish is
equivalent to saying that O intersects Lω. This proves the claim.

To finish the proof of Proposition 2.1, just notice that:

dim
⋃
ω∈PA Lω 6 dim(PA) + dim(Lω) = n+ ρ− 1. �

Other than via the projection method that we have just described, all known examples—to the
best of our knowledge—of spaces of matrices of constant rank are obtained through cumbersome
explicit constructions, that only work case by case.

Apart from being interesting in their own right, such examples can be used to determine effective
lower bounds for the maximal dimension of spaces of matrices. Indeed the question of determining
the value of l(a, b, r), the maximal dimension of a subspace of a × b matrices of rank r, is still
wide open. Among these types of “ad hoc” constructions, let us at least quote [Wes90], where the
author finds the effective value of l(r + 1, r + n − 1, r) (in the case when n divides r) exactly by
providing explicit examples of n+1-dimensional spaces of matrices of the prescribed size and rank.

A little more in detail, from a computation of invariants of vector bundles [Wes87] it follows
that for any integers 2 6 r 6 a 6 b one has:

b− r + 1 6 l(a, b, r) 6 a+ b− 2r + 1,

and moreover l(a, b, r) = b−r+1 whenever b−r+1 does not divide (a−1)!/(r−1)!. In particular,
then the value l(r+ 1, r+ n− 1, r) can be either n or n+ 1. To achieve this explicit construction,
fix n + 1 independent variables x0, . . . , xn and define the matrix (kn + 1) × (kn + n − 1) matrix
Hn,k = (hij) as:

hi,j =


xj−i+1, if 0 6 j − i+ 1 6 n and j 6≡ 0 mod (k + 1),

(a− j + i− 1)xj−i+1, if 0 6 j − i+ 1 6 n and j = a(k + 1),

0, otherwise.

It is not too hard to see that the rank of Hn,k is at least kn; by constructing an appropriate
annihilator for Hn,k one is then able to conclude that the rank is indeed kn. The construction of
the annihilator is as ingenious as it is long and complicated; on the contrary, as anticipated in the
introduction, our method give such matrices in a very direct way; in section 4.1 we wrote out an
explicit example where our algorithm applied to a line bundle on P2 gives precisely the matrices
described above.

3. A closer look at the modules E and G

Keeping in mind our goal of constructing explicit examples of constant rank matrices, we now
want to investigate some features modules satisfying Theorem 1.1’s and Theorem 1.2’s hypotheses.
In particular, we seek numerical ranges for Betti numbers β0,m and β1,m+1 of modules E and
G. Once one determines two modules E and G that numerically provide the desired size of the
presentation matrix of the module F , one can look explicitly for a surjective morphism µ.

3.1. The module E. As E = Ẽ is expected to be a vector bundle of rank r, we consider the
module H0

∗(E) = ⊕t H0(E(t)) of global sections of a vector bundle E or rank r. In general, such
a module will not be linearly presented. Nevertheless, we are free to consider any truncation
H0
∗(E)>m in such a way that it is linearly presented. By Theorem 1.2, the presentation matrix will

indeed have corank r.
In what follows it will be useful to know the Betti numbers of all truncations of a module

(without needing to determine them explicitly).
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Lemma 3.1. Let M be a finitely generated graded R-module and let m > reg(M) be an integer
number. The truncated module M>m is m-regular, and assume that it has linear resolution:

0→ R(−m− n)βn,m+n → · · · → R(−m− i)βi,m+i → · · · → R(−m)β0,m →M>m → 0.

Then the truncated module M>m+k, with k > 1, has regularity m+ k and linear resolution:

0→ R(−m− k − n)βn,m+n+k → · · · → R(−m− k)β0,m+k →M>m+k → 0

with

βi,m+i+k = a
(i)
k β0,m − a(i)k−1β1,m+1 + . . .+ (−1)na

(i)
k−nβn,m+n =

n∑
j=0

(−1)ja
(i)
k−jβj,m+j ,

where for all i = 0, . . . , n, the sequence
(
a
(i)
k

)
belongs to the set of recursive sequences:

RSn :=

(ak)

∣∣∣∣∣ ak+1 =

n∑
j=0

(−1)j
(
n+ 1

j + 1

)
ak−j

 .

More in detail,
(
a
(i)
k

)
is defined by the initial values:

(3.1) a
(i)
1 =

(
n+ 1

i+ 1

)
, a

(i)
−i = (−1)i and a

(i)
−j = 0 for j 6= −1, i and j < n.

Proof. The exact sequence 0 → M>m+k+1 → M>m+k → Mm+k → 0 induces the long exact
sequence (see [Pee11, Theorem 38.3]):

(3.2)
0Tor0(Mm+k,k)Tor0(M>m+k,k)Tor0(M>m+k+1,k)

Tor1(Mm+k,k)Tor1(M>m+k,k)Tor1(M>m+k+1,k)

Tor2(Mm+k,k)Tor2(M>m+k,k)· · ·

where the modules Tori(•,k) are graded of finite length and the dimensions of the homogeneous
pieces are equal to the Betti numbers of the minimal free resolutions of the modules [Pee11, The-
orem 11.2]. Hence, one determines the relation between Betti numbers of consecutive truncations
working recursively with this sequence, keeping in mind that the modules M>m+k and Mm+k

have (m+ k)-linear resolution while M>m+k+1 has (m+ k + 1)-linear resolution. �

By induction on n one can also prove the following Lemma.

Lemma 3.2. Any recursive sequence (ak) ∈ RSn has a degree n polynomial as its generating func-

tion. In particular, the generating function of the sequence
(
a
(i)
k

)
defined in (3.1) is the following:

p(i)n (k) =

(
n

i

)(
k + n− 1

n

)
k + n

k + i
.

Remark that in the case i = 0 one gets that p
(0)
n (k) =

(
k+n
n

)
.

Example 3.1. Consider the polynomial ring R = k[x0, x1, x2]. As module over itself, R is 0-regular
with resolution 0 → R → R → 0 (β0,0 = 1, β1,1 = 0, β2,2 = 0). By Lemma 3.1 and 3.2, the
resolution of R>k for every k > 0 is

0→ R(−k − 2)β2,k+2 → R(−k − 1)β1,k+1 → R(−k)β0,k → R>k → 0,
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where

β0,k = a
(0)
k β0,0 − a(0)k−1β1,1 + a

(0)
k−2β2,2 = p

(0)
2 (k) =

(
k + 2

2

)
=

1

2
(k2 + 3k + 2),

β1,k+1 = a
(1)
k β0,0 − a(1)k−1β1,1 + a

(1)
k−2β2,2 = p

(1)
2 (k) =

(
2

1

)(
k + 1

2

)
k + 2

k + 1
= k2 + 2k,

β2,k+2 = a
(2)
k β0,0 − a(2)k−1β1,1 + a

(2)
k−2β2,2 = p

(2)
2 (k) =

(
2

2

)(
k + 1

2

)
k + 2

k + 2
=

1

2
(k2 + k).

(3.3)

Therefore, we can predict the resolution of R>10:

0→ R(−12)55 → R(−11)120 → R(−10)66 → R>10 → 0.

3.2. The module G. As we pointed out at the end of Section 1, we will often consider Artinian
modules for the module G, so that the corank of the presentation matrices of E and F is the
same. Another advantage of using Artinian modules is that we can exploit many results from
Boij-Söderberg theory about the Betti numbers of a module with given degrees of the maps in the
complex, as well as explicit methods for the construction of such modules [ESS].

We recall some basic results about Artinian modules with pure resolution. We can use them as
building blocks for general Artinian modules. The resolution of an Artinian module G is called
pure with degree sequence (d0, . . . , dn+1), d0 < · · · < dn+1 if it has the shape:

0→ R(−dn+1)βn+1,dn+1 → · · · → R(−d1)β1,d1 → R(−d0)β0,d0 → G→ 0.

It has been proved that such a module exists (see [BS08, EFW11, ES09] for details) and that its
Betti numbers solve the so-called Herzog-Kühl equations:

βi,di = q

n+1∏
j=0
j 6=i

1

|dj − di|
, i = 0, . . . , n+ 1, for some q ∈ Q.

Since we are interested in modules with linear presentation up to order 2, we may assume d0 = 0,
d1 = 1 and d2 = 2. In this case, the first three Betti numbers turn out to be

(3.4) β0,0 =
q

2d3 · · · dn+1
, β1,1 =

q

(d3 − 1) · · · (dn+1 − 1)
, β2,2 =

q

2(d3 − 2) · · · (dn+1 − 2)
,

where q is a multiple of: ∏
2<i<j6n+1

|di − dj |

 · lcm
{
di, di − 1, di − 2 | i = 3, . . . , n+ 1

}
.

4. Construction of special linear presentation of vector bundles

Let us spell out clearly our strategy to construct linear matrices of constant rank. Suppose that,
for a given triple of integers (ρ, a, b) with ρ < min{a, b}, we want to construct an a × b matrix
of linear forms of constant rank ρ in the polynomial ring with n + 1 variables. Then we have to
search for an a × b matrix of linear forms presenting a vector bundle E of rank r = a − ρ on Pn.
In general, if E is a vector bundle of rank r, its module of global sections E will not be linearly
presented. Nevertheless, we are free to truncate E in such a way that it is linearly presented. By
Theorem 1.2, the presentation matrix will indeed have corank r. However, it is unlikely that its
size equals a× b. Here is where Theorem 1.1 and Theorem 1.2 come into play, as we may remove
a 2-linearly presented Artinian module from our truncation of E in order to reduce the size of our
presentation matrix, and hopefully arrive at size a× b.

Note that, given E, there are infinitely many truncations of E = H0
∗(E). For each truncation

E>k (1) one can look at the finitely many Artinian modules with pure resolution and Betti num-
bers compatible with the assumptions of Theorem 1.1, and (2) one needs to look for a surjective
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homomorphism µ inducing a surjective map µ1 and a map ν2 with Artinian cokernel. Moreover,
we can repeat the same procedure for each module with linear presentation obtained in this way,
and so on.

We illustrate these possibilities with a tree structure:

• the nodes of the tree are graded modules and, in particular, the root of the tree is the
truncation E>k for some k of the module E = H0

∗(E) of global sections of a vector bundle
E;
• for each node corresponding to a linearly presented module F , the edges are the possible

Artinian modules G with pure resolution and Betti numbers numerically compatible with
the Betti numbers of F in relation with the assumptions of Theorems 1.1 and 1.2 and the
children are the kernels of a generic morphism µ : F → G;
• if the module corresponding to a node is not linearly presented or there does not exist an

Artinian module with pure resolution and compatible Betti numbers, the node is a leaf of
the tree.

The reduction process represented by a sequence of edges can be thought as equivalent to a single
step of reduction done using the module G obtained as direct sum of the modules corresponding
to the edges in the sequence. Thus, we simplify the tree do not allowing paths corresponding to
permutations of the edges and paths with multiple edges corresponding to resolutions with the
same degree sequence. An explicit example of such a tree can be found in Figure 1.

4.1. Line bundles. To give a first application of Theorem 1.2, we show how to produce a subspace
of dimension 3 of the space of (2s+ 1)× (2s+ 1) matrices of constant rank 2s. Such spaces are an
example of those determined by Westwick in [Wes90] that we illustrated in section 2.

We consider as E the module of section of a line bundle OP2(l) over P2. The resolution of
the general truncation E>k was described in Example 3.1. As for G, we consider pure Artinian
modules with degree sequence (k, k + 1, k + 2, k + d); in this case, the general solution of the
Herzog-Kühl equations is

β0,k(G) = q
d2 − 3d+ 2

2
, β1,k(G) = q(d2 − 2d), β2,k(G) = q

d2 − d
2

, β3,k(G) = q.

Hence, we look for positive integers k, d, q such that

β0,k(E>k)− β0,k(G) =
k2 + 3k + 2

2
− q d

2 − 3d+ 2

2
= 2s+ 1,

β1,k(E>k)− β1,k(G) = k2 + 2k − q(d2 − 2d) = 2s+ 1.

It is easy to show that for every s, we have the solution k = s, d = s + 1 and q = 1, and a
module with such resolution always exists (see for instance [ES09, Theorem 5.1]). Finally, one has
to determine a morphism µ : E>k → G satisfying the assumption of Theorem 1.2. Figure 2 shows
what happens in the case s = 2. Then, the morphism µ : E>2 → G defined by the map between

the generators R(−2)6
[0 0 −1 1 0 0]−−−−−−−−→ R(−2) satisfies the hypothesis of Theorems 1.1 and 1.2 so that

the presentation of kerµ is a 5 × 5 matrix of constant rank 4 that looks exactly like the matrix
H2,2 defined in [Wes90]: 

−x1 −x2 0 0 0
x0 −x1 −x2 0 0
0 x0 0 −x2 0
0 0 x0 x1 −x2
0 0 0 x0 x1

 .
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E>2
24 37 15

23 34 12
� � 1

1× 1 3 3 1
20 26 6
� � 1
� � 1

1× 3 8 6 �
� � � 1

17 18 �
� � 1
� � 2

2× 3 8 6 �
� � � 1

17 19 2
� � 1
� � �
� � 1

1×
6 15 10 �
� � � �
� � � 1

22 31 9
� � 2

2× 1 3 3 1
19 23 3
� � 2
� � 1

1× 3 8 6 �
� � � 1

ν2 does not
have Artinian

cokernel

2× 3 8 6 �
� � � 1

16 16 � �
� � � �
� � 1 �
� � � �
� � 2 1

1×
6 15 10 �
� � � �
� � � 1

21 28 6
� � 3

3× 1 3 3 1
18 20 �
� � 3
� � 1

1× 3 8 6 �
� � � 1

ν2 does not
have Artinian

cokernel

1×
6 15 10 �
� � � �
� � � 1

20 25 3
� � 4

4× 1 3 3 1

17 17 � �
� � � �
� � � �
� � � �
� � 1 �
� � 4 3

1× 3 8 6 �
� � � 1

19 22 �
� � 5

5× 1 3 3 1
ν2 does not

have Artinian
cokernel

1× 3 8 6 �
� � � 1

18 19 � �
� � � �
� � � �
� � 6 3

6× 1 3 3 1

ν2 does not
have Artinian

cokernel

7× 1 3 3 1

21 29 9
� � �
� � 1

1× 3 8 6 �
� � � 1

ν2 does not
have Artinian

cokernel

1×
6 15 10 �
� � � �
� � � 1

18 21 3
� � �
� � 2

2× 3 8 6 �
� � � 1

ν2 does not
have Artinian

cokernel

3× 3 8 6 �
� � � 1

18 22 5
� � �
� � �
� � 1

1×
6 15 10 �
� � � �
� � � 1

14 13 �
� � �
� � �
� � �
� � 1

1×

10 24 15 �
� � � �
� � � �
� � � 1

Figure 1. The set of constant rank matrices that can be produced with our
method applied to the truncation E>2 = ⊕t>2 H0

(
TP2(t − 1)

)
the module of

global sections of a twist of the tangent bundle E = TP2(−1).
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R(−4)3 R(−4)3
 µ3 µ4 µ5
−µ1 −µ2 −µ4
µ0 µ1 µ3



R(−3)8 R(−3)3



x2 0 0
0 x2 0
−x1 0 0
x0 0 −x2
0 −x1 x2
0 x0 0
0 0 −x1
0 0 x0


 −x1 −x2 0

x0 0 −x2
0 x0 x1



 µ1 µ2 µ3 0 µ4 0 µ5 0
−µ0 −µ1 0 µ3 0 µ4 0 µ5
0 0 −µ0 −µ1 −µ1 −µ2 −µ3 −µ4



R(−2)6 R(−2)
[
µ0 µ1 µ2 µ3 µ4 µ5

]


−x1 0 −x2 0 0 0 0 0
x0 −x1 0 −x2 −x2 0 0 0
0 x0 0 0 0 −x2 0 0
0 0 x0 x1 0 0 −x2 0
0 0 0 0 x0 x1 0 −x2
0 0 0 0 0 0 x0 x1


[
x0 x1 x2

]

E>2 G

[
x20 x0x1 x21 x0x2 x1x2 x22

]
µ

0 0

Figure 2. Description of the general morphism µ between the module E>2,
where E = R = k[x0, x1, x2], and G = k(−2). Any non-zero morphism µ is
surjective. If µ−1(1) = 〈x2i 〉 for some i, the morphisms µ1 and µ2 are not surjective
and the presentation of kerµ is R(−4)2⊕R(−3)6 → R(−3)⊕R(−2)5. If µ−1(1) =
〈xixj〉, i 6= j, then µ1 is surjective but µ2 is not, and the presentation turns out to
be R(−4)⊕ R(−3)5 → R(−2)5 → kerµ. Finally, for a generic morphism µ, both
µ1 and µ2 are surjective and kerµ is linearly presented (R(−3)5 → R(−2)5).

4.2. Steiner bundles, linear resolutions and generalizations. In “classical” literature a vec-
tor bundle E on Pn having a linear resolution of the form:

0→ OPn(−1)s → Os+rPn → E → 0,

with s > 1 and r > n integers, is called a (rank r) Steiner bundle. This motivates the following
definition.

Definition 4.1. Let r > n and s > 1 be integer numbers. The cokernel E
(m)
s,r of a generic

morphism:

OPn(−m− 1)s
φ−→ Os+rPn

is a vector bundle on Pn, that we call generalized Steiner bundle.

Classical Steiner bundles are of the form E
(0)
s,r . Given a generalized Steiner bundle, the graded

module E(m) := H0
∗(E

(m)
s,r ) has the following resolution:

(4.1) 0→ R(−m− 1)s → Rs+r → E(m) → 0,
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and its regularity is exactly equal to m. Remark though that the module E(m) does not fit the
bill for our purposes: first of all for m 6= 0 its resolution is not linear, and even in the case m = 0

one has Tor2(E(0),k)2 = 0. For this reason we need to truncate it in higher degree, as explained
in the following lemma.

Lemma 4.1. Let E
(m)
s,r be a rank r generalized Steiner bundles, with graded modules of sections

E(m) = H0
∗(E

(m)
s,r ). The linear resolution of the truncation E

(m)
>m is of the form:

0→ · · · → R(−m− i)α
(m)
i,m → · · · → R(−m)α

(m)
0,m → E

(m)
>m → 0

where:

(4.2) α
(m)
i,m = p(i)n (m)(s+ r)− p(i)n (−1)s.

Proof. Looking at the homogeneous piece of degree m+ i of the resolution of E
(m)
>m:

0→ · · · → R(−m− i)α
(m)
i,m

m+i → · · · → R(−m)
α

(m)
0,m

m+i →
(
E

(m)
>m

)
m+i
→ 0,

we deduce that:

α
(m)
i,m =

i∑
j=1

(−1)j−1
(
n+j
n

)
α
(m)
i−j,m + (−1)i dimk

(
E

(m)
>m

)
m+i

.

Since
(
E

(m)
>m

)
m+i

=
(
E(m)

)
m+i

, for all i > 0, we compute the dimension of the homogeneous piece

of degree m+ i of E
(m)
>m from the simpler resolution (4.1):

dimk

(
E

(m)
>m

)
m+i

= dimk

(
E(m)

)
m+i

=
(
n+m+i

n

)
(s+ r)−

(
n+i−1
n

)
s.

We now proceed by induction on i; for i = 0, we have:

α
(m)
0,m = dimk

(
E

(m)
>m

)
m

=
(
n+m
n

)
(s+ r)−

(
n−1
n

)
s = p(0)n (m)(s+ r)− p(0)n (−1)s.

By inductive hypothesis, (4.2) holds for 0, . . . , i− 1. We get:

α
(m)
i,m =

i∑
j=1

(−1)j−1
(
n+j
n

) (
p(i−j)n (m)(s+ r)− p(i−j)n (−1)s

)
+

(−1)i
((
n+m+i

n

)
(s+ r)−

(
n+i−1
n

)
s
)

=

=
[ i∑
j=1

(−1)j−1
(
n+j
n

)
p(i−j)n (m) + (−1)i

(
n+m+i

n

)]
(s+ r)−

[ i∑
j=1

(−1)j−1
(
n+j
n

)
p(i−j)n (−1) + (−1)i

(
n+i−1
n

)]
s.

The result follows from the observation that the univariate polynomial p
(i)
n (k) coincides with:

i∑
j=1

(−1)j−1
(
n+j
n

)
p(i−j)n (k) + (−1)i

(
n+k+i
n

)
,

because both polynomials have degree n and take the same value at k = 0,−1, . . . , −n. �
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E>1

(12×14, 10)
(11×11, 9)

E>2

(22×32, 20)
(21×29, 19) (18×21, 16)

(20×26, 18) (17×18, 15)

(19×23, 17)

(18×20, 16)

(17×17, 15)

(19×24, 17)

(16×16, 14)

(16×17, 14)

(a) E = H0
∗(E

(1)
2,2), with E

(1)
2,2 over P2.

E>2

(30×43, 27)
(29×40, 26) (26×32, 23)

(23×24, 20)

(23×25, 20)

(28×37, 25) (25×29, 22)

(22×22, 19)

(27×34, 24) (24×26, 21)

(26×31, 23) (23×23, 20)

(25×28, 22)

(24×25, 21)

(27×35, 24)

(24×27, 21)

(24×28, 21)

(b) E = H0
∗(E

(2)
2,3), with E

(2)
2,3 over P2.

E>1

(16×25, 13)
(15×21, 12)

(14×17, 11)

(13×13, 10)

(c) E = H0
∗(E

(1)
1,3), with

E
(1)
1,3 over P3.

E>1

(18×30, 15)
(17×26, 14)

(16×22, 13)

(15×18, 12)

(14×14, 11)

(14×15, 11)

(d) E = H0
∗(E

(0)
2,3), with

E
(0)
2,3 over P3.

E>1

(19×30, 15)
(18×26, 14)

(17×22, 13)

(16×18, 12)

(15×14, 11)

(15×15, 11)

(e) E = H0
∗(E

(0)
1,4), with

E
(0)
1,4 over P3.

Figure 3. Examples of possible constant rank matrices arising from generalized
Steiner bundles. The triple (a×b, ρ) indicates an a× b matrix of constant rank ρ.

4.3. Linear monads and instanton bundles. Mathematical instanton bundles were first intro-
duced in [OS86] as rank 2m bundles on P2m+1 satisfying certain cohomological conditions. They
generalize particular rank 2 bundles on P3 whose study was motivated by problems from physics,
see [AHDM78]. They can also be defined as cohomology of a linear monad; in our work we consider
an even more general definition, in the spirit of [Jar06]. First, recall that a monad (on Pn) is a
complex:

A
f−→ B

g−→ C

of vector bundles over Pn which is exact everywhere but in the middle, and such that im f is a
subbundle of B. Its cohomology is the vector bundle E = ker g/ im f .

Definition 4.2. A generalized instanton bundle is a rank r vector bundle E(r,k) on Pn, r > n− 1,
which is the cohomology of a linear monad of type:

(4.3) OPn(−1)k
f−→ O2k+r

Pn

g−→ OPn(1)k.

In this case, k = dim H1(E(r,k)(−1)) and is called the charge of E(r,k). E(r,k) is sometimes called
a k-instanton.

According to [Flø00], the condition r > n− 1 is equivalent to the existence of a monad of type
(4.3). It should be noted however that it is not always the case that E(r,k) is a vector bundle;
again from [Flø00] we learn that the degeneracy locus of the map f has expected codimension r+1.
Thus when dealing with such monads it will be necessary to check that this expected dimension
indeed corresponds to the effective dimension.

Figures 4a to 4e are examples of sizes and ranks of matrices that can arise from generalized
instantons.
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E>2

(12×18, 10)
(11×14, 9)

(10×10, 8)

E>2

(30×62, 28)
(29×58, 27) (25×43, 13)

(21×28, 19)

(19×22, 17)

(28×54, 26) (24×39, 12)

(20×24, 18)

(27×50, 25) (23×35, 21)

(19×20, 17)

(26×46, 24) (22×31, 20)

(25×42, 23) (21×27, 19)

(24×38, 22) (20×23, 18)

(23×34, 21) (20×24, 18)

(22×30, 20) (19×20, 17)

(21×26, 19)

(20×22, 18)

(26×47, 24)

(22×32, 20)

(20×26, 18)

(a) E = H0
∗(E(2,2)), where E(2,2) is a clas-

sical (rank 2) instanton bundle over P3 of

charge 2.

E>3

(20×34, 18)
(19×30, 17)

(18×26, 16) (15×16, 13)

(17×22, 15)

(16×18, 14)

(16×19, 14)

(b) E = H0
∗(E(2,4)), where E(2,4) is a clas-

sical (rank 2) instanton bundle over P3 of
charge 4.

E>2

(10×12, 8)
(9×9, 7)

E>3

(18×26, 16)
(17×23, 15) (14×15, 12)

(16×20, 14)

(15×17, 13)

(14×14, 12)

(15×18, 13)

(12×11, 10)

(c) E = H0
∗(E(2,2)), where E(2,2) is a gen-

eralized rank 2 instanton bundle over P2.
(It can also be seen as a twist of a Steiner

bundle E(2,2) = E
(0)
(2,2)

(−1).)

E>2

(22×38, 19)
(21×34, 18) (17×19, 14)

(20×30, 17)

(19×26, 16) (16×16, 13)

(18×22, 15)

(17×18, 14)

(18×23, 15)

(d) E = H0
∗(E(3,2)), where E(3,2) is a gen-

eralized rank 3 instanton bundle over P3.

E>2

(25×50, 22)
(24×45, 21) (19×21, 16)

(23×40, 20)

(22×35, 19)

(21×30, 18)

(20×25, 17)

(19×20, 16)

(20×26, 17)

(e) E = H0
∗(E(3,2)), where E(3,2) is a gen-

eralized rank 3 instanton bundle over P4.

Figure 4. Examples of possible constant rank matrices that can be obtained
from instanton and Steiner bundles. The notation is the same as in Figure 3.

4.4. Null correlation, Tango, and the Horrocks-Mumford bundle. Null correlation bundles
are examples of rank n− 1 bundles on Pn for n odd: they are constructed as kernel of the bundle
epimorphism TPn(−1)→ OPn(1). A construction due to Ein [Ein88] generalizes this definition on
P3:

Definition 4.3. [Ein88] A rank 2 vector bundle E(e,d,c) on P3 is said to be a generalized null
correlation bundle if it is given as the cohomology of a monad of the form:

OP3(−c)→ OP3(d)⊕OP3(e)⊕OP3(−e)⊕OP3(−d)→ OP3(c),

where c > d > e > 0 are given integers.

Figures 5a to 5b show possible sizes of matrices appearing from null correlation bundles.

A construction of Tango [Tan76] produces an indecomposable rank n − 1 bundle over Pn, for
all Pn, defined as a quotient E′n of the dual of the kernel of the evaluation map of Ω1

Pn(2), which
is a globally generated bundle. More in detail, one starts by constructing the rank

(
n
2

)
bundle En
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E>2

(16×29, 14)
(15×25, 13)

(14×21, 12)

(13×17, 11)

(12×13, 10)

(12×14, 10)

E>3

(35×76, 33)
(34×72, 32) (30×57, 28) (20×21, 18)

(26×42, 24)

(22×27, 20)

(24×36, 22)

(33×68, 31) (29×53, 27)

(25×38, 23)

(21×23, 19)

(23×32, 21)

(32×64, 30) (28×49, 26)

(24×34, 22)

(22×28, 20)

(31×60, 29) (27×45, 25)

(23×30, 21)

(21×24, 19)

(30×56, 28) (26×41, 24)

(22×26, 20)

(29×52, 27) (25×37, 23)

(21×22, 19)

(28×48, 26)

(27×44, 25)

(26×40, 24)

(25×36, 23)

(24×32, 22)

(23×28, 21)

(22×24, 20)

(31×61, 29) (21×25, 19)

(27×46, 25)

(23×31, 21)

(25×40, 23)

(a) E = H0
∗(NC ), where NC is the null correlation

bundle over P3.

E>4

(46×100, 44)
(45×96, 43) (41×81, 39) (31×45, 29)

(37×66, 35) (27×30, 25)

(33×51, 31)

(29×36, 27)

(35×60, 33)

(25×26, 23)

(44×92, 42) (40×77, 38) (30×41, 28)

(36×62, 34)

(32×47, 30)

(28×32, 26)

(34×56, 32)

(43×88, 41) (39×73, 37) (29×37, 27)

(35×58, 33)

(31×43, 29)

(27×28, 25)

(33×52, 31)

(42×84, 40) (38×69, 36) (28×33, 26)

(34×54, 32)

(30×39, 28)

(32×48, 30)

(41×80, 39) (37×65, 35) (27×29, 25)

(33×50, 31)

(29×35, 27)

(31×44, 29)

(40×76, 38) (36×61, 34)

(32×46, 30)

(28×31, 26)

(30×40, 28)

(39×72, 37) (35×57, 33)

(31×42, 29)

(29×36, 27)

(38×68, 36) (34×53, 32)

(30×38, 28)

(28×32, 26)

(37×64, 35) (33×49, 31)

(29×34, 27)

(27×28, 25)

(36×60, 34) (32×45, 30)

(28×30, 26)

(35×56, 33) (31×41, 29)

(34×52, 32) (30×37, 28)

(33×48, 31) (29×33, 27)

(32×44, 30) (28×29, 27)

(31×40, 29)

(30×36, 28)

(29×32, 28)

(42×85, 40) (32×49, 30)

(38×70, 36) (28×35, 26)

(34×55, 32)

(30×40, 28)

(36×64, 34)

(26×28, 24)

(26×30, 24)

(b) E = H0
∗(E(0,0,2)), where E(0,0,2) is a generalized

null correlation bundle over P3.

Figure 5. Size and rank of matrices of constant rank that can be constructed
from null correlation bundles. The notation is the same as in Figure 3.
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from the exact sequence:

(4.4) 0→ TPn(−2)→ O(n+1
2 )

Pn → En → 0,

and then takes its quotient E′n:

(4.5) 0→ O(n
2)−n

Pn → En → E′n → 0,

that turns out to be a rank n indecomposable vector bundle on Pn containing a trivial subbundle
of rank 1. The Tango bundle Fn is defined as the quotient of E′n by its trivial subbundle, and thus
has rank n− 1.

Indecomposable rank n − 2 bundles on Pn are even more difficult to construct; on P4 there is
essentially only one example known, whose construction is due to Horrocks and Mumford [HM73].
It is an indecomposable rank 2 bundle that can be defined as the cohomology of the monad:

OP4(−1)5 → (Ω2
P4(2))2 → O5

P4 .

Figures 6a and 6b show possible examples of constant rank matrices that can be constructed
starting from Tango and the Horrocks-Mumford bundle.

E>−1

(30×69, 27)
(29×64, 26) (24×40, 21)

(28×59, 25) (23×35, 20)

(27×54, 24) (22×30, 19)

(26×49, 23) (21×25, 18)

(25×44, 22)

(24×39, 21)

(23×34, 20)

(22×29, 19)

(21×24, 18)

(25×45, 22)

(20×21, 17)

(a) E = H0
∗(F4), where F4 is the Tango

bundle over P4.

E>4

(35×75, 33)
(34×70, 32) (29×46, 27)

(33×65, 31) (28×41, 26)

(32×60, 30) (27×36, 25)

(31×55, 29) (26×31, 24)

(30×50, 28)

(29×45, 27)

(28×40, 26)

(27×35, 25)

(26×30, 24)

(30×51, 28)

(25×27, 23)

(b) E = H0
∗(HM ), where HM is the

Horrocks-Mumford bundle.

Figure 6. Examples of size and rank of matrices that can be constructed from
Tango and Horrocks-Mumford bundles. The notation is the same as in Figure 3.

5. Skew-symmetric matrices

In this section we consider linear matrices of constant rank with extra symmetry properties.
The kernel and cokernel sheaves K and E of such a matrix are tightly related to one another, and
the matrix itself is expressed by an extension class Ext2(E,K), that we already met in section 2.
Let us connect this with our previous results.

Definition 5.1. Let E and K be vector bundles on Pn. For t ∈ Z, consider the Yoneda map:

υt : H0(E(t))⊗ Ext2(E,K)→ H2(K(t)).

Set E = H0
∗(E) and M = H2

∗(K). Define Φ as the linear map induced by the υt:

Φ : Ext2(E,K) −→ HomR(E,M)0.
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Theorem 5.1. Assume n > 3 and let A : R(−m − 1)b → R(−m)a be skew-symmetrizable of
constant rank. Set K = kerA and E = cokerA. Then K ' E∗(−2m− 1), and there is an element
η lying in H2(S2E∗(−2m− 1)) under the canonical decomposition

Ext2(E,E∗(−2m− 1)) ' H2(S2E∗(−2m− 1))⊕H2(∧2E∗(−2m− 1)),

such that A presents ker Φ(η). Conversely, if η ∈ H2(S2E∗(−2m − 1)), µ = Φ(η) satisfies the
assumptions of Theorem 1.2, and kerA ' E∗(−2m− 1), then A is skew-symmetrizable.

The same holds for a symmetrizable A, once the above condition on η is replaced with η ∈
H2(∧2E∗(−2m− 1)).

Proof. Let us check the first statement. Assume thus that A is skew-symmetric. Then, sheafifying
the matrix A provided by Theorem 1.2 we get a long exact sequence of type (2.1), where we have
already noticed that, since A has constant rank, E and K are locally free. Hence:

Exti(E,OPn) = Exti(K,OPn) = 0,

for all i > 0. Therefore, dualizing the above sequence and twisting by OPn(−2m− 1)we get:

0 −→ E∗(−2m− 1) −→ OPn(−m− 1)a
−A−→ OPn(−m)a −→ K∗(−2m− 1) −→ 0

Since the image E of A is the same as the image of −A, these exact sequences can be put
together to get K ' E∗(−2m− 1). We may thus rewrite them as:

0 −→ E∗(−2m− 1) −→ OPn(−m− 1)a
A−→ OPn(−m)a −→ E −→ 0.

This long exact sequence represents an element η ∈ Ext2(E,E∗(−2m−1)) ' H2(E∗⊗E∗(−2m−1)).
By looking at the construction of [BFM13, Lemma 3.1], it is now clear that for A to be skew-
symmetric η should lie in H2(S2E∗(−2m− 1)).

To understand why A presents ker Φ(η), let us first expand some details of the definition of Φ.
Let again E be the image of A and write for any integer t the exact commutative diagram:

0 K(t) OPn(−m− 1 + t)a OPn(−m+ t)a
A

E(t) 0.

E(t)

0 0

Taking cohomology, we get maps:

(5.1) µt : H0(E(t)) H2(K(t)).

H1(E(t))

Remark that sequence (2.1) corresponds to η ∈ Ext2(E,K). Cup product with η induces via
Yoneda’s composition the linear maps µt’s of (5.1). But these maps are obtained from the υt by
transposition, so cup product with η gives:

µ = ⊕tµt = Φ(η) : H0
∗(E) = E →M = H2

∗(E
∗(−2m− 1)).

This is obviously a morphism, homogeneous of degree 0. Notice that as soon as n > 3, both
groups H1(OPn(−m+ t)) and H2(OPn(−m− 1 + t)) vanish for all values of t, hence µ is surjective.
By construction A appears as presentation matrix of F = kerµ.

For the converse statement, the element η corresponds to a length-2 extension of E∗(−2m− 1)
by E. Set µ = Φ(η). Theorem 1.2 gives a linear matrix A of constant rank presenting F = kerµ.
Note that sheafifying F we get back the bundle E, as M = H2(E∗(−2m− 1)) is Artinian. On the
other hand, since kerA ' E∗(−2m− 1), the matrix A represents the extension class η. Therefore,
A is skew-symmetrizable by [BFM13, Lemma 3.5 (iii)]. Part (i) of the same lemma says that, when
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dealing with symmetric matrices, one should replace the condition η ∈ H2(S2E∗(−2m− 1)) with
η ∈ H2(∧2E∗(−2m− 1)). The theorem is thus proved. �

In particularly favorable situations, for instance when E is an instanton bundle of charge 2 (cf.
[BFM13, Theorem 5.2]), or a generic instanton bundle of charge 4 (cf. [BFM13, Theorem 6.1]), one
can check that the map Φ is a surjection. This makes the search for an element η corresponding
to a skew-symmetric matrix of the prescribed size and constant rank considerably easier.

Example 5.1. Let us work out the case of generic instantons of rank 2, and write down an explicit
10×10 skew-symmetric matrix of constant rank 8. Let E be a rank 2 instanton bundle of charge 2
on P3, obtained as cohomology of a monad of type (4.3). We take a special 2-istanton, as described
in [AO95]; its monad has maps:

f =


0 x1
x1 x0
x0 0
0 −x3
−x3 −x2
−x2 0

 and g =

[
x2 x3 0 x0 x1 0
0 x2 x3 0 x0 x1

]
.

Once the bundle E is constructed, let E := H0
∗(E) be its module of sections, having resolution:

0→ R(−4)2 → R(−3)6 → R(−2)4 ⊕R(−1)2 → E → 0.

We truncate it in degree m = 2 in order to get a 2-linear resolution; then we take the 2nd graded
cohomology module H2

∗(E), which is a module of length 2, and we set G := (H2
∗(E)(−5))>2. The

truncated module G has length 1. The resolutions of these two modules are

0 −→ R(−5)2 −→ R(−4)10 −→ R(−3)18 −→ R(−2)12 −→ E>2 −→ 0,

0 −→ R(−6)2 −→ R(−5)8 −→ R(−4)12 −→ R(−3)8 −→ R(−2)2 −→ G −→ 0.

The hypotheses of Theorem 1.1(ii) cannot be satisfied and the presentation of kerµ2 for a generic
morphism µ2 : E>2 →M is not linear:

R(−4)2

⊕
R(−3)10

−→ R(−2)10 −→ kerµ2 −→ 0.

Nevertheless, µ2 satisfies the hypothesis of Theorem 1.2(ii). Hence, if we restrict to the linear part
of the presentation A : R(−3)10 → R(−2)10, we obtain a 10× 10 matrix of constant rank 8.

Such a matrix A does not enjoy any particular symmetry property. But if we can make sure that
the map E →M comes indeed from an element of H2(S2E∗(−5)), then Theorem 5.1 will guarantee
that this matrix is skew-symmetrizable. By [BFM13, Theorem 5.2] we know that H2(S2E∗(−5))
surjects onto HomR(E,H2

∗(E)(−5))0, and in fact any element there will have the same kernel as
its truncation in degree 2 µ2, because the map is an isomorphism in degree 1. We can thus take
a random element in HomR(E,H2

∗(E)(−5))0 and our construction will work without us having to
truncate. An explicit example of this procedure yields the matrix A = A0x0+A1x1+A2x2+A3x3,
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where:

A0 =



0 108 594 54 36 876 108 18 0 0
0 0 0 −18 192 0 −36 0 0

0 0 36 192 0 18 0 0

0 0 0 0 0 0 0
0 18 18 0 0 0

0 −48 −36 0 0

0 −36 0 0
0 0 0

0 0

0


,

A1 =



0 −324 162 0 −64 −492 −324 − 193
4

0 0

0 0 0 −16 48 0 − 41
2

0 0

0 0 −16 264 0 − 163
4

0 0

0 0 24 0 − 9
4

0 0

0 16 4 0 0 0

0 −48 − 89
2

0 0

0 − 17
2

0 0

0 27
2

0

0 0
0


,

A2 =



0 −438 −534 −108 −36 −1590 − 495
2

−36 −324 54

0 300 0 18 0 −75 18 0 0

0 −54 −36 −876 − 705
2

−36 0 0

0 0 0 − 27
2

0 0 0

0 −18 −18 0 0 0
0 −219 18 0 0

0 18 81 0

0 0 0
0 0

0


,

and A3 =



0 −498 978 319
4

64 1058
3

−438 64 0 0

0 612 23
2

16 368
3

−48 16 0 0

0 − 35
4

16 − 2116
3

−444 16 0 0

0 0 − 23
2

1
2

0 27
2

0

0 −16 −4 0 0 0

0 − 128
3

16 144 −24

0 4 0 0

0 0 0
0 0

0


.
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[BS08] M. Boij and J. Söderberg, Graded Betti numbers of Cohen-Macaulay modules and the multiplicity

conjecture, J. Lond. Math. Soc. (2) 78 (2008), no. 1, 85–106.
[EFW11] D. Eisenbud, G. Fløystad, and J. Weyman, The existence of equivariant pure free resolutions, Ann.

Inst. Fourier (Grenoble) 61 (2011), no. 3, 905–926.

[EH88] D. Eisenbud and J. Harris, Vector spaces of matrices of low rank, Adv. in Math. 70 (1988), no. 2,
135–155.

[Ein88] L. Ein, Generalized null correlation bundles, Nagoya Math. J. 111 (1988), 13–24.

[ES09] D. Eisenbud and F-O. Schreyer, Betti numbers of graded modules and cohomology of vector bundles, J.
Amer. Math. Soc. 22 (2009), no. 3, 859–888.

[ESS] D. Eisenbud, F-O. Schreyer, and M. Stillman, BoijSoederberg, a Macaulay2 package available at

http://www.math.uiuc.edu/Macaulay2/doc/Macaulay2-1.8.2/share/doc/Macaulay2/BoijSoederberg/html/.
[Flø00] G. Fløystad, Monads on projective spaces, Comm. Algebra 28 (2000), no. 12, 5503–5516, Special issue

in honor of Robin Hartshorne.
[FM11] M.L. Fania and E. Mezzetti, Vector spaces of skew-symmetric matrices of constant rank, Linear Algebra

Appl. 434 (2011), 2383–2403.

[GS] D.R. Grayson and M.E. Stillman, Macaulay2, a software system for research in algebraic geometry,
Available at http://www.math.uiuc.edu/Macaulay2/.

[HM73] G. Horrocks and D. Mumford, A rank 2 vector bundle on P 4 with 15,000 symmetries, Topology 12

(1973), 63–81. MR 0382279
[IL99] B. Ilic and J.M. Landsberg, On symmetric degeneracy loci, spaces of symmetric matrices of constant

rank and dual varieties, Math. Ann. 314 (1999), no. 1, 159–174.

[Jar06] M. Jardim, Instanton sheaves on complex projective spaces, Collect. Math. 57 (2006), no. 1, 69–91.
[OS86] C. Okonek and H. Spindler, Mathematical instanton bundles on P2n+1, J. Reine Angew. Math. 364

(1986), 35–50.

[OSS80] C. Okonek, M. Schneider, and H. Spindler, Vector bundles on complex projective spaces, Progress in
Mathematics, no. 3, Birkhäuser, Boston, 1980.
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Savary, BP 47870, 21078 Dijon Cedex, France
E-mail address: daniele.faenzi@u-bourgogne.fr
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