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Abstract. Recently some novel strategies have been proposed for train-
ing of Single Hidden Layer Feedforward Networks, that set randomly the
weights from input to hidden layer, while weights from hidden to output
layer are analytically determined by Moore-Penrose generalised inverse.
Such non-iterative strategies are appealing since they allow fast learning,
but some care may be required to achieve good results, mainly concern-
ing the procedure used for matrix pseudoinversion. This paper proposes a
novel approach based on original determination of the initialization inter-
val for input weights, a careful choice of hidden layer activation functions
and on critical use of generalised inverse to determine output weights.
We show that this key step suffers from numerical problems related to
matrix invertibility, and we propose a heuristic procedure for bringing
more robustness to the method. We report results on a difficult astro-
nomical image analysis problem of chromaticity diagnosis to illustrate
the various points under study.

Keywords: Pseudoinverse matrix, Weights initialization, Supervised
learning.

1 Introduction

In the past two decades, single hidden layer feedforward neural networks (SLFNs)
have been one of the most important subject of study and discussion among neural
researchers. Methods based on gradient descent have mainly been used, although
defining different learning algorithms; among them there is the large family of tech-
niques based on backpropagation, widely studied in its variations [1]. The start-up
of these techniques assigns random values to the weights connecting input, hidden
and output nodes, these weights are then iteratively adjusted.

In any case, gradient descent-based learning methods are typically slow, fre-
quently require small learning steps, and are subject to convergence to local
minima. Therefore, many iterations may be required by such algorithms in or-
der to achieve an adequate learning performance, and many trials are required
to avoid poor local minima.

Some non iterative procedures based on the evaluation of generalized pseu-
doinverse matrices have been recently proposed as novel learning algorithms for
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SLFNs: among them the method to improve performance of multilayer percep-
tron by Halawa [2], the extreme learning machine (elm) [3] and some studies more
application oriented [4,5,6]. Usually, input weights (linking input and hidden lay-
ers) are randomly chosen, and output weights (linking hidden and output layers)
are analytically determined by the Moore-Penrose (MP) generalized inverse (or
pseudoinverse). These theoretically appealing methods have many interesting
features among which is their non iterative nature, that makes them very fast,
but some care may be required because of the known numerical instability of
the process of pseudoinverse determination (see [7]).

This paper presents a deep investigation on a few major issues of pseudo-
inversion-based learning of SLFN’s and on related numerical problems; we put
in light that this technique can not be used without a careful analysis, because
of the eventual presence of almost singular matricies whose pseudoinversion can
cause instability and consequent error growth. We also suggest a method based
on threshold tuning to give greater stability to solutions.

We first recall the main ideas on SLFN learning through matrix pseudoin-
version in section 2. In section 3 we present the main methods to compute out-
put weights and their possible issues. In section 4 we describe the astronomical
problem of chromaticity diagnosis through image analysis. Finally in section 5
we propose a new initialization criterion for input weights, we compare various
ways of evaluating pseudoinverse and discuss results and performance trends.

2 How to Train Weights by Pseudoinversion

A standard SLFN with P inputs, M hidden neurons, Q output neurons, non-
linear activation functions φ on the hidden layer and linear activation functions
otherwise, computes an output vector o = (o1, ..., oQ) from an input vector
x = (x1, ..., xP ) according to:

ok = bOk +
M∑

i=1

wk,iφ(ci · x+ bHi ) k = 1, · · ·Q (1)

where the vector ci denotes the weights connecting input units to hidden neuron
i, wk,i denotes the weight linking the hidden neuron i to the output neurons k,
bOk and bHi denote biases for output and hidden neurons.

Considering a dataset of N distinct training samples of (input, output) pairs
(xj , tj), where xj ∈ �P and tj ∈ �Q, learning a SLFN aims at producing the
desired output tj when xj is presented as input, i.e. at determining weights w,
c, and biases b such that:

tkj = bOk +

M∑

i=1

wkiφ(ci ·xj+bHi ) =

M+1∑

i=1

wkiφ(ci ·xj+bHi ) k=1, · · ·Q j=1, · · ·N (2)

We made the assumptions φ(cM+1 ·xj + bHM+1) = 1 and wk,M+1 = bOk to include
the bias terms in the sum; in the following we will deal with a generic number M
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of hidden neurons to simplify notation. The above equations can thus be written
compactly in matrix form as

T = Hw, (3)

where:

w =

∣∣∣∣∣∣∣

wT
1
...

wT
M

∣∣∣∣∣∣∣
M×Q

T =

∣∣∣∣∣∣∣

tT1
...
tTN

∣∣∣∣∣∣∣
N×Q

H =

∣∣∣∣∣∣∣

φ (c1 · x1 + b1) · · · φ (cM · x1 + bM )
...

. . .
...

φ (c1 · xN + b1) · · · φ (cM · xN + bM )

∣∣∣∣∣∣∣
N×M

(4)

H is the hidden layer output matrix of the neural network; the i-th column of
H is the i-th hidden node output with respect to inputs x1,x2, · · ·xN . In most
cases of interest, the number of hidden nodes is much lower than the number of
distinct training samples, i.e. M << N , so that H is a non-square matrix; in
this case a least-squares solution is searched, determining c, b, w such that the
following cost functional is minimized:

ED =
N∑

j=1

Q∑

k=1

(
tkj −

M∑

i=1

wkiφ(ci · xj + bi)

)2

= ||Hw−T||2. (5)

As stated above, gradient-based iterative learning algorithms, that require to
adjust input weights and hidden layer biases, are generally used to search the
minimum of ||Hw−T||2.

The least-squares solution w∗ of the linear system is then (see [8])

w∗ = H+T, (6)

where H+ is the Moore-Penrose pseudoinverse of matrix H.
The solution w∗ has some important properties, in fact it is one of the least-

squares solutions of the general linear system (3), hence it reaches the smallest
training error. Besides, it has the smallest norm among all least-squares solutions
and it is unique.

Huang et al. [3] proved that, contrarily to what happens in traditional training
algorithms, input weights and hidden layer biases of a SLFN do not need to be
adjusted, but they can be randomly assigned. In doing so, SLFN output weights
can be simply considered as the solution of a linear system and analytically de-
termined through generalized inversion (or pseudoinversion) of the hidden layer
output matrix, assuming that hidden neurons activation functions are infinitely
differentiable. These ideas gave rise to an algorithm, which is extremely fast be-
cause it works in a single pass. Besides, pseudoinversion provides the smallest
weights norm solution: this point is quite relevant, since, according to Bartlett’s
theory [9] the smaller is the norm of weights, the better generalization perfor-
mance is usually achieved by the network.

3 Pseudoinverse Computation

Hereafter we address the main critical issue which concerns learning of output
layer weights by pseudoinversion.
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Several methods are available, (see e.g. [10]), to evaluate the Moore-Penrose
pseudoinverse matrix: in particular, the orthogonal projection (OP) method can
be used when HTH is nonsingular, so that

H+ = (HTH)−1HT (7)

but it is known that this method is affected by severe limitations when the ma-
trix HTH is almost singular. In this case, the computation of the pseudoinverse
is highly unstable, and consequently the product H+H is potentially much dif-
ferent from the unit matrix. A possible solution consists in the addition of a
regularization term to the cost functional (5)

E = ED + λEW (8)

where λ is the regularization coefficient that controls the relative strength of the
data-dependent error ED and the regularization term EW . For L2 regularization
the term EW usually takes the form EW = 1

2w
Tw, so that the cost functional

(5) becomes:

E = ED+λEW =
1

2

N∑

j=1

Q∑

k=1

⎛

⎝
(
tkj −

M∑

i=1

wkiφ(ci · xj + bi)

)2

+
λ

2

M∑

i=1

|wki|2
⎞

⎠ (9)

With this approach, i.e. regularised OP (ROP), the solution (6) becomes:

w∗ = (HTH+ λI)−1HTT. (10)

A different approach consists in evaluating the singular value decomposition
(SVD) of H, H = USVT (see for instance [11]). UN×N ,VM×M are unitary
matrices and SN×M has elements σij = 0 for i �= j and σii = σi for i = j, with
σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0, p = min {N,M}; the elements σi are the singular
values of the decomposition.

We can also define the pseudoinverse matrix H+ through the SVD of H (see
[7] for more details) as:

H+ = VΣ+UT (11)

where Σ+M×N has elements σ+
ij = 0 for i �= j and σ+

ii = 1/σi for i = j. If
σ1 ≥ σ2 ≥ · · · ≥ σk > σk+1 = · · · = σp = 0, the rank of matrix H is k and the
inverses of the p− k zero elements are replaced by zeros.

Also, this method may exhibits some problems in the presence of almost
singular matrices because of the presence of very small singular values σi, whose
numerical inversion may cause instability in the algorithm.

In section 5 we will therefore propose a solution through the introduction of a
cut-off threshold, acting as a sort of ’regularisation’ that stabilises the algorithm.

4 The Astronomical Problem

Astrometry, i.e. the precise determination of stellar positions, distance and mo-
tion, is largely based on imaging instrumentation fed by telescopes operating
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in the visible range. The measured image profile of a star however depends on
its spectral type, i.e. the emitted light distribution as a function of frequency,
so that its measured position appears affected by an error called chromaticity.
Chromaticity was identified for the first time [12] in the data analysis of the
space mission Hipparcos of the European Space Agency (ESA).

The chromaticity issue becomes even more important for the current Euro-
pean Space Agency mission Gaia [13] for global astrometry, aiming at much
higher precision and approved for launch in 2013.

The detection and correction of chromaticity in different conditions has been
addressed in recent years [14,15]; to this purpose, a single-hidden layer feedfor-
ward neural network (SLFN), trained by a classical BP algorithm, was used to
solve this diagnosis task.

Each image is first reduced to a one-dimensional signal s(x) along the single
measurement direction of Gaia, by integration on the orthogonal direction, also
to reduce the data volume and telemetry rate.

With respect to our previous studies, we also adopt as input to the neural
network processing a more convenient set of statistical moments Mk for image
encoding:

Mk =
∑

n

(xn − xCOG)
k · s (xn) · sA (xn) , (12)

where s (xn) is the above mentioned signal, sA (xn) is the signal from an ideal
instrument, and xCOG is the signal barycenter.

Chromaticity can be more conveniently defined using the concept of blue (ef-
fective temperature T = 30, 000K) and red (T = 3, 000K) stars, in particular
it is the barycenter displacement between them, and this is the neural network
target. Correct diagnostics allows effective correction of this kind of error, there-
fore a good approximation by the neural network results in a small residual
chromaticity after neural processing.

The 11 neural network inputs are the red barycenter and the moments of red
and blue stars from Eq. 12 (k = 1, · · · , 5), computed for each instance.

We have a total of 13000 instances, built according to the above prescriptions,
and split in a training set of 10000 instances and a test set with 3000 instances.
The data set was provided by the Astrophysical Observatory of Turin of the
Italian National Institute for Astrophysics.

5 Experimental Results on Chromaticity Diagnosis

We investigate in this section on the one hand the influence of activation func-
tions choice and on the other hand the importance of procedures used for eval-
uating the pseudoinverse. As an important result, we further put in evidence a
numerical problem encountered dealing with singular value decomposition, that
may lead to poor performance and for which we propose a solution that increases
the robustness of the method, allowing it also to reach better performance with
respect to classical backpropagation.
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We investigate neural networks with 11 input neurons corresponding to the
11 statistical moments describing each image, 1 output neuron and a number
of hidden neurons varying from 50 to 600. For each initial setup, the number
of hidden nodes has been gradually increased adding one node each time and
average results are computed over 10 simulation trials for each selected size of
SLFN. All the simulations are carried out in the Matlab 7.3 environment.

The use of sigmoidal activation functions has recently been subject to debate
because they seem to be more easily driven towards saturation due to their
non-zero mean value [16]; hyperbolic tangent seems to be less sensitive to this
problem, therefore we utilize this one. Besides, in the perspective of mitigating
saturation issues, we propose a uniform random choice of input weights in the
range (−1/

√
M, 1/

√
M), where M is the number of hidden nodes. This links

the size of input weights, and therefore of input values to hidden neurons, to the
network architecture, thus forcing the use of the almost linear central part of the
hyperbolic activation function when exploring the performance as a function of
an increasing number of nodes. Because for the hyperbolic tangent this part is
centred on zero the presence of this factor contributes also to decrease hidden
neurons outputs.

The technique we propose, named Hidden Space Related Pseudoinversion
(HSR-Pinv), combines together this choice of initialization intervals and ac-
tivation functions with the pseudoinverse evaluation method described by eq.
(11). It is compared with the commonly used technique that initialize weights
uniformly in the interval (−1, 1), and employs sigmoidal activation functions
(named σ-SVD).

For the sake of comparison, we evaluate the pseudoinverse matrix using the
different methods of evaluation presented in section 3, i.e. OP method, described
by eq.(7), and ROP method described by eq.(10).

The performance reached by a standard SLFN neural network, with hyper-
bolic tangent as hidden neuron activation function trained using the backprop-
agation algorithm is the reference result. We initialized NN weights randomly
according to a uniform distribution, looking for the minimum value of RMSE
when the number of hidden nodes is gradually increased from 10 to 200. This
range was selected according to the following three main reasons. On one side,
previous investigations [3] show that the limiting performance of SLFN trained
by backpropagation is achieved with a lower number of hidden neurons with re-
spect to pseudoinversion methods. Besides, we trained some different models by
varying the learning parameter η in the range (0.1, 0.9), as shown for a few cases
in Fig. 1 (left), and the resulting RMSE level appears to reach an asymptotic
value for all values of η quickly, using only a few ten hidden neurons. Finally,
the iterative nature of backpropagation results in a heavy computational load,
which also depends on the SLFN size.

Since we used a sufficiently large dataset for training and no overfitting arose,
best results are achieved without the need for a regularization term, and learning
consists then in minimizing the cost functional defined by eq. (5). With such a
setting the best RMSE obtained is 3.81, with 90 hidden neurons.
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Results are reported in Table 1. We record in the first row the best perfor-
mance i.e. the best mean value over 10 simulation trials for all methods. For each
tabulated value, the corresponding number of hidden neurons M∗ used in the
simulation is reported on the nearby column. The corresponding standard devi-
ations are recorded in the second row and in the third row there is the optimal
performance, i.e. the minimum value over 10 simulation trials.

Table 1. Comparison of performance on the test set

Method: HSR-Pinv M∗ σ-SVD M∗ ROP M∗ OP M∗

Mean RMSE 1.77 573 8.52 88 7.69 90 9.43 60

St. Dev. 0.73 573 2.54 88 2.28 90 3.91 60

Min. RMSE 0.81 348 1.51 448 4.83 90 6.45 60

We remark that the best performance, in terms of both mean and minimum
RMSE, is achieved by our proposedHSR-Pinv technique (first column). We also
verified that the difference between HSR-Pinv mean RMSE value and the value
obtained with backpropagation is significant within the 99% confidence interval
and that the difference between HSR-Pinv min. RMSE value and σ-SVD min.
RMSE value is significant within the 80% confidence interval.

Besides, our proposed HSR-Pinv technique achieves smaller variance, mean-
ing a better behaviour with respect to over-fitting and it appears to be more
able to take advantage of a larger hidden layer.

Fig. 1 (right) gives more insights on the evolution of the performance with the
number of hidden units, showing the mean RMSE trend vs. number of hidden
nodes (solid line); it is interesting to note that there is an error peak for a number
of hidden neurons approximately equal to 250.

This error peak is related to the presence of singular values close to zero
in matrix S, as discussed in section 3. This correlation is put in evidence by
plotting also the ratio of the minimum singular value and the Matlab default
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Fig. 1. Left: RMSE vs. number of hidden neurons for backpropagation training. Right:
Mean RMSE vs. number of hidden neurons, and threshold ratio (logarithmic units).
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threshold, below which singular values are considered too small (dotted line,
using logarithmic units). The ratio approaches unity in the peak region.

This fact has potentially dramatic effects on performance, and must therefore
be taken into account when SVD is used to evaluate H+, mainly because, as
it happens in this case, the best performance can be reached with a number
of hidden neurons larger than this critical dimension; the existence of this phe-
nomenon has therefore to be known to avoid to early stop training in presence
of error growth.

As a novel strategy to treat this problem we suggest a careful tuning of the
threshold. We selected as a new threshold the mean value of the smallest singular
values obtained over the 10 trials when using a hidden layer with 180 hidden
neurons, because this is approximately the dimension of hidden neuron space
when RMSE starts to increase.
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Fig. 2. Left: Mean RMSE vs. number of hidden neurons with threshold tuning. Right:
Statistical analysis of parameter space

The effect of such a cut-off in fact is a sort of regularisation that provides
a significant improvement in the method robustness, as can be seen from the
relevant reduction of error peak, at the expense of a slight increase of RMSE
values, as shown in Fig. 2 (left). Since the performance (mean RMSE = 4.12,
St. Dev. = 0.83, min RMSE = 1.15) remains quite attractive, threshold tuning
appears to be an interesting option. The above results show a clear advantage of
the proposed strategy over standard training for SLFN. We provide some hints
for a better understanding of such a phenomenon.

The actual model learning includes many random initialisations, at fixed net-
work size, followed by the determination of corresponding output weights; a
possible viewpoint is to keep the one that yields the best results, i.e. the optimal
value recorded in the last row of Table 1.

Such a training phase, based on multiple random choices of weights, can be
supposed to explore more extensively the parameter space, with respect to the
trajectories followed by backpropagation algorithm, that develop continuously
from a single random starting point. Yet this approach is reasonable provided
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that the number of trials, i.e. the number of different random extractions and
output weights evaluations, remains limited.

We verified the presence in the parameter space of many good solutions that
can be reached also with a relatively small number of initial random choices. We
first performed a set of 1000 different training trials. Then for a given subset
size s, ranging from 10 to 200, we randomly built 100 subsets each containing
s trials among the initial 1000 cases, in order to achieve statistical information.
We then selected in each subset the minimum value of test error, and evaluated
mean values and standard deviations of the distributions of such minima over
the 100 subset instances. The test results are summarised in Fig.2 (right).

As expected, the mean value of the error distribution decreases with increasing
number of trials; also, the range of variability decreases quickly, meaning that a
limited number of trials is indeed required to attain good results, i.e. close to the
best case. In our experiments, 100 trials are enough to reach an almost optimal
performance, while 10 experiments already provide very good average results.
This clearly demonstrates the method reliability, since good results are obtained
even with a limited number of trials.

6 Conclusions

Starting from emerging strategies for training SLFN’s using non iterative learn-
ing schemes, this paper proposes a novel approach based on original determina-
tion of the initialization interval for input weights, a careful choice of hidden layer
activation functions and on prudent use of SVD to determine output weights.

We test this approach on a difficult astronomical regression problem, showing
that we reach the best performance with respect to pseudoinversion by orthog-
onal projection, with or without regularization, and classical backpropagation.

We also put in evidence the presence of error peaks with increasing number
of hidden units. We validate the hypothesis that this trend is due to numerical
instability and we propose the adoption of threshold tuning in the SVD context
in order to reduce the effects of singular values related peaks, to obtain a more
robust learning scheme while still reaching very good results.

Acknowledgements. The activity was supported by Fondazione CRT, Torino,
and Università degli Studi di Torino in the context of the World Wide Style
Project.
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