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Introduction

De Zigno (1880) described longirostrine crocodylian re−
mains from the middle Eocene of Monte Duello (Verona,
Italy) and formally erected a new species upon this material,
Crocodylus arduini (originally written as Crocodilus). Since
then, many authors (Kuhn 1938; Brochu 1997, 2001; Kot−
sakis et al. 2004) declined to include this taxon in the genus
Crocodylus, placing it instead among tomistomines. Mook
(1955) proposed a new genus for this species, Megadonto−
suchus, and in the same paper erected another new tomisto−
mine genus, Kentisuchus, for “Crocodylus” spenceri Buck−
land, 1836. A number of papers describe or mention M.
arduini, accepting its specific validity (Nicolis 1882; Lydek−
ker 1886; Uzielli 1886; Fabiani 1915; Del Vecchio 1921;
Mook 1955; Steel 1973; Altichieri 1980; Pinna 1989; Rocca−
forte et al. 1994; Brochu 2001). Kotsakis et al. (2004, 2005)
quoted this species as a basal tomistomine. Brochu (1997,
2001) hypothesized that Kentisuchus spenceri, Megadonto−
suchus arduini, and Dollosuchus dixoni (Owen, 1850) are
closely related and underlined that in case of congeneric at−
tribution the genus Dollosuchus should have priority. Direct
observation of the type specimens (D. dixoni—IRScNB 482

—currently preserved in the Gand Museum, Belgium, K.
spenceri—BMNH 19633, and M. arduini—MGPD 1Z) evi−
denced that the three forms represent probably three different
species. Recent phylogenetic analyses (Jouve 2004; Delfino
et al. 2005; Brochu 2006, in press) showed that Dollosuchus
dixoni is a basal tomistomine close to Kentisuchus spenceri.
Recently, Brochu (in press) expressed doubts about the ge−
neric and specific identity for the Belgian specimen of Dollo−
suchus dixoni. No modern description or phylogenetic analy−
sis have been published until now for Megadontosuchus
arduini. We present here a complete list of the remains attrib−
uted to M. arduini to date (Appendix 1), a redescription of all
known material referred to this species and a cladistic analy−
sis primarily based on Gatesy et al.'s (2004) dataset. As the
holotype has never been designated by de Zigno (1880) nor a
lectotype by Mook (1955), we choose the specimen MGPD
1Z as the lectotype (figured in de Zigno 1880: pls. 1, 2, and
here as Figs. 1–3).

Institutional abbreviations.—BMNH, The Natural History
Museum, London, United Kingdom; IRScNB, Institut Royal
des Sciences Naturelles, Bruxelles, Belgium; MGPD, Museo
di Geologia e Paleontologia, Università degli Studi di Padova,
Italy.
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Systematic palaeontology

Eusuchia Huxley, 1875
Crocodylia Gmelin, 1789 (sensu Benton and Clark
1988)
Crocodyloidea Fitzinger, 1826 (sensu Brochu 2003)
Crocodylidae Cuvier, 1807 (sensu Brochu 2003)
Tomistominae Kälin, 1955 (sensu Brochu 2003)
Genus Megadontosuchus Mook, 1955
Type species: Crocodilus arduini de Zigno, 1880; see below.

Megadontosuchus arduini (de Zigno, 1880)
Lectotype: MGPD 1Z, a nearly complete skull (Figs. 1–3) with lower
jaw (de Zigno 1880: pl. 1: 1–3 and pl. 2: 1–3).

Type locality and age: Monte Duello (Roncà, Province of Verona, NE
Italy); middle Eocene.

Referred material.—MGPD 5Z, skull lacking the anterior
part of the rostrum; MGPD 4Z, anterior part of the rostrum
belonging to the specimen MGPD 5Z; MGPD 6Z, fragment
of a right mandibular ramus, lacking retroarticular process;
MGPD 8Z, nearly complete mandibular ramus; probably
these remains belong to the original type series. Two verte−
brae MGPD 24Z (cervical) and MGPD 25Z (dorsal; de Zigno
1880: pl. 2: 6 and 4, 5, respectively).

Emended diagnosis.—Megadontosuchus arduini is a tomisto−
mine differing from all other members of the clade because of
this combination of features: the robust rostrum, the massive
maxillary and dentary teeth and large supratemporal fenestrae.
Approximately 14–16 maxillary teeth, and approximately 14–
17 dentary teeth. Small occipital condyle. Large narial aperture
and foramen incisivum. Nasals in contact with external naris
without bisecting it. Large mandibular fenestra. Elongated
squamosal prongs reaching nearly the half of quadrate ramus.
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Fig. 1.Tomistomine crocodile Megadontosuchus arduini (de Zigno, 1880), MGPD 1Z, lectotype from Monte Duello (Roncà, Province of Verona, NE
Italy); middle Eocene. Skull in dorsal view. Photograph (A) and explanatory drawing of the same (B).



Description

Skull

Preservation, form, and general features.—The lectotype
(Figs. 1–3) is an almost complete skull that, although dorso−
ventrally flattened, retains the undulatory outline (“festoon−
ing”) of the maxillary and dentary visible in dorsal and, de−
spite the deformation, lateral view. It is very difficult to recog−
nize cranial and mandibular sutures due to the preservation
and historical museum preparation that focused on the mainte−
nance of the general external shape and not of the fine mor−
phology. The minimal distance between supratemporal fene−
strae is approximately 10 mm. Only the right infratemporal
fenestra is visible due to the absence of the left jugal bar. The
jugal border of the right orbit is medially displaced. The right
orbit appears longer, due to post−mortem deformation. Poste−

riorly, the quadrate ramus is very expanded medio−laterally (in
occipital view it is nearly the half of semi cranial width at max−
imum quadrate lateral expansion). The skull morphology in
ventral view (Fig. 2) is difficult to reconstruct precisely due to
the collapse of secondary palate posteriorly to the maxillo−pal−
atine suture; such suture is wedge−like shaped. Palatines are
antero−posteriorly elongated. Pterygoids and ectopterygoids
are totally crushed down. Choanae are not visible. Despite a
marked erosion, basioccipital seems to be medio−distally
short. In occipital view (Fig. 3) only the sutures between squa−
mosals and exoccipitals are slightly visible. The general pro−
file is flattened and compressed.

Dorsal view.—In dorsal view, the lectotype shows an evi−
dent festooning despite the post−mortem deformation. Exter−
nal nares are wide but antero−posteriorly elongated, with
maximum width at their anterior border. It is difficult to eval−
uate the position of the anterior nasal tip; however, the nasals
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Fig. 2. Tomistomine crocodile Megadontosuchus arduini (de Zigno, 1880), MGPD 1Z, lectotype from Monte Duello (Roncà, Province of Verona, NE
Italy); middle Eocene. Skull in ventral view. Photograph (A) and explanatory drawing of the same (B).



profile suggests a contact between nasals and external nares
(Fig. 1B). De Zigno (1880) also quoted this character in his
original description. In the skull MGPD 4Z it is impossible to
evaluate nasal sutures. The maxilla presents, both in dorsal
and lateral view, an evident festoon in correspondence of the
fifth maxillary tooth, whose alveolus is the largest. This char−
acter is usually always present in tomistomines (but not in
gavialoids) despite rostral elongation (Brochu 1997, and ref−
erences therein): an exception is represented by Toyotamaphi−
meia machikanensis (Kamei and Matsumoto, 1965) from Ja−
pan, where the largest maxillary alveoli are the twelfth and
thirteenth (Kobayashi and Tomida 2005; Kobayashi et al.
2006).

The lacrimal−prefrontal suture is difficult to trace: only a
small part is visible posterior to the naso−lacrimal suture. The
maxilla is slightly curved in medial direction posterior to the
sixth alveolus. Orbits are sub−oval and their longer axes con−
verge antero−medially, forming an angle of about 30�. The
orbital rim is upturned, especially along its medial margin.
The frontal is concave between orbits, possibly reflecting rel−
atively advanced maturity. The anterior frontal spine reaches

the level of the eleventh or twelfth maxillary alveolus. The
frontoparietal suture is linear and entirely developed on skull
table. This is evident on the left side while on the right this
detail is not visible. The postorbital bar is slender like in all
tomistomines and does not flush with jugal. The scoring of
this character can be, however, affected by the allometric ef−
fect in hyperadult morphologies and by the subjective inter−
pretation during the coding (i.e., the postorbital bar in
“Tomistoma” cairense and Gavialosuchus americanus is
more massive than in other tomistomines). The lateral sides
of the cranial roof are gently convex. The parieto−squamosal
suture enters supratemporal fenestra approximately at the
middle of its posterior rim. The medial walls of supratem−
poral fossae are differently inclined in lateral direction be−
cause of the compression. Assuming that the left side is not
significantly affected by deformation and thus it better repre−
sents the original morphology, it can be stated that the skull
table surface slightly overhangs the supratemporal fossa. The
supratemporal fenestrae are relatively large in comparison
with Tomistoma schlegelii J. Müller, 1838, as in most primi−
tive tomistomines (i.e., K. spenceri and “Gavialosuchus”
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Fig. 3. Tomistomine crocodile Megadontosuchus arduini (de Zigno, 1880), MGPD 1Z, lectotype from Monte Duello (Roncà, Province of Verona, NE
Italy); middle Eocene. Skull in occipital view. Photograph (A) and explanatory drawing of the same (B).



americanus [Sellards, 1915]) and they are wider than long
(ratio = 1.2; see Discussion). Squamosal prongs are unusu−
ally elongated along paraoccipital process.

Ventral view.—In ventral view, most sutures are not visible
with confidence. It is evident that the palatine process is
wedge−like shaped and reaches the ninth maxillary tooth.
The palatine fenestrae reach anteriorly the eleventh maxil−
lary tooth. They are irregularly oval and rather close to each
other. No other details are shown in that region because of
the collapse of secondary palate. The premaxillo−maxillary
suture is not visible due to the 19th century preparation
(when a sort of cement has been added) that masks the fine
morphology of this area. However, the lateral constriction
corresponding to such suture is evident. The foramen in−
cisivum is particularly long (~30 mm) in comparison with
premaxillary length. On the right side of the premaxilla five
alveoli are present; M. arduini retained the second alveolus
that usually disappears during ontogeny (i.e., in Tomistoma;
Brochu 1997, and references therein). The pterygoids and
ectopterygoids are totally crushed. The basisphenoid region
is poorly preserved but the exposure of basisphenoid ventral
to basioccipital was probably very short.

Occipital view.—In occipital view it is nearly impossible to
distinguish any suture. The left quadrate ramus is broken at
the end of squamosal prong. The right quadrate is better pre−
served: it is dorso−ventrally flat, but this could be partly due
to dorso−ventral compression. The basioccipital tubera ap−
pear rather narrow and not developed medio−laterally as in
Tomistoma schlegelii, but also in this case we cannot exclude
that post−mortem deformation partly contributed to such
morphology. The foramen magnum is nearly as large as the
width of occipital condyle (it is narrower in Gavialosuchus
eggenburgensis Toula and Kail, 1885 and T. schlegelii, but
larger in D. dixoni and Maroccosuchus zennaroi Jonet and
Wouters, 1977). The well developed crest formed by squa−
mosal and paraoccipital process of exoccipital is evident.
The skull table profile is concave in the area corresponding to
the supraoccipital. The exposure (in occipital view) of the
basisphenoid ventral to the basioccipital tubera cannot be
evaluated.

Lower jaw

On the left ramus all bones are preserved with the exception
of the coronoid. However, their sutures are nearly invisible
due to fossilization and historical preparation. Coronoid and
retroarticular process are missing in the right ramus. The two
mandibular rami are differently deformed: the left one main−
tains its curvature along the dentary margin while the com−
pression completely straightened the right mandibular
ramus. Interalveolar spaces are equal or larger than alveolar
width. The splenial sutures are not visible. However, on the
basis of geometric relationships of lower jaw elements, it can
be inferred that the splenial participates in the symphysis but
it is impossible to evaluate the length of the splenial
symphysis (i.e., if it was longer than five alveoli; therefore

states 1–3 can be excluded and for this reason the character
43 is scored as “0/4”).

Postcranial elements

Dermal armour.—The available osteoderms are isolated and
for this reason it is impossible to evaluate the morphology of
midline and lateral rows elements. They are squared and pro−
fusely ornamented with few circular and large pits widely
separated from each other. A sagittal crest is present; when
laterally viewed, such a crest is not abruptly but gradually
emerging from the external surface.

Vertebral series.—The two procoelous vertebrae MGPD
24Z and MGPD 25Z are poorly preserved and consist only of
the centra. De Zigno (1880) quoted these vertebrae as cervi−
cal and dorsal respectively. MGPD 24Z is approximately 35
mm long. A block of sediment partially hides the dorsal part
of centrum. Neural arch is missing but the neurocentral su−
ture is not visible due to the presence of sediment. Ventrally
is visible the broken hypapophysis whose basis is 13 mm
long. Laterally the parapophysis occupies a rather low posi−
tion relatively to dorsal margin. MGPD 25Z is 37 mm long.
The neurocentral suture is visibly open. Ventrally, the hypa−
pohysis is broken and positioned fairly close to the anterior
margin of centrum. The parapohysis is nearly completely
abraded but its scar suggests a more dorsal position than in
MGPD 24Z: probably this vertebra was one of the anterior
dorsal vertebrae.

Nine vertebral centra (again with open neurocentral su−
tures) attributed in schaedis in the museum label to “Gavialis”
dixoni by de Zigno, might be referable to M. arduini.

Appendicular skeleton.—The available forelimb and hind
limb elements are not informative because they consist only
of unrecognisable small fragments.

Phylogenetic analysis
To reduce computational time we selected 47 taxa from the
morphological dataset of Gatesy et al. (2004; actually based
on Brochu’s [1999] matrix) together with the coding of
Megadontosuchus arduini (specified in Appendix 2), Toyo−
tamaphimeia machikanensis (coding from Kobayashi et al.
2006), and Tomistoma petrolicum (unpublished coding
kindly provided by Chris Brochu). Three additional charac−
ters were added according to the same dataset of Delfino et
al. (2005). Alligatoroidea was pruned to include only Leidyo−
suchus canadensis Lambe, 1907, Diplocynodon hantonien−
sis (Wood, 1846), Brachychampsa montana Gilmore, 1911,
Alligator mississippiensis (Daudin, 1801), and Caiman lati−
rostris (Daudin, 1801). Bernissartia fagesii Dollo, 1883 and
Hylaeochampsa vectiana Owen, 1874 were treated as se−
quential outgroups. The matrix, comprehensive of 47 taxa
and 167 characters, was processed with PAUP 4.0b10*
(Swofford 2002). Both ACCTRAN and DELTRAN optimi−
zations were performed with TBR in effect and 100 repli−
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cates of random addition sequence. Characters where treated
as unordered. The analysis returned 8638 trees 413 steps
long. Strict consensus tree and consensus indices is shown in
Fig. 4A. To explore phylogenetic signal among tomisto−
mines without the noise produced by the high number of un−
certainties due to the poor preservation of M arduini, we re−
peated the analysis without the latter. This last analysis pro−
duced 4344 trees of 409 steps. The strict consensus topology
for tomistomines is shown in Fig. 4B. This phylogenetic
sketch will be taken in to account to support the palaeobio−
geographical considerations expressed below. Together with
these two trees, an Adams consensus tree, presented in Fig.
4C, has been calculated to verify the non−strict relationships
between Megadontosuchus and other tomistomines. Its to−
pology is completely congruent with that of Fig. 4B.

Discussion
The large amount of missing characters for Megadonto−
suchus arduini, due to the scanty preservation of the remains,
is probably the main cause for node collapse among tomisto−
mines more derived than Kentisuchus spenceri in the strict
consensus tree (Fig. 4A). The three unambiguous synapo−
morphies supporting Tomistominae in the strict consensus
tree of our analysis regard a deep splenial symphysis, longer
than five dentary alveoli and splenial constricted within
symphysis and forming narrow “V” (43−4), a suborbital
fenestra without posterior notch (88−0), and a palatine pro−
cess generally in form of thin wedge (118−1). The three un−
ambiguous synapomorphies supporting the polytomic clade
containing all other tomistomines concern the presence of a
sulcus between articular and surangular (60−0), the squa−
mosal groove that flares anteriorly (84−1), and the exclusion
of nasals, at least externally, from naris but with nasals and
premaxillae still in contact (95−2). Not all known tomisto−
mine species are considered in this analysis nor in previous
studies (Brochu 1997, 1999, 2003, 2006, in press; Brochu
and Gingerich 2000; Jouve 2004; Kobayashi et al. 2006).
The inclusion of these species (mainly Tomistoma coppensi
Pickford, 1994, but see palaeobiogeography section for a
complete list) will help in understanding tomistomine evolu−
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Fig. 4. A. Strict consensus trees for 8638 trees 413 steps long derived from
the analysis including Megadontosuchus arduini. The geographic range of
tomistomines is abbreviated as follows: CE, Central Europe; EA, Eastern
Asia; NA, North America; NAf, Northern Africa; SEA, South Eastern Asia;
WE, Western Europe; NWE, North Western Europe. Consensus statistics:
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ing uninformative characters = 0.5739; retention index (RI) = 0.7272;
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4344 trees 409 steps long derived from the analysis excluding M. arduini.
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tionary history and possibly change the topology here pre−
sented. Recently, Kobayashi et al. (2006) and Brochu (in
press) incorporated in their analyses Toyotamaphimeia
machikanensis and Tomistoma petrolicum (as “T. petrolica”)
respectively. In their analyses Toyotamaphimeia machika−
nensis results as sister taxon of Tomistoma schlegelii, while
Tomistoma petrolicum as polytomic with Tomistoma schle−
gelii and Gavialosuchus eggemburgensis. Our results place
T. petrolicum in a more congruent position with stratigraphic
data (Fig. 4B and C).

The Tomistoma genus name (note that the Latin words
with a component of the Greek word “stoma”, like peristoma,
are neutral; consequently the species name of members of the
genus Tomistoma must be neutral; International Commission
on Zoological Nomenclature 1999: Article 34.2) is undoubt−
edly abused in the historical literature and some species (i.e.,
“Tomistoma” taiwanicum Shikama, 1972, “Tomistoma” gla−
reae [Astre, 1931], “Tomistoma” borisovi Efimov, 1988) are
represented by scanty material that does not permit a specific
or even generic identification. Despite the unresolved clade
containing Megadontosuchus arduini, some additional mor−
phological considerations can be expressed. Undoubtedly, the
closest forms are Dollosuchus dixoni and Kentisuchus spen−
ceri. The dentition of M. arduini is distinct from that of K.
spenceri and D. dixoni: teeth are notably larger in M. arduini
relatively to rostrum proportions. The rostra of D. dixoni and
K. spenceri are more slender than in M. arduini. For these rea−
sons we consider Megadontosuchus a valid genus. Kenti−
suchus and Dollosuchus are more similar to each other and
could be assigned to the same genus (in this case Dollosuchus
should have priority) but a more specific work is needed to
support such conclusion.

Megadontosuchus arduini shows relatively large supra−
temporal fenestrae, comparable in dimension to the orbits,
while in Tomistoma schlegelii the supratemporal fenestrae
are much smaller than orbits. This feature is subjected to a
marked ontogenetic change: in fact, orbits show a significant
relative reduction in size during growth. Anyway the type of
Megadontosuchus is to be regarded as an adult−subadult indi−
vidual: the concavity and ornamentation of fronto−parietal
region, as well total skull length, exclude a juvenile growth
stage. The open neurocentral suture in cervical (MGPD 24Z)
and dorsal (MGPD 25Z) vertebrae does not conflict with the
adult morphology suggested by the skull. Cervical vertebrae,
and sometimes those of anterior trunk, remain unfused until
fairly late (Brochu 1996). For that reason the allometric
change of orbits does not affect their comparison with supra−
temporal fenestrae in M. arduini.

Recently, Endo et al. (2002) correlated the dimension of
supratemporal fenestrae with the functional role of M. pseudo−
temporalis in Gavialis, Tomistoma, Mecistops, and Toyotama−
phimeia. This muscle has a more important functional role,
during feeding acquisition, manipulation, and mastication, in
species with large supratemporal fenestrae. This trait has prob−
ably an adaptive nature and is differently distributed among
tomistomine species. Maroccosuchus, the oldest tomistomine

after Dollosuchus dixoni, shows supratemporal fenestrae visi−
bly smaller than orbits albeit this ratio is not the same as in
Tomistoma schlegelii. Other basal tomistomines have large
supratemporal fenestrae in comparison to orbits: it can be seen
in Dollosuchus dixoni, Kentisuchus spenceri, and Theca−
champsa spp. Conversely, “Tomistoma” cairense L. Müller,
1927 has orbits larger than supratemporal fenestrae. In Para−
tomistoma courti Brochu and Gingerich, 2000 it is difficult to
recognize the orbital contour due to the fragmented material
but it seems (Fig. 2; Brochu and Gingerich 2000) that supra−
temporal fenestrae were relatively larger than in “Tomistoma”
cairense. Gavialosuchus eggenburgensis has relatively small
supratemporal fenestrae.

The snout of M. arduini, K. spenceri, M. zennaroi, and D.
dixoni is not as long as in more derived tomistomines: in fact
G. eggenburgensis, T. schlegelii, “T.” cairense, and T. cop−
pensi show a longer and more slender snout. This feature is
related to feeding ecology and probably to the percentage of
fish items in the diet (Cleuren and De Vree 2000). From early
Eocene, tomistomines experienced an increase in diet spe−
cialization similar to that of Gavialoidea (with different tim−
ing; Brochu 2004). Actually the earliest forms have a less
specialized snout morphology than that of most Miocene
forms. However it is difficult to assess on the basis of fossil
record if the common ancestor of tomistomines and other
crocodylines was medium−slender or a short snouted form,
like the majority of crocodylines. More material from Pala−
eocene outcrops is needed to understand this issue.

The paraoccipital processes are very developed in Mega−
dontosuchus arduini: they constitute nearly a crest together
with squamosal prongs, dorsally to quadrate ramus. This fea−
ture is absent among other tomistomines. Tomistoma lusitani−
cum Vianna and Moraes, 1945 possesses well−developed para−
occipital process but not as evident as in Megadontosuchus.

Tomistomine distribution
and palaeobiogeography
Palaeogene European and North African tomistomines.—
According to the present knowledge of crocodylian evolution−
ary history, the oldest members of Tomistominae can be
traced back to the early Eocene or possibly to the Palaeocene if
the tomistomine nature of a skull from Spanish Pyrenees will
be confirmed (Costa et al. 1995; Jouve 2004). Early Eocene
tomistomines have been described in Europe and northern
Africa (Brochu 2003): Kentisuchus spenceri from England,
Maroccosuchus zennaroi from Morocco, and, slightly youn−
ger, Dollosuchus dixoni from Belgium (Buckland 1836; Owen
1850; Swinton 1937; Jonet and Wouters 1977). An early
Eocene tomistomine referred to ?Kentisuchus sp. could be
possibly present in Ukraine (Efimov 1993). The presence of
tomistomine crocodylians in this area is further testified in the
middle Eocene, both in Europe and in North Africa; relevant
findings come from France, “Tomistoma” glareae (Astre,
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1931; see discussion in Steel 1973; Vasse 1993; Jouve 2004),
Germany, Tomistomidae indet. (Rossmann 2002), Italy,
Megadontosuchus arduini (de Zigno 1880; this work) and
Egypt, “Tomistoma” cairense and, slightly younger, Para−
tomistoma courti (see Müller 1927; Brochu and Gingerich
2000).

Such trans−Tethyan distribution is reasonable because, con−
trary to the fresh water environment of the sole extant tomi−
stomine, Tomistoma schlegelii, several tomistomine fossil re−
mains come from estuarine or marine coastal settings, suggest−
ing the possibility of dispersion across marine barriers (Brochu
2003) and not only along river systems. Contacts at the Palaeo−
cene/Eocene limit between the faunas of opposite sides of the
Tethys are also shown by other vertebrate taxa, reptiles, and
mammals (Broin 1988; Rage 1996; Gheerbrant et al. 2001).

The northern African Tomistoma species described by An−
drews (1901, 1905) from Egypt (late Eocene and early Oligo−
cene), T. africanum Andrews, 1901, T. gavialoides Andrews,
1905, and T. kerunense Andrews, 1905 could be, according to
Buffetaut (1982) and Brochu (2001), synonyms and should be
ascribed to the gavialoid Eogavialis, as E. africanus (An−
drews, 1901); on the contrary, according to Tchernov (1986)
and Rauhe et al. (1999), they should be referred to the African
endemic crocodyline Euthecodon.

During the early Eocene, Kentisuchus and Dollosuchus in−
habited Europe. The origin of M. arduini and its presence in
the Tethyan Eocene islands of North Italy, could be related to
the dispersal across small marine straits of a member of the
northern stock (Kotsakis et al. 2004), but a vicariant event can−
not be excluded categorically.

Palaeogene Asian tomistomines.—Efimov (1988, 1993, and
references therein), described several tomistomines from Eo−
cene and early Oligocene sediments of Asia (Kazakhstan and
Kyrgyzstan): Dollosuchus zajsanicus Efimov, 1988 (early–
middle Eocene), Ferganosuchus planus Efimov, 1982 (mid−
dle Eocene), “Tomistoma” borisovi Efimov, 1988 (late Eo−
cene) and an unidentified tomistomine from the early Oligo−
cene. With the exception of Ferganosuchus, all the remains on
which these taxa and identifications have been based, are
rather fragmentary and therefore poorly diagnostic (Jouve
2004 even suggested that Ferganosuchus might be a gavia−
loid) but this material might indicate the presence of tomisto−
mines in central Asia. In the late Eocene, tomistomines were
present in eastern Asia (Yeh 1958; Li 1975) as shown by
“Tomistoma” petrolicum from south China. Moreover, a tomi−
stomine, “Tomistoma” tandoni Sahni and Mishra, 1975 was
described on the basis of remains coming from the middle
Eocene of the Indian subcontinent (Sahni and Mishra 1975).

It seems therefore that during the late Eocene and early
Oligocene, tomistomines inhabited an area larger than before
but, apparently, not Europe.

Despite the presence of a persisting obstacle to dispersal
represented by the Obik sea, the chance of spreading from
Europe to Asia and vice−versa during different stages of the
Eocene was rather high at least for some salt tolerant taxa.

Moreover, a possible pre−collision dispersal route from Asia
to the Indian subcontinent has been invoked for the croco−
dylian Pristichampsus (see Kotsakis et al. 2004, and refer−
ences therein).

Nonetheless, before developing any firm hypothesis about
the palaeobiogeography of such Asian Palaeogene taxa, taxo−
nomic revision and reassessment of phylogenetic relationships
is needed.

North and South American tomistomines.—A single
Palaeogene datum is available for the Neotropics: ?Characto−
suchus kugleri Berg, 1969 was described on the basis of mate−
rial coming from the middle Eocene of Jamaica (Berg 1969)
that later on was linked to the Belgian Dollosuchus (see
Domning and Clark 1993; James M. Clark, personal commu−
nication in Langston and Gasparini 1997). Tomistomine re−
mains have been reported in the early Miocene of Venezuela
(Sánchez−Villagra et al. 2000, 2001), but successively attrib−
uted to the gavialoid Siquisiquesuchus venezuelensis by
Brochu and Rincón (2004). Three species belonging to the ge−
nus Charactosuchus are reported from South America:
Charactosuchus fieldsi Langston, 1965 in the middle Miocene
of Colombia, C. mendesi (Souza Filho and Bocquentin, 1989)
and the so far not fully described C. sansoai Souza Filho, 1991
(Langston 1965; Souza Filho and Bocquentin 1989; Souza
Filho 1991; Souza Filho et al. 1993; Gasparini 1996; Langston
and Gasparini 1997) in the late Miocene–early Pliocene of
Brazil. According to Estes and Báez (1985), an opinion not ac−
cepted by Langston and Gasparini (1997), Charactosuchus
could have entered South America from North America dur−
ing the Miocene. Webb and Tessman (1967), on the basis of
isolated teeth, report the presence of this genus in the early
Pliocene of Florida and South Carolina. Since the relation−
ships of Charactosuchus are still to be understood (Brochu
2003), its biogeographic history is still questionable. If the af−
finities of ?C. kugleri with Dollosuchus will be confirmed, a
European origin could not be ruled out and then it could be
theorised a dispersal toward North America at some stage in
the early Eocene through the De Geer or Thule bridges (Agustí
and Antón 2002), followed by a vicariant event when the link
between the two northern continents disappeared. A combina−
tion of dispersion and vivariance can be claimed also for the
South American Charactosuchus.

In North America, remains of tomistomines are known at
least from the late Oligocene (Erickson and Sawyer 1996) to
the Pliocene (Auffenberg 1954). Such remains have been tra−
ditionally referred to Gavialosuchus, a genus erected for the
European taxon G. eggenburgensis by Toula and Kail (1885)
(see Steel 1973; see below), but recently returned to genus
Thecachampsa (see Myrick 2001). Three species have been
described: Thecachampsa carolinensis (Erickson and Saw−
yer, 1996), Thecachampsa antiqua (Leidy, 1852) and Theca−
champsa americana. The last species could be synonymous
with T. antiqua (Sellards 1915, 1916; Mook 1924; Auffen−
berg 1954; Erickson and Sawyer 1996; Brochu 1997; Myrick
2001). However T. antiqua is represented only by isolated
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teeth and for that it is non−diagnosable (Chris Brochu per−
sonal communication 2006).

Wide divergences can be underlined in the opinions ex−
pressed by different authors about the affinities of such taxa.
Myrick (2001) considered the American taxa and the Portu−
guese remains referred to Tomistoma lusitanicum as co−spe−
cific. It is worth noting that according to Vianna and Moraes
(1945), authors of the later taxon, the Portuguese form was a
subspecies of the American species Tomistoma americanum
(= Thecachampsa americana), and that only later on Antunes
(1961), elevated the subspecific name to species rank. On the
contrary, Brochu (2003) and Brochu and Gingerich (2000)
consider the North American “Gavialosuchus” clearly distinct
from the group represented by “Tomistoma” cairense–Para−
tomistoma and all European Miocene tomistomines. Our phy−
logenetic analysis supports this view (Fig. 4).

According to this hypothesis, a dispersal during the Eo−
cene climatic optimum (Prothero 1994), early Eocene or
even (thanks to the salt water tolerance) during the middle
Eocene, from Europe to North America can be advanced. A
vicariant event also could be invoked to justify the presence
of Thecachampsa in North America due to the North Atlantic
opening during the latest early Eocene. Such an interpreta−
tion implies a widespread distribution of Kentisuchus–Dollo−
suchus stock in North America and North Europe. Moreover,

if Charactosuchus and Thecachampsa would eventually
show direct phylogenetic relationships, their derivation from
a common form close to Kentisuchus–Dollosuchus could be
suggested. A direct derivation of Thecachampsa from
Charactosuchus cannot be ruled out. However, this relation−
ship should be validated by a stronger phylogenetic support
(possibly thanks to new fossil material).

Neogene European and African tomistomines.—In the
“Mediterranean” area, after an apparent absence during the
late Eocene and the early Oligocene, tomistomines reappear
in Europe (France) in the late Oligocene (Antunes and
Cahuzac 1999) and their remains are rather common in the
early Miocene and, above all, middle Miocene. Their re−
mains have been collected in Portugal, France, Italy, Malta,
Germany, Austria, former Yugoslavia, and Poland (see liter−
ature in Steel 1973; Buffetaut et al. 1984; Młynarski 1984;
Antunes 1987, 1994; Antunes and Ginsburg 1989; Kotsakis
et al. 2004). Six species have been described for the Euro−
pean Miocene remains: Tomistoma lyceense (Costa, 1848),
Tomistoma gaudense (Hulke, 1871), Gavialosuchus eggen−
burgensis, Tomistoma champsoides Lydekker, 1886, Tomi−
stoma calaritanum Capellini, 1890 (actually described in
two papers published in the same year: Capellini 1890a, b)
and Tomistoma lusitanicum. North Africa hosted tomisto−
mines during the early Miocene as testified by Tomistoma
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dowsoni Fourtau, 1920 in Egypt and, possibly, the above−
mentioned T. lusitanicum in Libya (Fourtau 1920; Aram−
bourg and Magnier 1961; Llinas−Agrasar 2004). The generic
and specific status as well as the relationships among all
these species are rather controversial. According to some au−
thors (Antunes 1994; Brochu 2003; Kotsakis et al. 2004; this
paper) G. eggenburgensis, T. lusitanicum (and possibly T.
calaritanum) could be valid species but according to others
(Rossmann et al. 1999) they belong to a single species whose
name, for priority reasons, should be Gavialosuchus
gaudensis. Actually, if all these remains belong to the same
species the specific name T. lyceensis should have priority
(Costa 1848; Aldinio 1896; Capellini 1897), but the species
T. lyceensis could be a nomen vanum (Delfino et al. 2003).

Whichever name should be used, it is common opinion that
all the European Miocene tomistomines are (if not cons−
pecific) strictly linked to each other and that they reached Eu−
rope before the end of the Oligocene from Asia (Antunes
1994) or Africa (Kotsakis et al. 2004). After the closure of the
Turgai Strait and the emergence of the Paratethys, the ancient
barriers between Asia and the European Archipelago no lon−
ger existed. From the beginning of Oligocene the possibilities
for Asian species to reach Europe greatly increased (Agustí
and Antón 2002). On the other hand comunications and faunal
exchanges between Europe and Africa are not testified for this
time span (Turner and Antón 2004) but a salt water tolerance
makes possible a colonization of Europe from North Africa.

Tomistomines (T. calaritanum and Tomistoma sp. from
Sardinia) survived in southern Europe up to the latest Miocene
as evidenced by the Italian fossil record in particular (Antunes
and Cahuzac 1999; Kotsakis et al. 2004), but, surprisingly,
have never been reliably reported in the late Miocene sites of
northern Africa despite their presence in Uganda, Tomistoma
coppensi Pickford, 1994 and possibly in Congo (former Zaire;
Aoki 1992; Pickford 1994; Delfino in press).

Neogene and Quaternary Asian tomistomines.—Tomisto−
mine remains are also reported in some Neogene sites of the
Indian subcontinent: Tomistomidae indet. in the early Mio−
cene (Vijayasarathi and Sabale 1985), Tomistoma sp. in the
middle–late Miocene from Nepal (West et al. 1991) and the
large Ramphosuchus crassidens (Falconer and Cautley, 1840)
in the middle Miocene (Head 2001). The affinities of the latter
still have not been analysed with a modern approach and
therefore it is not possible to state if it directly descended from
the Asian Palaeogene taxa or if it dispersed eastward from Af−
rica after the collision of the Afro−Arabian plate with Eurasia
in the early Miocene.

In Eastern Asia tomistomines are reported from the late
Miocene of Japan (Taruno 1999) and late Pliocene–Pleisto−
cene of Japan and Taiwan: Tomistominae indet., Toyotama−
phimeia machikanensis, and “Tomistoma” taiwanicum re−
spectively (Kobatake et al. 1965; Kobatake and Kamei 1966;
Shikama 1972; Aoki 1983; Sun et al. 1992; Taruno 1999;
Katsura 2004; Kobayashi and Tomida 2005; Kobayashi et al.
2006). Taruno (1999) attributed the fossil tomistomines com−

ing from late Miocene outcrop in Osaka group (Japan) to
Toyotamaphimeia machikanensis. Later on, however, Koba−
yashi et al. (2006) refuted this attribution on the basis of sev−
eral morphological differences (among others: slenderer
snout, broader skull table, circular supratemporal fenestra).
For that reason the Kishiwada tomistomine will be considered
here as Tomistominae indet.

Following Aoki (1983), who erected the new genus
Toyotamaphimeia for the Japanese species, also the remains
from Taiwan should be included in the same genus, but for
Jouve (2004) the morphology of the toothrow of “T.” taiwa−
nicum suggests gavialoid and not tomistomine relationships.
A significant chronological gap separates the above−men−
tioned remains and the extant species T. schlegelii, of which,
curiously, no fossil remains are known at present. Due to
such gap, it is impossible to express any well−grounded
biogeographic hypothesis.

Although it seems probable that tomistomines inhabited
the area presently corresponding to the range of T. schlegelii,
the incompleteness of the fossil record does not support any
palaeobiogeographic consideration.

Palaeobiogeographic conclusions.—A peculiar problem
emerging from the study of tomistomine distribution is the at−
tribution of a large number of species of Asia, Europe and Af−
rica to the living genus. Besides the similarities of many spe−
cies from Miocene sites of peri−Mediterranean area to the liv−
ing T. schlegelii, it is very difficult to accept a congeneric attri−
bution for a stock of species (T. calaritanum, T. lusitanicum,
T. dawsoni, and T. schlegelii) spanning from Portugal to Bor−
neo and from late Oligocene to Recent. It seems more parsi−
monious to ascribe the European and African Miocene taxa to
the genus Gavialosuchus and consider the genus Tomistoma
restricted to the Oriental biogeographical region.

Clearly, the phylogenetic context should drive taxonomy
but it is worth noting that Jouve’s (2004) results suggest a
close relationship between T. schlegelii and T. lusitanicum,
while our results show a polytomy with them and G. eggem−
burgensis as already suggested by Brochu (2000). New fos−
sils could resolve such ambiguity.

The morphological predisposition for salt tolerance re−
ported for extant T. schlegelii (Leslie and Taplin 2001) and the
marine (or brackish) coastal settings from which most fossil
tomistomines come, support the idea that tomistomine bio−
geography, as testified by a world wide distributed fossil re−
cord, is best explained with a series of dispersal events across
salt water barriers, responsible for the origin of single species
or genera. Even if in few cases a vicariant event cannot be
ruled out (the origin of Megadontosuchus, Charactosuchus,
and the distribution of Thecachampsa, as specified above), the
timing of tomistomine evolution as taxonomic unit indicates
that vicariance cannot be considered the leading mechanism
for the distribution of their fossil record. In fact, in this case an
Early Jurassic divergence for all tomistomines should be in−
voked, a solution in contradiction with the known phylogeny
of Eusuchia.
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Appendix 1
A list of the material examined attributed to Megadontosuchus arduini arranged according to its original identification.

Megadontosuchus arduini (Monte Duello): MGPD 1z, skull
and mandible (original figured syntype; proposed lectotype);
MGPD 4z, incomplete skull lacking part of the rostrum
(probably a syntype); MGPD 5z, anterior part of the rostrum
(probably a syntype; same specimen of MGPD 4z); MGPD
6z, fragment of right mandibular branch (probably a
syntype); MGPD 8z; fragment of right mandibular branch
(probably a syntype); MGPD 24z, vertebral centrum (figured
syntype, probably the same individual of MGPD 1z); MGPD
25z, vertebral centrum (figured syntype, probably the same
individual of MGPD 1z); MGPD 7030z, MGPD 7031z,
MGPD 7032z, tooth; MGPD 7033z, MGPD 7063z, MGPD
7064z, fragment of mandibular branch; MGPD 7065z, tooth.

?Megadontosuchus arduini (Monte Duello): MGPD 7023z,
MGPD 7024z, MGPD 7025z, tooth; MGPD 7026z, 5 teeth;
MGPD 7027z, MGPD 7028z, MGPD 7029z, tooth; MGPD
7073z, MGPD 7075z, MGPD 7079z, indet. fr.

Gavialis dixoni (Monte Duello): MGPD 7037z, MGPD
7038z, tooth; MGPD 7039z, 6 teeth; MGPD 7040z, tooth;
MGPD 7042z, indet.; MGPD 7044z, MGPD 7045z, MGPD

7046z, MGPD 7047z, MGPD 7048z, MGPD 7049z, MGPD
7056z, MGPD 7057z, MGPD 7058z, vertebral centrum;
MGPD 7060z, fragment of right mandibular branch; MGPD
7061z, tooth; MGPD 7062z, fragment of right mandibular
branch.

Crocodylus champsoides (Monte Duello): MGPD 7466z,
fragment of left mandibular branch; “Crocodylus” (Monte
Duello): MGPD 7067z, MGPD 7068z, MGPD 7069z,
MGPD 7070z, MGPD 7071z, osteoderm.

Crocodylus spenceri (Colle La Favorita): MGPD 7438C,
fragment of left mandibular ramus. These remains were de−
scribed by Scortegagna (1836, 1838), who attributed them to
Crocodylus acutus Geoffroy Saint−Hilaire, 1807. Fabiani
(1915) referred this material possibly to C. spenceri.

Crocodylia indet. (Monte Duello): MGPD 7041z, tooth and
vertebral centrum; MGPD 7050z, MGPD 7051z, MGPD
7052z, MGPD 7053z, MGPD 7054z, MGPD 7055z, verte−
bral centrum.

Appendix 2
Character coding of Megadontosuchus arduini. Characters 1–164 are defined in Brochu (1999). Characters 165 and 166 are de−
fined in Buscalioni et al. (2001). Character 167 corresponds to character 165 of Brochu (2006).
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