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Abstract

We report on a measurement of thermal neutrons, generated by the hadronic
component of extensive air showers (EAS), by means of a small array of
EN-detectors developed for the PRISMA project (PRImary Spectrum Mea-
surement Array), novel devices based on a compound alloy of ZnS(Ag) and
6LiF. This array has been operated within the ARGO-YBJ experiment at
the high altitude Cosmic Ray Observatory in Yangbajing (Tibet, 4300 m
a.s.l.). Due to the tight correlation between the air shower hadrons and ther-
mal neutrons, this technique can be envisaged as a simple way to estimate
the number of high energy hadrons in EAS. Coincident events generated by
primary cosmic rays of energies greater than 100 TeV have been selected and
analyzed. The EN-detectors have been used to record simultaneously thermal
neutrons and the air shower electromagnetic component. The density distri-
butions of both components and the total number of thermal neutrons have
been measured. The correlation of these data with the measurements carried
out by ARGO-YBJ confirms the excellent performance of the EN-detector.
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1. Introduction

The cosmic ray energy spectrum spans over many decades from about
106 eV to beyond 1020 eV. It consists of different regions with power law be-
havior and changes in the power law index. In the high energy range above
100 TeV two features are known since a long time, that is a steepening of
the spectrum, named the knee, at about 3-5 × 1015 eV and a hardening,
named the ankle, at about 3-5 × 1018 eV . Other peculiar features have
been observed in this energy interval by the KASCADE-Grande experiment
[1]. The hybrid experiment ARGO/WFCTA has recently established a bend-
ing of the light component (protons and Helium nuclei) at about 700 TeV
[2]. Although the global features of the all-particle spectrum are reason-
ably recognized, the spectral shape of each primary component remains an
open question related to the interpretation of the experimental data. On the
other hand, the determination of the energy spectrum and chemical composi-
tion of cosmic rays bears important information on their origin, acceleration
and propagation mechanisms. The direct observation of this radiation is
accomplished with high efficiency by means of balloon-borne detectors or
equipments installed on satellites. However, due to the limited pay-load,
these measurements are constrained by the small exposure. Because of the
steeply falling cosmic ray spectrum, the detected rate drops quickly leaving
only a few events per year detectable at energies approaching the PeV range.
The investigation of the low fluxes of high energy cosmic rays is addressed
by means of ground-based experiments, where many detectors are deployed
over large areas. Indeed, when arriving at Earth, high energy cosmic rays
interact with the air nuclei originating extensive air showers (EAS). They
consist of a core of high energy hadrons that continuously feed the electro-
magnetic part of the shower, mainly with photons from neutral pion, kaon
and eta particle decays. Nucleons and other high energy hadrons contribute
to the hadronic cascade, while the decays of low energy unstable secondaries,
as charged pions and K-mesons, generate muons and neutrinos. Other neu-
trinos come from the decay of low energy muons. Thus, the EAS develop
in atmosphere as an avalanche process in three different components which
are, in decreasing order of intensity, the electromagnetic, the muon and the
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hadronic component. The intensities of these components are strictly corre-
lated, with a correlation depending on the energy and nature of the primary
particle and on the stage of the cascade process. Cherenkov radiation, atmo-
spheric scintillation light and radio emission accompany the development of
the atmospheric particle cascade. All these particles are sampled at ground
level, while the so-called penetrating component, that is high energy muons
and neutrinos, are usually recorded in underground detectors. Inferring the
energy and nature of the primary particle from the measurement of a single
EAS component is a very hard task, often requiring some a priori model
concerning energy spectrum and chemical composition [3][4][5]. In modern
experiments a multiparametric approach, based on the simultaneous detec-
tion of some of the EAS observables and their correlation, is carried out to
infer the features of the cosmic ray spectrum. In addition to the electromag-
netic component, muons (as in the KASCADE [6], CASA-MIA [7], EAS-TOP
[8] and ICE-TOP [9] experiments) or Cherenkov light (as in DICE [10] and
ARGO/WFCTA [2][11]) are the most common EAS observables used for this
purpose. Some specific experimental arrangements, as in the Tibet AS ex-
periment [12], which uses burst detectors to sample high energy photons,
can be also implemented. On the contrary, an extensive use of the hadron
detection to get information on the cosmic ray spectrum was limited up to
now by the absence of simple and cheap hadron detectors, being very ex-
pensive and quite complicated the use of conventional hadron calorimeters
(HCAL) over large areas [13][14][15]. Emulsion chambers (EC) have been
also used to detect high energy hadrons, mainly in stand-alone experiments
at high altitude [16][17][18][19] . Their use in air shower experiments is not
straightforward, requiring complex procedures to associate the EC events
with the air showers that caused them [20]. On the other hand, high energy
hadrons, which constitute the EAS skeleton, may carry important informa-
tion for multi-parameter correlation studies, since some hadronic observables,
primarily the hadron number/electron number correlation, depend on the na-
ture of the particle inducing the shower [21][22]. In particular, the hadron
content is an excellent mark to select photon-induced showers. Thus, the
detection of high energy hadrons, addressed to improve the discrimination
power in these analysis, is highly advisable.

A way to deal with this problem avoiding the use of huge and expensive
HCALs was brought out in [21][23]. In these papers the detection of ther-
mal neutrons generated by EAS hadrons is proposed. It is well known that
hadrons interacting with ambient matter (air, building, ground, etc.) pro-
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duce evaporation neutrons due to nuclei disintegration. The neutrons have
no charge and lose energy only by scattering. If the medium is a good moder-
ator, i.e., the absorption cross section is much less than the scattering cross
section, the neutrons lose energy via scattering down to the thermal ones
(moderation process) and then live in the matter until capture. Evaporation
neutrons need about 0.5 ms to thermalize in rock (concrete). Neutrons are
generated abundantly, up to 2 orders of magnitude more than parent hadrons.
The mean number of evaporation neutrons <n> produced by hadrons in a
120 cm layer of surrounding soil (about 3 hadron interaction lengths) and/or
construction materials can be estimated using the empirical relationship

< n > ≈ 36×E0.56
h (1)

where Eh is the hadron energy in GeV. The relation was obtained using the
experimental data on neutron production for Eh > 5 GeV [24] and then re-
calculated to soil taking into account dependence on target atomic number
[25]. Since the energy distribution of hadrons in EAS exhibits a very slow
dependence on the primary energy, the total number of evaporation neutrons
is expected to be proportional to the total number of high energy hadrons
reaching the observation level [26]. A large fraction of the evaporation neu-
trons thermalize, so that recording thermal neutrons can be exploited to
reconstruct the hadron content in the shower. This approach looks very
promising for measurements carried out at high altitude. Indeed, since the
hadron content in EAS increases with the altitude, an abundant production
of thermal neutrons can be predicted for experiments at 4 (or more) km a.s.l.
, about a factor 10 higher than that at sea level [26]. These considerations
suggested the development of a simple and cheap thermal neutron detector,
to be deployed over a large area, as ’hadron counter’ in EAS experiments at
mountain level. This idea led to the development of the EN-detector, made
of a mixture of the well-known inorganic scintillator ZnS(Ag) with 6LiF, ca-
pable of recording both thermal neutrons and charged particles [27][28]. The
study of neutrons in EAS was started in the 1930s [29] and experiments in
the late Forties succeeded in demonstrating the production of neutrons in
the nuclear interaction of cosmic rays [30][31][32]. With the appearance of
neutron monitors, invented by John A. Simpson in 1948, developed primarily
to measure the intensity of solar cosmic rays, some air shower experiments
operated them to study the hadrons in EAS [24][33][34][35][36]. However neu-
tron monitors, which usually employ 10BF3 or

3He gas proportional counters,
are not suitable for an extensive use over large areas. On the contrary, the
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EN-detectors, relatively simple, compact and cheap, can be easily deployed
in an air shower array to record simultaneously thermal neutrons and the
charged particles in the shower front [22] . A prototype array of 32 EN-
detectors (PRISMA-32) is now running in Moscow [37][38]. In order to check
the performance of this detector at a high altitude site, a small array com-
posed of four EN-detectors (PRISMA-YBJ) has been installed inside the hall
hosting the ARGO-YBJ experiment at the Yangbajing Cosmic Ray Obser-
vatory (Tibet, China, 4300 m a.s.l. , 606 g/cm2). The two arrays operated
together for about two weeks, and coincident events have been analyzed to
gather information on the PRISMA-YBJ performance. Sect. 2 of this paper
introduces the EN-detector, Sect. 3 gives an overview of the experimental
set-up. Sect. 4 describes the coincident event selection. Data analysis and
results are presented and discussed in Sect. 5. Summary and conclusions are
given in Sect. 6.

2. The EN-detector

The EN-detector is based on a special phosphor, which is a granulated
alloy of inorganic ZnS(Ag) scintillator added with LiF enriched with the 6Li
isotope up to 90% [39] (Fig. 1, left). One 6Li captures one thermal neutron
via the reaction 6Li+n →

3 H+α+4.78MeV with cross section of 945 barn.
The phosphor is deposited in the form of a thin one-grain layer on a white
plastic film, which is then laminated on both sides with a thin transparent
film. The scintillating compound grains used are of 0.3 - 0.8 mm in size. The
effective thickness of the scintillator layer is 30 mg/cm2. Light yield of the
scintillator is ∼ 160, 000 photons per neutron capture. The structure of a
typical EN-detector is shown in Fig. 1, right. The scintillator of 0.36 m2 area
is mounted inside a black cylindrical polyethylene (PE) 300-l tank which is
used as the detector housing. The scintillator is supported inside the tank
to a distance of 36 cm from the photomultiplier (PMT) photocathode. A
6”-PMT (FEU-200) is mounted on the tank lid. A light reflecting cone made
of foiled PE foam of 5-mm thickness is used to improve the light collection.
As a result, ∼ 100 photoelectrons per neutron capture are collected. The
efficiency for thermal neutron detection in our scintillator was found experi-
mentally by neutron absorption in the scintillator layer to be about 20%. To
determine it, we measured the counting rate of our scintillator layer, then
we put another similar layer under the first one (with a black paper between
them) as an absorber and measured again. Then we compared the results
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and calculated the scintillator efficiency. Similar efficiency was also obtained
by simple Monte-Carlo simulation using GEANT4 code. As an example, we
show in Fig. 2 the response of the detector illuminated with a low activity
source of thermal neutrons (∼1 Bq of 252Cf).

The EN-detector is sensitive to charged particles as well as to thermal
neutrons. However the light output is different for different types of parti-
cles. This characteristic makes possible to select neutron signals from those
generated by charged particles (or gammas) exploiting their different am-
plitude and pulse shape. Due to the thin layer of the scintillator, charged
particles deposit on average only 60 keV against 4.8 MeV deposited during
the neutron capture. A very high alpha/e ratio, that is the ratio of the
light produced by alpha particles to the light produced by electrons of the
same energy, is the main detector feature. This feature allows, in principle,
to distinguish with high efficiency different types of particles. However, in
environments of intense natural radioactivity in addition to the cosmic ray
background, the tail of the distribution of the energy deposited by charged
particles could mimic a neutron signal. The different pulse shape of the neu-
tron signal with respect to the signal produced by charged particles can be
fruitfully exploited to remove this background. Indeed, slowly moving heavy
particles (such as alphas or tritons) excite slow components in addition to
the emission of fast signals. The charge collection time of a signal due to
a neutron capture recorded at the PMT 12th dynode of the EN-detector
is 10-20 µs , while the characteristic time of the fast emission induced by
charged particles is about 40 ns. We compare in Fig. 3 the pulse shape of
the neutron signal with the signal induced by electrons. The remarkable dif-
ference in shape allows an efficient use of pulse-shape discrimination to select
and record neutron signals in measurements of a neutron flux. Note that all
signals are digitized with a FADC whose resolution is equal to 1 V / 1024 ch
= 1 mV/ch . A preliminary absolute calibration on the EAS electromagnetic
component of the EN-detectors operated at PRISMA-YBJ experiment has
been performed in Moscow using the NEVOD experimental facility in MEPhI
by means of a small EAS array of plastic scintillators selecting atmospheric
showers [40]. The EN-detectors have been installed between plastic scintil-
lators (∼ 1 m spacing) and their response to shower particles allowed us to
determine with an accuracy of ± 20% the relation between the charge deliv-
ered by the PMTs (in FADC channels) and the number of particles crossing
the EN-detector [41]. Obtained results gave us the calibration value of 2.44
± 20% minimum ionizing particles (m.i.p.s)/channel. This coefficient was
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used to recover the particle density in the PRISMA-YBJ experiment (see
Sect. 5). Our threshold for data acquisition is 1 mV corresponding to about
2.5 particles per detector. Only in the case of synchronous passage of at least
3 particles through the detector a signal suitable for recording is generated.
This feature allows one to use the EN-detector in scaler mode for low neutron
flux measurements.

The peculiar characteristics of the EN-detector output, that are weak
and fast signals from charged particles compared to high amplitude, slow
and delayed signals from thermal neutron capture, make it well suitable for
its use in the framework of EAS experiments. In high energy EAS the time
thickness of the shower front is about tens of ns , depending on the distance
from the core. The individual signals generated by these particles (mainly
electrons and positrons) add up to give a signal proportional to their number
which can be used also for triggering and timing purposes. Delayed signals
from thermal neutron capture follow on a time scale of a few milliseconds. As
an example,we show in Fig. 4 the pulses recorded in a high energy EAS event.
The first big peak is generated by the large amount of charged particles of
the shower front while the smaller delayed signals are generated by thermal
neutrons. Thus, the amplitude of the fast signal can be used to measure the
charged particle density while the delayed signals measured in a time gate
of 10 ms give the number of captured thermal neutrons. The selection of
electrons and neutrons is automatically performed by the off-line analysis
program.

3. The Experimental Set-up

ARGO-YBJ [42] is a full coverage air shower detector constituted by a
central carpet 74 × 78 m2, made of a single layer of RPCs (2.85 × 1.23 m2

each) with 93% active area, enclosed by a guard ring partially instrumented
(about 20%)up to 100 × 110 m2 . The apparatus has a modular structure,
the basic data acquisition element being a cluster (5.7 × 7.6 m2) made of
12 RPCs. The chambers are operated in streamer mode. Both digital and
charge read-out are implemented by means of external electrodes. The digital
read-out is realized by means of strips (6.75 × 61.80 cm2) which provide
signals used for timing and to build up the trigger. An inclusive trigger is
implemented , exploiting a majority logic, which allows the detection of small
size showers . More details about the detector and the RPC performance
can be found in Ref. [43]. Because of the small pixel size, the detector
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is able to record events with a particle density exceeding 0.02 particles/m2

keeping good linearity up to a density of about 15 particles/m2 . This output
has been used to measure the light component spectrum (protons+Helium
nuclei) of the primary cosmic rays up to 300 TeV ([44]) and to carry out
many observations in gamma-astronomy (Ref. [45] and ref. therein) . In
order to extend the dynamical range up to PeV energies,each chamber is
also equipped with two large size pads (BigPads, 139 × 123 cm2 each) to
collect the total charge developed by the particles hitting the detector[46].
In this way the measurement of densities up to 104 particles/m2 can be
achieved with an accuracy better than 10% [47][48]. The read-out of the
charge collected by the BigPads is enabled in each cluster by a local trigger
based on the particle multiplicity. 100% trigger efficiency above 100 TeV
for all kind of primary particles is achieved. The use of the analog read-
out has allowed the measurement of the light component spectrum up to
700 TeV[11], and this measurement has been extended to the PeV region
[2]. The event arrival time is measured by GPS (Global Positioning System)
with precision of 100 ns. During the common runs with PRISMA-YBJ,
the ADC full scale of the BigPads has been set so as to sample with full
efficiency showers induced by primaries with energies from about 100 TeV to
many PeV. ARGO-YBJ accurately measures the showers, to obtain several
parameters including shower direction, core position, age and size.

The four EN-detectors of the PRISMA-YBJ array have been installed
in the hall hosting the ARGO-YBJ experiment. Three of them are located
according to a triangular arrangement on one of the ARGO-YBJ clusters
(cluster No. 78), each side of the triangle being about 5m. The fourth EN-
detector is installed at the center of the triangle at a distance of about 3 m
from the other detectors. Each EN-detector overlaps one of the Big Pads of
the cluster (Fig. 5)

A schematic view of the recording system of PRISMA-YBJ is shown in
Fig. 6. The signal from the 12th dynode of each PMT is sent to a charge
sensitive preamplifier-discriminator where it is split into two pulses: one of
them is shaped to a NIM pulse used to build-up the trigger, the other one is
integrated with a 1 µs time constant, then amplified and sent to the input of
a FADC (ADLINK 12 PCI-9812). The first pulse produced mostly by EAS
electrons is used for trigger and energy deposit measurements, and delayed
neutron capture pulses are counted within a time gate of 10 ms to give the
number of neutrons. The first level trigger which is a coincidence of any 2 out
of 4 detectors in a time gate of 1 µs, starts all FADC’s. The on-line program
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analyzes the input data and provides the following second level triggers:
M1, if at least 2 detectors generating the first level trigger measured a

signal corresponding to 10 m.i.p.s or more;
M2, if the delivered total charge corresponds to more than 125 m.i.p.s;
M3, if the total number of recorded neutrons is higher than 4.

If any of these conditions is fulfilled thus the pulse shape of all signals is
stored (20000 samples in steps of 0.5 µs.) along with the mark of the trig-
ger number. In addition, every 5 minutes the on-line program generates a
trigger (M0) which starts the data acquisition by the FADCs. This ’random’
trigger, not related to showers, allows the measurement of chance signals
which could mimic neutron signals in the 10 ms recording window. The EN-
detectors were routinely monitored recording the charge spectra accumulated
by each detector. An example is given in Fig. 7 which shows the daily spectra
produced by relativistic particles in events triggered by the first level trigger.
We observe a satisfactory equalization of the detector gain. The event ar-
rival time is measured by the network timing protocol (NTP) method. NTP
is a networking protocol for continuous clock synchronization of computer
systems to internet time server. NTP can provide timing with a precision of
∼ 10 ms to Coordinated Universal Time (UTC). PRISMA-YBJ and ARGO-
YBJ were triggered by EAS events individually and coincident events were
searched for during off-line data analysis.

4. Coincident EAS events between ARGO-YBJ and PRISMA-YBJ

ARGO-YBJ and PRISMA-YBJ ran together from January 24 to Febru-
ary 6 , 2013 . After removing two test days, the effective coincident run time
was 11 days. During this period the trigger rate of PRISMA-YBJ was 0.19
min−1. To reduce the sample of coincident event candidates, only showers
recorded by ARGO-YBJ and flagged by the local trigger of cluster 78 have
been considered. This guarantees the detection of showers with high particle
density on cluster 78, where the PRISMA-YBJ unit is deployed. The corre-
sponding trigger rate is 18.2 min−1 . The distribution of the time difference
∆T = tPRISMA − tARGO is shown in Fig. 8, upper plot. The distribution is
not symmetrical and exhibits a large tail for positive values of ∆T due to the
accuracy of about 10 ms in the tPRISMA measurement (Sect. 3). The central
part of this distribution can be fitted by a Gaussian function with s.d. 0.017
s. A time window of ± 0.03 s (about 2 s.d.) around the peak of the distri-
bution has been fixed to select coincident events keeping low the number of
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accidentals. To ensure a good quality of the reconstructed shower parame-
ters, only events with a number of ”fired” Big-Pads > 20 at a distance r < 10
m from the shower core position have been selected. 2626 coincident events
satisfy these conditions. The expected number of spurious events is about
110, that is 4.2% of the total sample. This low fraction of accidentals makes
us confident of getting a clean correlation between the data recorded by the
two arrays. The core position of the selected events is distributed around the
PRISMA-YBJ array as shown in Fig. 8, lower plot. On the contrary, the core
distribution of the ARGO-YBJ events is almost uniformly spread around the
carpet center. This gives an additional evidence of the correlation between
the two sets of data. The angular distribution of the coincident events follows
closely the angular distribution of the events recorded by ARGO-YBJ (Fig.
9) , showing that no particular biases have been introduced in the selection
procedure. The number of events with zenith angle less than 30◦ is 1598.
The morphology of a coincident event is shown in Fig. 10. The pattern of
a high energy shower detected by the RPC carpet is displayed in the upper
plot. The core of the shower hits cluster 78 very close to the PRISMA unit
(compare Fig. 10, upper plot with Fig. 5, lower right plot, where the posi-
tions of the EN-detectors are shown) . Particle densities up to about 104 /m2

near the core are recorded by the RPC BigPads. The lateral distribution of
charged particles is shown in the lower plot, together with the electron and
neutron densities measured by the PRISMA-YBJ detectors at distances less
than 4 meters from the impact point of the shower core.

5. Data analysis and results

The 2626 coincident events have been analyzed to study the performance
of the PRISMA-YBJ detectors. Particle densities are measured on the plane
orthogonal to the direction of the shower as reconstructed by ARGO-YBJ.
Concerning the measurement of the EAS charged component, we have se-
lected the 1598 events recorded at zenith angle less than 30◦. The correlation
between ρPR, the electron density measured by each PRISMA-YBJ detector
via the fast signals, and ρAR, the electron density measured by each RPC
installed beneath, is shown in Fig. 11. To convert the PRISMA-YBJ signals
to the corresponding number of minimum ionizing particles the conversion
factor obtained in the Moscow laboratory (see Sect. 2) has been adopted.
We observe a difference up to 45 % between the response of the four detectors
, well compatible with the laboratory calibration accuracy (± 20 %) , taking
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also into account the operation in very different environmental conditions.
The data concerning each detector have been fitted by means of a straight
line, as shown in Fig. 11, obtaining the slopes given in Tab. 1. These slopes
are consistent with unity once the ARGO-YBJ RPCs calibration accuracy
(5 % - 10 %) is taken into account. A weighted average gives 1.05 ± 0.02.
This result indicates a good proportionality of the PRISMA-YBJ fast sig-
nals to the number of charged particles. Thus these data lead us to conclude
that a satisfactory performance is achieved for measuring the EAS electron
densities once the appropriate absolute calibration is applied.

Detector Number slope
1 1.08± 0.04
2 1.06± 0.03
3 1.01± 0.06
4 0.96± 0.06

Table 1: Slopes of the straight lines of Fig. 11.

Concerning the detection of thermal neutrons, the data obtained with
PRISMA-YBJ cannot be directly compared with similar records by ARGO-
YBJ since this experiment does not include neutron detectors or other devices
sensitive to the EAS hadronic component. Instead, we have reconstructed the
neutron lateral density distribution which is strictly correlated to the hadron
lateral distribution. These data have been used to find the total number of
thermal neutrons that is expected to have a substantial linear correlation with
the shower size, since this kind of dependence characterizes the high energy
hadrons. Indeed, electrons and hadrons are closely related to each other
in the shower development, and a sort of equilibrium turns up [49]. Many
experiments, including the low energy measurements with neutron detectors,
prove that the number of hadrons Nh in a shower is almost proportional to
the shower size Ne, that is

Nh = k ×Nα
e (2)

with α varying between 0.9 and 1.0 [49][50]. Thus the total number of thermal
neutrons recorded by PRISMA-YBJ can be profitably compared with the
shower size measured by ARGO-YBJ, being a quasi-linear correlation one
genuine signature of a correct detection of the thermal neutron events.

To carry out this analysis, a subset of the 2626 coincident events has been
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used. Since high energy hadrons are mostly confined around the shower core,
only events with reconstructed core location less than 10 m away from the
center of PRISMA-YBJ have been selected. Thus, 525 events remain after
this selection. 217 events of this sample do not present neutron-like signals
in the 10 ms recording window, while 308 events display neutron-like signals.
However, due to the time width of the recording window, some chance sig-
nals not associated with air showers could randomly occur. Recognition of
chance signals can be performed taking advantage of the statistics recorded
by the M0 trigger (see Sect. 3). The probability of one or more chance signals
recorded in the 10 ms time window is found to be about 28 % as shown in Fig.
12, with an average of about 0.33 signals per event. Their multiplicity distri-
bution follows fairly well a Poisson distribution with this mean, as shown in
the same figure. Experimental data have been corrected by sampling spurious
signals from this distribution and choosing randomly the involved detectors.
After this correction the number of events with neutron-like signals is re-
duced to 223, with a corresponding total number of 412 detected neutrons.
The neutron multiplicity distribution before (black solid line) and after (red
dashed line) the background correction is shown in Fig. 13. Finally, select-
ing events with zenith angle less than 30◦, a sample of 315 coincident events
with signal distributions corrected for chance signals is obtained. They are
the fraction of the 1598 events with zenith angle less than 30◦ in which the
distance between the shower core and the center of the PRISMA-YBJ array
is less than 10 m.

To study the dependence of the neutron yield on the shower size, the
events of this sample have been grouped according to the truncated size Np10,
that is the number of particles measured by ARGO-YBJ within a distance
of 10 m from the shower axis, a quantity not biased by effects due to the
finite detector size. Three different size intervals have been chosen selecting
185 events with lg(Np10) < 4.8 , 107 events with 4.8 < lg(Np10) < 5.4 and
23 events with lg(Np10) > 5.4 . The relation of the truncated size with the
energy for each primary cosmic ray component is given in [51]. Typically,
the first size group is associated to primary protons (irons) of energy below
550 TeV (1.2 PeV), the second group to primaries of energy around 1 PeV,
while the showers belonging to the third group are mainly initiated by cosmic
rays with energies greater than 1.5 PeV. The electron density distribution of
these events as measured by PRISMA-YBJ is shown in Fig. 14. Data can
be fitted very well by means of the functional form (a NKG-like formula)
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currently used to describe the ARGO-YBJ measurements [52]:

ρe(r) = A× (
r

rm
)s

′−2
× (1 +

r

rm
)s

′−4.5 (3)

where r (m) is the distance from shower cores, ρe (m
2) is density of electrons,

A is a normalization factor, s′ is the shape parameter that plays the role of
the lateral age, and rm is a constant scale radius which is 30 m. The fit
parameters are given in Tab. 2. It shows again the full consistency among
the electron measurements performed by the two detectors. It is interesting
to note that the lateral age parameter s′ appearing in this formula runs from
1.31 for the first size group to 1.20 for the third size group. It is a shape
parameter strictly related to the shower age s which measures the stage of
the longitudinal shower development. According to the relations reported in
[52], the age parameter s results about 1.14 for the higher energy showers
used in the present analysis, indicating that these showers are sampled not
far from their maximum, about 100 g/cm2 above the Yangbajing atmospheric
depth.

Np10 intervals χ2/ndf A (m−2) s′

lg(Np10) < 4.8 15.9/8 130± 9 1.30± 0.04
4.8 < lg(Np10) < 5.4 6.34/8 270± 22 1.27± 0.05
lg(Np10) > 5.4 2.09/3 687± 93 1.21± 0.08

Table 2: Fit results of the distributions shown in Fig. 14.

The neutron lateral distributions, that is the average thermal neutron
density per event as a function of the distance r from the shower core, are
reported in Fig. 15 for each group. To obtain this result, we have measured
for each event the distance of the EN-detectors from the shower core and we
have incremented the corresponding bin of the r-profile with the content of
each EN-detector. Data have been normalized to the total number of events
recorded in each size group, including events without neutron signals, and
corrected for the detector efficiency. The shape of these distributions is easily
related to the involved physics processes. Experimental data taken at high al-
titudes show that the hadron distribution at EAS core follows an exponential
behavior [53]. The hadron interaction and thermal neutron production have
been studied using a GEANT4 based simulation package [54]. The results of
the simulation show that the lateral distribution of these thermal neutrons
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can be conveniently described by a two exponential functional form. Indeed
we found that a function of this type,

ρn(r) = ρ0 × e−(r/r0) + ρ1 × e−(r/r1) (4)

provides a reasonable fit to our data (Fig. 15), with r0 = 0.5 ± 0.1 m and
r1 slowly decreasing with increasing shower size , that is r1 = 10.0 ± 1.0 m
, 9.0 ± 1.0 m, 6.0 ± 1.0 m for the three size groups. The fit parameters are
given in Tab. 3. A simple explanation of this behavior assumes that neutrons
close to the shower axis are produced by the interaction of hadrons with the
soil around the detector, while more sparse neutrons come from the shower
development in air and from the interaction with the building roof.

Np10 intervals χ2/ndf ρ0(m
−2) ρ1(m

−2)
lg(Np10) < 4.8 2.44/8 9.0± 6.8 3.41± 0.32
4.8 < lg(Np10) < 5.4 2.69/7 222± 65 7.17± 0.65
lg(Np10) > 5.4 20.1/7 456± 230 18.7± 2.3

Table 3: Fit results of the distributions shown in Fig. 15.

Integrating the neutron lateral distribution up to r = 10 m we obtain
the total number of thermal neutrons around the shower axis. As shown in
Fig. 16 , the total number of thermal neutrons measured by PRISMA-YBJ
is in a good linear relation with the truncated size measured by ARGO-YBJ,
confirming the correct operation of the PRISMA-YBJ detector to measure
thermal neutrons associated to air showers. A detailed description of this
relation requires the use of an accurate simulation that is beyond the scope
of the present paper. However, it is worth to note the rich thermal neutron
yield, as expected from the fact that their production is initiated also by low
energy hadrons (see Eq. 1 in Sect. 1). From Fig. 16 we find that the ratio
of the thermal neutron number to the electron number within 10 m from the
shower axis is about 7×10−3 , at least one order of magnitude greater than the
ratio of the hadron number to the electron number [55]. Higher statistics and
comparison with predictions of dedicated simulations will be clearly necessary
to better establish the exact nature of the physical correlations detectable by
the measurement of thermal neutrons in air showers. However, the present
result, as it is, shows that, despite of its limited efficiency, the EN-detector is
a very attractive device to estimate the hadron content in showers originated
by cosmic rays of energy greater than 1 PeV.
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6. Conclusions

This paper is addressed to the use of the EN-detector in the framework
of EAS measurements . The sensitive layer of this detector is basically made
of an alloy of an inorganic ZnS(Ag) scintillator alloyed with LiF enriched
with the 6Li isotope. Its originality lies in simultaneously recording the air
shower charged component and the thermal neutrons generated by high en-
ergy hadrons. This is achieved by exploiting the shape and timing differences
of the signals induced by these particles. The detection of thermal neutrons
by means of a quite simple device open a new opportunity to estimate the
hadron content in EAS. Their observation has been so far plagued by the
need of building huge calorimeters. Thermal neutrons in EAS generated by
high energy primaries above 100 TeV have been detected at high altitude.
This result has been accomplished by operating a PRISMA unit of four EN-
detectors in coincidence with the air shower experiment ARGO-YBJ located
at the Cosmic Ray Observatory of Yangbajing (Tibet, 4300 m a.s.l.). With
the help of the reconstructed shower parameters from ARGO-YBJ a cali-
brated set of data has been obtained. The response of the EN-detectors to
the EAS charged particles exhibits a good linearity. The thermal neutrons
are found distributed around the shower core with a very narrow lateral
shape and their total number is well correlated with the truncated shower
size measured by ARGO-YBJ. Both features are consistent with the ones
characterizing the EAS high energy hadrons. The present analysis concen-
trates only on experimental findings, while a comparison with detailed Monte
Carlo simulations is deferred to a future publication. However, the analysis
of a sample of more than two thousand EAS events confirms that the EN-
detectors worked properly at high altitude in combination with an array of
particle detectors.

With the growing interest for high energy cosmic ray research involving
very large surface detectors, the possibility of measuring thermal neutrons
and the charged component with an unique detector deployed over a large
area makes this device an attractive and promising cost effective tool for
future apparatuses. Indeed, it has been proposed to deploy the PRISMA
units in the planned LHAASO array [56]. The operation of the EN-detectors
in the LHAASO experiment will enable the estimate of the hadron content
in EAS, increasing its capability to determine the energy and nature of high
energy cosmic rays.
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Figure 1: Left: Photo of the ZnS(Ag) scintillator. Right: Scheme of the EN-detector. 1)
polyethylene tank (diameter=72 cm, height=57 cm). 2) 30 cm diameter lid. 3) 6” PMT.
4) scintillator with area 0.36 m2. 5) reflecting cone.
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Figure 2: Neutron counting rate with and without the neutron source 252Cf . The horizon-
tal axis gives the time in hours, the vertical axis the neutron counts in bins of 5 minutes.
The background is from radiation in the surrounding environment.
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Figure 3: Different pulse shapes of neutrons (dashed line) and electrons (from a small
size EAS). Qtrigger and ttrigger are charge and time when the pulse passes the threshold,
respectively. Qtotal and ttotal are charge and time when the pulse height reaches the peak.
(For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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Figure 4: The shape of the signals from the neutron detectors in coincidence with an EAS
event recorded by ARGO-YBJ. Upper plot: the pulse from 0 to 2.5 ms. The large peak
in the first bin is generated by the EAS electrons. Middle plot: the pulse from 0 to 0.25
ms. Lower plot: the pulse from 0.6 to 0.8 ms (note the different scale on the vertical axis).
The small peaks following the first peak are generated by thermal neutrons.
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Figure 5: Upper plot: Photo of PRISMA-YBJ above the ARGO-YBJ RPC carpet. Lower
left: Layout of PRISMA-YBJ. Lower right: PRISMA-YBJ on the ARGO-YBJ cluster 78.

24



FADC 

PCI-

9812 
En-

detector 

Front end 

electronics

Trigger 

unit 

PC
HV LV 

•

•

•

X4

NIM

signal
30m cable

30m cable

Figure 6: Scheme of PRISMA-YBJ electronics.

25



10 100
1

10

100

 d1
 d2
 d3
 d4

dn
/d

 (FADC channels)

Figure 7: Daily charge spectra of the EN-detectors produced by relativistic particles in
events triggered by the first level trigger. The horizontal axis gives the charge ǫ delivered
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10 m before (black solid line) and after (red dashed line) background correction. (For
interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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