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Semilinear pseudodifferential equations in
spaces of tempered ultradistributions

Marco Cappiello , Stevan Pilipovi¢ ® and Bojan Prangoski ©

Abstract

We study a class of semilinear elliptic equations on spaces of tempered ul-
tradistributions of Beurling and Roumieu type. Assuming that the linear part
of the equation is a pseudodifferential operator of infinite order satisfying a suit-
able ellipticity condition we prove a regularity result in the functional setting
above for weak Sobolev type solutions.

0 Introduction

In this paper we consider a class of semilinear equations and prove a result of regular-
ity in the spaces of tempered ultradistributions of Beurling and Roumieu type. These
distributions can be regarded as a global counterpart on R¢ of the local ultradistri-
butions studied by Komatsu [16, 17, 19] and they represent a natural generalization
of non-quasi-analytic Gelfand-Shilov type ultradistributions, cf. [15, 22, 23]. As well
as the Gelfand-Shilov spaces, they are also a good functional setting for pseudodiffer-
ential operators of infinite order, namely with symbol a(z, ) admitting exponential
growth in both z and &, see [2, 3, 25]. Here we want to apply the pseudodifferential
operators introduced by the third author in [25] to the study of semilinear equations.
In the recent paper [10], we considered the case of linear equations and proved a
result of hypoellipticity via the construction of a parametrix. To treat semilinear
equations, we need to adopt a more sophisticated method based on suitable com-
mutator and nonlinear estimates. The same method had been previously used in
[1, 4,5, 6, 7, 8,9, 13] to obtain results of regularity in Gelfand-Shilov spaces and
in spaces of analytic functions for differential and pseudodifferential operators of
finite order. With respect to the previous results, here we consider more in general
equations in which the linear part is a pseudodifferential operator of infinite order.
Moreover we allow very general nonlinear terms given by infinite sums of powers of
the unknown function.

Before stating our results, let us fix some notation and introduce the functional
setting where they are obtained. In the sequel, the sets of integer, non-negative
integer, positive integer, real and complex numbers are denoted as standard by Z,

N, Z4, R, C. We denote (z) = (1 + |z|?)!/? for z € RY, D* = D§ ... DS, D?j =
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i710% 0x%, a = (v, g, . .., aq) € N Fixed B > 0, we shall denote by Q% the set
of all (,&) € R? for which we have (z) > B or (¢) > B. Finally, for s € R, we shall
denote by H*(R?) the Sobolev space of all u € S'(R?) for which (¢)*a(¢) € L?(R9),
where @ denotes the Fourier transform of u. Following [16], in the sequel we shall
consider sequences M, of positive numbers such that My = M; = 1 and satisfying
all or some of the following conditions:

(M.1) M}? S My 1My, p € Ly

(M.2) M, < coHP Orglqigp{Mp_qu}, p,q € N, for some co, H > 1;

o0

M,_4 M,
(M?’) £ §00q K ) quJra
p;l Mp Mq+1
M\* M, M,
(M .4) <p> <l Tl g allp € Z,
p! (p—=1! (p+1)!
In some assertions in the sequel we could replace (M.3) by the weaker assumption
[e.e]
My 1
M.3) 2
(M.3) > A, <o
p=1

cf. [16]. We observe moreover that (M.4) implies (M.1).
As an example of sequence satisfying all the conditions above we can take M, = p!*,
s> 1.

For a multi-index o € N¥, M, will mean M,, |a| = a1 + ... + ag. We can
associate to any sequence M, as above the function

M(p) =suplog, —, p>0.

peN M,

This is a non-negative, continuous, monotonically increasing function which vanishes

for sufficiently small p > 0 and increases more rapidly than In p? when p tends to
infinity, for any p € N (cf. [16]).

We shall denote by fR the set of positive sequences which monotonically increase

to infinity. For (r,) € R, consider the sequence Ny = 1, N, = M, H§=1 rj, D € L.

It is easy to verify that this sequence satisfies (M.1) and (M.3)". Its associated

function will be denoted by N, (p), i.e. Ny, (p) = ?elg log . m, p > 0. Note,
for given (7,) and every k > 0 there is pg > 0 such that N, (p) < M(kp) for p > po.
Now we can introduce the space of tempered ultradistributions and its test

function space. For m > 0 and a sequence M, satisfying the conditions (M.1) —

(M.3), we shall denote by Soj\g”’m(Rd) the Banach space of all functions ¢ € C*(R?)
such that

mla\’Dago(x)‘eM(mlx\)
|@|lm := sup sup

< 00, (0.1)
a€NC R4 M,

endowed with the norm in (0.1) and we denote SM»)(RY) = lim Soj\g”’m(Rd) and

m—0oQ
SMp (R = lim SMy ™(RY). In the sequel we shall consider simultaneously the
m—0

two latter spaces by using the common notation S*(R¢). For each space we will
consider a suitable symbol class. Definitions and statements will be formulated first



for the (M),) case and then for the { M)} case, using the notation *. We shall denote
by S*(R?) the strong dual space of S*(R%). We refer to [14, 22, 23] for the properties
of S*(R%) and S*(R?). Here we just recall that the Fourier transformation is an
automorphism on S*(R?) and on S*(R?) and that for M, = p!*, s > 1, we have
M(p) ~ p'/*. In this case S*(R?) coincides respectively with the Gelfand-Shilov
spaces Ns(R?) (resp. Ss(R%)) of all functions ¢ € C*(RY) such that

sup h71=Bl1807 sup |2P0%0(z)| <
o,BENd zERC

for every h > 0 (resp. for some h > 0), cf. [15, 22].

Following [25] we now introduce the class of pseudodifferential operators involved
in the sequel. Let M,, A, be two sequences of positive numbers. We assume that
M, satisfies (M.1), (M.2), (M.3) and (M.4) and that A, satisfies A9 = A1 = 1,
(M.1),(M.2),(M.3)" and (M.4). Moreover we suppose that A, C M, i.e. there exist
co > 0, L > 0 such that A, < coLPM, for all p € N. Let py = inf{p € R4 | 4, C Mp}.
Obviously 0 < pg < 1. Let p € R be arbitrary but fixed such that pg < p < 1 if the
infimum can be attained, or otherwise py < p < 1. For any fixed h > 0,m > 0 we
denote by T M” ®°(R%4; h, m) the space of all functions a(z, &) € C°°(R??) such that

|Dg Da(z,€)|{(, €)1+ Ble=Mmla)-Mmic)
sup  sup ¢ < 00,

o074 (2,6)eR2 hlatBlA, A

where M (-) is the associated function for the sequence M,. Then we define

F(Mp)’oo(]RM;m) = hm FMp OO(RM h,m);

Ap,p
h—>0
(Mp),00 rp2d im [(Mp)0(R2d. .
Fapp (B = T 55 (®Fm);
R TG
m—>0
@) = lim TR R),
h—o0

We associate to any symbol a € ijsop(de) a pseudodifferential operator a(z, D)
defined, as it is usual, by

o DIf(@) = (20 [ O fids,  feSEY, (02

where f denotes the Fourier transform of f. Operators of the form (0.2) act con-
tinuously on S*(R?) and on S*(R?). Moreover, a symbolic calculus for I‘* > (]R2d)

(denoted there by I'>
Ap,Ap,p
proved that the class of pseudodifferential operators with symbols in FZ’ZOP(RM) is

(R21)) has been constructed. As a consequence 1t was

closed with respect to composition and adjoints, cf. [25] and the next section for
details. Moreover, in [10] we consider hypoelliptic symbols in I';> (R2d) and we



proved the existence of parametrices for the associated operators. Now we need to
introduce a notion of elliptic symbol in FZ’OOP(RM). For this purpose let M, be an-

other sequence which satisfies Mo = M; =1, (M.1), (M.2), (M.3)" and (M.4) and
M, C Mp, i.e. there exists ¢ L > 0 such that M, < chM (observe that Mp can
be the same as M,,). Obviously, without losing generahty, we can assume that the
constant H from (M.2) is the same for the sequences A,, M, and M,. For (k,) € R
we denote by Nk (+) the associated function to the sequence M H -1 k;. One easily
obtains the followmg inequalities

M(X/L) < M(\) +1In; é and Ny, (\/L) < Ni,,(A) +Inp & YA > 0. (0.3)

Definition 0.1. A symbol a € F* > (RQd) is said to be (M,)-elliptic, (resp. {M),}-
elliptic) if

i) there exist m,B,c > 0 (resp. there exist (k,) € R and B,c > 0) such that
la(z, &)| > ceMmED M) ( peogy |a(x, €)] > ceVep (18D Ny 121y
for all (z,€) € Q%;
ii) for every h > 0 there exists C' > 0 (resp. there exist h,C > 0) such that

hlel+I81 A,y sla(z, &)
<($ §)> p(lal+]8])

DgDJa(z,&)| <

for all (z,£) € Q%.

Finally we introduce the class of nonlinear terms involved in our equations.
For 5 € N¢, let pp(x) be smooth functions on R? such that for every h > 0 there
exists C' > 0 such that

plal+181 4 M (i)
|Dps(x)| < C = c for all o, 8 € N, (0.4)

in the (M,) case (resp.
hlaHlﬁlA N (hl])
H|a| k

in the {M,} case). For such a family of functions pg(z) and u € H5(RY),s > d/2
we can consider the function

|DSps(z)| < C for all a, 8 € N¢, (0.5)

— i pﬁulm’ (0.6)

18]=2
The condition s > d/2 implies that F[u] is well defined and continuous on R? and
HF[ MR HL (R4 < 0o (resp. HF[U Ny (1) H < o0) for some h. This

Loo(RY)
(together with (0. 3)) implies that Fu] € S*.
The main result of the paper is the following



Theorem 0.2. Let a € F*A’jop (R24) be (My)-elliptic (resp. {M,}-elliptic) and let
fes* (Rd). Letuw € H? (Rd), s> d/2, be a solution of the equation

Au = f + Flul, (0.7)

with Flu] defined by (0.4) and (0.6) (resp. (0.5) and (0.6)). Then the following
properties hold:

i) For every h > 0 there exists C > 0 (resp. there exist h,C > 0) such that
lu(z)] < Ce=MOIED  Moreover, u € C*(RY) with the following estimate on its
derivatives: there erists iL, C > 0 such that
Rl Dulle OO’( WD u g OO>‘

sup
« «

Tesp. Sup ——

o My Hgﬂl kj
ii) Furthermore, if Flu] is a finite sum, then u € 8* (R%).

The paper is organised as follows. In Section 1 we recall some basic facts about
the pseudodifferential operators studied in [25]. Moreover we prove some precise
estimates for the norms of some composed operators which will be instrumental in
the proof of Theorem 0.2. Finally, Section 2 is devoted to the proof of Theorem
0.2 which will be divided in two parts, one corresponding to the proof of the decay
properties of the solution and the other related to its regularity.

1 Pseudodifferential operators on S*(R?), S¥(RY)

In this section we recall some results contained in [25] and concerning the calculus
for pseudodifferential operators with symbols in F:Zj?p (R24). For the purposes of this
paper we need to modify slightly some statements with respect to [25]. The proof of
these new assertions is completely analogous to the original ones and do not deserve
to be repeated here. We start by giving the following definition which will be useful

in the sequel.

Definition 1.1. A measurable function f on R? is said to be of ultrapolynomial
growth of class * if ||f(-)e*M(hH)HLoo(Rd) < oo for some h > 0 (resp. for every
h>0).

Now we recall the notion of asymptotic expansion for symbols in FZ:OP(RM), cf.
[25, Definition 2].

Definition 1.2. Let M, and A, be as in the definition of FZ’;‘;(RM) and let my =
0,m, = M,/Mp_1,p € Zy. We denote by FSZE)(R%) the space of all formal sums
> jen@; such that for some B > 0, a; € Coo(thcij) and satisfy the following
condition: there exists m > 0 such that for every h > 0 (resp. there exists h > 0
such that for every m > 0) we have

|Dg D a;(x, &)|((x, §))PatAit2i) e=Mmiz)=M(mIe]
sup sup sup 3

- < 0.
JEN a,BeNd (¢.£)€Q5,,, hlatBI+21 A, Ag A2



*,00

Notice that any symbol a € T’ A, p(R2d) can be regarded as an element ) a; of

JEN
FSZ’;(;(RM) with ap = a,a; =0 for j > 1.
Definition 1.3. A symbol a € FZ:p(RZd) is equivalent to Yy aj € FSZ’:;(RZCI)
(we write a ~ 3y a; in this case) if there exist m, B > 0 such that for every h > 0
(resp. there exist h, B > 0 such that for every m > 0) the following condition holds:

02D (a(2,6) 5 ay, ) |e=OrleD =Ml

J<N
sup sup sup —
NEZy o BeNt (26)€Q5,,,  MOTITENAGAG AR ((w, €)) Pt Al2N)

< oQ.

An operator a(z, D) with symbol a ~ 0 is *-regularizing, namely it extends to a
linear and continuous map from S*(R?) to S*(R?), see [25, Theorem 3]. Moreover,

for every sum . ya; € F SZ?p(RQd) one can find a symbol a € FZ’:OP(RQCI) such

that a ~ > ;cyaj, cf. [25, Theorem 4]. Actually by the same argument one can
prove the following more precise assertion.

Proposition 1.4. Let g be a positive continuous function such that g(w) and 1/g(w)
have ultrapolynomial growth of class * and let U be a subset ofFSZ’;(; (]RQd) for which
there exists B > 0 such that for every h > 0 there exists C > 0 (resp. there exist
B,h,C > 0) such that

| D Dlay (. )| ((a, ))plalerisl+2ie .
supsup  sup . <
jEN a,B (z’g)eQ%m]- h|a|+‘6|+2jAo¢AﬁA]2-g(l',£)

for all EjeN a; € U. Then for every h > 0 there exists C > 0 (resp. there exist

h,C > 0) such that the following condition holds: for every sum > a; € U there
exists a symbol a ~ ZJEN a; satisfying the following estimate:

hlelt8l A, Agg(x, €)
((, €))PUlal+1AD

In [25, Theorem 7] it was proved that the composition of two operators b(z, D)
and a(x, D) with symbols in FZ?p(RQd) is the sum of an operator f,(x, D) with
symbol f,p € F;’Z;(de), with fup ~ Zj fa.pj, Where

D¢DJa(z,€)| < C

fa,b,j(xag) = Z %a? (x,f)Dg‘a(m,f), (11)

|lal=j

and of a *-regularizing operator T,;. In fact, f,p, = Zj(l — Xj)fap; Where x;
is defined in the following way (cf. the proof of [25, Theorem 4]). Take ¢,¢ €
DAp) (R%), in the (M,) case, resp. ¢,9 € DAy} (R?) in the {M,} case, such that
0 < o, <1, p(r) =1 when () < 2, ¥(§) = 1 when (§) < 2 and ¢(z) = 0

when (z) > 3, ¥(£) = 0 when () > 3. Then define x(z,&) = ¢(x)¥(§), xn(z,§) =
x

§
X Rm,,” Rm,,
large enough.

for n € Z4 and xo(x,§) = 0, where m,, = M,,/M,,—1 and R > 0 is



Proposition 1.5. Let Uy and Us be bounded subsets of F(Mp)’ (RQd,m’) (resp.

F{M"} o (RQd, h’)), for some m’ >0 (resp. for some h' > 0). Then for every a € Uy
and b € Uz we have b(z, D)a(z, D) = fop(z, D) +Top where fop =3 ;(1—X;j) fap,;
and x; are the cut-off functions defined above which can be chosen uniformly for
a € Up,b € Uy, and with f.p; given by (1.1). Moreover, the family Toy of *-
reqularizing operators is an equicontinuous subset of Ly (S’* (]Rd) ,S* (]Rd)).

From the results above we notice that in general the composition of two operators
with symbols in I'y p(RQd) is still an operator of infinite order. In the sequel we
will be interested to the case when the composition is a finite order operator with
bounded symbol, hence the related operator is bounded on Sobolev spaces. With
this purpose we give the following definition.

Definition 1.6. Let VW C FZ’:OP (]RQd) and let f(w) be a positive continuous func-

tion on R?? such that f(w) and 1/ f(w) are of ultrapolynomial growth of class *. The
sets V. and W are said to be (f,x*)-conjugate if for every h > 0 there exists C' > 0
(resp. there exist h,C > 0) such that

hlel A Rl Ay f (w)

|D%(w)| < C 1o and |D*b(w)| < C [y #lol forallacV,be W.
w [0

T (w)rlelf(w)
Obviously if V' and W are (f, x)-conjugate then they are bounded subsets of
F%j‘;) e (RM; m/) for some m’ > 0 (resp. Fj{g‘;}’oo (]RQd; '), for some h' > 0).

Proposition 1.7. Let V and W be (f,*)-conjugate. Then, there exists C > 0 such
that

[b(z, D)a(z, D)l z,gsy < C; for alla eV, beW.

Proof. Let fq 1 be the symbol of the operator b(x, D)a(x, D) defined as above. Then
b(z,D)a(z,D) = fap(z,D) + T,p, where T,;, form an equicontinuous subset of
Ly (8™ (RY),8* (R?)). Then fop ~ > fap,j> where

1 14 14
fap,j(w) = Z ;!85 b(w)DYa(w).
lv|=j
Observe that

DS fups(w) < 303 = ’DO‘ ?Dgb(w)| | DL DYa(w)|

B<alv=; "

A

1 h\a|+2|V|A|a‘+2‘l/| (2hH)|aH-2jAaA2j
< O D e < O e

Now, since f,p = Zj(l — Xj)fap; With x; defined as above, one easily obtains
that for every h > 0 there exists C' > 0, resp. there exist h,C > 0 such that
|DS fup(w)| < Chl A, (w)=Plel. From this it follows that f,u(x, D), a € V,be W,
form a bounded subset of L£y(H?®) (cf. theorem 1.7.14 and theorem 2.1.11 and its
proof of [21]), the claim follows. O




The next result has been proved in [10] for more general hypoelliptic opera-
tors. It is immediate to verify that it holds in particular for symbols satisfying the
ellipticity conditions in Definition 0.1.

Theorem 1.8. Let a € FZ’fp (R?) be (M,)-elliptic (resp. {M,}-elliptic). Then
there exists a *-reqularizing operator T and a symbol b € FZ’:’p (]de) such that
b(xz,D)a(x,D) = Id + T. Moreover, the symbol b satisfies the following condition:
there exists B' > 0 such that for every h > 0 there exist C > 0 (resp. there exist
h,C > 0) such that

h|a|+\5|Aa+5
|a(z, &)[{(x,&))raltIBD

Lemma 1.9. Let a € FZ:;(RM) be (M,)-elliptic (resp. {M,}-elliptic) and let b be

a€N2d}

are (Ja(w)|, *)-conjugate for every h > 0 (resp. for some h > 0). Hence, for every

h > 0 there exists C > 0 (resp. there exist h, C' > 0) such that ||b(z, D) o (Dga) (z, D)| ¢, sy <
ChlelM,,. Moreover, in the (M,) case, there exist (r,) € R with ry = 1 and C > 0

such that ||b(z, D) o (Dga) (z, D)| ¢, () < CMa/Ra.

DgDJb(,8)| < C (2,) € Q. (1.2)

o

h
the symbol of the parametriz of a(x, D). Then the sets {b} and ﬁDga

Proof. We have

plal . plalplel+18l 4 la(w))|

M pots 1 a+8

Ma Du) a(w)‘ S Ol Ma<’w>/)(|a‘+|ﬁ|)
_ (LHhhy) el (Hh) Pl Agla(w)]
= (w)PIB]

The {M,} case trivially follows from this by choosing h small enough, since h; is
fixed. In the (M),) case, for each fixed h we can take h; arbitrary small. One easily
sees that this implies that the sets under consideration are (|a(w)|, (M,))-conjugate.
The inequality [|b(z, D)o (Dga) (z, D)llz, sy < Chl*!M, follows by Proposition
1.7. It remains to prove the last part of the lemma. Since, in the (M,) case, we

b(xz,D)o (Da) (z, D s
already proved that for every h > 0, sup I ) o )( )Hﬁb(H )
aeNQd h|a‘Ma

Lemma 3.4 of [19] we can conclude that there exists () € R and C' > 0 such
that [|b(z, D) o (Dga) (z, D)z, sy < CMa/Ra. If we take r, = max{7p, 1}, then
(rp) € A, r1 =1 and the desired estimate holds for this (r,), possibly with another
C. O

0o, by

Lemma 1.10. There exists | > 1 such that for any h > 0, the sets {b} and

hl8l Do
lh'My :Cpﬁg

d{ hlBl DEpse”
T vy CxPs
INK, M,

a, B,y € Nd} are (eM(m|‘”DeM(m‘5|),(Mp)> -conjugate, (resp. {b}

a, B,y € Nd} are (eN"POm‘)eN’“P(‘fD,{Mp}) -conjugate). In



particular for each h > 0 there exists C > 0 such that ||(B o Dpg(x)07)(z, D)Hg(Hs) <
C"ﬁ'ﬁ'lwl\;f7 (resp. ||(B o D%pg(x)0”)(z, )H£ ) < Ch‘mlMK M )

Proof. We consider first the (M,) case. Pick | > 1 such that H?/l < m/12. Let
h,h’ > 0 be arbitrary but fixed. Pick 0 < hy < 1 such that H+/h; < h', LLHh; <1,
hhy <1 and H?\/h; < m/6. Then

L8] DEDY (Do N
m ¢  (Depa()€ )‘
1Bl
< fl—’y'mlvl—lu\ | D2 p ()]
MM (y = o)
|| +[8]+]v| v B
o oy 2RI A W e
- IMMy Mgty (2, €))PultvD)
< o (2H /)P (H2hy) I (H )l (hh) Pl Ag Ayl {(a, £)) 1] N (a2
- N4y M (z, €))PURTHD
< ¢, VR NELHR) W 0hn) AWM Ay gis i) oo 2 (60

((a, &))pUul+IvD)
Since Mp satisfies (M.2), by Proposition 3.6 of [16], we have

M () JIHVEF2H/)(@6) < (3,6 (hala]) N BUHVRT+2H/1)[a]) N (3(H Ay +2H /€]
O M BUHVR2HV]E]) (M (B(HVRr+2H2 [D)al)

IN

If we use this in the above estimate, by the way we defined hq, we have

hlAl Rlul+vl 4 i i
M prpr (pe Y <0—“+” 1 (mg]) N ()

which proofs the (M,) case. In the {M,} case one can use the same technique as
above (observe that the sequence K, M, satisfies (M.2)). The last part follows by
Proposition 1.7. O

Lemma 1.11. Let h > 0 and for each B € N, let ps(x) be a smooth function
satisfying (0.4) in the (M,) case (resp. satisfying (0.5) in the {My,} case) and let
jp € {1,...,d}. Then the following properties hold:

a) The sets {b} and {hlmxjﬁpg(x)’ B e Nd} are (eM(m|x‘)eM(m‘§|), (Mp)> -conju-

N’“P(|m|)eN’“P(|£D, {Mp}) -conjugate). In particular, for every h>0

there exists C' > 0, such that H(B ozj,pp(T))(x D)HL,,(HS) < Chl. Moreover,

there exist (rp) € R withry = 1 and C > 0 such that ||(B o zj,p5(x))(z, D
C/Rg.

gate (resp. (e

)Hﬁb(HS) =

b) The sets {b} and {h|5|£jp5(x)|B€Nd} are (e (mla) oM (mlg]) , (M, ))-conju-
gate (resp. (eN’“P(|$|)eN’“P(IE‘), {Mp}) -conjugate). In particular, for every h > 0

9



there exists C' > 0 such that ||(B opg(:v)aj)(x,D)Hﬁb(Hs) < ChIBl. Moreover,
there exist (rp) € R withry =1 and C > 0 such that ||(B o pg(x)0;)(z, D)||Lb(HS) <
C/Rg.
Proof. We prove a), the proof of b) being completely analogous. In the (MM,) case,
let h,h' > 0 be arbitrary but fixed. We have
WA D™ (x5 pg(x))| < Bz, ||Dpa(x)] + a| kPl | DY py(x)
= Sl(.%') + SQ(Z’)
Take hy < 1 such that 3hoH < m/2 and take hy < 1 such that 2Hhy/hy < B,
Hh; <m/2 and hy < 1/h. To estimate Si(z) we have
() B A MM (2, €)1
Mjoj11{(, €))Plel
(th)Ia\AaeM(hllwl)eM(M((w,S)))
PET (@, €))oled
plel A, eM((ha+3ha) Hlw]) oM (3hs[¢]) plel 4, eM(mlgD) oM (mlzl)
<y
((z,€))rlel ((z,€))rll

Similar estimates can be obtained for Sy(x) in the same way and the {M)} case can
be treated similarly. The estimate ||(B o z;pg(z))(z, D)”Lb(Hs) < Ch/P! follows from
Proposition 1.7. The last part can be proved similarly as in the proof of Lemma 1.9,
by using Lemma 3.4 of [19]. O

Si(z) < C1h¥)z|

> 2

2 The proof of Theorem 0.2

The proof of Theorem 0.2 needs some preparation. First of all it is useful to char-
acterise the space S*(R%) in terms of suitable scales of Sobolev norms.
Namely, let

hlel
DI vl COlF
aeNd ¢
hled N
”SOH{s,h} = Z ﬁHD 90(37)”HS~
aeNd ¢

Moreover, for h > 0 and (r,) € %R, set

pled hlelp
s,h a s,h,(r « o
1ol = Y T lae@lly . HY" el = Y0 a6 (@)l 7
laj<N T ¢ lo| <N @
pled hlelp
s,h a s,h, (7 « a
Bi'lel= > s ID% @l BNl = Y 1D (@) |7 -
jal<n T o<y T

We have the following result, see ........



Lemma 2.1. Let p € S (Rd). The following conditions are equivalent:
i) ¢ €S (RY);

i1) there exists s > d/2 such that for every h > 0 (resp. there exists h > 0) such
that ||¢lls,n < o0 and @] {s,ny < 00

By Lemma 2.1 we can prove that a function u € S*(R%) by proving the decay
and the regularity properties separately. This allows to simplify considerably the
proofs, see also [5, 6, 7].

Next we state a preliminary technical result which will be used in the subsequent
proofs.

Lemma 2.2. Let M, be a sequence which satisfies (M.3), (M.4) and My = M; = 1.
Let (), (k) € R, k] = kY = 1. There exists (r,) € R such that v} = 1, (r}) < (k,),
(rp) < (k) and the sequence N = My/R,,, for p € Zy and No = 1 satisfies (M.3)’
and (M.4).
[e.¢]
Proof. Let a, > 0, p € Z4, are such that Zap is convergent. Then one easily
p=1

oo o0
a
verifies that E -2 is also convergent, where Sp = E aj, p € Z4 (one easily

s
p=1"" j=p
obtains that the partial sums of the series ) a,/s, are a Cauchy sequence). Put
- ~1/2
¢=./>.22,1/m; and define 7, = ¢ Z L € Zy. Then we obtain that
= j=1 j p = = m; y P +-
7 =1, (7)) € R and Y 7, /m, converges. Let r, = min{k,, k;, 7}, for p € Z,.

Then, obviously, 11 = 1, (rp) € R, (rp) < (k,), (rp) < (k) and (rp) < (7). Also
> rp/my converges. Define the sequence (r5,) by 7] = 1 and inductively

r! o =min< 74 _Ppi1 r
p+1 p+ 7(p+ 1)mp p(>

for p € Z4+. We will prove that this (7";) satisfies the desired conditions. First, note
that r, < rp, for all p € Z;. Since rp11 > 1, and pmy1 > (p + 1)my, (which is

equivalent to (M.4) for M,) it follows that

’ . pmp+1 . / ’

7,41 = min {Tp_l'_l —7 } > min{ry,r } =7

p "(p+1)m, ” »'p P’

for all p € Zy. To prove that r;) tends to infinity, assume the contrary. Since we
already proved that 1"]’J is monotonically increasing, there exists C' > 1 such that
r, < C for all p € Z,.. Since (1) € R, there exists pg € Z; such that r, > C'+1 for

all p > pg. But then, T‘;H_l = ﬂﬁrﬁ, for all p > pg. Then, for p > pg, we have
P
! L = pmp41 o= pmpi1 (p— 1)mp,,,/ )
rr (p+Dmy P (p+1Dmy  pmpa 7T

11



pmpyr  (p—1)mp  pompet1
(p+1)mp  pmp (po + 1)myp, *°
Pomp+1 s
(p+ 1)my, ™
which tends to infinity when p — oo because of (M.3)" for M. Hence (r,) € R.
m
The claim that N, satisfies (M.4) is equivalent to 7“; 11 < (p_i_izi)ﬂr;, which is true
b my
by the way we defined the sequence (r,). Moreover, if we put n, = N,/N,_1, then
ny = my/r, > my/r, and we know that ) r,/m, converges. Hence N, satisfies
(M.3)". O

After these preliminaries we can prove the following two results.
Theorem 2.3. Let a € FZ’:; (R2d) be (M,)-elliptic (resp. {M,}-elliptic) and let
f € 8" (RY). Assume that u € H® (RY), s > d/2, is a solution of Au = f + F[u],
where Flu] is defined by (0.4) and (0.6) (resp. (0.5) and (0.6)). Then we have
|lulls,n < oo for every h >0 (resp. for some h > 0).
Theorem 2.4. Let a € I‘Z’:)p (R2d) be (M,)-elliptic (resp. {M,}-elliptic) and let
f € 8" (RY). Assume that u € H® (RY), s > d/2, is a solution of Au = f + F[u],
where Fu] is defined by (0.4) and (0.6) (resp. (0.5) and (0.6)).

i) If F'lu] is a finite sum, then we have |lul|spy < o0 for every h >0 (resp. for
some h > 0).

hlal
i) If Flu] is infinite sum, then Z 7 |0%u|| s < oo for some h > 0 in the

o

6 (6]

(M) case (resp. Z}LN”W;THHS
o Mo Hj:l kj

Notice that by Lemma 2.1, Theorem 0.2 follows directly from the combination
of Theorems 2.3 and 2.4. Namely, the assertion i) in Theorem 0.2 follows from
Theorem 2.3 whereas for nonlinear terms given by polynomials in w, Theorem 2.4
yields the regularity properties of the solution. Then we can conclude by invoking
Lemma 2.1. Let us prove the two latter results.

Lemma 2.5. Let A = a(x, D) be (M,)-elliptic (resp. {M,}-elliptic) operator and
let B be its parametriz. Then the following properties hold:

i) In the (M,) case, let (r,) € R be the sequence in Lemma 1.9. Then there exists
(rp) € R such that (r,) < (rp), r1 = 1 and the sequence M,/ R, satisfies (M.3)" and
(M.4). Moreover, for each 0 < & < 1 there exists ho = ho(e) such that for every
0< h< hy

< oo for some h > 0 in the {My} case).

N
h‘alRix s,h, (1)
S B B, aul < e P ),
la]=1 @
ii) In the {My} case, for each 0 < e < 1 there exists hog = ho(e) such that for all
0 <h < hy(e)
N

plel N ok
> T IBIA e ul . < e ],
laj=1 ¢

12



Proof. First we prove the (M,) case. The existence of the sequence (r,) is given

by Lemma 2.2. For shorter notation, put N, = Mp/R;, for p € Z4 and Ny = 1.
Observe that

2 Au(z) = ) (~1)#(DPa)(x, D) (x> Pu(x)).
% ()

So, we obtain

B[A, x%u = 6; (g) (—1)|ﬁ‘+1B(D?a)(x, D)(z* Pu(x)).
570

By Lemma 1.9, there exists C' > 0 such that HB(D?a)(x,D)‘

§ CNg. Let
Ly(HS)

—1
0 < & < 1 be fixed. Choose 0 < hg < 1/2 such that ho < e (20 Y 2—|ﬂ\+1)
For 0 < h < hg we obtain

hled
Z N IBIA, 2%]ul| s

laj=1 "

< g: ];\I;l Z (g) HB(D?@)(x,D)xO‘_BuHH

lal=1 " B<a
B#0

X5

laf= 1/3<

IN

lal =18
| zo £ R,
\al

1Bl=1

< eHy" P’[u],

where in the third inequality, we used (M.4) for N, and the fact ( ) (’ ) This

18l
completes the proof in the (M,) case. For the {M,} case, let ¢ > 0. By Lemma 1.9,

there exist h1,C' > 0 such that HB(D?CL)(ZE,D)HE . < Ch'lﬁlMg. Choose hg > 0
b S

-1
such that hohy < 1/2 and hoh; < ¢ (20 ng\:1 Q—Iﬂ\ﬂ) . Then, for 0 < h < hy,

similarly as before, we obtain

Blel N 18] plal—18 a—p
Z*HB[Aa:JuuHS < O X )Y S|l

laj=1 18|=1 a>p ah
la|<N

IN

8HJS\}h l[u])

which completes the proof. O
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Lemma 2.6. Let A = a(x, D) be (M,)-elliptic (resp. {M,}-elliptic) operator and
let B be its parametriz. Let Flu| be defined by (0.4), (0.6) in the (Mp) case (resp.
by (0.5), (0.6) in the {M,} case). Then the following properties hold:

i) In the (M,) case, let (rp) € R be the sequence in Lemma 1.11. Then, there
exists (r,) € R such that (r,) < (rp), r1 = 1 and the sequence M,/R,, satisfies
(M.3)" and (M.4). Moreover, for each 0 < € < 1 there exists hy = ho(g) such that
for every 0 < h < hg

hl R, ho(rh)
Z 7 | Bz Flu]|| e < eHyoy'™ [ul.

loj=1 ¢

ii) In the {M,} case, for each 0 < & < 1 there exists hg = ho(e) such that for
every 0 < h < hg

N pla . o
S° 1B Flulll e < eH3 o]
=17
Proof. i) The existence of the sequence (r7,) is given by Lemma 2.2. Let now o € N4
with || > 1 and let j = j, € {1,...,d} such that a;; > 0. By Lemma 1.11, there

exists C7 > 0 such that

I(B o 2;ps(x)) (@, D), ey < C1/ R

C’ ,
We obtain that HB <a;jp5(x) o eﬂum')H ! ‘xa*eﬂum'H . Moreover
Rﬁ Hs
’ xoé—equ\H < C|5\ 1 Hwa eJuHHS Hu”\ﬁl 1
Hence
5 (Collullm) ™ e,
o (o), < oA

00 L\Bl-1
Let Cy = Z M We obtain

R/
181=2 A
el ol a 18]
S S 1B Py, < Y Y S |Batps@ul®)||
i N |a|—1|m—2 °
h‘ al- s,h, (7]
< clthZ et < CohES ),
lal=1 oz—e]

Moreover, for fixed 0 < € < 1, since C3 does not depend on h, we can find hg = hq(e)
such that for all 0 < h < hg

h‘a a sh(r)
Z - 1B Flulllgs < eHy 3 "[u],

lor|=1 Na

14



which complete the proof in the (M,) case. )
ii) In the {M,} case by using Lemma 1.11, one similarly obtains that for every h > 0
there exists Cy > 0 such that

HB (pg(a:)xauw) HHS < (BCSHUHHS)‘IBlil Hg:a—eiauHHs )

Fix h such that hC,||ul|zs < 1/2. We have

hlel N 5
Z 3 1B Flull g < C3hHER [ul,

loj=1 "¢

for a constant C which is the same for all h. Hence, we obtain the claim in the
{M,} case. O

Proof of Theorem 2.3. Fixed a € N¢ let us multiply both members of (0.7) by z°.
We have z%Au = zf + £*F[u]. Then, introducing commutators we get

A(z%u) = [A, z%u + 2% f + 2% F[ul. (2.1)
By applying the parametrix B of A to both sides of (2.1) we have
2% = B[A, 2% u+ B(z“f) + B(x*F[ul]) + T(z%u) (2.2)

for some *-regularizing operator T'. We first consider the (M,) case. Since f € S (My)

«
then for every h > 0 we have sup M
a  hlelM,

exist (7,) € R and C' > 0 such that ||2°f||gs < C"M,/Rq. Obviously, without loss
of generahty, we can assume that 71 = 1. By Lemma 2.2 we can find (7] ) € R such
that v} =1, (r,) < (), (rp) is smaller than the sequences in Lemmas 1. 9 and 1.11,
and the sequence N, = M,/R,, for p € Z; and Ny = 1, satisfies (M.3)', (M4)
and N; = 1. If we multiply (2.2) by hl®l/N,, take Sobolev norms and sum up for

|a] < N, we obtain

< o0o. Hence, by Lemma 3.4 of [19], there

51, (r) Bl
Hy o] < lulles + Z v, 1BLA @ Julls + Z 7HB (@)l s
\oe| 1 la]=1
hlal
+ Z fHB ul)ll s + Z i, T @ )l
la]=1 la|=1

We will estimate each of the terms above. First, since B is bounded on H?,
there exists C” > 0 such that ||B(z®f)|g. < C”||z®f||gs, from what we obtain
N 00
hlel 1

Z NiHB(l“af)HHS <o Z ol = C; for all 0 < h < 1/2. To estimate the sum
laj=1 = ¢ la|=1

with T'(z“u), since |a| > 0 there exists j = jo € {1,...,d} such that o; > 1. Hence,
there exists Cy > 0 such that ||T" o x]’”ﬁb(Hs < Cy. Then we obtain

o
Z L”T(x W)l e < Coh Z

la|=1 Na lor|=1

N1 ool < ConHY P
«

15



Since C5 does not depend on h, for fixed 0 < ¢ < 1 we can find hg = ho(e) < 1/2
such that for all 0 < h < hg

N h|a| o s,h,(r{a)
Z N—HT(m w)llgs < eHy )" [u].
loj=1 ~ ¢
Now, if we use Lemmas 2.6 and 2.5 for fixed 0 < & < 1 there exists hg = hg(g) such
that for all 0 < h < hg we obtain
7h7 , 7h7 4 7h7 4 7h7 ,
HY 0 ) < e+ cHy U ] + Oy eHy U ) + B )

oo
hlal
By iterating this estimate and possibly shrinking & we obtain that Z N—on‘uH Hs

«

|a|=0
is finite for some sufficiently small h. If h > 0 is arbitrary but fixed, there exists
o s
- - - hlal
C > 0 such that h”? < ChPR,, for all p € Z,. Hence the sum Z EHJJO‘UHHS
|ee|=0
converges. This completes the proof in the (M) case. The {M,} case is completely
similar. We leave the details to the reader. O

Now we prove Theorem 2.4.

Lemma 2.7. Let A = a(z, D) be (M,)-elliptic (resp. {M,}-elliptic) operator and
let B be its parametriz. Then the following properties hold:

i) In the (M) case, let (r,) € R be the sequence in Lemma 1.9. Then there exists
(rp) € R such that (r,) < (rp), r1 = 1 and the sequence M,/ R, satisfies (M.3)" and
(M.4). Moreover, for each 0 < & < 1 there exists hg = ho(e) such that for every
0<h<hy

N
hlalR:l o s,h,(rh)
> 2 IBIA,%ullgs < eBy " [u].

«

laf=1

ii) In the {My} case, for each 0 < € < 1 there exists hg = ho(e) such that for all
0 <h < ho(e)

N plal N oh
Z A 1 B[A, 0%]ul| g« < eEN_4[ul.

laf=1

Proof. First we prove the (M,) case. As before we put N, = My/R,, for p € Z,
and No = 1 (the existence of (r},) is given by Lemma 2.2). Observe that

B[A,0°u = — % (g) B(8%a)(x, D)2 Pu.
570

< CN@. Let

By Lemma 1.9, there exists C' > 0 such that HB(@?@)(&;,D)‘

Ly (H?)
-1
0 < & <1 be fixed. Choose 0 < hy < 1/2 such that hg < & (20 Zfﬁo‘zl 2*|»3\+1) .

16



For 0 < h < hg we obtain

hlel N
Z v, 1Bl4, " Jull

lal= 1

< §: Mal§: (Z)HzxafaXx’D)

|lal=1

IN

plal-18) ‘

z z’“‘”’Nﬁ( )|

o= 15<

8o~ Py H <th|5| Z

1Bl=1

afﬂu)

HS
\a|<N

¢ el

where in the third inequality, we used (M.4) for N, and the fact ( ) < (I;) This
completes the proof in the (M,) case. For the {M,} case, let ¢ > 0. By Lemma 1.9,

there exist hy,C' > 0 such that HB(@fa)(:E,D)HE . < Chllﬁ‘Mg. Choose hg > 0
b S

-1
such that hoh; < 1/2 and hoh; < ¢ (20 ng\:l Q—Iﬁ\ﬂ) . Then, for 0 < h < hy,
similarly as before, we obtain

L < oSt 3 M ges
Z*u ERATPEED DUV DI v el
la=1 I81=1 a>p
|a|<N
s,h
< EE]\}—l[u]a
which completes the proof. ]

Lemma 2.8. Let A = a(z, D) be (M,)- ellzptzc (resp. {M,}-elliptic) operator and
let B be its parametriz. Let Flu] = p(z)u', for somel > 2,1 € N. Then the following
properties hold:

i) In the (M,) case, let (rp) € R be the sequence in Lemma 1.11. Then there exists
(rp) € R such that (r,) < (rp), r1 = 1 and the sequence M,/ R, satisfies (M.3)" and
(M 4). Moreover, for each 0 < € < 1 there exists hg = ho(e) such that for every
0<h<hy

hlY R
Mo

<< (B )

B (9*(p(w)u) )

Hs

|a|=1

ii) In the {M,} case, for each 0 < e < 1 there exists ho = ho(g) such that for every
0< h<hy

hled

M,
laj=1 "

<e (B3 )

B (9 ()|

Hs

17



Proof. Observe that

B (aa(p(a;)ul)) - B (p(:v)aaul> +3 <:>B ((97p(1‘)0a_7ul)

v<a

770
First we consider the (M) case. As before we put N, = M,/R,,, for p € Z, and
No = 1. Since || > 1, there exists j = jo € {1,...,d} such that a;; > 0. By Lemma
1.11, there exists C; > 0 such that ||(B o p(x)0;) (x D)., (r+) < C1. Then we have

|8 (porat)],. < cfjoren]
(=g L (0)
< G > N OTRO] H‘a HH
vt +rvD=a—e;
Observe that, by (M.4),
(a_ej)! pled _ hN|a‘71 h|y(k)| ﬁ | (k)|
v O N, = N, 1 Ny Ny
We obtain
N l
hlal e V<k>
o A COLD| FEETD DI H \ .
loj=1 ¢ lo|=1vM . +vD=q—e;, k=1

s.h(r! l
< dCsh (BN u])
Since Cy does not depend on h, for fixed 0 < & < 1 we can take hg = ¢/(dC2). Then

for all h < hg we obtain Z he HB ( (9O‘ul) HHS <e <EN gp)[ ]) One easily

al=1
verifies that the functions pls(z) = dp(x), B € N* satisfy (0.4). Lemma 1.11 implies
that there exists C1 > 0 such that [|[B o 07p(z)||z, (grs) < C1/R.,. For h < 1 we obtain

> 2 (3) I )],
7#0

a\l

< clhzz< >h'°"1

el=17%a

9% 'yulH
HS

plal-1 (v =7) (k)
sy y ()i, e
i o;l% (1>+...§”:a—v v V(l)‘ H "
plal=1 e
S 02h Z R/ Z Z y( '7' H ‘ HHS

M= Mo g oty
(e}
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zznh'\

Cth* > H

lv|=1 |u(1>]+ A|r®|=0k=1

IA
$2
>=
M

|
™,

IN

(k) ’

Since C% does not depend on h, for fixed 0 < ¢ < 1 we can choose hg = ¢/C%. Then,
for all 0 < h < hg, we have

S ()l << (w25

a <«
[v[7#0

N
hlal
which, combined with the above estimate for Z N

67

B (p(x)ao‘ul> HH , completes

la|=1
the proof in the (M,) case by shrinking hg if necessary. In the {M,} case the proof
is similar. O

Proof of Theorem 2.4. i) When F[u] is a finite sum it is clear that it is enough
to prove the theorem when Fl[u] = p(z)u!, | > 2, | € N. Differentiating both terms
of (0.7), we have 0% Au = 0% f 4+ 0*F [u], from which we obtain

A(0%u) = [A,0%u+ 0% f + 0“F[u].
Hence, we have
0% = B[A,0%u+ B(0“f) + B(0“Fu]) + T(0%u). (2.3)

[0}
We consider the (M),) case. Since f € SMp)  for every h > 0, supw is
(03

bounded. Hence, by Lemma 3.4 of [19], there exist (7p) € R and C’ > 0 such that
10 f||zrs < C'My/Ry. Obviously, without losing generality, we can assume that
71 = 1. By Lemma 2.2 we can find (r},) € R such that v} = 1, (r},) < (7p), (r}) is
smaller than the sequences in Lemmas 1.9 and 1.11 and the sequence N, = M, /R,
for p € Z, and Ny = 1, satisfies (M.3)", (M.4) and Ny = 1. If we multiply (2.3) by

hlel /N, take Sobolev norms and sum up for |a| < N, we obtain

hlel

by (ry
B < e+ Y 1814 ul + > an @ )l
|o¢\ 1 loo|=1
hled
+ Z *IIB (0" Flu])l| = + Z N, 1T @ W)l
laj=1 |lal=1

We estimate each of the terms above. By the growth estimate for the symbol of
B (1.2) there exists C” > 0 such that ||B(0%f)|lgs < C"[|0%f||gs (cf. theorem
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pled
1.7.14 and theorem 2.1.11 and its proof of [21]). Hence Z —HB Nl <

1
- o=
c" —— = () for all 0 < h < 1/2. To estimate the sum with T'(0%u), since
: 12Ia|
al=

|a| > 0 there exists jo € {1,...,d} such that a;, > 1. Hence there exists Cy > 0
such that ||T o 0% ||, sy < C2. Then we obtain

> 1T @%W)g: < C2h Z N Hao‘ Caul|,, < CshEY" ).
laj=1 ¢ lo|=1""1¢

Since C3 does not depend on h, for fixed 0 < € < 1 we can find hy = ho(e) < 1/2
such that for all 0 < h < hg

N hla‘ a s,h,(r])
> N T 0%l < eEy_y [ul.

laf=1

For fixed 0 < ¢ < 1, by Lemmas 2.7 and 2.8 for the chosen (r},), we can find
ho = ho(e) < 1/2 such that for all 0 < h < hg, we have

s,h,(r3,) s,h (T )

Ey P < lullgs +eBEy []+Cl+a<E (p)[u]) +eEY Py,

By iterating this estimate one obtains that ||0%ul|gs, o € N? are finite and by
X plal

shrinking ¢ if necessary, that the sum Z —||80‘u|| s converges, for some, small
la|=0 Na

enough, h. If h>0is arbitrary but fixed there exists C' > 0 such that hP < ChpR;,

o
h «
for all p € Z. Hence Z FH@O‘UH ms converges. This completes the proof in the
la]=0 ¢
(M) case. The proof in the {M),} case is similar and we omit it.
To prove i) we consider first the (M),) case. Proceed as in the proof i) to obtain

plel - N plal w N plel 5
s s + = , 0% s + = - s
Z A ullps < lullg Z A [ Jull e Z A O“Hlla
la|<N lal=1 laj=1
S e e+ 30 2 o)
+ - CEul) || gs + — )l s
|a|=1 M |a|=1 Mo

By Lemma 1.10, there exists [ > 1 such that for each h > 0 there exists C; > 0 such
that ||(Bo Dapg(x)GV)(x,D)HE(HS) < C1APINIML,. We have for 0 < h < 1/(4l)

> e, < 555 (0

la|=1 [8]=2|a|=17=

I,BI)H

Hs
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w0 Nl [l8
<oy ZH;MHHSSCQ,

181=2 a|=1

where in the last inequality we used that HuWHHS < C.LB|71||U||H3 and chose h <
1/(2C). The sequence M, satisfies (M.4), so by analogous technique as in the proof
of Lemma 2.7 one can prove that for each 0 < € < 1 there exists hg = ho(e) < 1/2
such that for every 0 < h < hg

N plal . plal
> o 1BA g <6 ) T 0%l
laf=1""¢ o] <N-1 7@
N plel
Also, similarly as in the proof of 7), we have that for 0 < h < hg(¢), Z — | B(O“f)||ms <
laj=1 "¢
C3 and
N
hled plal
> v T e <& Y = llovulm.
la|=1""¢ la|<N—-1 "¢
Hence, for 0 < h < hg(g), for sufficiently small ho(e), we have
plel plel
> 0%ullgs < lullgs +Cat2e Y ——]0%u g,
la|l<N 77 la]<N—-1 7@
X plel
By iterating this estimate and possibly shrinking & we obtain that Z — [|0%u|| s
la|=0 "¢
is finite for some sufficiently small h, which finishes the proof in the (M,,) case. The
{M,} case is completely analogous. O

3 Examples

We will give interesting examples where Theorem 0.2 is applicable when M, = p!',
I >1 Let Ay, = p!Y, with 1 < v <l and 0 < p < 1is such that v < lp. Let

, AR
ap : (0,00) — (0,00) be given by ag(A) = Z T Then
n=0
() 1 n! h" AT
A) = — .
ao-(A) AR n%:k (n—k)! nlHt
B/ (1) pran\ (H =D/ pnek yn—k N\ 1/0+)
TRV =1) /() = <n!l+l’> ’ ((n _ k)[l—i—l’)
E/a) (141 =1)/(I+1") R 1/(+0)
h h" AT I N
< \e(I+=1)/(I+1) Z I+ ’ Z (n — k)Y
n>k n>k
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hk/(l—i—l’)
< )\k(l+l’—1)/(l+l’) aO()‘)y

where, in the first inequality we used Holder’s inequality with p = (I+1")/(I+1'—1)
and ¢ = [ +I'. Define a(w) = ap((w)), w € R??. Then a € C°(R??). We will need
the following multidimensional variant of the Fad di Bruno formula (Corollary 2.10
of [12]).

Proposition 3.1. ([12]) Let |a| = n > 1 and h(z1,...,xq) = f(g(x1,...,24)) with
g € C" in a neighbourhood of x° and f € C™ in a neighbourhood of y° = g(x°). Then

aa(J) 0 kj
8ah(x0) :Z Z a'H ( g($ )> ’
r=1 playr)  g=1 " )
where
pla,r) = { (kl, ey s oD ...,a(")> ‘for somel < s <n,k; =0 and al¥) =0

for1<j<n-—s;k; >0 forn—s+1<j<n; and
0 <ot < < a™ gre such that

ik:j =, zn:k‘ja(j) = oz}.
j=1 j=1

The relation < used in this proposition is linear order on N¢ defined in the
following way (cf. [12]). We say that 5 < a when one of the following holds:

(@) 18] < laf;
(i) |8 = laf and B1 < au;
(71) |8 = |al, B1 = aa, ..., B = o and Br41 < a1 for some 1 < k < d.

If we apply the Fad di Bruno formula to the composition of ag and w +— (w)
and use the well known estimate [0%(w)| < €2l a|l(w)'~lol) o € N2, o € R,
we have

ol ol | D ()
ID%(w)| < 2|(D ao)((w))] (Z oz'H]€ TCODNE
r= p(a,r)
< i ) g ap) Z y ol ik glaD) |k +; (}a(j)“)kﬂ' (w)ki =1 1k;
i (w)r+t =1/ ) playr)  j=1 ksl (aln)ks

k.
glalq( | lo Nk lal (o0 p1/ A+ )
S s e

r=1 p(a ' '— :1
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\a|
Let Cy = 2C'RY U+ Then H e“olel One can easily proof that for
B .. M e N2,
(B + ...+ B! |6 + .t B
L. ..M~ \5 e Be

In fact one easily verifies this inequality for n = 2 and the general case follows by
induction. We obtain

Ial ])’ )

a'H O < ot

We have

o] o]
N (2¢“0) " |alla(w)
[D%(w)| < ()l =)+ > L

r=1p(a,r)
Now, observe that the set p(a,r) can be canonically injected into the set {v €

N|a|(d+1)‘ 7] < |a| 4+ r}. Hence Z 1< <|04] + T;_‘ ‘f|74(d+ 1)> We can conclude
p(a,r)

Draguy < (2 lalta() S (lo] + 7+ fal(d +1)
= ()l =D/ £ | + 7
o )2 allaw)
- <w>\a|(l+l/ 1)/(1+1)

Hence, if we take I’ > 0 large enough such that (141" —1)/(14+1") > p, we obtain
a € FZ;OP(RM and the growth condition ii) of Definition 0.1 is satisfied for a. By

the definition of a the lower bound 4) of Definition 0.1 trivially holds for M, = p!'*¥
and some m > 0 in the (M,) case (resp. for M, = p!“*'/? and k, = p’/? in the
{M,} case).

An interesting nontrivial example of the nonlinear term corresponding to this a
can be given in the following way. Define pg by

= Z Ca7ﬁxa+6
a€eNd

where ¢, g satisfy the estimate: for every h > 0 there exists C' > 0 such that
lcal < ORI N, g (vesp. [cas] < CRIPTHBL/ (Moy s TV k).
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