
10 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

A Simple Library Implementation of Binary Sessions

Published version:

DOI:10.1017/S0956796816000289

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1634956 since 2017-11-15T20:55:08Z

ZU064-05-FPR main 16 May 2017 17:0

Under consideration for publication in J. Functional Programming 1

A Simple Library Implementation
of Binary Sessions

LUCA PADOVANI∗
Dipartimento di Informatica, Università di Torino, ITALY

(e-mail: luca.padovani@di.unito.it)

Abstract

Inspired by the continuation-passing encoding of binary sessions, we describe a simple approach
to embed a hybrid form of session type checking into any programming language that supports
parametric polymorphism. The approach combines static protocol analysis with dynamic linearity
checks. To demonstrate the effectiveness of the technique, we implement a well-integrated OCaml

module for session communications. For free, OCaml provides us with equi-recursive session types,
parametric behavioural polymorphism, complete session type inference, and session subtyping.

1 Introduction

Session type systems (Honda, 1993; Honda et al., 1998) are an established means for
enforcing structured communication protocols through static analysis. Gay and Vascon-
celos (2010) have presented a session type system that integrates smoothly with an ML-like
functional language. Elaborating on previous works, Wadler (2014) has investigated the
theoretical relevance of this type system showing its connections with axioms and rules of
linear logic. From a practical viewpoint, however, the type system put forward by Gay and
Vasconcelos (2010) appears challenging to adopt in a mainstream programming language,
for it requires peculiar features for (F.1) describing structured protocols as sequences of
I/O operations and branching points, (F.2) checking that the peer endpoints of a session are
used according to dual protocols, and (F.3) ensuring the linear usage of session endpoints.

Successful attempts to encode these features in Haskell have been reported by Neubauer
and Thiemann (2004), Sackman and Eisenbach (2008), Pucella and Tov (2008), and Imai
et al. (2010). These works accomplish (F.1) and (F.2) using Haskell’s type system and (F.3)
by encapsulating endpoints in a suitable monad: not being able to name endpoints prevents
the programmer from using them non-linearly. As discussed by Imai et al. (2010), however,
these encodings have a price in terms of expressiveness, usability, or portability: some of
them omit or constrain key features of sessions (e.g. session interleaving or delegation),
some require programmers to write considerable amounts of boilerplate code (e.g. to access
nameless channels or to unwind recursions), and most make use of features that are unique
to Haskell’s type system (e.g. functional dependencies or type-level computations) thus
hampering their portability to other languages.

∗ Supported by ICT COST Action IC1201 BETTY and MIUR Project CINA.

ZU064-05-FPR main 16 May 2017 17:0

2 Luca Padovani

In this paper we describe another approach to equip a programming language with
session type checking, diverging from the aforementioned ones in two ways. First, we
work with a form of session types inspired by the continuation-passing encoding of binary
sessions (Dardha et al., 2012) that makes it possible to express session type duality solely
in terms of type equality. Second, we do not try to enforce the linear usage of session
endpoints statically, but we rely on a lightweight mechanism that detects potentially un-
safe linearity violations at runtime. Similar mechanisms have been described by Tov and
Pucella (2010) and Hu and Yoshida (2016). Overall, we find that our approach compares
favourably with the previous ones in terms of features, simplicity of use and implementa-
tion, and portability: it provides direct access to sessions through first-class session end-
points, not imposing contraints on session interleaving or delegation; it supports recursive
session types and session subtyping by piggybacking on the host type system; it is portable
to any programming language whose type system features parametric polymorphism.

To introduce the key idea behind our approach, we start by recalling the type of the
communication primitives send and receive as given by Gay and Vasconcelos (2010):

send : t ↓- !t.T ↓- T receive : ?t.S ↓- t * S (1)

The application send v a sends a message v of type t on a session endpoint a of type !t.T
and reduces to the same endpoint a with its type changed to T . The session type T describes
the protocol according to which a must be used by the sender after this communication.
The application receive b waits for a message from the endpoint b and reduces to a pair
(w,b) containing the message w and the endpoint b itself. The endpoint has type ?t.S
before the reduction and type S after the reduction. When a and b are the peer endpoints
of the same session, the session types !t.T and ?t.S (hence T and S) must be dual of each
other: every input in T must be matched by a corresponding output in S, and vice versa.
This ensures that sender and receiver interact correctly also in the rest of the conversation.

The given semantics and typing of send and receive are not unique. An alternative
semantics for the same primitives emerges from the studies of Kobayashi (2002), Deman-
geon and Honda (2011), and Dardha et al. (2012). These works show that a sequence of
communications in a session can be encoded as a sequence of one-shot communications
in a chain of distinct channels, each channel being used for one communication only.
According to this intuition, the effect of send v a would be to create a fresh channel c
(the continuation of a), to send the pair (v,c) on a, and to return another reference to c.
Correspondingly, the effect of receive a would be to return the pair received from a. This
semantics induces the following alternative typing of the same communication primitives

send : t ↓- ![t * κ[s]] ↓- κ[s] receive : ?[t * κ[s]] ↓- t * κ[s] (2)

where κ stands for an I/O capability, such as ? or !, and types like κ[s] describe channels
to be used according to capability κ for exchanging one message of type s. Note that
the continuation c created by send is given two different types: the reference paired with
the payload v and sent on a has type κ[s], whereas the reference returned by send has
type κ[s], where κ denotes the dual capability of κ . Overall, κ[s] and κ[s] in (2) play
the same roles as T and S in (1), but the types of the two versions of send differ for
one detail: T in !t.T describes the behaviour of the sender on the endpoint in the rest
of the interaction, whereas κ[s] in ![t * κ[s]] describes the behaviour of the receiver

ZU064-05-FPR main 16 May 2017 17:0

A Simple Library Implementation of Binary Sessions 3

on the continuation channel in the rest of the interaction. In particular, we notice that the
structurally complex duality relation between the session types !t.T and ?t.S of peer
endpoints in (1) boils down to a much simpler duality relation between the types ![t *
κ[s]] and ?[t * κ[s]] in (2). These types differ only for their topmost capability. In fact,
we will see that this simplified duality can be expressed solely in terms of type equality,
given a suitable representation of channel types. In prospect of encoding static protocol
analysis into an existing type system, this is a major advantage of the types in (2) compared
to those in (1), granted that they embed the same amount of information concerning the
described communication protocol.

Of course, we are not willing to pay the overhead resulting from the creation and ex-
change of continuations just for the sake of a more palatable typing of the communication
primitives. We observe that it makes sense to consider a third version of the primitives,
whereby send and receive have the semantics given by Gay and Vasconcelos (2010), but
they are typed like in (2) as if they did create and exchange continuations. This mix-up
has a practical justification: given that each channel in the continuation-passing encoding
of a session is supposed to be used only once, there is no need for send v a to create a
fresh continuation c for a. Instead, as observed by Dardha et al. (2012), the channel a can
be recycled and sent as its own continuation. We take this optimisation one step further: no
continuation needs to be actually sent, for the recycled channel a is already known to both
communicating parties. In the end, the occurrences of κ[s] in (2) need not correspond to
any actual piece of transmitted data. They are the types of ghost continuations whose sole
– but fundamental – purpose is to relate the future behaviours of sender and receiver.

We give the details of our approach in the rest of the paper, following this structure:

• We formalise a core functional language, called FuSe, that combines multithreading,
session-based communications primitives à la Gay and Vasconcelos (2010), and a
runtime mechanism that detects endpoint linearity violations (Section 2).

• We define an ordinary ML-style type language for FuSe and we adapt and extend
the encoding of session types (Dardha et al., 2012) into FuSe types. We introduce a
representation of channel types that allows us to express session type duality solely
in terms of type equality (Section 3).

• We equip FuSe with an ML-style type system and we type FuSe primitives using
encoded (as opposed to built-in) session types. Well-typed FuSe programs are shown
to enjoy all the usual properties of sessions (safety, fidelity, progress) under the
hypothesis that they use session endpoints linearly (Section 4). We cannot infer these
properties directly from the soundness of the encoding given by Dardha et al. (2012)
since FuSe primitives do not exchange continuations.

• We describe an implementation of FuSe primitives in OCaml (Leroy et al., 2014) that
allows us to write and type check programs written in the style of Gay and Vascon-
celos (2010) without the need of a built-in session type system. The implementation
integrates well with OCaml, from which we leverage equi-recursive session types
with arbitrary branches, parametric (behavioural) polymorphism, complete session
type inference, and session subtyping as defined by Gay and Hole (2005) (Section 5).

Section 6 discusses related work further and Section 7 concludes. Proofs and auxiliary
results related to Sections 3 and 4 are in Appendixes A and B. The implementation is

ZU064-05-FPR main 16 May 2017 17:0

4 Luca Padovani

available at http://www.di.unito.it/~padovani/Software/FuSe/FuSe.html. An
early draft of this paper (Padovani, 2015) was uploaded on HAL in October 2015.

2 Syntax and semantics of FuSe

We use infinite sets of variables x, y, . . . and sessions a, b, . . .; an endpoint or channel
is a pair ap made of a session a and a polarity p,q ∈ {+,-,*}. Polarities + and - denote
valid endpoints that can be used for I/O operations whereas the polarity * denotes invalid
endpoints that are not supposed to be used. We define a partial involution · on polarities
such that + = - and - = + and leave * undefined. We say that ap is the peer of ap when
p 6= *. We let u range over names, which are either variables or endpoints.

The syntax of expressions and processes is given below:

Expressions e ::= c | x | ap | λx.e | e1 e2 | let x = e1 in e2

Processes P,Q ::= 〈e〉 | P|Q | new a in P | error

Expressions model threads, that is the sequential parts of programs, and are mostly con-
ventional. The symbol c ranges over the following constants: the fixpoint combinator fix,
the unitary value (), the usual data constructors pair, inl, and inr, the corresponding
deconstructors fst, snd, and cases, the primitive fork that spawns new threads, and
the session primitives create, close, send, receive, left, right, and branch whose
semantics will be detailed shortly. Endpoints are not supposed to occur in source programs,
they appear as the result of reductions. Processes model parallel threads communicating via
sessions. A process is either a thread 〈e〉, or the parallel composition P|Q of two processes
P and Q, or a restriction new a in P modelling a session a with scope P, or a runtime error
resulting from an attempt to use an invalid endpoint. The notions of free and bound names
are standard. We write fn(e) and fn(P) respectively for the sets of free names of e and P
and we identify terms modulo alpha-renaming of bound names.

The operational semantics is defined in terms of a reduction relation for expressions,
a structural congruence and a labelled reduction relation for processes. We make use of
conventional notions of values and of evaluation contexts, defined thus:

Values v,w ::= c | c1 v | c2 v w | ap | λx.e
Evaluation Contexts E ::= [] | E e | v E | let x = E in e

where c1 ranges over {pair,inl,inr,cases,fork,send} and c2 over {pair,cases}.
In values as in expressions application associates to the left. Therefore, c2 v w reads as
((c2 v) w). Note that send v w and cases v1 v2 v2 are not values for these expressions are
meant to reduce. We write E [e] for the result of replacing the hole [] in E with e. We also
write X{v/u} for the capture-avoiding substitution of v in place of the free occurrences of
u in X , where X ranges over expressions, processes, and evaluation contexts.

The upper part of Table 1 defines reduction of expressions, which is standard. The lower
part of the table defines a labelled reduction for processes where labels ` are either τ ,
denoting an internal action, or map, denoting a message exchange from endpoint ap to
endpoint ap in session a, or ca, indicating that the session a has been closed. We define
ep(τ)

def
= /0 and ep(map) = ep(ca) def

= {a+,a-}. Labels allow us to observe the behaviour

http://www.di.unito.it/~padovani/Software/FuSe/FuSe.html

ZU064-05-FPR main 16 May 2017 17:0

A Simple Library Implementation of Binary Sessions 5

Table 1. Reduction of expressions and processes.

Reduction of expressions e−→ e′

[R-BETA] (λx.e) v −→ e{v/x}
[R-LET] let x = v in e −→ e{v/x}
[R-FIX] fix v −→ v (λx.fix v x)
[R-FST] fst (pair v w) −→ v
[R-SND] snd (pair v w) −→ w
[R-INL] cases (inl w) v1 v2 −→ v1 w
[R-INR] cases (inr w) v1 v2 −→ v2 w

Reduction of processes P `−→ Q

[R-ERROR] 〈E [K a*]〉 τ−→ error

[R-FORK] 〈E [fork v w]〉 τ−→ 〈E [()]〉| 〈v w〉
[R-CREATE] 〈E [create()]〉 τ−→ new a in 〈E [pair a+ a-]〉 a fresh
[R-CLOSE] 〈E [close ap]〉| 〈E ′[close ap]〉 ca−→ 〈Eca[()]〉| 〈E ′ca[()]〉
[R-COMM] 〈E [send ap v]〉| 〈E ′[receive ap]〉 map−→ 〈Emap[ap]〉| 〈E ′map[pair vmap ap]〉
[R-LEFT] 〈E [left ap]〉| 〈E ′[branch ap]〉 map−→ 〈Emap[ap]〉| 〈E ′map[inl ap]〉
[R-RIGHT] 〈E [right ap]〉| 〈E ′[branch ap]〉 map−→ 〈Emap[ap]〉| 〈E ′map[inr ap]〉
[R-THREAD] 〈E [e]〉 τ−→ 〈E [e′]〉 e−→ e′

[R-PAR] P|R `−→ Q|R` P `−→ Q

[R-NEW] new a in P
`\a−→ new a in Q P `−→ Q

[R-STRUCT] P `−→ Q P≡ P′ `−→ Q′ ≡ Q

of processes on the channels they use. This information is key to show that well-typed
processes respect protocols and also to invalidate the endpoints used in a reduction.

Definition 1 (invalidation). We let X`
def
= X{a*/ap}ap∈ep(`).

Intuitively, X` invalidates some of the endpoints ap in X by replacing them with a*, after
an `-labelled reduction. When `= τ , no endpoint is invalidated. When `= map or `= ca,
both a+ and a- are invalidated. For example, (send cp a+)maq = send cp a*.

We now describe the reduction rules of processes. Rule [R-FORK] spawns a new thread,
represented as a function v that needs an argument w. The thread is started by applying
v to w in parallel with the spawner process. Rule [R-CREATE] creates a new session a. The
expression create () reduces to a pair containing two valid endpoints of the session
with opposite polarities. Rule [R-CLOSE] models the closing of session a. The operation
invalidates every occurrence of a+ and a- in the program. For simplicity, in the formal
development this operation is synchronous; in the implementation, each endpoint can be
closed independently of the other. Rule [R-COMM] models the communication between two
threads connected by a session a. The message v in the sender thread is transferred to the
receiving thread. Following Gay and Vasconcelos (2010), the output operation reduces to
the endpoint ap used by the sender, while the input operation reduces to a pair containing
the received message and the endpoint ap used by the receiver. All other occurrences of
ap and ap, including those in the message v, are invalidated. Rule [R-LEFT] models the

ZU064-05-FPR main 16 May 2017 17:0

6 Luca Padovani

selection of a branch in a structured conversation. It is akin to [R-COMM], except that the
endpoint used by the receiver is injected into a disjoint sum with inl that represents the
choice taken. Rule [R-RIGHT] is symmetric. Intuitively, in [R-LEFT] and [R-RIGHT] the message
being communicated is just a constructor inl or inr. Note that there is no explicit creation
or passing of continuations in [R-COMM], [R-LEFT], [R-RIGHT]: all that is transferred from one
thread to another is just the payload. Rule [R-ERROR] yields a runtime error if there is an
attempt to “use” an invalid endpoint. The grammar

K ::= close | send v | receive | left | right | branch

characterises the terms K that “use” an endpoint when applied to it. Rule [R-THREAD] lifts
the reduction of expressions to processes. Rule [R-PAR] closes reductions under parallel
compositions. The label that decorates the reduction relation is used to propagate the effects
of an invalidation to the entire program. Rule [R-NEW] closes reductions under restrictions.
We let `\a def

= τ if `= map or `= ca and `\a def
= ` otherwise. Intuitively, the labels map and

ca turn into a τ when they cross the restriction on a, as the session becomes unobservable.
Finally, [R-STRUCT] closes reductions under structural congruence, which is basically the
same of the π-calculus except that the idle process is written 〈()〉 and the scope of a
session can be shrunk or extended only when no valid or invalid endpoint is captured.

Example 1 (mathematical server). We write examples in a sugared and richer version
of FuSe that includes numbers, booleans, if-then-else, pattern matching, and possibly
recursive let-bindings. All these features can be easily added or encoded in FuSe and do
not affect any of the results that follow. The examples compile and run using OCaml (Leroy
et al., 2014) and our implementation of the FuSe primitives (Section 5). Below is a simple
server for mathematical operations analogous to that given by Gay and Hole (2005):

let rec server x =

match branch x with (* wait for a request *)

| `L x ↓- close x (* close session *)

| `R x ↓- let n, x = receive x in (* receive 1st operand *)

let m, x = receive x in (* receive 2nd operand *)

let x = send (n + m) x in (* send result *)

server x (* serve more requests *)

The server is modelled as a function operating on an endpoint x. The function is recursive,
so that the server is able to handle several requests within a single session. Each request
from the client is represented by a polymorphic variant tag `L or `R (we use polymorphic
variants as generalisations of inl and inr, see Section 5.3). If the client selects `L, the
session is closed. If the client selects `R, the server expects to receive two integer numbers,
it sends back their sum, and recurs.

A possible client, operating on an endpoint y, is shown below:

let client =

let rec aux acc n y = (* add n naturals *)

if n = 0 then

begin close (left y); acc end (* close session *)

else

let y = right y in (* select + operation *)

let y = send acc y in (* send 1st operand *)

ZU064-05-FPR main 16 May 2017 17:0

A Simple Library Implementation of Binary Sessions 7

let y = send n y in (* send 2nd operand *)

let res, y = receive y in (* receive result *)

aux res (n - 1) y (* possibly add more *)

in aux 0

In this case, the client is computing the sum of the first n naturals by repeated interactions
with the server. If n is 0, the computation is over, the client closes the session and returns the
result. Otherwise, the client invokes the “plus” operation offered by the server to compute
a new partial result and recurs. Note how the endpoint y is used differently in the two
branches of the if-then-else. With these definitions in place, the function

let main n =

let a, b = create () in (* create session *)

let _ = fork server a in (* spawn server *)

client n b (* run client *)

sets up a new session to compute the sum of the first n naturals. �

Example 2 (configurable forwarder). The function below implements a configurable for-
warder that can be used to connect two processes, a producer streaming messages on (the
peer endpoint of) src and a consumer receiving messages from (the peer endpoint of) dst.

let forwarder mode src dst =

if mode then (* check modality *)

let rec aux src dst =

let msg, src = receive src in (* receive from source *)

let dst = send msg dst in (* send to destination *)

aux src dst (* forever *)

in aux src (left dst) (* select forwarding *)

else

close (send src (right dst)) (* select delegation *)

The forwarder is configurable in the sense that it has two operating modalities deter-
mined by the mode argument. When mode is true, the messages streaming from src are
forwarded on dst. When mode is false, the function performs a delegation whereby dst

is sent on src. This way, the consumer receives messages directly from the producer.
Observe that the session endpoint dst is meant to be used in the same way regardless of
the chosen modality. In other words, the producer does not know if messages are delivered
directly to the consumer or if they go through the forwarder. �

3 Types

In this section we define the types for FuSe, we recall the encoding of Dardha et al. (2012)
and extend it to an isomorphism between session types and a suitable subset of FuSe types.
This gives us the basis for interpreting and understanding the type of FuSe primitives.

3.1 Types for FuSe

The syntax of type schemes and of (finite) types is given by the grammar

Type Schemes σ ::= t | ∀α.σ

Types t,s ::= • | unit | t ↓- s | t * s | t + s | <t,s>

ZU064-05-FPR main 16 May 2017 17:0

8 Luca Padovani

where α , β , . . . range over type variables. Type schemes are conventional; we will often
abbreviate ∀α1. · · ·∀αn.t with ∀α1 · · ·αn.t. Types include the unitary type unit, arrows,
products, and disjoint sums. In the examples we occasionally use other base types such as
int and bool. In addition, the type <t,s> denotes a channel that can be used for receiving
messages of type t and sending messages of type s, while the type • is not inhabited and
denotes “no message”. In particular, <•,t> denotes a channel that can only be used for
sending messages of type t and <t * <•,s>,•> denotes a channel for receiving a pair made
of a value of type t and another channel that can be used for sending messages of type s. A
channel with type <•,•> cannot be used for I/O operations.

Instead of introducing concrete syntax for representing recursive types, we consider as
types the possibly infinite, regular trees generated by the type constructors shown above
and keep using the metavariables t and s to range over such trees. Recall that each regular
tree has finitely many distinct subtrees and admits finite representations as a system of
equations or using the familiar µ notation (Courcelle, 1983). We define an infinite type t
as the (unique) solution of an equation t = s where s contains (guarded) occurrences of the
metavariable t. For example, the equation t = int ↓- t is satisfied by the type int ↓- int ↓- · · ·
of the “ogre” function that eats infinitely many int arguments. The shape of the equation,
with the metavariable t unguarded on the left hand side and guarded by a type constructor
on the right hand side, guarantees existence and uniqueness of the regular tree that satisfies
it (Courcelle, 1983, Theorem 4.3.1). We use infinite types for describing arbitrarily long
communication protocols, like the one implemented by server and client in Example 1.
Note that type equality corresponds to regular tree equality.

Duality relates channels types with complementary capabilities:

Definition 2 (type duality). Let ⊥ct be the least relation such that <t,s>⊥ct <s,t>. When
t is a channel type, we write t⊥ for the type s such that t ⊥ct s; otherwise, t⊥ is undefined.

The intuition for type duality is that if a process uses an endpoint according to some
type t, then we expect another process to use the peer endpoint according to the dual type
t⊥. So for example, <•,int> ⊥ct <int,•> since the dual behaviour of “send an int” is
“receive an int”. On the other hand, we have <•,•>⊥ct <•,•>, since “do nothing” is dual
of itself. Type duality is a partial involution: it is only defined on channel types and, when
t⊥ is defined, we have t⊥⊥ = t.

Our representation of channel types is slightly unusual. Most type systems with channel
types, from the seminal paper on channel subtyping (Pierce and Sangiorgi, 1996) to those
for the linear π-calculus (Kobayashi et al., 1999) and binary sessions (Dardha et al., 2012),
use types of the form κ[t] or variants of this where κ ∈ {?,!} represents an input/output
capability. We have used this notation also in Section 1. In these cases, computing the
dual of a channel type essentially means defining a suitable dual operator for capabilities
such that, for instance, ? = !. One shortcoming of this representation is that duality is
easily defined only when capabilities are known. Dealing with unknown capabilities means
introducing (possibly dualised) capability variables and this machinery complicates the
type system. With our representation, we can dualise a channel type by just swapping the
content of its two type parameters, even when we do not know the kind of I/O operations
allowed on the channel. For example, the type t def

= <α,β> denotes a channel for which
nothing is known. Nonetheless, the dual of t can still be obtained by swapping α and β ,

ZU064-05-FPR main 16 May 2017 17:0

A Simple Library Implementation of Binary Sessions 9

that is t⊥ = <β,α>. At the end of Section 3.2 we will see that the chosen representation of
channel types is key to reduce session type duality to type equality.

To improve readability, sometimes we use the notations ?[t] and ![t] as syntactic sugar
for <t,•> and <•,t>, respectively. In the following, we make extensive use of channel types
with unknown message types, so we reserve some convenient notation also for them:

Definition 3 (channel type variable). We let A, B, . . . range over channel type variables,
namely types of the form <α,β>, and we write ∀A.σ instead of ∀αβ.σ when A= <α,β>.

The dual A⊥ of any channel type variable A is always defined.

3.2 From session types to FuSe types and back

Even though our type system does not use built-in session types, the typing of FuSe

communication primitives follows from the continuation-passing encoding of session types
into channel types (Dardha et al., 2012). In the remainder of this section we formalise the
relationship between session types and FuSe types, recalling the encoding and adapting it
to our setting. Compared to Dardha et al. (2012), we use channel types with a different
representation of I/O capabilities and we consider possibly infinite (session) types.

The syntax of (finite) session types is given below:

Session Types T,S ::= end | ?t.T | !t.T | T &S | T ⊕S

The session type end describes an endpoint on which no further communication is
allowed and that can only be closed. The session types ?t.T and !t.T describe endpoints
to be used respectively for one input and one output of a message of type t and according to
T afterwards. The session types T &S and T ⊕S respectively represent external and internal
choices in a protocol. A process using an endpoint of type T ⊕S decides whether to behave
according to the “left” protocol T or the “right” protocol S. A process using an endpoint
of type T &S accepts the decision of the process using the peer endpoint. As we have seen
in Table 1, the choice is effectively encoded and transmitted as an appropriate message,
hence ⊕ corresponds to an output and & to an input operation. As in types, we do not devise
a concrete syntax for recursive session types and use regular trees in this case as well. For
example, the (unique) session type T that satisfies the equality T = !int.!int.?bool.T
describes an endpoint for sending two messages of type int, receiving one message of
type bool, and then used according to the same protocol, over and over again. The given
syntax of session types disallows the description of protocols involving delegations, since
message types cannot be themselves session types. This limitation is irrelevant, for we
introduce session types for illustrative purposes only and there is no problem describing
higher-order channels using FuSe types (cf. Example 4). All the definitions, discussions,
and results in this section extend to more general forms of session types.

Just like channel types, session types too support a notion of duality that relates comple-
mentary behaviours. It is defined thus:

Definition 4 (session type duality). Session type duality is the largest relation⊥st between
session types such that T ⊥st S implies either:

• T = S = end, or

ZU064-05-FPR main 16 May 2017 17:0

10 Luca Padovani

• T = ?t.T ′ and S = !t.S′ and T ′ ⊥st S′, or
• T = !t.T ′ and S = ?t.S′ and T ′ ⊥st S′, or
• T = T1 &T2 and S = S1 ⊕S2 and Ti ⊥st Si for every i = 1,2, or
• T = T1 ⊕T2 and S = S1 &S2 and Ti ⊥st Si for every i = 1,2.

Observe that ⊥st is an endofunction on session types. We write T⊥ for the session type S
such that T ⊥st S and say that T and S are dual of each other.

Duality relates inputs with outputs carrying the same message type and end with it-
self. For example, ?t.!s.end ⊥st !t.?s.end and if T is the session type such that T =

!int.!int.?bool.T , then T⊥ is the session type S such that S = ?int.?int.!bool.S.
Clearly session type duality is an involution, namely T⊥⊥ = T for every T .

We now show that session types and their encoding embed the same information, just
written in different ways. To do so, we define an isomorphism between the set S of session
types and a subset P of FuSe types which we call protocol types. The isomorphism that
we define is purely syntactic, but is supported by a semantic correspondence between
processes (Dardha et al., 2012).

Definition 5 (protocol types). The set of protocol types is the largest subset P of types
such that t ∈ P implies either:

• t = <•,•>, or
• t = <t1 * t2,•> or t = <•,t1 * t2> and t2 ∈ P, or
• t = <t1 + t2,•> or t = <•,t1 + t2> and t1, t2 ∈ P.

The morphism from S to P is given by the encoding described by Dardha et al. (2012)
and rests on the idea that multiple communications on a session endpoint can be modelled
as a sequence of one-shot communications in a chain of linear channels. The chain is
realised by sending, at each communication, a fresh continuation channel along with the
communication payload. For example, the session type !t.T describes an endpoint used
for sending a message of type t first and according to T afterwards. It is encoded as the
channel type <•,t * s> where s is the encoding of T⊥. The reason why the type s of the
continuation is the encoding of T⊥ and not the encoding of T is because the tail T in !t.T
describes the behaviour of the sender of the message of type t after it has sent the message,
whereas in the encoding the type of the continuation describes the behaviour of the receiver
of the message on the continuation. Clearly, the sender will also use the same continuation,
but according to the type s⊥. In general we have:

Definition 6 (encoder). The encoder is the function J·K : S→ P that satisfies the equations:

JendK = <•,•> J?t.T K = ?[t * JT K]
J!t.T K = ![t * JT⊥K]

JT &SK = ?[JT K + JSK]
JT ⊕SK = ![JT⊥K + JS⊥K]

For example, if we consider again T = !int.!int.?bool.T , then we derive:

JT K = ![int * J?int.!bool.T⊥K]
= ![int * ?[int * J!bool.T⊥K]]
= ![int * ?[int * ![bool * JT⊥⊥K]]]
= ![int * ?[int * ![bool * JT K]]]

ZU064-05-FPR main 16 May 2017 17:0

A Simple Library Implementation of Binary Sessions 11

If we consider instead T⊥, namely the session type S such that S= ?int.?int.!bool.S,
then JSK = ?[int * ?[int * ![bool * JT K]]].

The morphism from P to S reconstructs a session type T by interpreting the type of
continuation channels as the tail(s) of T :

Definition 7 (decoder). The decoder is the function 〈〈·〉〉 :P→ S that satisfies the equations:

〈〈<•,•>〉〉= end
〈〈?[t * s]〉〉 = ?t.〈〈s〉〉
〈〈![t * s]〉〉 = !t.〈〈s⊥〉〉

〈〈?[t + s]〉〉 = 〈〈t〉〉& 〈〈s〉〉
〈〈![t + s]〉〉 = 〈〈t⊥〉〉⊕ 〈〈s⊥〉〉

The decoder has practical utility to decipher possibly obscure types that have been
automatically inferred. FuSe comes along with a companion tool that implements 〈〈·〉〉 and
that is capable of pretty printing OCaml types and whole OCaml module signatures using
the traditional notation of session types.

It is not immediate to see that 〈〈·〉〉= J·K−1, because the two morphisms use different no-
tions of duality, for session types and for channel types respectively. However, as observed
by Dardha et al. (2012) and formally stated in Lemma 1 below, J·K commutes with duality
and so does 〈〈·〉〉. This is key to show that J·K and 〈〈·〉〉 are indeed one the inverse of the other.

Lemma 1 (commuting duality). We have ⊥ct ◦ J·K = J·K◦⊥st and ⊥st ◦ 〈〈·〉〉= 〈〈·〉〉 ◦⊥ct.

The isomorphism between S and P shows that using protocol types instead of built-in
session types results in no loss of expressiveness (there is an encoding for every session
type) and no loss in precision (every session type can be reconstructed from its encoding).

Theorem 1 (isomorphism). 〈〈·〉〉= J·K−1.

Finally, the most useful consequence of Lemma 1 in combination with our representation
of channel types is to provide an alternative, simple method for checking whether T ⊥st S
holds. Suppose for example that JT K= <ti,to> and JSK= <si,so>. By Lemma 1 we deduce

T ⊥st S ⇐⇒ JT K⊥ct JSK ⇐⇒ ti = so∧ to = si

thereby turning the verification of a complex relation T ⊥st S, which involves matching
inputs with outputs across the whole structure of T and S, in two plain type equalities. This
is a strong point in favour of encoded (as opposed to built-in) session types.

4 Type system

In this section we present the type system for FuSe and state its properties. The typing rules
are essentially standard for ML-like languages, in particular they have no baked-in features
specifically targeted to session type checking. Compared to the type system of Gay and
Vasconcelos (2010), the main differences concern the typing of communication primitives,
the fact that the type system is not substructural, and the handling of invalid endpoints.

We let Γ range over type environments which are finite maps from names to type schemes
written u1 : σ1, . . . ,un : σn that keep track of the type of the free names of expressions and
processes. We write /0 for the empty type environment, dom(Γ) for the domain of Γ , and
Γ ,Γ ′ for the union of Γ and Γ ′ when dom(Γ)∩dom(Γ ′) = /0. Table 2 shows the typing rules.
The rules for processes derive judgments of the form Γ ` P, stating that P is well typed in Γ .
Rules [T-THREAD] and [T-PAR] are standard. Rule [T-NEW] introduces in the type environment

ZU064-05-FPR main 16 May 2017 17:0

12 Luca Padovani

Table 2. Typing rules for expressions and processes.

Expressions Γ ` e : t

[T-CONST]
TypeOf(c)� t

Γ ` c : t

[T-NAME]
σ � t

Γ ,u : σ ` u : t

[T-FUN]
Γ ,x : t ` e : s

Γ ` λx.e : t ↓- s

[T-APP]
Γ ` e1 : t ↓- s Γ ` e2 : t

Γ ` e1e2 : s

[T-LET]
Γ ` e1 : t1 Γ ,x : Close(t1,Γ) ` e2 : t2

Γ ` let x = e1 in e2 : t2

Processes Γ ` P

[T-THREAD]
Γ ` e : unit

Γ ` 〈e〉

[T-PAR]
Γ ` P Γ ` Q

Γ ` P|Q

[T-NEW]
Γ ,a+ : t,a- : t⊥,a* : ∀A.A ` P

Γ ` new a in P

three endpoints of a session: two of them are valid and typed with dual types (the fact
that one of them is typed by t⊥ implicitly means that t is a channel type); the third one
is invalid and typed with ∀A.A. This way, distinct occurrences of an invalid endpoint can
appear anywhere an endpoint is expected and they need not be typed in the same way (we
will see why this is necessary in Example 5). As usual, there is no typing rule for error.

The rules for expressions derive judgments of the form Γ ` e : t and are formulated using
the same notation of Wright and Felleisen (1994). Since the rules are mostly standard, we
just focus on a few details. Rules [T-CONST] and [T-NAME] respectively type constants and
names by instantiating their type scheme. The type scheme of constants is retrieved by a
global function TypeOf(·), defined in Table 3, while that of names is obtained from the
type environment. Following Wright and Felleisen (1994), the relation σ � t is defined by

t � t
σ � t

∀α.σ � t{s/α}

and instantiates a type scheme into a type. Rule [T-LET] generalises the type of let-bound
variables by means of the function Close(·), defined as

Close(t,Γ) def
= ∀α1 · · ·αn.t where {α1, . . . ,αn}= ftv(t)\ ftv(Γ)

and ftv(·) collects the free type variables in types and type environments. Rule [T-LET] is
well known for being unsound in impure languages, the best-known counterexample being
that of polymorphic references (Wright and Felleisen, 1994). However, the counterexample
relies crucially on the fact that the same reference is used twice, in such a way that its type
scheme can be instantiated with different (incompatible) types in different parts of the
program. Conversely, [T-LET] is sound if we know that x is used linearly. Since the impure
fragment of FuSe concerns only sessions and we are interested in stating the soundness
of FuSe type system under the assumption that endpoints are indeed used linearly, we can
generalise the type of an arbitrary let-bound expression e1 even if e1 has side effects.

ZU064-05-FPR main 16 May 2017 17:0

A Simple Library Implementation of Binary Sessions 13

Table 3. Type schemes of FuSe constants.

() : unit

fix : ∀αβ.((α ↓- β) ↓- α ↓- β) ↓- α ↓- β

pair : ∀αβ.α ↓- β ↓- α * β

fst : ∀αβ.α * β ↓- α

snd : ∀αβ.α * β ↓- β

inl : ∀αβ.α ↓- α + β

inr : ∀αβ.β ↓- α + β

cases : ∀αβγ.(α + β) ↓- (α ↓- γ) ↓- (β ↓- γ) ↓- γ

fork : ∀α.(α ↓- unit) ↓- α ↓- unit

create : ∀A.unit ↓- A * A⊥

close : <•,•> ↓- unit

send : ∀αA.α ↓- ![α * A] ↓- A⊥

receive : ∀αA.?[α * A] ↓- α * A
left : ∀AB.![A + B] ↓- A⊥

right : ∀AB.![A + B] ↓- B⊥

branch : ∀AB.?[A + B] ↓- A + B

The function TypeOf is given in Table 3 as a set of associations c :TypeOf(c). The types
on the lhs of Table 3 are standard and those of fork and close are unremarkable. The
type of create makes it clear that the primitive returns a pair of endpoints with dual types.
Recall that a channel type variable like A is just syntactic sugar for a channel type of the
form <α,β>. Therefore, the desugared type scheme of create is ∀αβ.unit ↓- <α,β> *

<β,α>. The ability to express channel types with unknown message types and capabilities
gives create the most general type. The type of send follows from the encoding of
outputs (Definition 6): send takes the payload of type α , a channel for sending messages
of type α * A, and returns a channel of type A⊥. According to its type, send should in
principle communicate both the payload and the continuation. In reality, as the operational
semantics illustrates, only the payload is sent. The type A of the ghost continuation is
used to correlate the future behaviours of sender and receiver after this interaction. The
type of receive follows from the encoding of inputs: in this case the type of the ghost
continuation describes how the channel will be used by the receiver process, once the
message has arrived. The types of left and right are analogous to that of send, and the
type of branch is analogous to that of receive.

Observe that all the types of FuSe primitives can be expressed in any type system with
parametric polymorphism, once channel type variables have been desugared (Definition 3).

Example 3. Below we propose again the code of server in Example 1 in which we have
indicated the type si of the (free) occurrence of x on line i:

1 let rec server x =

2 match branch x with (* s2 = ?[s3 + s4] *)

3 | `L x ↓- close x (* s3 = <•,•> *)

4 | `R x ↓- let n, x = receive x in (* s4 = ?[int * s5] *)

5 let m, x = receive x in (* s5 = ?[int * s6] *)

6 let x = send (n + m) x in (* s6 = ![int * s⊥7] *)

7 server x (* s7 = s2 *)

The output on line 6 indicates that server sends a payload of type int and a (ghost)
continuation of type s⊥7 to client. Therefore, s⊥7 describes the behaviour of client on
the continuation channel, whereas server will use the same channel according to the type
s2 = s7. Overall we derive server : s ↓- unit where s = ?[<•,•> + ?[int * ?[int *

![int * s⊥]]]]. Analogously, it is possible to derive client : int ↓- s⊥ ↓- int. �

ZU064-05-FPR main 16 May 2017 17:0

14 Luca Padovani

Example 4. The code of the configurable forwarder in Example 2 does not depend on the
nature of the messages being forwarded. Consequently, we can give forwarder a poly-
morphic type. To begin with, we define t = ?[α * t] as the protocol type for receiving an
infinite stream of messages of type α . This is the type of the src argument of forwarder.
It is now possible to derive

forwarder : bool ↓- t ↓- ![t + ?[t * <•,•>]] ↓- unit

where α can be generalised. Note the three occurrences of t. The leftmost and rightmost
occurrences are the type of src, which is both an argument of forwarder and a message
sent on dst, whereas the middle occurrence describes the ghost continuation of dst. �

We now investigate the relationship between well-typed programs and the following
properties: every message sent in a session has the expected type (communication safety);
the sequence of interactions in a session follows the prescribed protocol (protocol fidelity);
if the interaction in a session stops, there are no pending I/O operations (progress). The
interest is not in these properties per se – they are standard for session type systems –
but in the fact that they are guaranteed (to some extent) by a type system without built-in
support for session types. Obviously, well typing alone is not enough to guarantee these
properties, for two reasons: first, the FuSe type system does not enforce the linear usage
of endpoints, therefore there exist well-typed programs that either try to use endpoints
non-linearly causing runtime errors or discard endpoints whose use is necessary to prevent
deadlocks; second, deadlocks may occur in well-typed programs even if endpoint linearity
is respected. To take these facts into account, we must strengthen the statements of our
results with additional hypotheses: that endpoints are used linearly, and that no deadlocks
occur. It is worth to recall that avoiding deadlocks through static analysis requires non-
trivial extensions of the type system such as the use of typing rules that prevent cycles in
the network topology (Wadler, 2014) or a richer type structure (Padovani, 2014).

The semantics of our communication primitives allows for a simple definition of linear
endpoint usage. Recall that each communication primitive K using an endpoint ap inval-
idates every other occurrence of ap before (possibly) returning ap itself. Therefore, any
occurrence of a* reveals the previous simultaneous existence of a different occurrence of
ap that has been used. It is not enough to check endpoint validity at one particular point in
time, for instance in the initial program state, for an endpoint might be duplicated as the
program executes. We resort to a coinductive definition that requires linear endpoint usage
to be preserved along all possible reductions of a process.

Definition 8 (endpoint affine/linear process). Let A , L be the largest predicates such that:

1. if either A (P) or L (P) and P≡ new a1 · · ·an in (〈E [K ap]〉|Q), then p ∈ {+,-};
2. if L (P) and P≡ new a in Q and ap ∈ fn(Q) and p ∈ {+,-}, then ap ∈ fn(Q);

3. for every X ∈ {A ,L }, if X (P) and P `−→ Q, then X (Q).

We say that P is endpoint affine if A (P) holds; that it is endpoint linear if L (P) holds.

In words: condition 1 states that no process that satisfies A or L ever tries to use
invalid endpoints; condition 2 states that no process in L ever discards a valid endpoint if
its peer does occur; condition 3 closes A and L under process reductions. Note that L (P)

ZU064-05-FPR main 16 May 2017 17:0

A Simple Library Implementation of Binary Sessions 15

implies A (P) and that L is coarser than the property enforced by standard substructural
type systems. In particular, duplications of an endpoint are allowed provided that only
valid endpoints are actually used. For example, the expression send (fst (pair a+ a+))
may occur in a process that satisfies L even though a+ occurs twice. The same expression
would be ill typed in a substructural type system like that of Gay and Vasconcelos (2010).

The type associated with endpoints may change each time they are used (this is common
in session type systems). To reflect this change in the statement of subject reduction, we
define a suitable reduction relation for type environments mimicking that of processes.

Definition 9. Let `−→ be the least relation between type environments such that:

Γ
τ−→ Γ

Γ ,ap : ![t * s],ap : ?[t * s]
map−→ Γ ,ap : s⊥,ap : s

Γ ,ap : ![t1 + t2],ap : ?[t1 + t2]
map−→ Γ ,ap : t⊥i ,ap : ti i ∈ {1,2}

Γ ,ap : <•,•>,ap : <•,•> ca−→ Γ

We write Γ
`−→ if Γ `−→ Γ ′ for some Γ ′ and Γ X `−→ if not Γ `−→.

Observe that Γ
map−→ implies Γ Xmap−→ and Γ X ca−→. That is, if communication from ap to ap

is allowed at some point of an interaction in session a, communication in the opposite
direction is forbidden, as is closing a, at the same point. Similarly, Γ ca−→ implies Γ Xma+−→
and Γ Xma-−→ (in a closing session a no communication is allowed) and Γ

ca−→ `−→ implies
a+,a- 6∈ ep(`) (once session a has been closed, no more interactions are allowed in it).

The last notion we need to state subject reduction is that of balanced type environment: Γ
balanced if, whenever there is an association for some valid endpoint ap in Γ , then there are
associations also for its peer ap and for a* as well, with the requirement that peer endpoints
have dual types and invalid endpoints have type ∀A.A:

Definition 10 (balanced type environment). We say that Γ is balanced if:

1. for every ap ∈ dom(Γ) with p∈{+,-}we have ap,a* ∈ dom(Γ) and Γ(ap)⊥ct Γ(ap);
2. for every a* ∈ dom(Γ) we have Γ(a*) = ∀A.A.

The type system guarantees that all type environments used in a typing derivation are
balanced (cf. rule [T-NEW]). The empty type environment, used for typing closed programs,
is trivially balanced.

Theorem 2 (subject reduction). If Γ ` P with Γ balanced and A (P) and P `−→ Q, then

there exists Γ ′ such that Γ `−→ Γ ′ and Γ ′ ` Q.

Example 5. To appreciate the importance of condition (2) in Definition 10, let

P def
= 〈close (send 42 a+)〉| 〈close (snd (receive a-))〉
| 〈close (send 31 (if true then c+ else a+))〉

and consider the environment Γ def
= a+ : t,c+ : t,a- : t⊥,c- : t⊥,a* : ∀A.A,c* : ∀A.A where

t def
= ![int * <•,•>]. Observe that P is well typed in Γ and that A (P) holds despite P

contains two occurrences of a+, because a+ is never actually used twice. Now we have

P ma+−→ 〈close a+〉| 〈close (snd (pair 42 a-))〉
| 〈close (send 31 (if true then c+ else a*))〉

ZU064-05-FPR main 16 May 2017 17:0

16 Luca Padovani

where one occurrence of a+ has been invalidated and

Γ
ma+−→ a+ : <•,•>,a- : <•,•>,c+ : t,c- : t⊥,a* : ∀A.A,c* : ∀A.A def

= Γ ′

Note that a+ and c+ have the same type in Γ and incompatible types in Γ ′. If the type of
a* could not be instantiated with an arbitrary channel type (t in this case), then the residual
process would be ill typed in Γ ′. �

Communication safety is a straightforward consequence of typing. Following Gay and
Hole (2005), we can formulate it thus:

Proposition 1 (type safety). Let Γ ` P and A (P). Then:

1. if P≡ new a1 · · ·an in (〈E [send v u]〉|Q), then there exists Γ ′ such that Γ ,Γ ′ ` v : t
and Γ ,Γ ′ ` u : ![t * s];

2. if P≡ new a1 · · ·an in (〈E [left u]〉|Q) or P≡ new a1 · · ·an in (〈E [right u]〉|Q),
then there exists Γ ′ such that Γ ,Γ ′ ` u : ![t + s].

Protocol fidelity follows immediately from Theorem 2 and the observations below Def-
inition 9: if an `-labelled reduction cannot be performed by a type environment Γ , then
it cannot be performed by an endpoint affine process that is well-typed in Γ . Note that
endpoint affinity suffices for proving both communication safety and protocol fidelity of
well-typed programs. Concerning progress, endpoint linearity is necessary but not suffi-
cient because of deadlocks, for which we provide the following syntactic characterisation.

Definition 11 (deadlock). We say that P is deadlocked if

P≡ new a1 in · · ·new an in ∏i∈I〈Ei[Ki cpi
i]〉

where I 6= /0 and for every i ∈ I there exists j ∈ I such that cpi
i ∈ fn(E j)∪ fn(K j).

Intuitively, in a deadlocked process all threads are blocked on input/output operations
and the peer of the (valid) endpoint in each of such operations occurs guarded by an-
other blocked operation. A well-typed, endpoint linear process P enjoys a partial form of
progress: if P cannot reduce anymore and is not deadlocked, then P has no pending I/O
operations on open sessions.

Theorem 3 (partial progress). If /0 ` P and L (P), then either there exists Q such that
P τ−→ Q or P≡ 〈()〉 or P is deadlocked.

We now discuss some notable classes of processes that violate either A or L .

Example 6 (affinity and linearity violations). The condition ¬A (P) indicates that P at-
tempts to use some endpoint more than once, in a way that disrespects the explicit threading
of continuations required by the communication primitives. We call this event an overlap,
of which two instances can be generated by the code fragments below:

let foo x =

let _ = send 42 x in

let x = send 43 x in

close x

let bar y =

let _ = send 42 y in

let _, y = receive y in

close y

ZU064-05-FPR main 16 May 2017 17:0

A Simple Library Implementation of Binary Sessions 17

The function foo can be typed giving x type ![int * <•,•>], even though the second
send overlaps with the first. A similar problem occurs in bar, where receive overlaps
with send. However, the overlap in bar is detected by the type system, because attempting
to send and receive a message using the same y requires y to have incompatible types
(<•,int * <•,•>> for send, <int * <•,•>,•> for receive). All the overlaps of send
and left/right or of receive and branch are also detected because the * constructor
in the types of send and receive is incompatible with the + constructor in the types of
left/right. Overall, the only overlaps that go undetected are those concerning multiple
uses of the same communication primitive with the same message types. Section 5.2
discusses how these can be detected at runtime.

The condition A (P)∧¬L (P) indicates that P respects endpoint affinity but discards
valid endpoints that may be necessary to have progress. For example, the program

let a, b = create () in close (send 42 a)

is well typed but violates L because it discards b and reduces to a stuck configuration
which is not a deadlock. A compiler might give notice of unused value declarations like b
in this example, but it would likely stay quiet if b is replaced by an anonymous pattern _

(OCaml behaves like this). �

5 Implementation

We describe the OCaml module that implements the FuSe primitives for session com-
munication. We start with a basic version of the module (Section 5.1) which we then
extend with runtime detection of invalid endpoint usage (Section 5.2) and generalised
choices (Section 5.3). In the second half of the section we discuss whether and how the
implementation scales to a distributed setting (Section 5.4), we show how to build a simple
monadic API on top of FuSe primitives (Section 5.5), and we develop a microbenchmark
to measure the overhead of the runtime checks and of the monadic API (Section 5.6).

5.1 The basics

The basic version of the OCaml module that implements the FuSe communication prim-
itives is shown in full in Figure 1. The interface exports the abstract type • (line 1) and
the abstract channel type t (line 2). In OCaml, the channel type <t,s> is written (t,s) t

and we use the polymorphic variant type [`L of t | `R of s] to represent the sum type
t + s. Polymorphic variants (Garrigue, 1998) easily generalise sums to arbitrary tags and
support a form of subtyping that is consistent with subtyping for session types (Gay and
Hole, 2005). We will see these features at work in Section 5.3.

The types of the primitives (lines 3–9) are essentially those shown in Table 3, so we only
make a few remarks. First, all type variables are implicitly quantified. Second, as in FuSe

types, we can switch from one channel type to its dual by flipping its two type parameters
(see e.g. the type of create on line 3). Finally, in the type of branch (line 9), the type
expression “t as ε” denotes the same type as t and creates an alias ε that stands for t
itself. Such construction has several uses: here, it is handy to refer to the same variant type
in the codomain of branch without rewriting the whole type. Since t as ε binds ε also

ZU064-05-FPR main 16 May 2017 17:0

18 Luca Padovani

Interface
1 type • (* no message *)

2 type (α,β) t (* channel type *)

3 val create : unit ↓- (α,β) t * (β,α) t

4 val close : (•,•) t ↓- unit

5 val send : ϕ ↓- (•,ϕ * (α,β) t) t ↓- (β,α) t

6 val receive : (ϕ * (α,β) t,•) t ↓- ϕ * (α,β) t

7 val left : (•,[`L of (α,β) t | `R of (γ,δ) t]) t ↓- (β,α) t

8 val right : (•,[`L of (α,β) t | `R of (γ,δ) t]) t ↓- (δ,γ) t

9 val branch : ([`L of (α,β) t | `R of (γ,δ) t] as ε,•) t ↓- ε

Implementation
10 type • (* no representation *)

11 type (α,β) t = unit Event.channel

12 let create () = let u = Event.new_channel () in (u, u)

13 let close _ = ()

14 let send x u = Event.sync (Event.send u (Obj.magic x)); Obj.magic u

15 let receive u = Obj.magic (Event.sync (Event.receive u), u)

16 let left u = Event.sync (Event.send u (Obj.magic `L)); Obj.magic u

17 let right u = Event.sync (Event.send u (Obj.magic `R)); Obj.magic u

18 let branch u = Obj.magic (Event.sync (Event.receive u), u)

Fig. 1. OCaml implementation of FuSe (basic version).

within t, the same construction is also used in OCaml for creating recursive types. We will
see an instance of this feature in Example 7.

We have based the implementation of the primitives on the Event module in OCaml’s
standard library, which provides an API for communication and synchronisation in the
style of Concurrent ML (Reppy, 1999). The Event module has been chosen out of mere
convenience; our primitives can be built on top of any minimal API for message passing. In
the Event module, the type t Event.channel denotes a channel for exchanging messages
of type t and the functions Event.send and Event.receive, instead of performing
communications directly, construct communication events. In order for communication
to actually take place, both the sender and the receiver must synchronise by applying
Event.sync to such events.

The representation of a channel type <α,β> is unit Event.channel (line 11), namely
FuSe endpoints are Event.channels in OCaml. Note that α and β play no role in the
representation of channel types, since neither of them faithfully describes the messages ac-
tually exchanged on the channel. For this reason, we just pretend that exchanged messages
have type unit and will perform suitable casts in the communication primitives. Polarities
are not represented either, they are an artefact of the formal model so that peer endpoints
can be typed differently (we will partially reconsider this choice in Section 5.2).

The implementation of create (line 12) and close (line 13) is unremarkable: the first
creates an Event channel and returns a pair with two references (with dual types) to it; the
second does nothing (OCaml’s garbage collector automatically reclaims unused channels).

ZU064-05-FPR main 16 May 2017 17:0

A Simple Library Implementation of Binary Sessions 19

Concerning the implementation of send (line 14), we perform an unsafe cast on the
message x using Obj.magic : α ↓- β so that x appears to the type checker as having
type unit. The cast cannot interfere with the internals of the Event module: since the
Event.channel type is parametric in the type of messages, we know that Event functions
make no assumptions on their content. The value returned by send is the same reference u
used for the communication, except that its type is cast to the dual type of the continuation.
This latter cast is potentially dangerous, for it changes the type of an existing endpoint
which might be used elsewhere according to its previous type. From Section 4 we know
that this cast is safe provided that no other reference to u occurs in the program, namely
if u is used linearly. In Section 5.2 we will implement the endpoint invalidation semantics
of the formal model, so that any potentially unsafe linearity violation is at least signalled
with a runtime exception. The trickery in send induces a corresponding implementation
of receive (line 15): OCaml believes that the event created by Event.receive yields
(), whereas an actual payload is received. We explicitly pair the endpoint u (known to the
receiver) to the payload, and we perform another cast so that the pair is typed correctly.

The implementation of left, right, and branch (lines 16–18) follows the same lines.
In these cases, only a tag `L or `R is communicated, instead of the continuation channel u
injected through one of such tags as the type of left and right suggests. The injection
is performed by the receiver and resorts to one last magic: since the internal OCaml repre-
sentation of `T u – that is channel u injected through the T tag – is the same as that of the
pair (`T, u), we create such a pair and cast its type to that of the injected channel. This
trick spares us one pattern matching on the received message and scales to arbitrary tag
sets without requiring subsequent patches (see Section 5.4).

Example 7 (session type inference and duality). Below are the types of server and
client from Example 1 automatically inferred by OCaml:

val server : ([`R of (int * (int * (•,int * (•,α) t) t,•) t,•) t

| `L of (•,•) t] as α,•) t ↓- unit

val client : int ↓- (•,[`R of (int * (int * (•,int * (•,α) t) t,•) t,•) t

| `L of (•,•) t] as α) t ↓- int

These two types correspond exactly to those we have guessed in Example 3. Since the
channel type in the type of server is dual of the channel type in the type of client,
we deduce that client and server interact safely and the function main at the end of
Example 1 is well typed.

Consider now a variation of client where the initial value for the partial result acc is
0.0 instead of 0. The effect of this change is to turn acc’s type from int to float:

let client' =

let rec aux acc n y = ... in aux 0.0

Taken in isolation, client' is well typed and OCaml infers the following type for it:

val client' :

int ↓- (•,[`R of (float * (int * (•,float * (•,α) t) t,•) t,•) t

| `L of (•,•) t] as α) t ↓- float

ZU064-05-FPR main 16 May 2017 17:0

20 Luca Padovani

However, the channel types of client' and server are no longer dual of each other
(the corresponding message types are not unifiable). OCaml detects this problem and fails
to compile a program that connects client' and server with a session. �

Example 8 (sample errors). To show the effectiveness of the library in detecting pro-
gramming errors involving session endpoints, let us consider once again the forwarder

function of Example 2, which for convenience we report once again with numbered lines.

1 let forwarder mode src dst =

2 if mode then (* check modality *)

3 let rec aux src dst =

4 let msg, src = receive src in (* receive from source *)

5 let dst = send msg dst in (* send to destination *)

6 aux src dst (* forever *)

7 in aux src (left dst) (* select forwarding *)

8 else

9 close (send src (right dst)) (* select delegation *)

We discuss a few non-obvious errors that may be introduced in forwarder:

• Omitting left (line 7) would cause a type error, for dst would be used for both
an output operation (line 5) and a selection (line 9). The omission of right (line 9)
would cause a type error for similar reasons.
• Omitting both left and right would also cause a type error, because dst would be

used repeatedly for output operations in aux (line 5) and would be closed on line 9.
• Omitting left, right and also close would not cause a type error, because the

type of the (unused) continuation of dst (line 9) would be unifiable with that of dst
as used in aux. In general, closing unused endpoints explicitly helps detecting more
errors in lack of a substructural type system.
• Swapping msg and dst (line 5) would not cause a type error, although OCaml would

infer for forwarder a weird-looking type. However, this error would go undetected
also in a substructural type system such as the one of Gay and Vasconcelos (2010).
• Omitting the rebinding of dst (i.e., replacing the leftmost occurrence of dst on

line 5 with _) would go unnoticed, because the type of dst is invariant at each
recursion of aux. This is an instance of overlap which could be detected at runtime
with the elaboration of the library that we are going to present in Section 5.2.

Although this list is by no means exhaustive and the notion of “non-obvious error” is
subjective, the experience gained in coding examples (those presented in the paper and
others included in FuSe) suggests that the session typing discipline realised by FuSe

provides valuable feedback even if the host type system is uncapable of detecting all affinity
and linearity violations at compile time. �

5.2 Runtime detection of invalid endpoint usages

Figure 2 extends our module with the endpoint invalidation semantics of FuSe so that
an exception (declared on line 1) is raised whenever an invalid endpoint is used. Note
that invalidation in the formal model is a rather powerful mechanism that acts atomically
on all the occurrences of an endpoint in a possibly distributed program. The code in

ZU064-05-FPR main 16 May 2017 17:0

A Simple Library Implementation of Binary Sessions 21

1 exception InvalidEndpoint

2 type • (* no representation *)

3 type (α,β) t = unit Event.channel * Mutex.t

4 let check f = if not (Mutex.try_lock f) then raise InvalidEndpoint

5 let fresh u = (u, Mutex.create ())

6 let create () = let u = Event.new_channel () in (fresh u, fresh u)

7 let close (_, f) = check f

8 let send x (u, f) = check f; ...; Obj.magic (fresh u)

9 let receive (u, f) = check f; Obj.magic (..., fresh u)

10 let left (u, f) = check f; ...; Obj.magic (fresh u)

11 let right (u, f) = check f; ...; Obj.magic (fresh u)

12 let branch (u, f) = check f; Obj.magic (..., fresh u)

Fig. 2. OCaml implementation of FuSe (with invalid endpoint usage detection).

Figure 2 implements the invalidation semantics assuming that endpoints reside in shared
memory, as is the case when using the Event module. The idea is to represent endpoints as
pairs consisting of an Event.channel and a mutable flag that approximates the endpoint
polarity and indicates whether the endpoint is valid or not (line 3). To account for the
possibility that the endpoint is accessed concurrently by multiple threads, we represent
the flag as a Mutex from OCaml’s standard library. Whenever a thread uses an endpoint,
we attempt to acquire the mutex with try_lock. If the operation returns true, then
the endpoint is valid and can be used; if try_lock returns false, then the endpoint
has already been used and an exception is raised. The auxiliary function check (line 4)
implements this behaviour.

Ideally, when a communication primitive returns a continuation endpoint, the mutex
associated with the endpoint should be unlocked, but doing so on the existing mutex might
induce other users of the endpoint into thinking that the endpoint they own is valid, while
in fact it is not. The idea is that communication primitives return a fresh pair that contains
the same Event.channel in the old pair and a new (unlocked) mutex. This refreshing
is implemented by the auxiliary function fresh (line 5). In essence, the cost we pay for
detecting the usage of invalid endpoints is the allocation of a new pair and a mutex at each
invocation of a communication primitive. As we will see in Section 5.6, this overhead is
reasonable especially in a functional language, where the runtime system is optimised for
the heap allocation of numerous small objects.

With this setup, the communication primitives can be implemented by prefixing them
with a call to check and wrapping the returned Event.channel(s) with fresh (lines 7–
12). In Figure 2 we have elided with ... the unchanged code fragments from Figure 1.
Observe that check and refresh remain confined within the module, which exports the
same interface it had before, plus the InvalidEndpoint exception.

The choice of mutexes in the above discussion is aimed at describing an implementation
of the endpoint invalidation semantics that is correct, simple and portable at the same
time. However, more efficient mechanisms can be considered in specific settings. For
example, one could replace the mutex with a boolean reference modified through an atomic
compare-and-swap (CAS) operation. As one of the anonymous reviewers pointed out, in

ZU064-05-FPR main 16 May 2017 17:0

22 Luca Padovani

the particular case of OCaml using a CAS is not even necessary, provided that no memory
allocation intervenes between the moments the reference is read and written. The current
implementation of FuSe follows this latter strategy.

5.3 Generalised choices

Although binary choices suffice to model protocols with an arbitrary branching structure,
being able to use multiple tags, with possibly meaningful names, is desirable. The main
challenge with generalising choices to arbitrary tags is that the tags appear explicitly in the
types of left, right, and branch, whereas we would like the interface of our library to be
as general as possible. One solution is to replace left and right with a generic select

primitive and revise branch so that select and branch have these types:

val select : ((α,β) t ↓- ϕ) ↓- (•,[>] as ϕ) t ↓- (β,α) t

val branch : ([>] as ϕ,•) t ↓- ϕ

The semantics of branch is simply to receive a message of type ϕ . The semantics of
select is similar to that of send, except that send takes a message ready to be sent,
whereas select takes a function of type <α,β> ↓- ϕ which produces the message, of type
ϕ , when applied to a continuation endpoint of type <α,β>. Typically, such function will
be the η-expansion of a tag

fun x ↓- `T x

that injects a continuation channel into a polymorphic variant type.
The type expression [>] as ϕ in the types of select and branch indicates that ϕ

can only be instantiated with a polymorphic variant type. This constraint is crucial for the
safety of the library: leaving ϕ unconstrained would make the type (α,ϕ) t unifiable
with the type (α,ψ * (γ,δ) t) t so that an ordinary message sent with send could
be received with branch as if it were a label, or a label selected with select could be
received with receive as if it were an ordinary message.

The implementation of select and branch is similar to that of send and receive,
with the difference that select transfers the function over the channel, camouflaging the
function as if it were the message produced by the function:

let select f u = Event.sync (Event.send u (Obj.magic f)); Obj.magic u

let branch u = Obj.magic (Event.sync (Event.receive u)) u

Example 9. Below is a revised and extended version of Example 1 where the mathematical
server supports three operations identified by the tags `Quit, `Plus, and `Eq and the client
uses select to choose the appropriate ones.

let rec server x =

match branch x with

| `Quit x ↓- close x

| `Plus x ↓- let n, x = receive x in

let m, x = receive x in

let x = send (n + m) x in

server x

| `Eq x ↓- let n, x = receive x in

ZU064-05-FPR main 16 May 2017 17:0

A Simple Library Implementation of Binary Sessions 23

let m, x = receive x in

let x = send (n = m) x in

server x

let client n y =

let rec aux acc n y =

if n = 0 then begin

let y = select (fun x ↓- `Quit x) y in

close y; acc

end else

let y = select (fun x ↓- `Plus x) y in

let y = send acc y in

let y = send n y in

let res, y = receive y in

aux res (n - 1) y

in aux 0 n y

For these two functions, OCaml infers the following types:

val server :

([< `Eq of (β * (β * (•,bool * (•,α) t) t,•) t,•) t

| `Plus of (int * (int * (•,int * (•,α) t) t,•) t,•) t

| `Quit of (•,•) t] as α,•) t ↓- unit

val client :

int ↓- (•,[> `Plus of (int * (int * (•,int * (•,α) t) t,•) t,•) t

| `Quit of (•,•) t] as α) t ↓- int

Notice that server is parametric in the type β of the operands of the `Eq operation,
as a consequence of the fact that equality is polymorphic in OCaml. Also, the type of x is
not exactly the dual of the type of y, because the choice in one type has three tags `Eq,
`Plus, and `Quit while the other one has only two. The question then is whether OCaml
is able to infer that client and server interact successfully, despite this mismatch in
the types of the endpoints they use. This is indeed the case, and the reason lies in the <

and > symbols that decorate variant types. The < symbol indicates a closed variant type,
one for which the set of tags constitutes an upper bound: the match in the server body
handles three tags `Eq, `Plus, `Quit, but not others. The > symbol indicates an open
variant type, one for which the set of tags constitutes a lower bound: the `Plus and `Quit
tags may be produced by client, but this variant type is unifiable with others providing
a superset of tags, like the one in the type of x. In conclusion, the rules governing variant
types allow OCaml to infer that client and server interact successfully because client
uses only a subset of the operations provided by server. If client attempted to use a
`Mult operation, OCaml would signal an error at the point where client and server are
connected through a session.

The fact that the revised server interacts correctly with client, despite the type of
x is not exactly dual to that of y, is formally explained in terms of subtyping for session
types (Gay and Hole, 2005): the dual of the type of x is a subtype of the type of y, meaning
that client uses fewer features than those offered by server. We exploit the encoding
of session types (Dardha et al., 2012) to lift OCaml’s built-in subtyping of variant types
at the level of channel (hence session) types. The implementation of FuSe pushes support

ZU064-05-FPR main 16 May 2017 17:0

24 Luca Padovani

for subtyping even further, by taking advantage of OCaml’s variance annotations for type
parameters. In particular, the abstract channel type is declared thus

type (+α,-β) t

indicating that channel types are covariant in the input type and contravariant in the output
type. These annotations induce, on decoded channel types, the same subtyping relation for
session types described by Gay and Hole (2005). �

5.4 Support for distributed communications

From a purely theoretical viewpoint, our approach to session type checking applies equally
well to both local and distributed communications. In practice, however, the underlying
communication API may rely on a specific distribution model and/or pose restrictions to
the data that can be sent in messages. For example, the Event module relies on shared
memory and therefore is unfit to support distributed communications. In this section, we
argue that our approach remains feasible also in a distributed setting.

First of all, we have to consider that in a distributed system any data that cannot be
serialised in a platform-neutral way might be meaningless if transmitted in a message. For
a higher-order language such as OCaml, the typical example is that of functions, whose
representation involves compiled code. In this respect, the handling of arbitrary tags that
we have described in Section 5.3 does not scale well to a distributed setting, because it is
realised by sending functions over channels. Two alternatives remain feasible though. The
functions left, right, and branch in the basic version of the library (Section 5.1) handle
binary choices and branches by transmitting tags only, and are therefore unproblematic in
a distributed setting. These functions are also easy to generalise to arbitrary – but fixed –
tag sets. For example, given the set L = {T1, . . . ,Tn} of tags we can devise the following
family of OCaml functions to handle choices involving the tags taken from L:

let selectL,i u = Event.sync (Event.send u (Obj.magic `Ti)); Obj.magic u

let branchL u = Obj.magic (Event.sync (Event.receive u), u)

These functions can be given the types

val selectL,i : (•,tagsL) t ↓- (βi,αi) t

val branchL : (tagsL,•) t ↓- tagsL

where tagsL abbreviates occurrences of the polymorphic variant type

[`T1 of (α1,β1) t | · · · | `Tn of (αn,βn) t]

In the end, it is easy to define domain-specific versions of select and branch that
involve the transfer of only a tag and that are suitable for distributed communications.

The mechanism described in Section 5.2 for the runtime detection of linearity violations
is also delicate. Assuming that the underlying communication API allows endpoints to
be sent in messages, the mechanism we have described would require keeping the flags
associated with each endpoint coherent, which is difficult to do across different locations.
We can adapt the mechanism to a distributed setting by devising dedicated primitives for
the communication of endpoints. The idea is that an endpoint being sent in a message
is invalidated in the sender, electing the receiver as the only owner of a valid reference

ZU064-05-FPR main 16 May 2017 17:0

A Simple Library Implementation of Binary Sessions 25

to the endpoint. As a result, across the whole distributed system, there is always at most
one location containing valid references to the roaming endpoint, and linearity violations
within such location can be effectively and efficiently detected using the code shown in
Figure 2. This behaviour can be realised by the two functions below

let send_endpoint (u, f) (v, g) =

check f; check g; Event.sync (Event.send v (Obj.magic u));

Obj.magic (fresh v)

let receive_endpoint (u, f) =

check f; let v = Event.sync (Event.receive u) in

Obj.magic (fresh v, fresh u)

whose types are

val send_endpoint : (γ,δ) t ↓- (•,(γ,δ) t * (α,β) t) t ↓- (β,α) t

val receive_endpoint : ((γ,δ) t * (α,β) t,•) t ↓- (γ,δ) t * (α,β) t

Of course, it is up to the programmer to remember using the dedicated primitives for
delegations, unless the type system has some feature that prevents channels to be sent
as ordinary messages. The use of dedicated primitives for handling delegations may be
motivated by other practical considerations, since the communication of endpoints in a
distributed environment is likely to require some special handling anyway, and it has been
considered in theoretical works on sessions as well (Honda et al., 1998).

5.5 A monadic interface for FuSe primitives

In this section we elaborate a monadic API on top of FuSe communication primitives. Fol-
lowing Pucella and Tov (2008), we define an indexed monad (α,β,ϕ) m that describes
computations producing a value of type ϕ while using a session endpoint and turning its
type from α to β . The monad encapsulates the session endpoint and hides it from the
programmer, threading computations in such a way that the endpoint is guaranteed to be
used linearly, unless an exception is thrown (affinity is always guaranteed though).

Figure 3 shows the OCaml module realising the monadic API. The interface of the mod-
ule comprises the (abstract) monad type and the signatures of the usual monadic operations
return, to create trivial computations not involving communications, and >>=, to compose
computations sequentially. In addition, it is convenient to provide a specialisation >>> of
>>= in which the continuation does not use the result of the first computation as well as a
fixpoint operator m_fix (we will see in a moment why this is useful). Next we have the
operations for session communications. Primitives m_send through m_branch correspond
exactly to FuSe communication primitives, modulo the fact that output operations have an
explicit unit return type signalling that they produce no result. The operation m_connect

combines the functionality of create and close. When m_connect is applied to two
monadic computations, corresponding to the “server” and “client” sides of the session, it
creates a new session that connects server and client, spawns a new thread for the server
and runs the client. Once the interaction is over, both endpoints of the session are closed
and the result of the client computation is returned.

The implementation of the module is shown in the lower part of Figure 3. The concrete
representation of the indexed monad (α,β,ϕ) m is α ↓- ϕ * β , namely a function that

ZU064-05-FPR main 16 May 2017 17:0

26 Luca Padovani

Interface
type (α,β,ϕ) m

val return : ϕ ↓- (α,α,ϕ) m

val (>>=) : (α,β,ϕ) m ↓- (ϕ ↓- (β,γ,ψ) m) ↓- (α,γ,ψ) m

val (>>>) : (α,β,ϕ) m ↓- (β,γ,ψ) m ↓- (α,γ,ψ) m

val m_fix : ((α,β,ϕ) m ↓- (α,β,ϕ) m) ↓- (α,β,ϕ) m

val m_connect : ((α,β) t,(•,•) t,unit) m ↓- ((β,α) t,(•,•) t,ϕ) m ↓- ϕ

val m_send : ϕ ↓- ((•,ϕ * (α,β) t) t,(β,α) t,unit) m

val m_receive : ((ϕ * (α,β) t,•) t,(α,β) t,ϕ) m

val m_left : ((•,[`L of (α,β) t | `R of (γ,δ) t]) t,(β,α) t,unit) m

val m_right : ((•,[`L of (α,β) t | `R of (γ,δ) t]) t,(δ,γ) t,unit) m

val m_branch : ((α,β) t,ε,ϕ) m ↓- ((γ,δ) t,ε,ϕ) m ↓-

(([`L of (α,β) t | `R of (γ,δ) t],•) t,ε,ϕ) m

Implementation
type (α,β,ϕ) m = α ↓- ϕ * β

let return v u = (v, u)

let (>>=) m f u = let v, u = m u in f v u

let (>>>) m n = m >>= (fun _ ↓- n)

let rec m_fix f = f (fun u ↓- m_fix f u)

let m_connect s c = let us, uc = create () in

let _ = fork (close ◦ snd ◦ s) us in

let x, uc = c uc in close uc; x

let m_receive = receive

let m_send x u = ((), send x u)

let m_left u = ((), left u)

let m_right u = ((), right u)

let m_branch l r u = match branch u with

| `L u ↓- l u

| `R u ↓- r u

Fig. 3. OCaml implementation of FuSe (monadic version).

takes a session endpoint and produces a pair with the result of the computation and the
endpoint with the updated type. This informal description essentially corresponds to that
of the state monad, with the difference that in our case the state is a session endpoint
whose type may change as the session goes on. Once the representation of the monad is
fixed, the implementation of the operations follows directly. Just note the use of functional
composition ◦ in m_connect and the explicit return of () in the output operations m_send,
m_left, and m_right.

Example 10 (monadic mathematical server). Below we show the monadic version of the
mathematical server introduced in Example 1.

let server =

m_fix (* recursive server *)

(fun server ↓-

m_branch (* wait for a request *)

(return ()) (* terminate session *)

(m_receive >>= fun n ↓- (* receive 1st operand *)

ZU064-05-FPR main 16 May 2017 17:0

A Simple Library Implementation of Binary Sessions 27

m_receive >>= fun m ↓- (* receive 2nd operand *)

m_send (n + m) >>> (* send result *)

server)) (* serve more requests *)

Note the use of m_fix for creating a recursive server. In this case it would not be possible
to define server recursively as we have done in Example 1, for the body of server is not
a function (even if it evaluates to a function, as we know from Figure 3).

The monadic version of the client in Example 1 is shown below

let client =

let rec aux acc n = (* add n naturals *)

if n = 0 then

m_left >>> return acc (* terminate session *)

else

m_right >>> (* select + operation *)

m_send acc >>> (* send 1st operand *)

m_send n >>> (* send 2nd operand *)

m_receive >>= fun res ↓- (* receive result *)

aux res (n - 1) (* possibly add more *)

in aux 0

and, with these definitions in place, client and server can be connected thus:

let main n =

m_connect server (client n) (* run session *)

The slightly awkward syntax for binding results of computations on the right hand side
of >>= is typical of monadic code but can be easily sugared into a more readable form. �

As shown in Example 10, the monadic API can be convenient in simple (but possibly
frequent) cases involving single sessions. Because endpoint affinity is guaranteed by the
monad, the monadic API can be safely built on top of the basic version of FuSe primitives
(Figure 1), thus sparing the overhead due to runtime checks. In fact, as we will see in Sec-
tion 5.6, this results in a slightly more efficient implementation compared to that described
in Section 5.2. Also, the chosen realisation of the m_connect operation is known to guar-
antee deadlock freedom, provided that no exceptions interrupt ongoing sessions (Wadler,
2014). The monadic API has some downsides as well. First and foremost, it disallows the
interleaving of multiple sessions and, in particular, it does not support delegation. Multiple
sessions can be opened and used according to a strictly nested discipline, pretty much
like function calls. As shown by Pucella and Tov (2008), the monad can be generalised to
support multiple sessions at the cost of a more complex API requiring the programmer to
write significant amounts of boilerplate code. Also, it is difficult to provide a monadic API
supporting generalised choices because not only the typing but also the implementation of
m_branch depends on the set of tags that must be handled. As explained in Section 5.3,
however, it is possible to provide versions of m_branch handling a specific set of tags.

5.6 Performance comparison

In this section we report on a series of microbenchmarks aimed at measuring the per-
formance of different implementations of FuSe communication primitives. The program

ZU064-05-FPR main 16 May 2017 17:0

28 Luca Padovani

100k

110k

120k

130k

140k

150k

160k

170k

Unchecked Mutex Monadic NanoMutex

MacBookAir5,2 i5 1,8 GHz 4 GB
OCaml 4.03.0 (native)

T
h

ro
u

g
h

p
u

t
(m

e
s
s
a

g
e

s
 /

 s
e

c
)

Fig. 4. Performance comparison of different implementations of FuSe primitives.

we use as benchmark is the one presented in Example 1 (and its monadic variant in
Example 10) in which a client interacts with a mathematical server to compute the sum
of the first n natural numbers. For the benchmarks we fix n at 1000 and we measure the
message throughput of 1000 runs, considering that each execution involves the exchange
of 4n+ 1 messages. The reason for such a high number of runs is to contrast the broad
variance observed in some execution times, which is due to uncontrollable factors such as
the intervention of OCaml’s garbage collector and the involvement of concurrent threads
using synchronisation primitives.

Figure 4 shows the results of the microbenchmarks corresponding to 4 implementations
of the FuSe primitives. Each box contains the throughput of 750 runs, the horizontal line
being the median and the individual dots stretching beyond the whiskers being outliers.
The “Unchecked” column corresponds to the basic version of the library (Figure 1) which
does not perform runtime checks to detect linearity violations. This column represents
the ideal performance that could be achieved if OCaml had support for linear/affine types,
thus eliminating the need for runtime checks or other mechanisms (such as the use of
the monad) to enforce endpoint linearity/affinity. The “Mutex” column corresponds to the
implementation shown in Figure 2, which checks for linearity violations using a mutex
from OCaml’s standard library. The graph shows a 10% throughput decrease due to the
overhead of runtime checks and the creation of a new mutex at each communication. The
“Monadic” column corresponds to the implementation shown in Figure 3 in which the
non-monadic primitives are those from Figure 1. The throughput in this case is almost
ideal, despite the fair amount of closures that are created by this version of the library.
Finally, the “NanoMutex” column corresponds once again to the implementation shown
in Figure 2 except that the mutexes being used are Nano_mutexes taken from Core (Jane
Street Developers, 2016), an alternative to OCaml’s standard library. Nano_mutexes are
significantly cheaper than the OS-level mutexes used in the Mutex module of OCaml’s

ZU064-05-FPR main 16 May 2017 17:0

A Simple Library Implementation of Binary Sessions 29

standard library. In fact, the throughput achieved by this implementation of the library is
almost ideal. This column shows that a careful handling of the validity flag associated with
session endpoints can virtually eliminate the overhead due to the runtime checks.

6 Related work

Several Haskell libraries of binary sessions have been proposed (Neubauer and Thie-
mann, 2004; Sackman and Eisenbach, 2008; Pucella and Tov, 2008; Imai et al., 2010).
In these works, session types are represented conventionally as sequences of I/O actions
and branching points and duality constraints are expressed either using multiparameter
type classes and functional dependencies (both of which are Haskell-specific features) or
explicit duality proofs (Pucella and Tov, 2008). The lack of equi-recursive types in Haskell
calls for an explicit representation also for recursive session types. To this aim, Pucella and
Tov (2008) and Imai et al. (2010) use De Bruijn indexes and type-level Peano numerals.
This representation requires programmers to write explicit monadic actions for unwinding
recursions and induces an iso-recursive treatment of session types.

The standard way of expressing impure computations in Haskell is to embed them in
a monad. All Haskell libraries of binary sessions follow this approach. Besides being a
necessity dictated by the nature of the language, the monad for session communications
guarantees affine access to session endpoints, which are hidden to the programmer, and
tracks the changes in the type of session endpoints automatically without requiring the pro-
grammer to write explicit rebindings (compare the code in Examples 1 and 10). However,
the monad has also a cost in terms of either expressiveness, usability, or portability: the
monad defined by Neubauer and Thiemann (2004) supports communication on a single
channel only and is therefore incapable of expressing session interleaving or delegation.
Pucella and Tov (2008) propose a monad that stores a stack of endpoints (or, better, of
their capabilities) allowing for session interleaving and delegation to some extent. The
price for this generality is that the programmer has to write explicit monadic actions that
literally dig into the stack to reach the channel/capability to be used; also for this reason
delegation is severely limited. Imai et al. (2010) show how to avoid writing such explicit
actions relying on a form of type-level computations that is unique to Haskell.

Alms (Tov and Pucella, 2011; Tov, 2012) is a general-purpose programming language
equipped with an expressive type system that supports parametric polymorphism, abstract
and algebraic data types, and affine types as well. Tov (2012) illustrates how to build a
library of binary sessions on top of these features. Because Alms’ type system is substruc-
tural, endpoint affinity is guaranteed statically by the fact that session types are qualified as
affine. As in the works about Haskell, the representation of session types is conventional
and recursive session types arise from Alms support for equi-recursive types. Duality
constraints are expressed using a peculiar feature of Alms called type functions with which
the programmer can define (lazy) type-level computations. In particular, Tov gives a type
function corresponding to Definition 4 that allows the compiler to compute the dual of a
session type. We observe that the mechanism of type functions is currently used in Alms’
library for this purpose only. By using encoded session types, it would be possible to obtain
a fully fledged library of binary sessions that makes no use of type functions.

ZU064-05-FPR main 16 May 2017 17:0

30 Luca Padovani

The main source of inspiration for this work is the continuation-passing encoding of
binary sessions given by Dardha et al. (2012) and partially studied by Kobayashi (2002)
and Demangeon and Honda (2011). Dardha et al. (2012) motivate the encoding as a foun-
dational approach to the study of session type systems and their properties. We have shown
that the very same encoding has also practical relevance: one the one hand, it permits
the integration of session type checking into a wide class of programming languages; on
the other hand, it allows us to benefit from the features of the host language – paramet-
ric polymorphism, equi-recursive types, subtyping, type inference – lifting them at the
level of (encoded) session types. From a technical standpoint, our work differs from that
of Dardha et al. (2012) in two ways. First, we use a new representation of channel types
that makes it possible to reduce type duality to type equality. Second, we consider the
standard operational semantics of session communications (Gay and Vasconcelos, 2010),
in which no continuation channels are explicitly created or exchanged, also taking into
account endpoint invalidation. For these reasons, the soundness results given by Dardha
et al. (2012) cannot be used as arguments for the soundness of our typing discipline.

Concerning the enforcement of linear/affine usage of session endpoints, our approach is
based on runtime checks (Tov and Pucella, 2010; Hu and Yoshida, 2016). By definition,
this approach cannot detect linearity violations statically, but it allows for greater flexibility
when used in conjunction with constructs for non-local control flow (most notably excep-
tions and callbacks), which are known sources of issues for substructural type systems. The
proposed runtime mechanism is reasonably lightweight (Section 5.6) and is independent
of the particular representation of session types and/or the mechanism used for tracking
the change in type of session endpoints, making it is easy to apply in a wide range of pro-
gramming languages (Hu and Yoshida, 2016). Besides, the fact that the session type of an
endpoint changes at each usage allows the detection of a fair number of linearity violations
even if the underlying type system is not substructural (Example 6). Our approach can
be seen as a particular instance of the framework of stateful contracts proposed by Tov
and Pucella (2010) in that our representation of session endpoints comprises both the
affine/linear data structure (the session endpoint) and its stateful contract (the mutex). We
note two differences: first, we have to use a mutex (or an equivalent data type with atomic
access) instead of a bare flag to account for multithreading; second, we use polymorphism
to account for the possibility that multiple references to the same endpoint coexist but
require different typings (Example 5). The endpoint invalidation semantics and the typing
of invalid endpoints are original contributions of the present work.

A different but related technique is the runtime monitoring of sessions (Chen et al., 2011;
Bocchi et al., 2013; Demangeon et al., 2015; Bartoletti et al., 2015). Runtime monitoring
is achieved either by a service (Chen et al., 2011; Bocchi et al., 2013; Demangeon et al.,
2015) or by an active communication middleware (Bartoletti et al., 2015) that compares the
observable behaviour of processes against the declared contracts/session types and possibly
issues notifications when violations are detected. Like monitoring, our runtime mechanism
is meant to ensure communication safety and protocol fidelity. Unlike monitoring, our
mechanism is internal to processes and only detects linearity violations, which do not
necessarily imply corresponding protocol violations.

There is a long strand of works which follow a top-down methodology for integrating
sessions into programming languages. In these works, the protocol comes first and is

ZU064-05-FPR main 16 May 2017 17:0

A Simple Library Implementation of Binary Sessions 31

explicitly described either formally or by means of a suitable DSL. From this description,
the communication API (sometimes in the form of a class hierarchy) is generated, possibly
with the aid of supporting tools. A comprehensive survey describing works that follow
this methodology is given by Ancona et al. (2016). A notable omission from the survey
that targets Scala and that is very related to our approach is a recent work by Scalas and
Yoshida (2016). As we do, Scalas and Yoshida use a runtime mechanism to compensate
for the lack of affine/linear types in Scala and work with the encoded representation of
session types given by Dardha et al. (2012). Each (encoded) session type is represented
as a Scala (case) class, which must be either provided by the programmer or generated
from the protocol. Since Scala’s type system is nominal, the subtyping relation between
session types is constrained by the (fixed) subclassing relation between the classes that
represent them. Two more differences are worth noting. First, the framework of Scalas and
Yoshida relies on the explicit creation and exchange of continuations. Second, it illustrates
the sort of subtleties arising when channel types are represented using fixed capabilities
? and ! (cf. the discussion in Section 3). For instance, it is possible to write functions
with types unit ↓- ?[α] * ![α] and unit ↓- ![α] * ?[α], but not a function with type
unit ↓- A * A⊥ that mentions completely unknown yet related session types. As we have
seen in Section 4, our representation of channel types is key to express the most general
type of the communication primitives and the functions built on them.

7 Concluding remarks

The implementation of FuSe supports other features not described in this paper, including
accept/request primitives to open sessions via shared channels (Honda et al., 1998; Gay
and Vasconcelos, 2010). The use of a single primitive create to open new sessions is
technically simpler and has been inspired by Singularity OS (Hunt et al., 2005; Bono and
Padovani, 2012). The implementation of FuSe also supports sequential composition and
iteration for protocols. Sequential composition can be used for the enforcement of context-
free protocols (Vasconcelos and Thiemann, 2016; Padovani, 2016) whereas iterative pro-
tocols provide alternative ways of realising arbitrarily long interactions without resorting
to (equi-)recursive types. In general we argue that, by reducing session type duality to type
equality, our approach makes it easy to conceive and implement high-level communication
patterns that require the execution of complementary behaviours.

The choice of synchronous communication in FuSe was solely motivated by conve-
nience. Asynchronous communication can be modelled using queues (Gay and Vascon-
celos, 2010), adjusting the formal semantics so that the peers of a session are invalidated
independently, and basing the implementation on a suitable asynchronous API.

An intriguing extension concerns multiparty sessions (Honda et al., 2008), those involv-
ing an arbitrary, possibly variable number of participants. The runtime mechanism to detect
linearity violations is applicable without issues to the endpoints of multiparty sessions.
Concerning the representation of the protocol structure, it is known that (some classes of)
multiparty sessions can be encoded in terms of binary sessions either connecting pairs
of participants (Padovani, 2014, extended version) or connecting each participant with a
medium process (Caires and Pérez, 2016). As it stands, our approach would be unable

ZU064-05-FPR main 16 May 2017 17:0

32 Luca Padovani

to recognise these individual sessions as part of a single multiparty session. Whether the
approach can be extended to model “true” multiparty sessions remains an open question.

Acknowledgments. The author is grateful to the anonymous reviewers and to Hernán
Melgratti for having provided detailed and constructive feedback on early versions of this
paper. Hernán Melgratti also contributed to the development of FuSe.

A Supplement to Section 3

Lemma 1. We have ⊥ct ◦ J·K = J·K◦⊥st and ⊥st ◦ 〈〈·〉〉= 〈〈·〉〉 ◦⊥ct.

Proof. We only show the first equality. In particular, we show that JT K⊥ = JT⊥K by case
analysis on the shape of T .

T = ?t.S We derive:

JT K⊥ = J?t.SK⊥ by definition of T
= ?[t * JSK]⊥ by definition of J·K
= ![t * JSK] by definition of duality on channel types
= ![t * JS⊥⊥K] because duality is an involution
= J!t.S⊥K by definition of J·K
= JT⊥K by definition of duality on session types

T = T1 ⊕T2 We derive:

JT K⊥ = JT1 ⊕T2K⊥ by definition of T
= ![JT⊥1 K + JT⊥2 K]⊥ by definition of J·K
= ?[JT⊥1 K + JT⊥2 K] by definition of duality on channel types
= JT⊥1 &T⊥2 K by definition of J·K
= JT⊥K by definition of duality on session types.

The remaining are either similar or trivial.

Theorem 1. 〈〈·〉〉= J·K−1.

Proof. We show that 〈〈·〉〉 ◦ J·K = idS where idS is the identity on S. It suffices to show that
R

def
= {(〈〈JT K〉〉,T) | T ∈ S} coincides with idS. We prove the two inclusions R ⊆ idS and

idS ⊆R in this order.
Concerning the relation R ⊆ idS, take S R T . Then S = 〈〈JT K〉〉. We proceed reasoning

by cases on the shape of T and we consider only the case T = !t.T ′, the others being
analogous. We have to show that there exists S′ such that S = !t.S′ and S′R T ′. We derive:

S = 〈〈JT K〉〉 = 〈〈J!t.T ′K〉〉 by definition of T
= 〈〈![t * JT ′⊥K]〉〉 by definition of J·K
= !t.〈〈JT ′⊥K⊥〉〉 by definition of 〈〈·〉〉
= !t.〈〈JT ′⊥⊥K〉〉 by Lemma 1
= !t.〈〈JT ′K〉〉 because duality is an involution

and we conclude by taking S′ def
= 〈〈JT ′K〉〉 and observing that S′ R T ′ by definition of R.

ZU064-05-FPR main 16 May 2017 17:0

A Simple Library Implementation of Binary Sessions 33

Concerning the relation idS ⊆ R, take (S,T) ∈ idS, meaning S = T . We have to show
that S R T . By definition of R we have 〈〈JT K〉〉 R T and from the relation R ⊆ idS we
deduce 〈〈JT K〉〉= T = S. We conclude by definition of R.

B Supplement to Section 4

B.1 Subject reduction for expressions

We just recall the key type preservation result of Wright and Felleisen (1994), whose proof
only requires minor adaptations concerning the set of values in FuSe.

Lemma 2 (subject reduction for expressions). If Γ ` e : t and e−→ e′, then Γ ` e′ : t.

Proof. This is a straightforward adaptation of a known result (Wright and Felleisen, 1994,
Lemma 4.3), where the values include a few more cases.

B.2 Subject reduction for processes

The next proposition establishes key properties of the reduction on type environments.

Proposition 2. If Γ `−→ Γ ′, then the following properties hold:

1. dom(Γ ′)⊆ dom(Γ);
2. if Γ is balanced, then so is Γ ′;
3. Γ ′(u) = Γ(u) for every u ∈ dom(Γ)\ ep(`).

Proof. Straightforward from the definition of type environment reduction.

A reduction may invalidate endpoints occurring in an expression or in a process, even if
there is no redex in such terms. The following result shows that typing is preserved when
invalidations occur. This is a consequence of the fact that the type ∀A.A of invalidated
endpoints allows them to be typed with any instance of a channel type.

Lemma 3 (invalidation). Let Γ `−→ Γ ′ where Γ is balanced. Then Γ ` e : t implies Γ ′ ` e` : t,
and Γ ` P implies Γ ′ ` P̀ .

Proof. A simple induction on the typing derivation, the only interesting case being that of
e = ap ∈ ep(`).

The following two lemmas allow us to reason on the typing of terms occurring in the hole
of an evaluation context. In the statements of these results, by “sub-derivation of D” we
mean a sub-tree of D . Note that the replacement lemma differs from the one of Wright and
Felleisen (1994) since the expression e′ is replaced not in the original evaluation context
E , but in the context E` where some endpoints may have been invalidated.

Lemma 4 (typability of subterms). If D be a derivation for Γ ` E [e] : t, then there exists a
sub-derivation D ′ of D that concludes Γ ` e : s.

Proof. By induction on E , observing that the [] of an evaluation context is never found
within the scope of a binder.

Lemma 5 (replacement). If

ZU064-05-FPR main 16 May 2017 17:0

34 Luca Padovani

1. Γ
`−→ Γ ′ where Γ is balanced,

2. D is a derivation concluding Γ ` E [e] : t,
3. D ′ is a sub-derivation of D concluding Γ ` e : s,
4. the position of D ′ in D corresponds to that of [] in E , and
5. Γ ′ ` e′ : s,

then Γ ′ ` E`[e′] : t.

Proof. By induction on E .

The type system is not substructural, so it enjoys a standard form of weakening.

Lemma 6 (weakening). The following properties hold:

1. If Γ ` e : t, then Γ ,Γ ′ ` e : t;
2. If Γ ` P, then Γ ,Γ ′ ` P.

Proof. Standard properties of any non-substructural type system.

Structural congruence alters the basic arrangement of processes without affecting typing.

Lemma 7 (congruence preserves typing). If Γ ` P and P≡ Q, then Γ ` Q.

Next is subject reduction of processes (Section 4) with its full proof. The result is
essentially standard, except for the fact that endpoints may be invalidated in the reduct.
The hypothesis A (P) suffices to exclude the possibility that error occurs in the reduct.

Theorem 2 (subject reduction for processes). If Γ ` P and Γ is balanced and A (P) and

P `−→ Q, then there exist Γ ′ such that Γ `−→ Γ ′ and Γ ′ ` Q.

Proof. By induction on the derivation of P `−→ Q and by cases on the last rule applied.

[R-FORK] Then P = 〈E [fork v w]〉 and Q = 〈E [()]〉 | 〈v w〉 and ` = τ . From [T-THREAD]

we deduce Γ ` E [fork v w] : unit. From Lemma 4 and TypeOf(fork) we deduce that
Γ ` fork v w : unit and Γ ` v : t ↓- unit and Γ ` w : t. From Lemma 5 we deduce Γ `
E [()] : unit. From [T-APP] we deduce Γ ` v w : unit. We conclude with two applications
of [T-THREAD] and one application of [T-PAR] by taking Γ ′ = Γ .

[R-CREATE] Then P = 〈E [create ()]〉 and Q = new a in 〈E [pair a+ a-]〉 where a is
fresh and `= τ . From [T-THREAD] we deduce Γ ` E [create ()] : unit. From Lemma 4 and
TypeOf(create) we deduce Γ ` create () : t * t⊥. Since a is fresh we have a+,a-,a* 6∈
dom(Γ). From Lemma 5 we deduce Γ ,a+ : t,a- : t⊥,a* : ∀A.A ` E [pair a+ a-] : unit. We
conclude with one application of [T-THREAD] and one of [T-NEW] by taking Γ ′ = Γ .

[R-CLOSE] Then P = 〈E [close ap]〉|〈E ′[close ap]〉] and Q = 〈E`[()]〉|〈E ′` [()]〉 and `=

ca. From [T-PAR] and [T-THREAD] we deduce Γ ` E [close ap] : unit and Γ ` E ′[close ap] :
unit. From Lemma 4 and TypeOf(close) we deduce Γ(ap) = Γ(ap) = <•,•> and Γ `
close ap : unit and Γ ` close ap : unit. Therefore, Γ = Γ ′,ap : <•,•>,ap : <•,•> for
some Γ ′ such that Γ `−→ Γ ′. From Lemma 5 we deduce Γ ′ ` E`[()] : unit and Γ ′ ` E ′` [()] :
unit. We conclude with two applications of [T-THREAD] and one of [T-PAR].

ZU064-05-FPR main 16 May 2017 17:0

A Simple Library Implementation of Binary Sessions 35

[R-COMM] Then P= 〈E [send ap v]〉|〈E ′[receive ap]〉 and Q= 〈E`[ap]〉|〈E ′` [pair v ap]〉
and `= map. From the hypothesis Γ ` P and rules [T-PAR] and [T-THREAD] we deduce that Γ `
E [send ap v] : unit and Γ ` E ′[receive ap] : unit. From Lemma 4 and TypeOf(send)

and the hypothesis that Γ is balanced we deduce that there exists Γ ′′ such that Γ = Γ ′′,ap :
![t * s],ap : ?[t * s] and Γ ` send ap v : s⊥ and Γ ` v : t. From Lemma 4 and TypeOf(receive)

we deduce that and Γ ` receive ap : t * s. Let Γ ′ def
= Γ ′′,ap : s⊥,ap : s and observe that

Γ
`−→ Γ ′. From Lemma 5 we derive Γ ′ ` E`[ap] : unit. From one application of [T-PAIR]

and Lemma 5 we derive Γ ′ ` E ′` [pair v ap] : unit. We conclude with two applications of
[T-THREAD] and one application of [T-PAR].

[R-LEFT] Then P = 〈E [left ap]〉| 〈E ′[branch ap]〉 and Q = 〈E`[ap]〉| 〈E ′` [inl ap]〉 and
` = map. From the hypothesis Γ ` P and rules [T-PAR] and [T-THREAD] we deduce that Γ `
E [left ap] : unit and Γ ` E ′[branch ap] : unit. From Lemma 4 and TypeOf(left) and
the hypothesis that Γ is balanced we deduce that there exists Γ ′′ such that Γ = Γ ′′,ap : ![t +
s],ap : ?[t + s] and Γ ` left ap : t⊥. From Lemma 4 and TypeOf(branch) we deduce that

Γ ` branch ap : t + s. Let Γ ′ def
= Γ ′′,ap : t⊥,ap : t and observe that Γ `−→ Γ ′. From Lemma 5

we derive Γ ′ ` E`[ap] : unit. From TypeOf(inl) using [T-CONST], [T-APP], and Lemma 5 we
derive Γ ′ ` E ′` [inl ap] : unit. We conclude with two applications of [T-THREAD] and one
application of [T-PAR].

[R-RIGHT] Analogous to the previous case.

[R-ERROR] Then P = 〈E [K a*]〉 and Q = error and ` = τ . This case is impossible for it
contradicts the hypothesis A (P).

[R-PAR] Then P = P′ |R and P′ `−→ Q′ and Q = Q′ |R`. From [T-PAR] we deduce Γ ` P′

and Γ ` R. By induction hypothesis we deduce Γ ′ `Q′ for some Γ ′ such that Γ `−→ Γ ′. From
Lemma 3 we deduce that Γ ′ ` R`. We conclude with an application of [T-PAR].

[R-NEW] Then P = new a in P′ and P′ `′−→ Q′ and Q = new a in Q′ and ` = `′ \ a.
From [T-NEW] we deduce Γ ,a+ : t,a- : t⊥,a* : ∀A.A ` P′ for some t. Observe that Γ ,a+ :
t,a- : t⊥,a* : ∀A.A is balanced if so is Γ . We distinguish three subcases:

• If ep(`′)∩{a+,a-}= /0, then by induction hypothesis we deduce Γ ′,a+ : t,a- : t⊥,a* :

∀A.A ` Q′ for some Γ ′ such that Γ `′−→ Γ ′ and we conclude with an application of
[T-NEW].

• If `′ = ca, then by induction hypothesis we deduce Γ ,a* : ∀A.A ` Q′. By Lemma 6,
we deduce Γ ,a+ : t,a- : t⊥,a* : ∀A.A `Q′ and we conclude by taking Γ ′ = Γ and one
application of [T-NEW].

• If `′ = map, then by induction hypothesis we deduce that there exists s such that
Γ ,a+ : t,a- : t⊥,a* : ∀A.A

map−→ Γ ,a+ : s,a- : s⊥,a* : ∀A.A and Γ ,a+ : s,a- : s⊥,a* :
∀A.A ` Q′. We conclude by taking Γ ′ = Γ and one application of [T-NEW].

[R-STRUCT] A simple induction using Lemma 7.

ZU064-05-FPR main 16 May 2017 17:0

36 Luca Padovani

B.3 Partial progress

This section contains the proof of partial progress (Theorem 3). The first auxiliary result
provides a syntactic characterisation of those expressions that are unable to reduce further.
These are not necessarily values, for expressions may contain instances of the communica-
tion primitives that reduce only at the level of processes. To characterise these expressions,
we extend the syntactic category K introduced previously (Section 2):

K̄ ::= fork v | create | K

Lemma 8. We say that Γ is ground when its domain does not contain variables. If Γ is
ground and Γ ` e : t and e X−→, then either e is a value or e = E [K̄ v] for some E , K̄, and v.

Proof. If e is a value there is nothing left to prove, so we assume that e is not a value and
proceed by induction on the structure of e and by cases on its shape.

e = x This case is impossible because Γ is ground.

e = let x = e1 in e2 Then Γ ` e1 : s for some s and e1 X−→. Also, e1 cannot be a value for
otherwise e would reduce. By induction hypothesis we deduce that e1 = E ′[K̄ v] for some
E ′, K̄, and v. We conclude by taking E

def
= let x = E ′ in e2.

e = e1 e2 Then Γ ` e1 : s ↓- t and Γ ` e2 : s for some s and ei X−→ for i = 1,2. We further
distinguish three subcases. If e1 is not a value, then by induction hypothesis we deduce that
e1 = E ′[K̄ v] for some E ′, K̄, and v and we conclude by taking E = E ′ e2. If e1 is a value
but e2 is not, then by induction hypothesis we deduce that e2 = E ′[K̄ v] for some E ′, K̄,
and v and we conclude by taking E = e1 E ′. If both e1 and e2 are values, we deduce that:

• e1 cannot be an abstraction or fix, for otherwise e would reduce;
• e1 cannot be an endpoint or (), inl v, inr w, pair v w because it has an arrow type;
• e1 cannot be fork, pair, inl, inr, cases, send, pair v, cases v, or else e would

be a value;
• e1 cannot be fst or snd, for otherwise e2 would be a pair and e would reduce;
• e1 cannot be cases v w, or else v would be an injected value and e would reduce.

Then, e1 must be one of fork w, create, close, send w, receive, left, right,
branch. We conclude by taking E = [], K̄ = e1, and v = e2.

Theorem 3 (partial progress). If /0 ` P and L (P), then either there exists Q such that
P τ−→ Q or P≡ 〈()〉 or P is deadlocked.

Proof. Observe that P `−→ implies `= τ , because P is typed in an empty environment and
so is a closed process. Suppose that P X τ−→ and P 6≡ 〈()〉, for otherwise there is nothing left
to prove. Using structural congruence, we can always derive

P≡ new a1 in · · ·new an in ∏i∈I〈ei〉

where ∏i∈I〈ei〉 is a non-empty parallel composition of processes.
From the hypothesis P X τ−→ we deduce ei X−→ for every i∈ I and from the hypothesis /0 `

P we know that each ei is well typed and has type unit. Hence, from Lemma 8 we deduce
that for every i ∈ I either ei is a value or there exist Ei, K̄i, and vi such that ei = Ei[K̄i vi].

ZU064-05-FPR main 16 May 2017 17:0

A Simple Library Implementation of Binary Sessions 37

Since the only value of type unit is (), we can assume that none of the ei is (), for such
threads could be removed by structural congruence. From the hypothesis P X τ−→ we also
deduce that none of the K̄i is create or fork v, for otherwise P would be able to reduce
according to the rules in Table 1. In summary, we can derive

P≡ new a1 in · · ·new an in Q where Q = ∏i∈I〈Ei[Ki vi]〉

From the hypothesis /0 ` P we deduce that for all i ∈ I there exist ci and pi such that
vi = cpi

i . From the hypothesis P X τ−→ we also know that pi ∈ {+,-} for every i ∈ I.
Now, from the hypotheses /0 ` P and [T-NEW], we know that there exists Γ balanced

such that Γ ` Q. Consider i ∈ I. From the hypothesis L (P) we deduce that cpi
i must

occur somewhere in P. We reason by cases on Ki, and discuss only one case, when Ki =

send v, the others being analogous. Then, there exist t and s such that Γ ` cpi
i : ![t * s]

and Γ ` cpi
i : ?[t * s]. Suppose that cpi

i = c
p j
j for some j ∈ I. It cannot be the case that

K j ∈ {send w,left,right} because these would require c
p j
j to have a type with output

capability. It cannot be the case that K j = receive, for otherwise P would be able to
reduce. Finally, it cannot be the case K j = branch, because the message type in the type
of c

p j
j would have a topmost + type constructor, whereas the message type in the type of

cpi
i has a topmost * type constructor. In conclusion, we deduce that cpi

i cannot be any of the
c

p j
j for j ∈ I. Therefore, it must be the case that cpi

i ∈ fn(E j)∪ fn(K j) for some j ∈ I.

References

Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna,
Pierre-Malo Deniélou, Simon J. Gay, Nils Gesbert, Elena Giachino, Raymond Hu,
Einar Broch Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio Montesi, Rumyana
Neykova, Nicholas Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida.
Behavioral Types in Programming Languages. Foundations and Trends in Programming
Languages, 3:95–230, 2016.

Massimo Bartoletti, Tiziana Cimoli, Maurizio Murgia, Alessandro Sebastian Podda, and
Livio Pompianu. Compliance and subtyping in timed session types. In Proceedings of
FORTE’15, LNCS 9039, pages 161–177. Springer, 2015.

Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda, and Nobuko
Yoshida. Monitoring networks through multiparty session types. In Proceedings of
FMOODS/FORTE’13, LNCS 7892, pages 50–65. Springer, 2013.

Viviana Bono and Luca Padovani. Typing Copyless Message Passing. Logical Methods in
Computer Science, 8:1–50, 2012.

Luı́s Caires and Jorge A. Pérez. Multiparty session types within a canonical binary theory,
and beyond. In Proceedings of FORTE’16, LNCS 9688, pages 74–95. Springer, 2016.

Tzu-Chun Chen, Laura Bocchi, Pierre-Malo Deniélou, Kohei Honda, and Nobuko
Yoshida. Asynchronous distributed monitoring for multiparty session enforcement. In
Proceedings of TGC’11, LNCS 7173, pages 25–45. Springer, 2011.

Bruno Courcelle. Fundamental properties of infinite trees. Theoretical Computer Science,
25:95–169, 1983.

Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types revisited. In
Proceedings of PPDP’12, pages 139–150. ACM, 2012.

ZU064-05-FPR main 16 May 2017 17:0

38 Luca Padovani

Romain Demangeon and Kohei Honda. Full abstraction in a subtyped pi-calculus with
linear types. In Proceedings of CONCUR’11, LNCS 6901, pages 280–296. Springer,
2011.

Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova, and Nobuko
Yoshida. Practical interruptible conversations: distributed dynamic verification with
multiparty session types and python. Formal Methods in System Design, 46(3):197–
225, 2015.

Jacques Garrigue. Programming with polymorphic variants. In Proceedings of ACM
SIGPLAN Workshop on ML, 1998.

Simon Gay and Malcolm Hole. Subtyping for Session Types in the π-calculus. Acta
Informatica, 42(2-3):191–225, 2005.

Simon J. Gay and Vasco Thudichum Vasconcelos. Linear type theory for asynchronous
session types. Journal of Functional Programming, 20(1):19–50, 2010.

Kohei Honda. Types for dyadic interaction. In Proceedings of CONCUR’93, LNCS 715,
pages 509–523. Springer, 1993.

Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and
type disciplines for structured communication-based programming. In Proceedings of
ESOP’98, LNCS 1381, pages 122–138. Springer, 1998.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session
types. In Proceedings of POPL’08, pages 273–284. ACM, 2008.

Raymond Hu and Nobuko Yoshida. Hybrid Session Verification through Endpoint API
Generation. In Proceedings of FASE’16, LNCS 9633, pages 401–418. Springer, 2016.

Galen Hunt, James R. Larus, Martı́n Abadi, Mark Aiken, Paul Barham, Manuel Fähndrich,
Chris Hawblitzel, Orion Hodson, Steven Levi, Nick Murphy, Bjarne Steensgaard, David
Tarditi, Ted Wobber, and Brian Zill. An Overview of the Singularity Project. Technical
Report MSR-TR-2005-135, Microsoft Research, 2005.

Keigo Imai, Shoji Yuen, and Kiyoshi Agusa. Session Type Inference in Haskell. In
Proceedings of PLACES’10, EPTCS 69, pages 74–91, 2010.

Jane Street Developers. Core library documentation, August 2016. Available at https:
//ocaml.janestreet.com/ocaml-core/latest/doc/core/.

Naoki Kobayashi. Type systems for concurrent programs. In 10th Anniversary
Colloquium of UNU/IIST, LNCS 2757, pages 439–453. Springer, 2002. Ex-
tended version available at http://www.kb.ecei.tohoku.ac.jp/~koba/papers/
tutorial-type-extended.pdf.

Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the pi-calculus.
ACM Transactions on Programming Languages and Systems, 21(5):914–947, 1999.

Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme
Vouillon. The Objective Caml System, 2014. Available at http://caml.inria.fr/
pub/docs/manual-ocaml/.

Matthias Neubauer and Peter Thiemann. An implementation of session types. In
Proceedings of PADL’04, LNCS 3057, pages 56–70. Springer, 2004.

Luca Padovani. Deadlock and Lock Freedom in the Linear π-Calculus. In Proceedings
of CSL-LICS’14, pages 72:1–72:10. ACM, 2014. Extended version available at http:
//hal.archives-ouvertes.fr/hal-00932356v2/.

Luca Padovani. A Simple Library Implementation of Binary Sessions. Technical report,
2015. Available at https://hal.archives-ouvertes.fr/hal-01216310.

https://ocaml.janestreet.com/ocaml-core/latest/doc/core/
https://ocaml.janestreet.com/ocaml-core/latest/doc/core/
http://www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf
http://www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf
http://caml.inria.fr/pub/docs/manual-ocaml/
http://caml.inria.fr/pub/docs/manual-ocaml/
http://hal.archives-ouvertes.fr/hal-00932356v2/
http://hal.archives-ouvertes.fr/hal-00932356v2/
https://hal.archives-ouvertes.fr/hal-01216310

ZU064-05-FPR main 16 May 2017 17:0

A Simple Library Implementation of Binary Sessions 39

Luca Padovani. Context-Free Session Type Inference. Technical report, 2016. Available
at https://hal.archives-ouvertes.fr/hal-01385258.

Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes.
Mathematical Structures in Computer Science, 6(5):409–453, 1996.

Riccardo Pucella and Jesse A. Tov. Haskell session types with (almost) no class. In
Proceedings of HASKELL’08, pages 25–36. ACM, 2008.

John H. Reppy. Concurrent Programming in ML. Cambridge University Press, 1999.
Matthew Sackman and Susan Eisenbach. Session Types in Haskell: Updating Message

Passing for the 21st Century. Technical report, Imperial College London, 2008.
Available at http://pubs.doc.ic.ac.uk/session-types-in-haskell/.

Alceste Scalas and Nobuko Yoshida. Lightweight Session Programming in Scala. In
Proceedings of ECOOP’16, LIPIcs 56, pages 21:1–21:28. Schloss Dagstuhl, 2016.

Jesse A. Tov. Practical Programming with Substructural Types. PhD thesis, Northeastern
University, 2012.

Jesse A. Tov and Riccardo Pucella. Stateful Contracts for Affine Types. In Proceedings of
ESOP’10, LNCS 6012, pages 550–569. Springer, 2010.

Jesse A. Tov and Riccardo Pucella. Practical affine types. In Proceedings of POPL’11,
pages 447–458. ACM, 2011.

Vasco T. Vasconcelos and Peter Thiemann. Context-free session types. In Proceedings of
ICFP’16, pages 462–475. ACM, 2016.

Philip Wadler. Propositions as sessions. Journal of Functional Programming, 24(2-3):
384–418, 2014.

Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness.
Information and Computation, 115(1):38–94, 1994.

https://hal.archives-ouvertes.fr/hal-01385258
http://pubs.doc.ic.ac.uk/session-types-in-haskell/

ZU064-05-FPR main 16 May 2017 17:0

	Introduction
	Syntax and semantics of FuSe
	Types
	Types for FuSe
	From session types to FuSe types and back

	Type system
	Implementation
	The basics
	Runtime detection of invalid endpoint usages
	Generalised choices
	Support for distributed communications
	A monadic interface for FuSe primitives
	Performance comparison

	Related work
	Concluding remarks
	Supplement to Section 3
	Supplement to Section 4
	Subject reduction for expressions
	Subject reduction for processes
	Partial progress

