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Generic absoluteness and boolean names for elements of a

Polish space

Andrea Vaccaro, Matteo Viale

Abstract

It is common knowledge in the set theory community that there exists a duality
relating the commutative C∗-algebras with the family of B-names for complex numbers
in a boolean valued model for set theory V B. Several aspects of this correlation
have been considered in works of the late 1970’s and early 1980’s, for example by
Takeuti [5, 13], and by Jech [8]. Generalizing Jech’s results, we extend this duality so
as to be able to describe the family of boolean names for elements of any given Polish
space Y (such as the complex numbers) in a boolean valued model for set theory V B

as a space C+(X,Y ) consisting of functions f whose domain X is the Stone space
of B, and whose range is contained in Y modulo a meager set. We also outline how
this duality can be combined with generic absoluteness results in order to analyze, by
means of forcing arguments, the theory of C+(X,Y ). MSC: 03E57

1. Introduction

There has been in the early eighties and in the late seventies a wave of attention to the
possible applications of the forcing machinery in the study of certain type of operator alge-
bras, key references are Jech’s [8], and Takeuti’s [5, 13]. This paper aims to revive this line
of research, which in our eyes deserves more attention, at least from the set theory com-
munity. Takeuti and Jech’s works outline a correspondence existing between the theory of
commutative unital C∗-algebras, a specific domain of functional analysis, and the theory
of Boolean valued models, which pertains to logic and set theory. Takeuti’s works [5, 13]
show that one can employ the general machinery of forcing to derive certain properties for
spaces of operators: this is done first by interpreting these operators as suitable B-names
for complex numbers in a B-valued model for set theory V B, then showing that certain
properties can be proved for these B-names using the boolean semantics for V B, finally
pulling back these properties from the B-names to the corresponding operators. Jech’s [8]
develops an algebraic theory of commutative spaces of normal (possibly unbounded) op-
erators, in his terminology the stonean algebras, and proves that the B-names for complex
numbers in the boolean valued model for set theory V B can be used to classify up to
isomorphism all possible complete stonean algebras. He further develops a functional cal-
culus for stonean algebras and shows that all the familiar tools given by Gelfand transform
for commutative C∗-algebras naturally extend to the framework of stonean algebras. In
particular [8] brings to an explicit mathematical form the duality existing between the
theory of commutative C∗-algebras and the B-names for complex numbers in the boolean
valued models for set theory of the form V B.

This paper generalizes this duality to arbitrary Polish spaces. We will expand on Jech’s
and Takeuti’s works and devise a natural translation process to recast the arguments which
are used to analyze the properties of real numbers in a forcing extension, into arguments
that can be expressed in the language of functional analysis enriched with a tiny bit of first
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order logic. For example our results show how to transform generic absoluteness results,
such as Shoenfield’s absoluteness and Woodin’s proof of the invariance of the theory of
L(R) under set forcing in the presence of class many Woodin cardinals [10, 18, 19], in tools
to describe the degree of elementarity between the field of complex numbers (enriched
eventually with Borel predicates) and the ring of germs at points of the spectrum of a
commutative C∗-algebra with extremally disconnected spectrum. In particular our results
can be seen as a further enhancement of the program launched by Takeuti in [5, 13] aiming
to employ forcing methods in the study of operator algebras. The major outcome of the
present paper can be summarized in the following definitions and result:

Let X be an extremally disconnected compact Hausdorff space and Y be any
Polish space1 with a Polish compactification Ȳ : for example if Y = C, Ȳ =
C ∪ {∞} = S2 can be the one point compactification of C.

Let C+(X,Y ) be the space of continuous functions f : X → Ȳ such that the
preimage of Ȳ \ Y is meager in X: for example if Y = C, Ȳ = C ∪ {∞} = S2,
we require that f−1[{∞}] is closed nowhere dense in X.

For any p ∈ X, let C+(X,Y )/p be the ring of germs in p of functions in
C+(X,Y ): i.e. f, g ∈ C+(X,Y ) define the same equivalence class or germ in
C+(X,Y )/p if f � U = g � U for some open neighborhood U of p.

Given R ⊆ Y n any Borel predicate and p ∈ X, define RX/p([f1], . . . [fn]) to
hold if there is a neighborhood U of p such that R(f1(x), . . . , fn(x)) holds on a
comeager subset of2 U . Equivalently RX/p is the quotient in p of the boolean
predicate RX : C+(X,Y )n → CL(X) mapping

(f1, . . . , fn) 7→ Reg({x ∈ X : R(f1(x), . . . , fn(x))})

where CL(X) is the boolean algebra given by clopen subsets of X, and Reg(A)
is the interior of the closure of A for any A ⊆ X.

In essence we have defined a sheaf structure on the space of functions C+(X,Y ), which is
making sense not only of the ring of germs at any point of X, but also of the interpretation
of the Borel predicate R in such rings of germs. For example, R can be the equality relation
on Y or the graph of multiplication on C, or any finite (or countable) combination of such
kind of Borel relations on Y .

We believe that the above theorem in combination with generic absoluteness results3

provide a strong motivation to revive the above line of research initiated by Takeuti (which
in his case relates the forcing method to functional analysis). For example a simple out-
come of the combination of Woodin’s generic absoluteness results with our main theorem
relates the first order theory of the rings of germs C+(X,Y )/p defined above, to that of
the space Y as follows:

1 X is extremally disconnected if the closure of an open set is open, or equivalently if its regular open
sets are closed. Y is Polish if it is a separable topological space whose topology can be induced by a
complete metric on Y .

2 Recall that A ⊆ X is meager if it is the union of countably many nowhere dense sets, and B is
comeager in U if U \B is meager. It requires an argument based on the fact that R is Borel to show that
RX/p is well defined.

3See [10, 19] for the main results of Woodin regarding generic invariance of second order number theory,
the second author’s papers [1, 15, 17] for the extension of these results to large fragments of third order
number theory, and [2, 3, 20] for a survey of results on generic absoluteness at the highest levels of the set
theoretic hierarchy.
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Theorem 1. Let X be an extremally disconnected compact Hausdorff space and Y be any
Polish space. Fix Borel relations R1 ⊆ Y n1,. . . , Rk ⊆ Y nk .

Then for all p ∈ X, the first order structure 〈Y,R1, . . . , Rn〉 is Σ2-elementary in the
first order structure 〈C+(X,Y )/p,RX1 /p, . . . , R

X
n /p〉.

Moreover, if we assume the existence of class many Woodin cardinals, we get that

〈Y,R1, . . . , Rn〉 ≺ 〈C+(X,Y )/p,RX1 /p, . . . , R
X
n /p〉.

Contrary to the case of Jech’s and Takeuti’s works (which require also a certain degree
of familiarity with the basic theory of operator algebras), our results can be understood by
any reader which has familiarity with the forcing method and with the basic topological
properties of Polish spaces. In the case Y = C, the space of functions C+(X,Y ) we
consider is the unique complete stonean algebra (according to Jech’s terminology of [8])
whose algebra of projections is given by the characteristic functions of clopen sets on X.
Using Jech’s methods, C+(X,C) can be described as the result of a natural limit process
over the commutative and unital C∗-algebra C(X). It can be seen that one can obtain
a different proof of Theorem 1 for the case Y = C using the results of [8]. We remark
nonetheless that the methods in Jech’s paper do not seem to be of use if one aims to give
a proof of Theorem 1 for a Polish space Y other than C or R, since his arguments exploit
also algebraic features peculiar to the field structure of C and to the ordered field R, while
our arguments are purely rooted in the topological properties common to all Polish spaces.

We organize the paper as follows: in section 2 we introduce the space of functions
C+(X,Y ) with X compact, Hausdorff and extremally disconnected, Y Polish, and we
outline its simplest properties. In section 3 we introduce the notion of B-valued model for
a first order signature, and we show how to endow C+(X,Y ) of the structure of a B-valued
model for B the boolean algebra given by regular open (or clopen) sets of X. In section
4 we exhibit a natural isomorphism existing between the B-valued models C+(X,Y ) (for
B the clopen sets of X) and the family of boolean names for elements of the Polish space
Y as computed in the boolean valued model for set theory V B. In section 5 we show how
to translate generic absoluteness results in a proof of Theorem 1. This paper outlines the
original parts of the master thesis of the first author [14]. A thorough presentation of all
the results (and the missing details) presented here can be found there. We try to make
the statements of the theorems comprehensible to most readers with a fair acquaintance
with first order logic. On the other hand the proofs of our main results will require a great
familiarity with the forcing method. We encounter a problem in the exposition: those
familiar with forcing arguments will find most of the proofs redundant or trivial, those
unfamiliar with forcing will find the paper far too sketchy. We aim to address readers of
both kinds, so the current presentation tries to cope with this tension at the best of our
possibilities.

2. The space of functions C+(St(B))

We refer the reader to [14, Chapter 2] or to [6, Chapter 10] for a detailed account on the
material presented in this section. Let (X, τ) be a topological space. For A ⊆ X, the
interior of A Int(A) is the union of all open sets contained in A and the closure of A Cl(A)
is the intersection of all closed sets containing A. A is regular open if it coincides with
the interior of its closure. Reg(A) = Int (Cl ((A))) is the regular open set we attach to any
A ⊆ X.

• A topological space (X, τ) is 0-dimensional if its clopen sets form a basis for τ .
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• A compact topological space (X, τ) is extremally (extremely) disconnected if its
algebra of clopen sets CL(X) coincides with its algebra of regular open sets RO(X).

For a boolean algebra B, we let St(B) be the Stone space of its ultrafilters with topology
generated by the clopen sets

Ob = {G ∈ St(B) : b ∈ G}.

The following holds:

• St(B) is a compact 0-dimensional Hausdorff space, and any 0-dimensional compact
Hausdorff space (X, τ) is isomorphic to St(CL(X)),

• A compact Hausdorff space (X, τ) is extremally disconnected if and only if its algebra
of clopen sets is a complete boolean algebra. In particular St(B) is extremally
disconnected if and only if B = CL(St(B)) is complete.

Recall also that the algebra of regular open sets of a topological space (X, τ) is always a
complete boolean algebra with operations

•
∨
{Ai : i ∈ I} = Reg(

⋃
{Ai : i ∈ I}),

• ¬A = Int (X \A),

• A ∧B = A ∩B.

An antichain on a boolean algebra B is a subset A such that a∧ b = 0B for all a, b ∈ A,
B+ = B \ {0B} is the family of positive elements of B, and a dense subset of B+ is a subset
D such that for all b ∈ B+ there is a ∈ D such that a ≤B b. In a complete boolean algebra
B any dense subset D of B+ contains an antichain A such that

∨
A =

∨
D = 1B, recall

also that a predense subset X of B is a subset such that
∨
X = 1B or equivalently such

that its downward closure is dense in B+.
Another key observation on Stone spaces of complete boolean algebras we will often

need is the following:

Fact 2.1. Assume B is a complete atomless boolean algebra, then on its Stone space St(B):

• O∨
B A

= Reg(
⋃
a∈AOa) for all A ⊆ B.

• O∨
B A

=
⋃
a∈AOa for all finite sets A ⊆ B.

• For any infinite antichain A ⊆ B+,
⋃
a∈AOa is properly contained in O∨

B A
as a

dense open subset ({¬a : a ∈ A} has the finite intersection property and can be
extended to an ultrafilter disjoint from A).

Given a compact Hausdorff topological space X, we let C+(X) be the space of contin-
uous functions

f : X → S2 = C ∪ {∞}

(where S2 is seen as the one point compactification of C) with the property that f−1[{∞}]
is a closed nowhere dense (i.e. with a dense open complement) subset of X. In this
manner we can endow C+(X) of the structure of a commutative ring of functions with
involution, letting the operations be defined pointwise on all points whose image is in C,
and be undefined on the preimage of ∞. More precisely f + g is the unique continuous
function

h : X → S2

4



such that h(x) = f(x) + g(x) whenever this makes sense (it makes sense on an open dense
subset of X, since the preimage of the point at infinity under f, g is closed nowhere dense)
and is extended by continuity on the points on which f(x) + g(x) is undefined. Thus
f + g ∈ C+(X) if f, g ∈ C+(X). Similarly we define the other operations. We take the
convention that constant functions are always denoted by their constant value, and that
0 = 1/∞. We leave to the reader as an instructive exercise the following:

Lemma 2.2. Let X be compact Hausdorff extremally disconnected. Then for any p ∈ X
the ring of germs C+(X)/p is an algebraically closed field.

Its proof will be an immediate corollary of the main theorem we stated in the in-
troduction, since the theory of algebraically closed fields is axiomatizable by means of
Π2-formulas using simple Borel predicates on Cn for all n. However, as a warm up for the
sequel, the reader can try to prove that it is a field.

Remark 2.3. The reader is averted that the spaces of functions C+(X) we are considering
may not be exotic: for example let ν denote the Lebesgue measure on R, and MALG denote
the complete boolean algebra given by Lebesgue-measurable sets modulo Lebesgue null
sets. C(St(MALG)) is isometric to L∞(R) via the Gelfand-transform of the C∗-algebra
L∞(R), and consequently St(MALG) is homeomorphic to the space of characters of L∞(R)
endowed with the weak-∗ topology inherited from the dual of L∞(R). C+(St(MALG)) =
L∞+(R) is obtained by adding to L∞(R) the measurable functions f : R → S2 such that
ν(
⋂
n→∞{x : |f(x)| > n}) = 0.
Moreover by means of the Gelfand transform the spaces C+(X) we are considering

are always obtained canonically from a commutative unital C∗-algebra with extremally
disconnected spectrum by a completion procedure as the one described above for L∞+(R).
Jech’s [8] is an useful source for those aiming to explore further this analogy.

3. Boolean Valued Models

In a first order model a formula can be interpreted as true or false. Given a complete
boolean algebra B, B-boolean valued models generalize Tarski semantics associating to
each formula a value in B, so that there are no more only true and false propositions (those
associated to 1B and 0B respectively), but also other “intermediate values” of truth. The
classic definition of boolean valued models for set theory and of their semantic for the
language L = {∈} may be found in [7, Chapter 14]. As mentioned earlier, we need to
generalize the definition to any first order language and to any theory of the language. A
complete account of the theory of these boolean valued models can be found in [12]. Since
this book is a bit out of date, we recall below the basic facts we will need and we invite
the reader to consult [14, Chapter 3] for a detailed account on the material of this section.

Definition 3.1. Given a complete boolean algebra B and a first order language

L = {Ri : i ∈ I} ∪ {fj : j ∈ J}

a B-boolean valued model (or B-valued model) M in the language L is a tuple

〈M,=M, RMi : i ∈ I, fMj : j ∈ J〉

where:

1. M is a non-empty set, called domain of the B-boolean valued model, whose elements
are called B-names;
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2. =M is the boolean value of the equality:

=M: M2 → B

(τ, σ) 7→ Jτ = σKMB

3. The forcing relation RMi is the boolean interpretation of the n-ary relation symbol
Ri:

RMi : Mn → B

(τ1, . . . , τn) 7→ JRi(τ1, . . . , τn)KMB

4. fMj is the boolean interpretation of the n-ary function symbol fj :

fMj : Mn+1 → B

(τ1, . . . , τn, σ) 7→ Jfj(τ1, . . . , τn) = σKMB

We require that the following conditions hold:

for τ, σ, χ ∈M ,

(i) Jτ = τKMB = 1B;

(ii) Jτ = σKMB = Jσ = τKMB ;

(iii) Jτ = σKMB ∧ Jσ = χKMB ≤ Jτ = χKMB ;

for R ∈ L with arity n, and (τ1, . . . , τn), (σ1, . . . , σn) ∈Mn,

(iv) (
∧
h∈{1,...,n} Jτh = σhKMB ) ∧ JR(τ1, . . . , τn)KMB ≤ JR(σ1, . . . , σn)KMB ;

for fj ∈ L with arity n, and (τ1, . . . , τn), (σ1, . . . , σn) ∈Mn and µ, ν ∈M ,

(v) (
∧
h∈{1,...,n} Jτh = σhKMB ) ∧ Jfj(τ1, . . . , τn) = µKMB ≤ Jfj(σ1, . . . , σn) = µKMB ;

(vi)
∨
µ∈M Jfj(τ1, . . . , τn) = µKMB = 1B;

(vii) Jfj(τ1, . . . , τn) = µKMB ∧ Jfj(τ1, . . . , τn) = νKMB ≤ Jµ = νKMB .

If no confusion can arise, we will omit the subscript B and the superscriptM and we will
confuse a function or predicate symbol with its interpretation.

Given a B-valued model 〈M,=M 〉 for the equality, a forcing relation R on M is a map
R : Mn → B satisfying condition (iv) above for boolean predicates.

We now define the relevant maps between these objects.

Definition 3.2. LetM be a B-valued model andN a C-valued model in the same language
L. Let

i : B→ C

be a morphism of boolean algebras and Φ ⊆ M × N a relation. The couple 〈i,Φ〉 is a
morphism of boolean valued models if:

1. domΦ = M ;

2. given (τ1, σ1), (τ2, σ2) ∈ Φ:

i(Jτ1 = τ2KMB ) ≤ Jσ1 = σ2KNC ,
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3. given R an n-ary relation symbol and (τ1, σ1), . . . , (τn, σn) ∈ Φ:

i(JR(τ1, . . . , τn)KMB ) ≤ JR(σ1, . . . , σn)KNC ,

4. given f an n-ary function symbol and (τ1, σ1), . . . , (τn, σn), (µ, ν) ∈ Φ:

i(Jf(τ1, . . . , τn) = µKMB ) ≤ Jf(σ1, . . . , σn) = νKNC ,

An injective morphism is a morphism such that in 2 equality holds.
An embedding of boolean valued models is an injective morphism such that in 3 and 4

equality holds.
An embedding 〈i,Φ〉 from M to N is called isomorphism of boolean valued models if

i is an isomorphism of boolean algebras, and for every b ∈ N there is a ∈ M such that
(a, b) ∈ Φ.

Suppose M is a B-valued model and N a C-valued model (both in the same language
L) such that B is a complete subalgebra of C and M ⊆ N . Let J be the immersion of M
in N . N is said to be a boolean extension of M if 〈idB, J〉 is an embedding of boolean
valued models.

Remark 3.3. When B = C we will consider i = idB unless otherwise stated.

Since we are allowing function symbols in L, the definition of the semantic is a bit
more intricate than in the case of a purely relational language.

Definition 3.4. Given a B-valued modelM in a language L, let ϕ be an L-formula whose
free variables are in {x1, . . . , xn}, and let ν be a valuation of the free variables inM whose
domain contains {x1, . . . , xn}. We denote with Jϕ(ν)KMB the boolean value of ϕ(ν).

First, let t be an L-term and τ ∈ M ; we define recursively J(t = τ)(ν)KMB ∈ B as
follows:

• if t is a variable x, then

J(x = τ)(ν)KMB = Jν(x) = τKMB

• if t = f(t1, . . . , tn) where ti are terms and f is an n-ary function symbol, then

J(f(t1, . . . , tn) = τ)(ν)KMB =
∨

σ1,...,σn∈M

 ∧
1≤i≤n

J(ti = σi)(ν)KMB

∧Jf(σ1, . . . , σn) = τKMB

Given a formula ϕ, we define recursively Jϕ(ν)KMB as follows:

• if ϕ ≡ t1 = t2, then

J(t1 = t2)(ν)KMB =
∨
τ∈M

J(t1 = τ)(ν)KMB ∧ J(t2 = τ)(ν)KMB

• if ϕ ≡ R(t1, . . . , tn), then

J(R(t1, . . . , tn))(ν)KMB =
∨

τ1,...,τn∈M

 ∧
1≤i≤n

J(ti = τi)(ν)KMB

 ∧ JR(τ1, . . . , τn)KMB
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• if ϕ ≡ ¬ψ, then
Jϕ(ν)KMB = ¬ Jψ(ν)KMB

• if ϕ ≡ ψ ∧ θ, then
Jϕ(ν)KMB = Jψ(ν)KMB ∧ Jθ(ν)KMB

• if ϕ ≡ ∃yψ(y), then

Jϕ(ν)KMB =
∨
τ∈M

Jψ(y/τ, ν)KMB

If no confusion can arise, we omit the indexM and the subscript B, and we simply denote
the boolean value of a formula ϕ with parameters in M by JϕK.

By definition, an isomorphism of boolean valued models preserves the boolean value
of the atomic formulas. Proceeding by induction on the complexity, one can get the result
for any formula.

Proposition 3.5. Let M be a B-valued model and N a C-valued model in the same
language L. Assume 〈i,Φ〉 is an isomorphism of boolean valued models. Then for any
L-formula ϕ(x1, . . . , xn), and for every (τ1, σ1), . . . , (τn, σn) ∈ Φ we have that:

i(Jϕ(τ1, . . . , τn)KMB ) = Jϕ(σ1, . . . , σn)KNC

With elementary arguments it is possible to prove the Soundness Theorem also for
boolean valued models.

Theorem 3.6 (Soundness Theorem). Assume that ϕ is an L-formula which is syntac-
tically provable by an L-theory T , and that each formula in T has boolean value at least
b ∈ B in a B-valued model M. Then Jϕ(ν)KMB ≥ b for all valuations ν in M.

We get a first order model from a B-valued model passing to a quotient by an ultrafilter
G ⊆ B. This corresponds for spaces of type C+(St(B)) to a specialization of the space to
the ring of germs in G. In the general context it is defined as follows.

Definition 3.7. Let B a complete boolean algebra, M a B-valued model in the language
L, and G an ultrafilter over B. Consider the following equivalence relation on M :

τ ≡G σ ⇔ Jτ = σK ∈ G

The first order model M/G = 〈M/G,=M/G, R
M/G
i : i ∈ I, f

M/G
j : j ∈ J〉 is defined

letting:

• For any n-ary relation symbol R in L

RM/G = {([τ1]G, . . . , [τn]G) ∈ (M/G)n : JR(τ1, . . . , τn)K ∈ G}.

• For any n-ary function symbol f in L

fM/G : (M/F )n →M/G

([τ1]G, . . . , [τn]G) 7→ [σ]G.

where σ is such that Jf(τ1, . . . , τn) = σK ∈ G. Def. 3.1(vii) guarantees that this
function is well defined.
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If we require M to satisfy a key additional condition, we get an easy way to control
the truth value of formulas in M/G.

Definition 3.8. A B-valued model M for the language L is full if for every L-formula
ϕ(x, ~y) and every ~τ ∈M |~y| there is a σ ∈M such that

J∃xϕ(x, ~τ)K = Jϕ(σ, ~τ)K

Theorem 3.9 (Boolean Valued Models  Loś’s Theorem). Assume M is a full B-valued
model for the language L. Then for every formula ϕ(x1, . . . , xn) in L and (τ1, . . . , τn) ∈
Mn:

(i) For all ultrafilters G over B,M/G |= ϕ([τ1]G, . . . , [τn]G) if and only if Jϕ(τ1, . . . , τn)K ∈
G.

(ii) For all a ∈ B the following are equivalent:

(a) Jϕ(f1, . . . , fn)K ≥ a,

(b) M/G |= ϕ([τ1]G, . . . , [τn]G) for all G ∈ Oa,

(c) M/G |= ϕ([τ1]G, . . . , [τn]G) for densely many G ∈ Oa.

3.1. C+(St(B)) as a boolean valued extension of C

The following example shows how to obtain a boolean extension of a topological space Y
for a language composed by symbols which are interpreted as Borel subsets of Y n.

Example 3.10. Fix a complete boolean algebra B and a topological space Y such that

∆Y = {(x, x) ∈ Y × Y : x ∈ Y }

is Borel on Y ×Y . Consider M = C(St(B), Y ), the set of continuous functions from St(B)
to Y .

We define a structure of B-valued extension of Y on M for the language with equality
as follows. Given f, g ∈M , the set

W = {G ∈ St(B) : f(G) = g(G)}

is a Borel subset of St(B) since both f and g are continuous. Recall that A ⊆ Y is meager
if it is contained in a countable union of closed nowhere dense sets, and that A has the
Baire property if U∆A is meager for some (unique) regular open set U . Since every Borel
set B has the Baire property [7, Lemma 11.15], and St(B) is compact Hausdorff, by [6,
Chapter 29, Lemma 5], we get that

Reg({G ∈ St(B) : f(G) = g(G)})

is the unique regular open set with a meager symmetric difference with W . Identifying B
with RO(St(B)) (B is complete), we have that

=St(B) (f, g) = Jf = gKSt(B) = Reg({G ∈ St(B) : f(G) = g(G)})

is a well defined element of B and satisfies the clauses of Def. 3.1 for the equality relation.
For any Borel R ⊆ Y n, the predicate RSt(B) : C(St(B), Y )n → B defined by

RSt(B)(f1, . . . , fn) = JR(f1, . . . , fn)KSt(B) = Reg({G ∈ St(B) : R(f1(G), . . . , fn(G))})
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is a forcing relation R satisfying the clauses of Def. 3.1. Similarly we can lift Borel functions
F : Y n → Y .

With these definitions it can be checked that

M = 〈C(St(B), Y ),=St(B), R
St(B)
i : i ∈ I, FSt(B)

j : j ∈ J〉

is a B-valued model for the signature given by the Borel relations 〈Ri : i ∈ I〉 and Borel
functions 〈Fj : j ∈ J〉 chosen on Y . Moreover the set {cx ∈ M : x ∈ Y }, where cx is the
constant function with value x, is a copy of Y in M , i.e: the complete homomorphism
given by the inclusion of 2 in B induces an embedding of the 2-valued model 〈Y,=, Ri :
i ∈ I, Fj : j ∈ J〉 into the B-valued model M mapping x 7→ cx (however we do not as
yet assert that this embedding preserves the truth of formulas with quantifiers). Thus we
can infer that M is a B-valued extension of an isomorphic copy of Y seen as a 2-valued
structure in a relational language with relation symbols interpreted as Borel subsets of
Y n.

Finally if G is an ultrafilter on St(B), i.e. a point of St(B) = X, we can define the ring
C(X,Y )/G of germs in C(X,Y ) letting

[f ]G = {g : Jf = gKSt(B) ∈ G}

and RSt(B)([f1]G, . . . , [fn]G]) iff RSt(B)(f1, . . . , fn) ∈ G. We can easily check that the map
x 7→ [cx]G defines an embedding of 2-valued models of 〈Y,=, Ri : i ∈ I, Fj : j ∈ J〉 into
M/G.

If Y is Polish (i.e. second countable and completely metrizable) ∆Y is closed (Y is
Hausdorff), therefore, for any fixed language L whose elements are Borel relations and
functions on Y , we can define a structure of B-valued extension of Y for the language
L. If Y = C, the domain of such extension is the C∗-algebra C(St(B)) with extremally
disconnected spectrum.

It can be checked that if Y is compact, C(St(B), Y ) endowed with suitable lifting
of Borel predicates is a full B-valued model, while if Y is not compact and contains an
infinite set with discrete relative topology (e.g. N as a subset of C), C(St(B), Y ) is not a
full B-valued model (see Remark 4.4 below).

The latter observation is one of the compelling reasons which lead us to associate to C
(which is Polish non-compact, locally compact) the space of functions C+(St(B)) (which
we show to be a full B-valued model). Similar tricks will be needed to properly describe
the full boolean extensions of arbitrary (non-compact) Polish spaces by means of spaces
of functions.

We resume the above observations in the following definition:

Definition 3.11. Let X be a compact Hausdorff extremally disconnected topological
space.

(i) Let Y be a topological space such that ∆Y is Borel in Y 2. For any Borel relation R
on Y n, RX : C(X,Y )n → CL(X) maps (f1, . . . , fn) to the clopen set

Reg({G ∈ X : R(f1(G), . . . , fn(G))}).

The lifting of Borel functions on Y to C(X,Y ) is obtained by lifting their graph to
a forcing relation on C(X,Y ).
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(ii) We let C+(X) be the space of continuous functions

f : X → S2 = C ∪ {∞}

(where S2 is seen as the one point compactification of C) with the property that
f−1[{∞}] is a closed nowhere dense subset of X. We lift Borel relations R ⊆ Cn to
RX again letting

RX(f1, . . . , fn) = Reg({G ∈ X : R(f1(G), . . . , fn(G))}).

We let 〈C(X)/G,RX/G〉 and 〈C+(X)/G,RX/G〉 be the associated ring of germs with
RX/G defined for both rings by the requirement: RX([f1]G, . . . , [fn]G]) iffG ∈ RX(f1, . . . , fn).

We have the following Lemmas:

Lemma 3.12 (Mixing Lemma). Assume B is a complete boolean algebra and A ⊆ B is an
antichain. Then for all families {fa : a ∈ A} ⊆ C+(St(B)), there exists f ∈ C+(St(B))
such that

a ≤ Jf = faK

for all a ∈ A.

Proof. Sketch: Let f ∈ C+(St(B)) be the unique function such that f � O(¬
∨
A) = 0 and

f � Oa = fa � Oa for all a ∈ A. Check that f is well defined and works.

Lemma 3.13 (Fullness Lemma). Assume B is a complete boolean algebra. Let R1, . . . , Rn
be forcing relations on C+(St(B))<N. Then for all formulas ϕ(x, ~y) in the language
{R1, . . . , Rn} and all ~f ∈ C+(St(B))n, there exists g ∈ C+(St(B)) such that

r
∃xϕ(x, ~f)

z
=

r
ϕ(g, ~f)

z
.

Proof. Sketch: Find A maximal antichain among the b such that
r
ϕ(gb, ~f)

z
≥ b for some

gb. Now apply the Mixing Lemma to patch together all the ga for a ∈ A in a g. Check
that r

∃xϕ(x, ~f)
z

=
r
ϕ(g, ~f)

z
.

4. B-names for elements of a Polish space

We refer the reader to [7] for a comprehensive treatment of the forcing method, and
to [14, Chapter 3] for a sketchy presentation covering in more detail the results of this
section. All over this section we assume the reader has some familiarity with the standard
presentations of forcing and we follow notation standard in the set theoretic community
(for example N is often denoted as the ordinal ω). Throughout this section we will assume
V (the universe of sets) to be a transitive model of ZFC, and B ∈ V a boolean algebra
which V models to be complete. V B will denote the boolean valued model of set theory as
defined in [7, Chapter 14] and ǎ ∈ V B will denote the canonical B-names for sets a ∈ V .
If G is a V -generic ultrafilter in B, V [G] will denote the generic extension of V and σG the
interpretations of B-names in V B by G. In this situation there is a natural isomorphism
between (V B/G,∈B /G) and (V [G],∈) defined by [σ]G 7→ σG. Cohen’s forcing theorem
in this setting states the following for any formula ϕ(x1, . . . , xn) in the language of set
theory:

11



• V [G] |= ϕ((σ1)G, . . . , (σn)G) if and only if Jϕ(σ1, . . . , σn)K ∈ G,

• Jϕ(σ1, . . . , σn)K ≥ b if and only if V [G] |= ϕ((σ1)G, . . . , (σn)G) for all V -generic filters
G to which b belongs.

It is well known that V -generic filters cannot exist for atomless complete boolean algebra,
nonetheless there is a wide spectrum of solutions to overcome this issue and work as if for
any such algebra V -generic filters can be found, and we will do so. We will also use in
several points the following form of absoluteness for ∆1-properties.

Let c denote a new constant symbol. Then for all provably ∆1-definable prop-
erties ϕ(x, c) over the theory ZFC + (c ⊆ ω) and all4 a ∈ Hω1 , the following
holds:

• ϕ(x/a, c/r) holds in a transitive N which is a model of (a large enough
fragment of) ZFC with a, r ∈ N if and only if Jϕ(x/ǎ, c/ř)K = 1B holds in
N for all boolean algebras B ∈ N which N models to be complete.

• ϕ(x/a, c/r) holds in V if and only if it holds in any (some) transitive set
N which is a model of (a large enough fragment of) ZFC with a, r ∈ N .

Let Y be a Polish space. Then Y can be identified with a Gδ-subset of the Hilbert
cube H = [0, 1]N [9, Theorem 4.14].

Consider
B̂ = {Br(q) : r ∈ Q, q ∈ D}

where Br(q) is the open ball of radius r and center q, and D is the set of points in H with
rational coordinates which are non-zero just on a finite set. Then B̂ is a countable basis
for the topology on H = [0, 1]N, and it is described by a provably ∆1-definable property
defined by a lightface Borel predicate.

Definition 4.1. Let Y be a Polish space in V , w.l.o.g.

Y =
⋂
n∈N

⋃
{Brmn(qmn) : m ∈ N}

is a Gδ-subset of H given by a suitably chosen family of elements Brmn(qmn) of B̂. σ ∈ V B

is a B-name for an element of Y if

t

σ ∈
⋂
n∈N

⋃
{Ḃrmn(qmn) : m ∈ N}

|

= 1B,

where (Ḃr(q))G is in V [G] the ball of radius r and center q of the space H as defined in
V [G] for all V -generic filters G.

We denote by Y B the set of all B-names (of minimal rank) for elements of Y modulo
the equivalence relation:

σ ≡ τ ⇔ Jσ = τK = 1B

We will call B-name for a complex number any element of the family CB.

We can similarly lift Borel relations on Y n to boolean relations on (Y B)n:

4Recall that Hω1 is the family of hereditarily countable sets. For what concerns us, the relevant
observation is that any Polish space is a definable class (with parameters) in Hω1 .
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Remark 4.2. Let Y be a Polish space. As already noted, Y is a Gδ-subset of H = [0, 1]N.
B̂ induces a countable open basis on Y :

B̂Y = {Br(q) ∩ Y : r ∈ Q, q ∈ D}.

Every Borel subset of Y is obtained, in fewer than ℵ1 steps, from the elements of B̂Y by
taking countable unions and complements. It is possible to code these operations with r a
subset of ω (see [7, Chapter 25]). For our purposes it is enough to say that if R is a Borel
subset of Y n, there is some r ⊆ ω and a (ZFC provably) ∆1-property PR(~x, y) such that

~x ∈ R⇔ PR(~x, r).

Suppose r ∈ V . We denote by RV the set {~x ∈ V : PR(~x, r)}.
Guided by these considerations, we define in V the following.

Definition 4.3. Given R, a Borel n-ary relation on a Polish space Y , we let PR(~x, r) be
the provably ∆1-definable property such that

~x ∈ R⇔ PR(~x, r).

For any σ1, . . . , σn ∈ Y B, let ~σ ∈ V B denote the canonical name for the tuple (σ1, . . . , σn).
Define

RB(σ1, . . . , σn) = JPR(~σ, ř)KV
B

.

Similarly define the lifting to Y B of Borel functions F : Y n → Y .
With these definitions

〈Y B, RB
1 , . . . , R

B
k , F

B
1 , . . . , F

B
l 〉

is a B-valued extension of Y , where each Ri (Fj) is an arbitrary Borel relation (function)
on Y ni (from Y mj to Y ).

Remark 4.4. So far we have defined a structure of B-valued model for Borel relations and
functions on both Y B and C(St(B), Y ) for a Polish space Y . However, whenever Y is
not compact, we cannot exhibit a natural isomorphism between these two models, unless
we enlarge C(St(B), Y ). The problem (that can be appreciated by the reader familiar
with forcing) is the following: assume we split a complete atomless boolean algebra B in
a countable maximal antichain A = {an : n ∈ ω}. Then

∨
n∈ω an = 1B but

⋃
n∈ωOan is

just an open dense subset of St(B), as the family {¬an : n ∈ ω} has the finite intersection
property and can be extended to an ultrafilter H missing the antichain A. Now consider
for Y = C the function f : G 7→ n iff an ∈ G. This should naturally correspond to the
B-name for a natural number

σf = {〈m̌, an〉 : m < n ∈ ω}.

Notice also that the function is continuous on its domain since the target is a discrete
subspace of C and the preimage of each point is clopen. Moreover this function naturally
extends to a continuous function in C+(St(B))\C(St(B)) mapping the G out of its domain
to ∞. This shows that C(St(B)) is a space of functions too small to capture all possible
B-names for complex numbers. The reader who has grasped the content of this remark
will find the proofs of the following Lemmas almost self-evident, however we decided to
include them in full details, since at some points there are delicate issues regarding the way
to formulate certain simple properties of Polish spaces in an absolute (i.e ∆1-definable)
manner, which can be tricky for those who are not fully familiar with forcing.
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Definition 4.5. Let Y be a Polish space presented as a Gδ-subset of the Hilbert cube
H = [0, 1]N. Let B be a complete boolean algebra.

C+(St(B), Y ) is the family of continuous functions f : St(B)→ H such that f−1[H\Y ]
is meager in St(B).

We can define a structure of B-valued extension of Y over C+(St(B), Y ) repeating
verbatim what we have done in Section 3.1 for C(St(B), Y ). Everything will work smoothly
since for all Borel R ⊆ Y n and f1, . . . , fn ∈ C+(St(B), Y ), the set of H ∈ St(B) such that
R(f1(H), . . . , fn(H)) is not defined is always a meager subset of St(B). Moreover Lemmas
3.12 and 3.13 can be recasted verbatim also for C+(St(B), Y ), which is therefore a full
B-valued model. We are ready to prove the following theorem.

Theorem 4.6. Let Y be a Polish space and B a complete boolean algebra.
Then 〈C+(St(B), Y ),=St(B)〉 and 〈Y B,=B〉 are isomorphic B-valued models.

Since the case Y = C outlines already the main ingredients of the proof and may
be slightly easier to follow, due to the evident analogies of the spaces C+(X,C) with
commutative C∗-algebras, we will give the full proof of the theorem above for this special
case. However, with minimal modifications, the reader will be able to generalize by himself
the proof to any Polish space: for spaces admitting a one point compactification it suffices
to replace all occurrences of C with Y in the proof to follow. For other Polish spaces Z not
admitting such a simple compactification, this is slightly more delicate since the preimage
of an f ∈ C+(St(B), Z) of the points in the range of f out of Z is not anymore a closed
nowhere dense set, but a countable union of closed nowhere dense sets of St(B). However
no essential new complications arise also for this case, so we feel free to sketch just the
main ingredients of the proof for the more general case of such Polish spaces Z.

Remark 4.7. In the following, given a complete boolean algebra B, we will often confuse
it with RO(St(B)). If U is a regular open set of St(B) and G ∈ St(B), we may write
equivalently

G ∈ U,U ∈ G
depending on whether we are considering U as an element of RO(St(B)) or as the corre-
spondent element in B.

Remark 4.8. The definitions given in Remark 4.2 and Definition 4.5 can be simplified when
working in C. Instead of B̂C from Remark 4.2, we will work directly with B = {Un : n ∈ ω},
the countable basis of C whose elements are the open balls with rational radius and
whose centre has rational coordinates. Moreover, instead of Definition 4.5, we work with
C+(St(B)) as defined in Def. 3.11(ii).

Proof of Theorem 4.6 for C

The proof splits in several Lemmas.
The first Lemma gives a characterization of the B-name to associate to an f ∈

C+(St(B)), which we will need in order to define the boolean isomorphism we are looking
for.

Lemma 4.9. Assume f ∈ V is an element of C+(St(B)). For H ∈ St(B) we define

ΣH
f = {Cl (Un) : Reg(f−1[Un]) ∈ H}

Then, for H ∈ St(B), we have:
f(H) = σHf

where σHf it is the unique element in
⋂

ΣH
f if ΣH

f is non-empty, and σHf =∞ otherwise.
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Remark 4.10. The Lemma shows that in ZFC, given f ∈ C+(St(B)), it holds that

f(H) = x⇔ x = σHf .

The latter is a (ZFC provably) ∆1-property with ω,B, and {an = Reg(f−1[Un]) : n ∈ N}
as parameters. Thus, given V a transitive model of ZFC, B a complete boolean algebra
in V , G a V -generic filter in B, any f ∈ V element of C+(St(B))V can be extended in an
absolute manner to V [G] by the rule:

fV [G] : St(B)V [G] → CV [G]

H 7→ σHf

where σHf is defined as in the previous lemma through the set ΣH
f = {Cl (Un) : an ∈ H}.

This observation is used in the following proposition defining the boolean isomorphism
between CB and C+(St(B)).

Proposition 4.11. Fix V a transitive model of ZFC and B ∈ V a boolean algebra which
V models to be complete. Let f ∈ C+(St(B)) and consider

B = {Un : n ∈ ω}

the countable basis of C defined in Remark 4.8. For each n ∈ ω let

an = Reg(f−1[Un]).

There exists a unique τf ∈ CB such that5

r
τf ∈ U̇n

zV B

= an

for all n ∈ ω. Moreover any τ ∈ V B such that
r
τ ∈ U̇n

zV B

= an for all n ∈ ω is also such

that Jτ = τf KV
B

= 1B.

By Proposition 4.11 we conclude that the map f 7→ τf defines a function between
C+(St(B)) and CB. We still need to show that the function is a surjective boolean map
i.e. it maps boolean equality on C+(St(B)) to boolean equality on CB and is surjective
(in the sense of boolean embeddings). The latter is achieved by the following Lemma:

Lemma 4.12. Assume τ ∈ CB. Consider

fτ : St(B)→ C ∪ {∞}
H 7→ σHτ

where, given

ΣH
τ = {Cl (Un) :

r
τ ∈ U̇n

zV B

∈ H},

σHτ is the unique element in
⋂

ΣH
τ if ΣH

f is non-empty, σHτ =∞ otherwise. The function

fτ belongs to C+(St(B)) and τfτ = τ .

5U̇n denotes the B-name for the complex numbers in the open ball of the generic extension determined
by the rational coordinates and rational radius of the ball Un.
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Finally we need to show that f 7→ σf respects boolean equality, i.e. that:

Jf = gKC
+(St(B)) = Jτf = τgKV

B

. (1)

Since it makes no difference to prove the equality for this relation or for an arbitrary
Borel relation (or functions), we will prove the following stronger result:

Lemma 4.13. Assume R ⊆ Cn is a Borel relation. Then RSt(B)(f1, . . . , fn) = RB(σf1 , . . . , σfn),
where RB is defined according to Def. 4.3.

It is clear that these Lemmas entail the conclusion of the theorem. We prove all of
them in the next subsection.

Corollary 4.14. Under the hypotheses of Proposition 4.11, if G is a V -generic filter in
B then:

fV [G](G) = (τf )G.

Proof. By Lemma 4.13 and Remark 4.10, we get that τHf = fV [G](H) for allH ∈ St(B)V [G].

Moreover whenever H is V -generic for B we also have that τHf = (τf )H . Since G ∈ V [G]
is V -generic for B, the conclusion follows.

Proof of the key Lemmas

Proof of Lemma 4.9. Assume ΣH
f is empty. If f(H) ∈ Un for some n ∈ ω it follows that:

H ∈ f−1[Un] ⊆ Reg(f−1[Un])

hence Cl (Un) ∈ ΣH
f , which is absurd. Suppose now that ΣH

f is non-empty.

Claim 4.14.1. Assume ΣH
f is non-empty. Then

⋂
ΣH
f is a singleton.

Proof. Let m ∈ ω be such that Cl (Um) ∈ ΣH
f .

Existence: The family

Σ̂H
f = {Cl (Um) ∩ Cl (Un) : Reg(f−1[Un]) ∈ H}

is a family of closed subsets of Cl (Um). ΣH
f inherits the finite intersection property

from H, hence so does Σ̂H
f . Since Cl (Um) is compact, we can conclude that

∅ 6=
⋂

Σ̂H
f ⊆

⋂
ΣH
f

Uniqueness: Suppose there are two different points x, y ∈
⋂

ΣH
f . There exists p ∈ ω such

that x ∈ Up, y /∈ Cl (Up). The last relation guarantees that Cl (Up) /∈ ΣH
f . Now we

show that for w ∈
⋂

ΣH
f , w ∈ Un implies Reg(f−1[Un]) ∈ H. Therefore x ∈ Up

implies Cl (Up) ∈ ΣH
f , which is absurd. Suppose Reg(f−1[Up]) /∈ H, we have that:

H ∈ Reg(f−1[Up])
c ∩ Reg(f−1[Um]) ⊆ f−1[Cl (Um) \ Up]

For each z ∈ Cl (Um) \ Up there exists Unz such that

z ∈ Unz ∧ x /∈ Cl (Unz)

16



This family of open balls covers the compact space Cl (Um) \ Up, so that there are
z1, · · · , zk ∈ Cl (Um) \ Up which verify the following chain of inclusions:

f−1[Cl (Um) \ Up] ⊆
⋃

1≤i≤k
f−1[Unzi ] ⊆

⋃
1≤i≤k

Reg(f−1[Unzi ])

There is therefore a zj such that Reg(f−1[Unzj ]) ∈ H, hence Cl
(
Uzj
)
∈ ΣH

f . This is

absurd since x /∈ Cl
(
Uzj
)
.

Suppose f(H) 6= σHf and consider two open balls U1, U2 in B such that

Cl (U1) ∩ Cl (U2) = ∅

f(H) ∈ U1

σHf ∈ U2

It easily follows that both Reg(f−1[U1]) and Reg(f−1[U2]) are in H (the second assertion
can be shown along the same lines of the uniqueness proof in Claim 4.14.1). These two
sets are disjoint, a contradiction follows.

The Lemma is proved.

In order to prove Proposition 4.11, we need to generalize what we have exposed in
Remark 4.2 about Borel codes. In particular we need to be able to describe what is the
lift of an open (closed) set of St(B) to the corresponding open (closed) set in St(B)V [G]

where G is V -generic for B. The following can be shown starting from the clopen sets and
then extending the proof to cover the case of arbitrary open or closed sets.

Fact 4.15. Let G be a V -generic filter over B. Assume RV , SV are two open or closed
sets in St(B)V . Then

RV ⊆ SV ⇔ RV [G] ⊆ SV [G]

Proof. We deal with the case for open sets, the case for closed sets is proved along the same

lines. Let in V , R =
⋃
i∈I Oai and S =

⋃
j∈J Oaj . Now set in V [G], RV [G] =

⋃
i∈I O

V [G]
ai

and SV [G] =
⋃
j∈J O

V [G]
aj . Then R ⊆ S holds in V (or RV [G] ⊆ SV [G] holds in V [G]) iff

for all i ∈ I OVai ⊆
⋃
j∈J OVaj (OV [G]

ai ⊆
⋃
j∈J O

V [G]
aj ). By compactness, since OVai (OV [G]

ai )

is a clopen subset of St(B)V in V (a clopen subset of St(B)V [G] in V [G]), there is a finite
set Ji ⊆ J such that Oai ⊆

⋃
j∈Ji Oaj . This occurs (both in V or V [G]) if and only if

ai ≤
∨
j∈Ji aj .

Now notice that for any finite set Ji, V [G] |= ai ≤
∨
j∈Ji aj iff V |= ai ≤

∨
j∈Ji aj .

We get the thesis.

Proof of Proposition 4.11. Consider the B-name

Σf = {(U̇n, an) : n ∈ ω},

where an = Reg(f−1[Un]). Standard forcing arguments give that

r
∃!x(x ∈

⋂
Σf )

z
= 1B. (2)

We give a proof of this equality for the sake of completeness:
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Proof of equation (2).

Claim 4.15.1. Let G be a V -generic filter for B. Then:

V [G] |= ∃!x
(
x ∈

⋂
ΣG
f

)
where ΣG

f = {Cl (Un)V [G] : an ∈ G}.

Proof of the claim. The preimage of C through f contains an open dense subset of St(B)
in V , hence it follows that

D = {an = Reg(f−1[Un]) : n ∈ ω} ∈ V

is a predense subset of B+. Since G is V -generic, G ∩ D 6= ∅. Thus am ∈ G and
Cl (Um)V [G] ∈ ΣG

f for some m ∈ ω. The proof that
⋂

ΣG
f is a singleton can be carried out

as in Claim 4.14.1.

The Claim holds for all V -generic filters G for B, thus

r
∃!x(x ∈

⋂
Σf )

z
= 1B.

completing the proof of equation (2).

V B is full, hence there is a B-name τf such that

r
τf ∈

⋂
Σf

z
= 1B.

This is a B-name for a complex number. Moreover, if τ is a B-name for a complex number
and r

τ ∈
⋂

Σf

z
= 1B,

then, from

(τf ∈
⋂

Σf ) ∧ (τ ∈
⋂

Σf ) ∧ (∃!x(x ∈
⋂

Σf ))→ τ = τf

it follows that:
Jτ = τf K = 1B.

This shows that the map f 7→ τf can be defined.
To conclude the proof of Proposition 4.11 we still must show that

r
τf ∈ U̇n

z
= Reg(f−1[Un]) = an (3)

Proof of equation (3). Let G be a V -generic filter for B. On the one hand we have (using

the same proof of the uniqueness part in Claim 4.14.1) that if (τf )G ∈ UV [G]
n then am ∈ G

for some m such that (U̇n, am) ∈ Σf and am ∈ G, which necessarily gives that m = n,
obtaining r

τf ∈ U̇n
z
≤ an.

On the other hand

G ∈ fV [G]−1
[UV [G]
n ]⇒ (τf )G =by 4.14 fV [G](G) ∈ UV [G]

n ⇒
r
τf ∈ U̇n

z
∈ G
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which means, interpreting
r
τf ∈ U̇n

z
as a clopen subset of St(B)V [G], that

fV [G]−1
[UV [G]
n ] ⊆

(r
τf ∈ U̇n

z)V [G]
.

Lemma 4.15 guarantees that this is equivalent to

f−1[UVn ] ⊆
r
τf ∈ U̇n

z
.

Since
r
τf ∈ U̇n

z
is clopen, this implies that

an = Reg(f−1[UVn ]) ≤
r
τf ∈ U̇n

z

Proposition 4.11 is proved.

Proof of Lemma 4.12. The proof that ΣH
τ is non-empty iff its intersection has one single

point can be carried out as in Claim 4.14.1 substituting all over the proof Reg(f−1[Un])

with
r
τ ∈ U̇n

z
.

Preimage of {∞} is nowhere dense: We show that the preimage of C through fτ contains
an open dense set. Set

an =
r
τ ∈ U̇n

z

and consider the set A = {an : n ∈ ω}. We show that:∨
n∈ω

an = 1B.

Since τ is a B-name for a complex number in M , if G is a V -generic filter over B we
have:

V [G] |= τG ∈ CV [G]

We can thus infer
V [G] |= ∃n ∈ ω(τG ∈ Un)

for all V -generic filters G, since CV [G] ∩ V [G] =
⋃
n∈ω U

V [G]
n ∩ V [G]. Thus:∨

n∈ω
an =

r
∃n ∈ ω̌(τ ∈ U̇n)

z
≥ 1B

This implies that A is predense and therefore that
⋃
n∈ωOan is dense in St(B).

Continuous: Let H ∈ St(B) be in the preimage of C, and let U be an open subset of C
containing fτ (H). Consider Uk ∈ B such that

fτ (H) ∈ Uk

Cl (Uk) ⊆ U

Since
fτ (H) ∈ Uk ⇒ ak ∈ H, (1)
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(this can be proved as in the uniqueness part in Claim 4.14.1 substituting Reg(f−1[Un])

with
r
τ ∈ U̇n

z
), and since the following inclusion holds

Oak ⊆ f
−1
τ (U),

the continuity of fτ for points in the preimage of C is proved.

Consider now H ∈ f−1
τ ({∞}). Let A be an open neighborhood of∞, and let Uk ∈ B

be such that:
Cl (Uk)

c ⊆ A

We also consider Ul such that
Cl (Uk) ⊆ Ul

By definition of fτ we have that H ∈ Ocal , and by equation (1) the image of any
element in the open set Ocal cannot belong to Ul. Thus

Ocal ⊆ f
−1
τ [U cl ] ⊆ f−1

τ [Cl (Uk)
c] ⊆ f−1

τ [A]

τfτ = τ : We already know that (see equation (1)):

f−1
τ [Un] ⊆ Oan

The second set is clopen, therefore:
r
τfτ ∈ U̇n

z
= Reg(f−1

τ [Un]) ⊆ Oan (2)

Toward a contradiction, assume Jτ = τfτ K 6= 1B and let G a V -generic filter which
verifies

V [G] |= τG 6= (τfτ )G

Thus there exists n ∈ ω such that:

(τfτ )G ∈ UV [G]
n

τG /∈ UV [G]
n

The inclusion relation (2) implies
r
τfτ ∈ U̇n

z
≤ an =

r
τ ∈ U̇n

z

but by Cohen’s Forcing Theorem
r
τfτ ∈ U̇n

z
∈ G. This is a contradiction.

The Lemma is proved.

Proof of Lemma 4.13. We will consider in detail the case of R ⊆ C a unary Borel relation
in C, the general case for n-ary R is immediate. Given f ∈ C+(St(B)), consider JR(f)K
and

r
τf ∈ Ṙ

z
as regular open subsets of St(B). In order to show that they are equal, it

is sufficient to prove that their symmetric difference is meager. By definition, we already
know that JR(f)K has meager difference with the set

{H ∈ St(B) : f(H) ∈ R} = f−1[R].

Therefore it suffices to prove that
r
τf ∈ Ṙ

z
and f−1[R] have meager difference. The proof

proceeds step by step on the hierarchy of Borel sets Σ0
α, Π0

α, for α a countable ordinal.
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Σ0
1: Let R be an element of the basis

B = {Un : n ∈ ω}

defined in Remark 4.2. The thesis follows from Proposition 4.11, in fact

r
τf ∈ U̇n

z
= Reg(f−1[Un])

which has meager difference with f−1[Un]. Consider now

R =
⋃
i∈I

Ui

where I is a countable set of indexes. In this case we have that

f−1[R] =
⋃
i∈I

f−1[Ui]

and r
τf ∈ Ṙ

z
=
∨
i∈I

r
τf ∈ U̇i

z
= Reg(A)

where A =
⋃
i∈I

r
τf ∈ U̇i

z
. For each i ∈ I, the sets f−1[Ui] and

r
τf ∈ U̇i

z
have mea-

ger difference, thus f−1[R]∆A is meager. The proof is therefore concluded because
A∆Reg(A) is meager.

Σ0
α ⇒ Π0

α: Suppose R ∈ Π0
α, and that the thesis holds for Borel sets in Σ0

α. By definition

Rc ∈ Σ0
α, therefore:

f−1[Rc]∆
r
τf ∈ Ṙc

z
is meager

hence
f−1[R]∆

r
τf ∈ Ṙ

z
is meager

Π0
α ⇒ Σ0

α+1: This item can be proved as the second part of the case α = 1, substituting

the Un with Borel sets in Π0
α.

Σ0
β for β limit ordinal: If the thesis holds for α < β, then the proof can be carried similarly

to the case Π0
α ⇒ Σ0

α+1.

The Lemma is proved.

This concludes the proof of Theorem 4.6 for the case Y = C.

4.1. C(St(B))/G and C+(St(B))/G in generic extensions

The following proposition shows that if we restrict our attention to V -generic filters for B
then C(St(B)) is a family of names large enough to describe all complex numbers of V [G].

Proposition 4.16. Assume V is a model of ZFC, B a complete boolean algebra in V and
G a V -generic filter in B. Then

C+(St(B))/G ∼= C(St(B))/G
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Proof. We need to show that for each f ∈ C+(St(B)) we can find an f̃ ∈ C(St(B)) such
that r

f = f̃
z
∈ G

which, by Corollary 4.14, is equivalent to

fV [G](G) = f̃V [G](G)

We denote again
an = Reg(f−1[Un]).

Proceeding as in Claim 4.15.1, we can find m ∈ ω such that am ∈ G. For each H ∈ Oam
we have that

f(H) ∈ Cl (Um)

by Lemma 4.9. We can therefore consider the restriction of f to Oam (which is clopen)
and extend it to a f̃ ∈ C(St(B)) setting it to be constantly 0 on O¬am . The implication

f �OVam= f̃ �OVam⇒ fV [G] �OV [G]
am

= f̃V [G] �OV [G]
am

guarantees the thesis, since G ∈ OV [G]
am .

4.2. Proof of Theorem 4.6 for an arbitrary Polish space Y

We outline the proof of Theorem 4.6 for the case of an arbitrary Polish space Y . The
strategy of the proof is exactly the same for the case Y = C. At some points the corre-
sponding Lemma needs a slightly more elaborate proof, we outline when this is the case.
All over this section let

Y =
⋂
n∈N

⋃
{Brmn(qmn) : m ∈ N} ⊆ H

denote an arbitrary Polish space seen as a Gδ subset of H and {Un : n ∈ ω} denote its
basis

B̂Y = {Br(q) ∩ Y : r ∈ Q, q ∈ D}

as done in section 4.

Lemma 4.17. Assume f ∈ V is an element of C+(St(B), Y ). For H ∈ St(B) we define

ΣH
f = {Cl (Un) : Reg(f−1[Un]) ∈ H}

Then, for H ∈ St(B) such that f(H) ∈ Y , we have:

{f(H)} = Y ∩
⋂

ΣH
f ,

moreover
⋂

ΣH
f is always non-empty.

Proof.
⋂

ΣH
f is always non-empty, since it is the intersection of a family with the finite

intersection property of closed sets of a compact space. The proof that |
⋂

ΣH
f ∩ Y | ≤ 1 if

f(H) ∈ Y runs as the uniqueness part of Lemma 4.9.
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Proposition 4.18. Fix V a transitive model of ZFC and B ∈ V a boolean algebra which
V models to be complete. Let f ∈ C+(St(B), Y ). For each n ∈ ω let

an = Reg(f−1[Un])

where BY = {Un : n ∈ ω} is the fixed countable basis for Y . There exists a τf ∈ Y B such
that6 r

τf ∈ U̇n
zV B

= an

for all n ∈ ω. Moreover any τ ∈ V B such that
r
τ ∈ U̇n

zV B

= an for all n ∈ ω is also such

that Jτ = τf KV
B

= 1B.

Proof. This proposition has exactly the same proof as the corresponding Proposition 4.11
for C.

Lemma 4.19. Assume τ ∈ Y B. Consider

fτ : St(B)→ H
H 7→ σHτ

where, given

ΣH
τ = {Cl (Un) :

r
τ ∈ U̇n

zV B

∈ H},

σHτ is the unique element in
⋂

ΣH
τ if ΣH

τ is non-empty. Otherwise f(H) = σHτ is de-
fined by extending by continuity f on the others H ∈ St(B). The function fτ belongs to
C+(St(B), Y ) and τfτ = τ .

Proof. Notice that for all n ∈ ω
r
τ ∈

⋃
{Ḃrmn(qmn) : m ∈ N}

z
= 1B,

hence for all n ∈ ω
{
r
τ ∈ Ḃrmn(qmn)

z
: m ∈ ω}

is predense in B+. Seeing each
r
τ ∈ Ḃrmn(qmn)

z
as a clopen subset of St(B), we conclude

that
An =

⋃
{
r
τ ∈ Ḃrmn(qmn)

z
: m ∈ ω}

is open dense in St(B) for all n ∈ ω. Hence fτ is well defined (and continuous) on the dense
Gδ subset of St(B)

⋂
n∈ω An. Therefore f can be extended by continuity to the whole of

St(B). The proof of the continuity of f on
⋂
n∈ω An, and the fact that on

⋂
n∈ω An f takes

values in Y can be carried as in the corresponding proof of Lemma 4.12.

The proof that

Jf = gKC
+(St(B),Y ) = Jτf = τgKV

B

(4)

for any f, g ∈ C+(St(B), Y ) is the same as the corresponding proof for equation 1.

6If Un = Y ∩ Br(q) and G is V -generic for B, U̇n denotes the B-name for the elements in the Hilbert
cube of V [G] belonging to ⋂

n∈N

⋃
{(Brmn(qmn))V [G] : m ∈ N} ∩ (Br(q))V [G],

where (Br(q))V [G] is the ball in the Hilbert cube HV [G] of rational radius r and center q as computed in
V [G].
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4.3. Extensions of the boolean isomorphism

In general any boolean predicate or function on the B-valued model C+(St(B), Y ) can
be transferred to a corresponding boolean predicate on Y B using the above isomorphism
f 7→ σf .

Definition 4.20. Let Y be a Polish space and B a complete boolean algebra. For any
boolean relation RSt(B) : C+(St(B), Y )n → B (and boolean function FSt(B))

RB(σ1, . . . , σn) = RSt(B)(fσ1 , . . . , fσn),

(similarly we can define the boolean function FB).

By Theorem 4.6 and Lemma 4.13, we immediately have the following.

Theorem 4.21. Fix a signature

L = {Ri : i ∈ I} ∪ {Fj : j ∈ J}.

and assume that 〈RSt(B)
i : i ∈ I〉, 〈FSt(B)

j : j ∈ J〉 are boolean interpretations of the

signature making C+(St(B), Y ) a B-valued model. The map

Γ : C+(St(B), Y )→ Y B

f 7→ τf

is an isomorphism of the B-valued model

〈C+(St(B), Y ), R
St(B)
i : i ∈ I, FSt(B)

j : j ∈ J〉

with the B-valued model
〈Y B, RB

i : i ∈ I, FB
j : j ∈ J〉.

4.4. Some further comments on the proof of Theorem 4.6

One can get a proof of this theorem for the case Y = C following Jech’s7 results in [8]
as follows: Jech defines the notion of stonean algebra as an abelian space of (possibly
unbounded) normal operators. Stonean algebras are a natural generalization of the notion
of commutative C∗-algebras. Jech proves that:

• The isomorphism type of any complete stonean algebra is determined by the complete
boolean algebra given by its space of projections,

• For any complete boolean algebra B, CB and C+(St(B)) are complete stonean alge-
bras whose spaces of projections are in both cases isomorphic to B.

Jech’s proof that CB is a complete stonean algebra exploits the property that (R, <) is a
complete linear order in order to give a simple description of the B-names for real numbers
of V B, and also the property that any element of a stonean algebra can be decomposed
uniquely as the direct sum of its real and imaginary part. The isomorphism between
CB and C+(St(B)) is obtained by showing that the Gelfand transform can be defined
also for stonean algebras and yields that any stonean algebra A is isomorphic to C+(X)

7This isomorphism of CB and C+(St(B)) has also been independently proven by Ozawa in [11], but
Jech’s proof is in our eyes more elegant and informative.
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where X is the spectrum of A. Moreover, in case A is complete, its spectrum X is also
homeomorphic to the Stone space of the complete boolean algebra of projections on A. In
both arguments there are peculiar properties of R (being a complete linear order) which
are not shared by other Polish spaces Y , and of a stonean algebra A (the characterization
of its elements in terms of the involution operation and of its self-adjoint operators) which
are not shared by the function spaces C+(X,Y ) for Y 6= C. Ozawa’s proof in [11] relies
on the same properties of R and of commutative algebras of normal operators used in
Jech’s argument. In particular we do not see any natural pattern to generalize Jech’s (or
Ozawa’s) proof method so to cover also the cases of Theorem 4.6 for a Polish space Y 6= C
other than resorting (as we did) to purely topological characterizations of the properties
of Polish spaces. A further comment is in order at this point: we became aware of Jech’s
and Ozawa’s work only after having completed and submitted a first version of this paper.

5. Generic absoluteness

We can now show that for any Polish space Y the B-valued models (C+(St(B), Y ), RSt(B)),
with R a Borel (universally Baire) relation on Y n, is an elementary superstructure of
(Y,R). By Lemma 4.13, wheneverR is a Borel relation on Y n with Y Polish, RB(σ1, . . . , σn) =
RSt(B)(fσ1 , . . . , fσn) (where RB is defined as in Def. 4.2). This equality is a special case of
the much more general result which can be proved for universally Baire relations.

Definition 5.1 (Feng, Magidor, Woodin [4]). Let Y be a Polish space. A ⊆ Y n is
universally Baire if f−1[A] has the Baire property in Z for all continuous f : Z → Y n and
all compact Hausdorff spaces Z.

UB denote the class of universally Baire subsets of H (or any other Polish space).

Fact 5.2. Let Y be a Polish space. A ⊆ Y n is universally Baire if and only if f−1[A] has
the Baire property in Z for all continuous f : Z → Y n with Z compact and extremally
disconnected.

Proof. We need to prove just one direction, and we prove it as follows. Assume f : Z →
Y n is continuous for some Z compact Hausdorff but not extremally disconnected. Set
Z∗ = St(RO(Z)) and define π : Z∗ → Z by π(G) = x if x is the unique point in Z
belonging to

ΣG =
⋂
{Cl (U) : U ∈ G}.

The same arguments we encountered in the proof of the isomorphism of C+(St(B)) with
CB show that π is continuous, open and surjective. In particular f−1[A] has the Baire
property in Z iff g−1[A] has the Baire property in Z∗, where g = f ◦ π.

By [6, Chapter 29, Lemma 5] Borel sets are universally Baire as already observed in
Example 3.10. Woodin [10, Theorem 3.4.5, Remark 3.4.7] showed that for any univer-
sally Baire set A the theory of L(R, A) is generically invariant in the presence of class
many Woodin cardinals which are a limit of Woodin cardinals, and moreover that these
assumptions entail that any Σ1

n-property defines a universally Baire relation. Shoenfield
[7, Lemma 25.20] (or [14, Theorem 3.5.3, Remark 3.5.4] or [17, Lemma 1.2] for a presenta-
tion of this result in line with the content of this paper) showed that the Σ1

2-theory of any
Polish space X is generically invariant under set forcing. This translates by the results of
this paper in the following:
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Theorem 5.3. Assume 〈Ri : i ∈ I〉 and 〈Fj : j ∈ J〉 are Borel predicates and functions
on some Polish space Y . Let X be a compact Hausdorff extremally disconnected space and
p ∈ X. Then

〈Y,Ri : i ∈ I, Fj : j ∈ J〉 ≺Σ2 〈C+(X,Y )/p,RXi /p : i ∈ I, FXj /p : j ∈ J〉.

Moreover if we assume the existence of class many Woodin cardinals which are a limit of
Woodin cardinals, we can let each Ri and Fj be arbitrary universally Baire relations and
functions, and we have the stronger conclusion that

〈Y,Ri : i ∈ I, Fj : j ∈ J〉 ≺ 〈C+(X,Y )/p,RXi /p : i ∈ I, FXj /p : j ∈ J〉.

Proof. By Shoenfield’s (or Woodin’s) theorem we have that for all Σ1
2 (Σ1

n for any n)
properties ϕ(~x) in the parameters 〈Ri : i ∈ I〉, 〈Fj : j ∈ J〉 with each Ri, Fj Borel
(universally Baire) the following are equivalent:

• ϕ(~r) holds in 〈Y,Ri : i ∈ I, Fj : j ∈ J〉,

• Jϕ(~r)K = 1B in CB for some complete boolean algebra B,

• Jϕ(~r)K = 1B in CB for all complete boolean algebras B.

Since X is compact Hausdorff and extremally disconnected, CL(X) is a complete boolean
algebra and X is homeomorphic to St(CL(X)). By Theorem 4.21 C+(X,Y ) and Y B are
isomorphic B-valued models. In particular C+(X,Y ) is full. By the first two equivalent

items we get that Jϕ(~r)KC
+(X,Y ) = 1B in C+(X,Y ) if and only if ϕ(~r) holds in Y . Since the

above holds for all relevant properties ϕ, we can apply  Loś’s theorem to the full B-valued
model C+(X,Y ) in the point (ultrafilter) p to conclude that

〈Y,Ri : i ∈ I, Fj : j ∈ J〉 ≺(Σ2) 〈C+(X,Y )/p,RXi /p : i ∈ I, FXj /p : j ∈ J〉.

Following Takeuti’s ideas, we remark that these results suggest the following “original”
proof strategy to be applied in an algebraic geometric context rather than in an operator
algebra context (as already done by Takeuti and others). Prove that a certain problem
regarding for example complex numbers and analytic functions has a solution in some
forcing extension. Then argue that its solution can be formalized as a first order property of
the structure C+(X)/p. Conclude using elementarity that the solution of the problem for
the complex numbers is really the one computed in C+(X)/p. We have already successfully
applied the above strategy to prove a result related to Schanuel’s conjecture in number
theory (unfortunately for us already proved by other means): the interested reader is
referred to [16].
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