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Abstract 14 

In this paper a Fourier Transform Raman spectroscopy method to authenticate the wine provenience for food 15 

traceability applications was developed. In particular, due to the specific chemical fingerprint of the Raman 16 

spectrum, it was possible to discriminate different wines produced in the Piedmont area (North West Italy) in 17 

accordance with i) grape varieties, ii) production area and iii) ageing time. More than 300 samples from tens of 18 

different producers were analyzed in order to create a consistent training set and a chemometric treatment of raw 19 

spectra was applied. A discriminant analysis method was employed in the classification procedures, providing a 20 

classification capability (percentage of correct answers) of  90% in validation for grape analysis and 21 

geographical area provenance, whereas a classification capability of 84% was obtained for ageing time 22 
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classification. The present methodology can be successfully applied on raw materials without any preliminary 23 

treatment of the sample, providing a response in a very short time. 24 

 25 

Main text   26 

1. Introduction 27 

In order to preserve the quality of food products coming from particular geographical areas and to protect 28 

consumers against imitations and false information, the European Commission defined, via Regulations 29 

1151/2012, the labels Traditional Specialty Guaranteed (TSG), Protected Designation of Origin (PDO) and 30 

Protected Geographical Indication (PGI) (Regulation (Eu) No 1151/2012 Of The European Parliament And Of 31 

The Council of 21 November 2012 on quality schemes for agricultural products and foodstuffs). Quality labels 32 

play an important role in consumer behavior and give confidence about the origins and the quality of food. 33 

Labels assignment is an important market claim and it represents a valuable weapon to attest and justify the 34 

economic value of alimentary products. Traceability has become a very relevant concept when it is associated to 35 

edible products and it represents an essential tool to enhance traders and consumers’ confidence in the safety, 36 

quality, and authenticity of food.  37 

Unfortunately, food traceability procedures mainly involve tedious administrative documents, while scientific 38 

methodologies that objectively identify the authenticity of food would be preferable. According to this, scientific 39 

research is now focused on developing analytical methods to authenticate the geographical origin of aliments in 40 

a metrological way (Peres, Barlett, Loiseau and Montet, 2007) with the aim of linking food products with its 41 

distinctive features, such as ingredients, physical properties and production methods. Food traceability analysis 42 

are usually performed by means of several analytical techniques such as mass spectrometry for isotope ratio 43 

determination (Durante, Baschieri, Bertacchini, 2015), DNA based techniques, such as Polymerase Chain 44 

Reaction (PCR) (Pardo, 2014) and Nuclear Magnetic Resonance spectrometry (NMR) (Mazzei, Francesca, 45 

Moschetti, Piccolo, 2010). 46 

 In the last two decades stable isotope methodologies based on gas chromatography-isotope ratio mass 47 

spectrometry (GC-IRMS) and GC-pyrolysis-IRMS (Fronza, Fuganti, Graselli, Reniero et al 1998; Adam, 48 

Bartels, Christoph, Stempfl 1995; Misselhorn, Grafahrend, 1990) were successfully applied in the field of wine 49 

quality control due to the establishment of an official wine database for stable isotope parameters (EU 50 
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regulations 2670/90, 2347/91 and 2348/91) (Rossmann, 2001). As reported by Breas et al., (Bréas, Reniero, 51 

Serrini, Martin and Rossmann, 1994), a classification of wines from different European countries can be done by 52 

means of 13C/12C analysis of ethanol and 18O/16O determination of water, underlining the importance of the 53 

photosynthetic pathway as well as the environmental and climatological conditions of the vineyard.  Even if 54 

stable isotope methods provided consistent results which can be used for routine analysis of wines, it is not 55 

always simple to find a physical, chemical, or biochemical explanation for variations of the isotope ratios in 56 

natural substances and to establish a relevant database for statistical evaluation.  57 

DNA based technologies were also exploited in this field due to their specificity of analysis because they are 58 

strictly connected to the genotype (the inherited instructions that an organism carries within its genetic code) but 59 

they inevitably miss the stochastic significant epigenetic differences accumulating over time across cells 60 

(Petronis, 2010). Dordevic N et. al (2013) highlighted the need of new methods for a better geographical 61 

discrimination between samples, demonstrating that multivariate methods are superior to univariate approaches. 62 

Interesting alternatives or even complementary methods are represented by the NMR and vibrational 63 

spectroscopy techniques. Godelmann et al. (2013) analyzed about 600 German wines and demonstrated that 64 
1HNMR coupled with statistical data treatment can provide individual “fingerprint” of a wine sample, which 65 

includes information about variety, origin, vintage, physiological state, technological treatment, and other. The 66 

data fusion of NMR profiling and stable isotope data for wine analysis was also investigated and reported in 67 

literature with good results (Monakhova et. al. 2014). However, the main drawbacks of all the cited techniques, 68 

i.e. MS, NMR and DNA based techniques, are related to the elevated cost of the instruments, extensive sample 69 

pre-treatments and long time of analysis which often reduce the accuracy and precision of measurements. Since 70 

simple and rapid analytical methods are needed to meet the developing European labeling legislation, vibrational 71 

spectroscopy is emerging as a new powerful tool in authenticating food provenance. Vibrational spectroscopy 72 

techniques usually provide non-destructive analysis of the samples, fast collection times with none or minimal 73 

sample pre-treatments that reduce the total time of analysis and could support the development of reliable control 74 

procedures and screening methods for food traceability. Moreover, new modern and portable instruments with 75 

smart accessories were developed in the last years making these techniques more suitable for in line process 76 

monitoring and in situ analysis (Gallego, Guesalaga, Bordeu and Gonzàlez, 2011). These methods encompass 77 

absorption spectroscopy in the mid-infrared (MIR) and the near-infrared (NIR) for studying fundamental 78 

molecular vibrations and their harmonics (Bauer et al., 2008; Cozzolino, Dambergs, Janik, Cynkar, & Gishen, 79 
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2006; Cozzolino, McCarthy, & Bartowsky, 2012,Cozzolino D., 2014), and absorption spectroscopy in the ultra-80 

violet and visible (UV–vis) for probing electronic transitions (Acevedo, Jiménez, Maldonado, Domínguez, & 81 

Narváez, 2007; García-Jares & Médina, 1995; Harbertson & Spayd, 2006; Roig & Thomas, 2003; Urbano, 82 

Luque de Castro, Pérez, García-Olmo, & Gómez-Nieto, 2006). Besides, Raman spectroscopy, which is based on 83 

the inelastic scattering of a monochromatic light, provides a characteristic spectroscopic pattern, i.e. “molecular 84 

fingerprint”, of the analyzed organic compounds based on the vibrational modes of chemical bonds (Li-Chan, 85 

Griffiths and Chalmers, 2010;  Thygesen,. Løkke, Micklander and Engelsen, 2003). Moreover, Raman analysis 86 

can be easily done in aqueous media and through glass containers because both water and glass signals are very 87 

weak in the Raman spectrum (Schulz and Baranska, 2007; Yang, Irudayaraj 2001) and do not overlap signals of 88 

macro food components, such as proteins (Li-Cha, Nakai, Hirotsuka, 1994), lipids (Yang, Irudayaraj and  89 

Paradkar, 2005) and carbohydrates (Mathlouthi, Koenig, 1986), which can be revealed in a sensitive and specific 90 

way.  91 

Raman spectroscopy has recently demonstrated its value in food traceability for olive oil provenance and 92 

composition (Bernuy, Meurens, Mignolet and Larondelle, 2008), honey provenance (Özbalcia, Hakkı Boyacia, 93 

Topcua, Kadılarb, Tamerc, 2013; Paradkar and Irudayaray, 2001) and beers authenticity (Downey, 2009).  As 94 

regards alcoholic beverages, Raman spectroscopy was used for the quantification of the alcohol content in 95 

whisky, vodka and other spirituous beverages (Nordon, Mills, Burn, Cusick and Littlejohn 2005). The feasibility 96 

of exploiting Raman scattering to analyze white wines was also investigated in the last years (Meneghini et. al., 97 

2008). In particular, a very recent work from Coralie et.al (2014) demonstrated that the resonance condition of 98 

some chemical species present in wine, such as phenolic compounds, hydroxycinnamic acids and sugars, can be 99 

reached using lasers with different wavelengths in order to detect and analyze these species selectively.  100 

In this work we evaluated the possibility of using Raman spectroscopy coupled with a chemometric data 101 

treatment to discriminate different wines from Piedmont area (North West Italy) in accordance with grape 102 

varieties, production area and ageing time. In particular tests were performed on Nebbiolo, Dolcetto and Barbera 103 

wines that were chosen for their diffusion and their productive/economic relevancy on Italian wine market. The 104 

purpose of the work is to provide a statistically substantial classification methods based on a set of known 105 

responses (training set) through the chemometric treatment of data.  The work scheme was structured on three 106 

levels: at first, the classification of wines in accordance with the used grapes; secondly, the classification of 107 
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wines in accordance with the production area and finally the classification of wines in accordance with ageing 108 

time.  109 

 110 

2. Material and Methods  111 

2.1 Samples 112 

Study was performed on 315 samples of commercial wines obtained from Nebbiolo, Barbera and Dolcetto grape 113 

by different winemakers. For each grape variety, wines of different area and ageing time were used (Table 1). 114 

Among the total sample pool, more than 10 Protected Designation of Origin (PDO) wines were examined. The 115 

number of samples for each PDO wine was different according to winemakers and diffusion and inevitably 116 

limited by the availability of samples. All samples were furnished directly by producers and stored at +4°C until 117 

analysis. 118 

Tab.1 – Distribution of wines examined in accordance with grape, PDO and production area 119 

 120 

2.2 Raman measurements  121 

Raman spectroscopy was performed with a Thermo Scientific NXR FT-Raman Module Nicolet SeriesTM 122 

equipped with an InGaAs detector (ThermoFisher Scientific, Waltham, USA), a CaF2 beamsplitter and a 1064 123 

nm laser line. Raman spectra were collected using a laser power of 0.9 W in a spectral range from 200 to 4000 124 

cm-1 with a resolution of 4 cm-1. 256 scans were collected to obtain S/N ratio higher than 15. Samples were 125 

analyzed in 4 ml glass vials positioned vertically on a powered stage.  126 

2.3 Multivariate Analysis.  127 

The raw Raman spectra were subjected to Discriminant Analysis using TQ AnalystTM 8.0 software 128 

(ThermoFisher Scientific, Waltham, USA). Spectra were preprocessed using Savitzky-Golay smoothing filter 129 

(Savitzky, Golay, 1964) in order to remove of as much noise as possible without unduly degrading the spectral 130 

information. The spectral range to be analyzed was selected in such a way that the interference of the random 131 

variability of spectra is minimized and it does not provide spurious information to the classification model. 132 

Seven restricted spectral regions around Raman peaks are selected in order to optimize the classification result. 133 



 

 

6 

The frequency regions of spectra which do not contain any Raman peak (e.g. 800-600 cm-1 and 2800-1800 cm-134 

1) were excluded. In this way the worthless information is ignored and the best classes’ separation is obtained. 135 

The suitable number of PCs to be considered is choosen as the best compromise between the explained variance 136 

of each PC and the predictive capability of the model: when the cumulative variance reaches the plateau, further 137 

components could not provide useful information and they should be excluded, so that variables that just 138 

represent noise are not considered for classification.  Otherwise, some variables that explain a little variability 139 

shall not be excluded if they significantly improve the classification capability of the model (% of samples 140 

correctly classified). The presented chemometric models for wine classification were first validated through a 141 

leave-one-out cross-validation procedure during model optimization (mathematical pretreatment choise, 142 

significative PCs selection etc.). Finally, the optimized models were all validated through a cross validation 143 

procedure using exclusions sets made of five samples randomly chosen, the number of exclusion set is 144 

proportional to the total number of calibration samples. After calibration, this classification technique permits to 145 

calculate the unknown’s distance to a class center in terms of Mahalanobis distance (Mahalanobis, 1936) and to 146 

assign each unknown samples to the correct class. The basic idea on which Md is based is the fact that it contains 147 

an autoscaling process in itself and it overcomes the assumption of spherical distribution of sample points about 148 

the center of mass; therefore non-spherical distributions can be described as well. In the generalized formula for 149 

Md reported below, the observation are represented by x=(x1, x2, …xn) while µ=(µ 1, µ 2, … µ n) represents 150 

the observations’ mean. The apex T indicates the transposed matrix (x- µ). S-1 is the inverse of the covariance 151 

matrix of the observations. 152 

Md(x)=√(x-µ)TS (-1) (x-µ) 153 

If an ellipsoidal distribution is considered, then we would expect that the probability of the test point to belong to 154 

the set does not only depend on the distance from the center of mass, but also on the direction. (De 155 

Maesschalck,Jouan-Rimbaud, Massart, 2000). 156 

Statistical reliability of results will be widely discussed case per case in order to assess the effective 157 

classification capability of the proposed Raman method, even if an external set to be dedicated to the test set 158 

validation was not available. The work scheme of this study was divided into three consecutive steps: (i) 159 

discrimination according to grape; (ii) discrimination according to production area; (iii) discrimination according 160 

to ageing. 161 

 162 
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3. Results and Discussion 163 

Food systems are dynamic, chemically complex and generally heterogeneous matrices of large numbers of 164 

biological molecules. The chemical specificity, ease of sampling, rapidity of measurements and nondestructive 165 

nature of FT-Raman spectroscopy make it an attractive tool for food analysis. The chemical specificity of the 166 

Raman technique relies on the fact that different molecular bonds or groups of chemical bonds are identified by 167 

characteristic frequency-shifts in the incident light (Fig.1). For this reason, the very first step of compositional 168 

analysis of wine using FT-Raman is the attribution of characteristic frequency shifts observed in spectra to 169 

vibrational modes of molecular bonds (Table 1S in supplementary information). 170 

As Fig.1 shows, the large band ascribed to OH stretching at 3350 cm-1 is clearly visible in all the analyzed 171 

spectra. Besides, a minor band related to OH bending at 1700-1500 cm-1 can be noticed. The group of peaks 172 

between 3000-2800 cm-1 is due to the symmetric and asymmetric stretching of CHx bonds. Several other 173 

characteristic peaks of ethanol are present at a lower than 1500 cm-1 frequency. They are associated to several 174 

deformation modes of CHx as reported in Tab 1S available in supplementary information. (Mammone, Sharma, 175 

Nicol, 1980). All peaks of wine are slightly shifted in comparison with the pure ethanol peaks; this is due to the 176 

simultaneous presence of different organic species such as glycerol, acetaldehyde, organic acids, and 177 

polyphenols including flavonoids and non-flavonoids. At 1630 cm-1 a low intensity band is present in wine 178 

spectra. This band is characteristic of C=O stretching, a not very active Raman vibration.  The C=O peak could 179 

be attributed to several species present in the matrix (e.g. organic acids and flavonoids) whose carbonyl groups 180 

are characterized by slightly different vibration frequencies. Therefore, a quite broad signal is registered in this 181 

region of the spectra. 182 

The analyzed samples were chosen with the aim of representing a wide selection of the three selected wines and 183 

they were purchased by tens of different producers. Many samples are requested in order to represent the total 184 

variability of the system and to obtain a representative data set for the multivariate calibration. The Raman 185 

spectra of different wines are very similar to each other as it can be noticed in Fig. 1 where the spectra of 186 

Dolcetto, Barbera and Nebbiolo are compared. This explains why a univariate analysis would not be effective. It 187 

was decided to employ a multivariate approach to have a more complete interpretation of the characteristic 188 

pattern of spectroscopic signals. 189 

Fig. 1 190 
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From an oenological point of view the specific features of wines are the result of a synergic effect of several 191 

factors. The wine composition is very complex and the final organoleptic features are produced by the 192 

interaction of many chemicals, such as sugar, alcohol, acids and tannins that provide the bitter taste; for example 193 

the expression total acidity refers to the rough, tart and sour attributes of the wine which are evaluated in relation 194 

to how well the acidity balances out the sweetness and bitter components of the wine. During the course of 195 

winemaking and in the finished wines, acetic, butyric, lactic and succinic acid can play significant roles and all 196 

together define the characteristic acidity of the wine (Bellman, Gallander, 1979). In the same way, from a 197 

spectroscopic point of view, the final wine spectrum is the result of a synergic interaction of many factors and no 198 

one of them can be commented singularly. Literature is poor of interpretative analysis regarding Raman spectra 199 

of wine because of the complexity of the issue and only a chemometric analysis permits to extract the more 200 

interesting information and selective parameters to distinguish and attest the authenticity of different wine 201 

products. The chemometric approach used for the classification is a supervised classification method whose task 202 

is grouping a set of objects in such a way that objects in the same group (called a class) are more similar to each 203 

other than those belonging to other classes. In particular, the training data are given in the form of sets of spectra 204 

with their desired partitioning as a supervised method would suggest (Finley and Joachims, 2005). Different 205 

distance functions can be used in order to evaluate the distance between objects of the same class or the 206 

assignation to the correct class for an unknown object. In this case the Mahalanobis distance (Md) is used, as 207 

described in detail in Materials and Methods.  208 

Applying this concept to spectral data of wine, several classification models with good classification capability 209 

were obtained, as described in details in the following paragraphs (3.1; 3.2; 3.3). 210 

3.1 Discrimination in accordance with grape 211 

At first three classes of grapes (Nebbiolo, Barbera, Dolcetto) were defined. 185 Nebbiolo, 75 Barbera, 45 212 

Dolcetto wine samples were subjected to Raman analysis in order to constitute a substantial training set. The 213 

eigenanalysis attested that the selected 305 calibration standards contain sufficient variability for the method 214 

calibration. The spectral range was optimized as reported in Materials and Methods section. The optimized 215 

chemometric model shows a total explained variability of 99.34 % using 20 principal components (PCs); the 216 

number of principal components was optimized by considering the classification capability % ( the number of 217 

correctly classified samples during cross-validation) as a function of the PCs number. In particular, leave-one-218 
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out cross validation was reiteratively performed rising the number of considered PCs at each run and the 219 

percentage of correctly classified samples is plotted as a function of PCs number in figure 1S (see supplementary 220 

information), as well as the explained variance corresponding to each PC. The plot reported in figure 1S in 221 

supplementary information, is used to determine the best number of PCs, which corresponds to 20 in this case. In 222 

order to avoid the overfitting of data, the components that do not contribute significantly to cumulative explained 223 

variance and that not provide useful information for classification were excluded because they deal exclusively 224 

with experimental noise. 225 

As Figure 2 shows, the best optimized method misclassifies 13.1 % of 305 standards during leave-one-out cross 226 

validation process. The clouds of points representing the three classes are dense, meaning a high homogeneity 227 

within each class. The three clouds are also very close to each other and they partially overlap which is the cause 228 

of a misclassified percentage greater than 10 %. However, it should be taken into account that the disciplinary of 229 

production of some wines allows a small percentage of other wines to be introduced (for example, Barbera wine 230 

can contain up to 15 % of Nebbiolo grape in accordance with its disciplinary); this could likely represent one of 231 

the reasons of the closeness of sample classes which causes the misclassification. A cross validation test was 232 

performed (and repeated 5 times) in order to attest the real capability of the calibrated model to distinguish wines 233 

according to the grape. 100 spectra (1/3 of the number of calibration standards per each class randomly chosen) 234 

were used by groups of five for the cross validation of the model. During this leave-five-out validation 86 ± 2 % 235 

of unknown samples provided a correct answer. Among the misclassified samples, 9 % belong to Barbera class, 236 

2 %   belong to Dolcetto class and 3 %   belong to Nebbiolo class on average. It shall also be noticed that the 237 

percentage of misclassified samples during leave-five-out cross validation method is comparable with leave-one-238 

out cross validation results (14 % of misclassified with 20 PCs) reached during model optimization. 239 

Subsequently 10 new Nebbiolo samples were provided and they were used as a little external test set which 240 

provided 90 % of correct answers. 241 

Fig. 2 242 

The loadings profiles corresponding to principal component from 1 to 10, which are the most interesting for a 243 

qualitative description, are shown in fig. 3. From a careful analysis of them it is possible to determine which 244 

organoleptic and compositional features are responsible for the classification. However, it must be taken into 245 

account that a synergic cooperation of variables lead to the class separation and none of them can be considered 246 

separately from the others. For example, alcohol content of a wine is a key parameter for its oenological 247 
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characterization and it also plays an important role in the spectroscopic analysis in order to depict a faithful 248 

portrait of each sample. The ethanol Raman peaks are the most easy to be individuated in a Raman spectrum of 249 

wine and they can be identified in most of the calculated PCs as well. It is possible to affirm that this aspect 250 

plays a crucial role in wine classification. Another important feature that could help in classification is the sugar 251 

content. Since the sugar content of a wine depends on the advancement of the alcoholic fermentation, a founded 252 

hypothesis is the anti-correlation between the sugar and the alcohol content depending variables.  PC8 and PC9 253 

reveal that a significant variability of data is recognized during the statistical calculation in the spectral region 254 

around 3500 cm-1 and 500 cm-1 where the typical carbohydrates peaks can be found. The scores plot built in 255 

accordance with the above mentioned PCs reveals that the carbohydrate content varies from sample to sample 256 

without any correlation with the Dolcetto, Barbera or Nebbiolo belonging class. The difficulty of defining a 257 

coherent variability in this case lies in the fact that all the considered wines are dry wines.  258 

Another important parameter in the Raman characterization of a biological matrix is the fluorescence effect. The 259 

colored substances contained in wine, such as anthocyanins and polyphenols in general, are directly related with 260 

the fluorescence effect observed during spectra acquisition. Fluorescence is generally an undesired effect in 261 

Raman analysis because of the risk of covering the interesting signals in the spectrum. It can also influence the 262 

statistical analysis of wine spectra in the classification process. Indeed, the slope of the baseline of PC1, and the 263 

wide band around 2000 and 1200 cm-1 of PC6 and PC7 attest that the fluorescence represents a significant 264 

variable for the examined system. This behavior is even more evident by looking at the disposition of data 265 

clouds as a function of PCs influenced by fluorescence, where it can be clearly seen that the fluorescence effect 266 

does not represent a negligible variable. However, the classification of wines is not impaired by the fluorescence 267 

contribution, whose success is witnessed not only by the satisfying modeling of training set but also by the above 268 

mentioned external validation set.  269 

Fig. 3 270 

The present data reveal that synergic interaction among variables represents the key to solve an apparently very 271 

complicated problem. Considering variables singularly it would not be possible to describe the huge amount of 272 

data in a significant way, but taking them all together a good separation of the three selected classes is produced. 273 

Also dual class models were optimized and it turned out that the most difficult wines to separate are Barbera and 274 

Dolcetto wines whereas Nebbiolo sets oneself up a specific well distinguished class.  275 
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3.2 Discrimination in accordance with production area 276 

After that the capability of Raman spectroscopy to separate wines according to the grape was demonstrated, a 277 

method to attest the geographical provenance of wine within the same grape class was developed. In order to 278 

understand the importance of the geographical area where a wine is produced, it is good to know that it exists in 279 

oenology a technical expression to intend the particular combination of elements such as climate, soil and 280 

regional knowhow of winemaker, which defines the uniqueness and unrepeatability that characterize a labeled 281 

wine, this is the French word Terroir.  282 

The study was focused on two wines in particular, Dolcetto and Nebbiolo. Within Dolcetto class (i) Dolcetto 283 

d’Alba Doc and (ii) Dolcetto di Dogliani Docg were chosen for experiments. The production area of Dolcetto di 284 

Dogliani is situated in the southernmost part of Piedmont whereas the Dolcetto d’Alba region is situated in a 285 

northern part of Langhe territory as it can be seen in the map inlet of Fig. 4 a. The Dolcetto area is the highest of 286 

the Langhe territory (from 250 to 700 m above sea level) and it characterized by a fresh climate because of the 287 

proximity to Appenino Ligure and Alpi Marittime mountains chain. This represents the best climate condition 288 

for Dolcetto wine production because it makes the grape maturation process slower. In this geographic area the 289 

soil varies from generous red soil to sandy and dry soil (regione.piemonte.it); the best soil type for the Dolcetto 290 

production is white, deep, clayey and calcareous. Dolcetto di Dogliani and Dolcetto d’Alba wines are produced 291 

according to a strict disciplinary that declare in a very precise way the mandatory geographical area and the 292 

variety of grape permitted. Also, the winemaking procedure and the final organoleptic features are usually 293 

controlled through a qualified panel test. Dolcetto d’Alba and Dolcetto di Dogliani wines have very similar optic 294 

and organoleptic features and even for expert sommelier it could be very difficult to distinguish the geographic 295 

origin of the twos at taste. The Raman analysis coupled with chemometric provided a good identification method 296 

for the classification of the samples according to the area of production as shown in the Cooman’s plot in Fig. 4 297 

a. 298 

For Nebbiolo wine two classes were set as well: (i) Langhe (including Nebbiolo d’Alba, Barolo, Barbaresco); (ii) 299 

Novara&Carema (including Colline Novaresi, Coste della Sesia, Ghemme, Gattinara and Carema). The 300 

geographical areas involved are represented in the Piedmont map in the inlet of Fig 4 b. Nebbiolo wine is an 301 

ancient red mono-vine wine. His tracks in Piedmont predate the seventeenth century and it has always thrived 302 

here because of its adaptability to cold climates (langhevini.it). It is a noble Italian vine par excellence, from 303 

which derive the majority quality red wines for long ageing in the north-west of Italy. This wine reaches his best 304 
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after few years from the production because of the territory in which it is produced. The geographic area 305 

designated for the production of Nebbiolo is well specified in its own disciplinary. The soil should be clayey, 306 

calcareous and acidic or a combination of the three; the territory must by hilly (at least 650 m above sea level) 307 

and sunny (regione.piemonte.it). The chemometric analysis of Nebbiolo spectra provided satisfying results for 308 

the classification of Nebbiolo from Langhe and from Novara&Carema territory as it can be noticed observing the 309 

Cooman’s plot in Fig. 4b. As commented before, the whole structure of the spectra of different wines is 310 

responsible of the class separation. The number of considered PCs (6 for Dolcetto classification and 14 for 311 

Nebbiolo classification) represents the best compromise between explained variance and classification 312 

capability, as commented in paragraph 3.1 (Fig 1S b, c available in supplementary information). Also in this case 313 

the only way to achieve significant results consists in a multivariate approach. The appreciable classification 314 

capability higher than 90 % are obtained for the two classification models and the low number of misclassified 315 

standards permits to conclude that Raman spectroscopy is able to discriminate wine provenance when a 316 

consistent calibration is previously performed. 317 

Fig. 4 318 

The cross validation test provided satisfying results for both calibrated models. 10 samples were randomly 319 

chosen (about 30 % of the number of calibration samples from each class) and they were used by couples for 320 

validating the Dolcetto model with an error of 8 %, all of the misclassified samples belong to “Dolcetto d’Alba” 321 

class. The leave-five-out cross-validation for Nebbiolo was performed using 65 spectra, five by five randomly 322 

chosen with respect to the total number of calibration samples in each class. In this case, 7 % of them were 323 

misclassified. In particular, 1 of them is from Alba, while 5 are from the northern part of Piedmont 324 

(Novara&Carema class). Validation procedure was repeated 5 times for both DA methods attesting a standard 325 

deviation of classification capability of 1 % and 2 % respectively. 326 

3.3 Discrimination in accordance with age 327 

As a third step, it was investigated the possibility to recognize aged from non-aged oenological products. Many 328 

wines improve in quality during barrel and bottle storage. Such wines eventually reach their best features, and 329 

with further ageing begin to decline. During the ageing period, the acidity decreases, additional clarification and 330 

stabilization occur as well as the precipitation of undesirable substances, and complex compounds affecting 331 

flavor and aroma are formed. Wines are usually aged in wooden barrel made of oak, allowing oxygen to enter 332 
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and water and alcohol not to escape. Wine simple phenols are further transformed during wine ageing into 333 

complex molecules formed by the condensation of proanthocyanidins and anthocyanins, which explains the 334 

change of color of aged wines. As the wine ages, anthocyanins react with other acids and compounds such as 335 

tannins, pyruvic acid and acetaldehyde which change the color of the wine in "brick red" hues.  336 

One of the most interesting comparisons that can be performed considering piedmont’s wines concerns Barolo 337 

and Barbaresco wine. They are both produced with Nebbiolo grape and follow a mono-vine strict production 338 

protocol. What makes a Barolo wine different from a Barbaresco wine is essentially the ageing time: Barbaresco 339 

is at least 26 months aged whereas Barolo is at least 38 months aged. In this study 56 samples of Barolo and 24 340 

samples of Barbaresco were analyzed by Raman spectroscopy and the collected data were processed by 341 

discriminant analysis, as previously described. The statistical separation of the two different aged wines 342 

produced positive results by considering 9 PCs, as shown in fig. 5.  343 

Fig. 5 344 

Also in this case a cross validation of the calibrated model was performed. 30 spectra of unknown samples were 345 

subjected to analysis by groups of five. The validation procedure was repeated 5 times and it provided 84 ± 4 % 346 

of correct answer on average. Among the 16 % wrongly classified, 80 % was Barolo and 20 % was Barbaresco.  347 

4. Conclusions 348 

In this paper it was demonstrated that Raman spectroscopy coupled with chemometric analysis can play a 349 

relevant role in the authenticity of wine, providing positive results in the recognition of mono-vine wines in 350 

terms of grape (validation test provided reliability of 93%), geographical provenance (reliability higher than 351 

90%) and ageing time (reliability higher than 80%). One of the biggest advantage of the proposed method is the 352 

direct analysis of wine through the glass container without any pretreatment and purification process. These 353 

advantages, together with the rapidity of data collection, make Raman Spectroscopy particularly interesting for 354 

the prevention of wines fraud and for the control procedures necessary to the assignment of quality labels. The 355 

common drawback of Raman spectroscopy analysis of food matrices, such as the difficult spectra interpretation 356 

are overcome thanks to user-friendly software which allow sophisticated chemometric methods to be elaborated 357 

by treating a large amount of data. The chemometric identification of variability between the different classes 358 

hits the target: wine differentiation in accordance with grape, geographical origin, and ageing time was 359 

successfully performed using a Raman spectrometer. Even if a dedicated test set constituted by external samples 360 

should be subjected to analysis in order to attest classification capability of the proposed method in a real case, 361 
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this proof of principle aims at demonstrating that a multivariate calibration procedure can provide consistent 362 

classification results when a substantial calibration set is subjected to spectroscopic analysis, even if the matrix is 363 

complex as wine samples are. The more specific and sensible Raman analysis of wine is, the more Raman would 364 

be exploitable for the single wine producer certification. The application of Raman spectroscopy to distinguish a 365 

single wine producer will be the next challenge, with a higher impact in commercial field.  366 
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FIGURE CAPTIONS 487 

Figure 1–: Dolcetto d’Alba PDO (100% Dolcetto grape) (green spectrum), Barbera d’Alba PDO (minimum 85% Barbera 488 

grape) (red spectrum) and Barolo PDO (100% Nebbiolo grape) (black spectrum). 489 

Figure 2– Cooman’s plot for Nebbiolo, Barbera, Dolcetto classification model calculated using Discriminant 490 

Analysis. 491 

Figure 3– Loadings profiles of the first 10 PCs of the Nebbiolo, Barbera, Dolcetto classification model 492 

calculated through discriminant analysis.    493 

Figure 4– a) Geographical representation of Dolcetto d’Alba and Dolcetto di Dogliani wine production areas. 494 

Cooman’s plot and statistical data of DA calibration. b) Geographical representation of Nebbiolo d’Alba and 495 

Nebbiolo di Novara & Carema wine production areas. Cooman’s plot and statistical data of DA calibration.  496 

Figure 5– Cooman’s plot of Barolo and Barbaresco classification model and statistical results of calibration.  497 
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