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Abstract

Basic fluid equations are the main ingredient to develop theories of the

Rayleigh–Taylor buoyancy-induced instability. Turbulence arises in the

late stage of the instability evolution as a result of the proliferation of

active scales of motion. Fluctuations are maintained by the unceasing

conversion of potential energy into kinetic energy. Although the dynam-

ics of turbulent fluctuations is ruled by the same equations controlling

the Rayleigh–Taylor instability, here only phenomenological theories

are currently available. The main purpose of the present review is to

provide an overview of the most relevant (and often contrasting) theo-

retical approaches to Rayleigh–Taylor turbulence together with numer-

ical and experimental evidences for their support. Although the focus

will be mainly on the classical Boussinesq Rayleigh–Taylor turbulence

of miscible fluids, the review extends to other fluid systems having vis-

coelastic behavior, being a↵ect by rotation of the reference frame and,

finally, in the presence of reactions.

1



1. INTRODUCTION

The Rayleigh-Taylor (RT) instability arises at the interface of two fluids of di↵erent densi-

ties in presence of relative acceleration. The RT instability, and its late-stage evolution in

a fully developed turbulent regime, are ubiquitous spontaneous mixing phenomena occur-

ring in many natural systems having unstably stratified interfaces. They also occur over

a huge interval of spatial and temporal scales, ranging from everyday-life phenomena to

astrophysical processes.

In astrophysics, the RT instability is thought to have profound consequences for flame

acceleration in type Ia supernova. It is possible that this acceleration, operating on the

stellar scale, can bring the flame speed up to a significant fraction of the speed of sound,

a fact with important consequences in modeling Type Ia supernovae (see, e.g., Hillebrandt

& Niemeyer (2000) and Bell et al. (2004)). In geology, multi-wavelength RT instability has

been invoked to explain the initiation and evolution of Polydiapirs (domes-in-domes) (see,

e.g., Weinberg & Schmeling (1992)). Moreover, the possibility that intraplate orogeny is

the result of RT instability of the Earth’s mantle lithosphere beneath the orogenic zone has

been explored by means of a two-layered model (Neil & Houseman 1999). In atmospheric

fluid dynamics and cloud physics, RT instability has been called into play by Agee (1975) to

try to solve the intriguing enigma related to the mechanism of formation of the fascinating

mammatus clouds. As discussed by Shultz et al. (2006), the situation is however still rather

controversial and further investigations are needed.

RT instability and turbulence also have a key role in several technological applications

as, by way of example, the inertial confinement fusion and the disruption of radio-wave

propagation within the terrestrial ionosphere. In the inertial confinement fusion, the RT

instability causes a premature fuel mixing (due to beam-beam imbalance and/or beam

anisotropy) thus reducing heating e�cacy at the time of maximum compression (see, e.g.,

Tabak et al. (1994); Kilkenny et al. (1994)). In the terrestrial ionosphere, electromagnetic

waves are scattered due to irregularities in plasma density. RT instability is invoked to

explain these irregularities (see, e.g., Sultan (1996)).

Even if in all discussed cases the basic mechanism of RT instability and turbulence is

a buoyancy induced fluid-mixing mechanism, many other ingredients may actually enter

into play. We cite surface tension and viscosity (see, e.g., Bellman & Pennington (1954);

Mikaelian (1993); Chertkov et al. (2005); Celani et al. (2009); Bo↵etta et al. (2010c)),

magnetic fields (Kruskal & Schwarzschild 1954; Peterson et al. 1996), spherical geometries

(Plesset 1954; Sakagami & Nishihara 1990), finite-amplitude perturbations (Chang 1959),

bubbles (Garabedian 1957; Hecht et al. 1994; Goncharov 2002), rotation (Chandrasekhar

1961; Baldwin et al. 2015), and compressibility (Newcomb 1983; Scagliarini et al. 2010).

The field of RT instability appears to be very mature and there exist already excellent

reviews of parts of the instability theory, especially those by Chandrasekhar (1961) and,

more recently, by Sharp (1984) and by Abarzhi (2010b). Chandrasekhar’s work gives an

overview on the linear theory for incompressible continuous media, while Sharp surveys

also nonlinear phenomenological models. Abarzhi (2010b) extends the review to include

the nonlinear mixing stage. The textbook of Drazin & Reid (1981) represents another

valuable introduction to hydro-dynamic instabilities. Thermal instabilities and shear flow

instabilities are the main concern of the excellent review by Kull (1991). The review by

Andrews & Dalziel (2010) reports the recent progresses in the experiments on RT mixing

at low Atwood numbers.

Our aim here is to try to summarize about one decade of research activity on the
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phenomenology of (miscible) Boussinesq RT turbulence after the seminal paper by Chertkov

(2003). This paper deeply changed the way to think about Boussinesq RT turbulence: it now

appears as a classical hydrodynamical turbulence system where the role of gravity is simply

to act as a time-dependent pumping scale. Familiar concepts borrowed from the classical

theory, à la Kolmogorov, of turbulent flows have thus been exploited for the Boussinesq

RT system with many predictions for relevant statistical observables. These predictions

triggered new studies with the final aim to confirm or contradict the new theory. One of

the main aim of our review is to summarize the current state of the art in this respect.

Moreover, we aim at providing a guided tour on generalizations of classical Boussinesq

RT turbulence, including viscoelastic RT turbulence and RT mixing under rotation, with

the hope they could trigger new experimental activities in this fields as well as make an

interesting comparisons and connections with Rayleigh-Bénard turbulent system. Due to

space constraints, we will not review many interesting and important aspects of RT mixing

dealing with non-Boussinesq e↵ects, immiscibility, compressibility and complex geometry.

 
10 cm 
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Warm water  

Figure 1

(Left upper) Thermonuclear flame plume bursting through the surface of a white dwarf during in
supernova explosion (Image credit: Flash Center for Computational Science, University of
Chicago). (Left lower) Rayleigh-Taylor mixing experiment in water channel: upper, clear, heavy
water mixes by RT instability with lower, dark, light water generating turbulent mixing (Image
courtesy of A. Banerjee). (Right) Color representation of the temperature field T (x) (yellow=hot,
blue=cold) from a Direct Numerical Simulation of the Boussinesq equations (2-3) in the late stage
of RT turbulence.
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2. Oberbeck-Boussinesq equations for Rayleigh-Taylor turbulence

One important application of RT instability is the case of convective flow, in which density

di↵erences reflect temperature fluctuations of a single fluid and the acceleration is provided

by gravity, which is uniform in space. The problem is further simplified within the so-

called Oberbeck-Boussinesq (OB) approximation (see, e.g., Tritton (1988)) which assumes

incompressible flows and small variations of the density. In this limit, density ⇢ linearly

depends on the temperature T as

⇢(T ) = ⇢(T0) [1� �(T � T0)] (1)

where T0 is a reference temperature and the thermal expansion coe�cient � (as well as the

viscosity ⌫ and the thermal di↵usivity ) is assumed constant, independent of T . The OB

equations of motion for the velocity u(x, t) and temperature T (x, t) in the gravitational

field g = (0, 0,�g) are

@
t

u+ u ·ru = �rp+ ⌫r2
u� �gT (2)

@
t

T + u ·rT = r2T (3)

together with the incompressibility condition r · u = 0. We remark that under the OB

approximation, the fluid motion is symmetric for vertical reflection: indeed equations (2-3)

are invariant for g ! �g and T ! �T . Rayleigh-Taylor configuration is defined by the

initial condition of an unstable stratification with a horizontal interface (in general normal

to the acceleration) which separates a layer of cooler (heavier, of density ⇢2) fluid from a

lower layer of hotter (lighter, of density ⇢1) fluid, both at rest, i.e. T (x, 0) = �(✓0/2)sgn(z)

and u(x, 0) = 0. ✓0 is the temperature jump across the layers (symmetric with respect

to T0) which fixes the Atwood number A = (⇢2 � ⇢1)/(⇢2 + ⇢1) = �✓0/2. Although the

Atwood number must be small for the validity of the OB limit, when working within this

approximation A simply rescales the e↵ect of gravity on the buoyancy force and thus the

characteristic time of the phenomena. In the rest of this Review we will always assume

the validity of the OB approximation and therefore we will use the notion of either density

fluctuation or temperature fluctuation as the two are related by (1).

The RT configuration is unstable to perturbations of the interface. We remark that in

numerical and experimental applications it is sometime useful to introduce some smoothing

of the interface over a finite thickness. For a single mode perturbation of wavenumber k,

linear stability analysis for an inviscid potential flow gives the growth rate of the amplitude

as (see Lamb (1932) or the review by Kull (1991))

� =
p

Agk . (4)

According to (4), the growth rate increases indefinitely with k, thus favoring the growth

of short-wavelength perturbations. Several physical e↵ects can limit the growth at large

wavenumbers, including surface tension, viscosity (Chandrasekhar 1961; Meniko↵ et al.

1977), di↵usivity (Du↵ et al. 1962). Linear stability analysis has been also generalized

to include other physical ingredients, including rotation (Chandrasekhar 1961), compress-

ibility (Mitchner & Landsho↵ 1964), viscoelasticity (Bo↵etta et al. 2010b), non-uniform

acceleration (Kull 1991).

3. Phenomenology of Rayleigh-Taylor turbulence

The linear phase of the instability, discussed in Section 2, breaks down when the amplitude

of the perturbation of the interface becomes comparable with the wavelength. At this
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Rayleigh-Taylor experiments

Several setups have been proposed for the experimental study of RT turbulence. At variance with, e.g.

Rayleigh-Benard convection, for RT turbulence there is not a “standard” setup and several experiments

have been proposed to generate the initial state which is, by definition, unstable. Di↵erent techniques have

been developed to stabilize the initial configuration, starting from the compressed gas experiments by Lewis

(1950) in a thin layer. In the Rocket-Rig apparatus of Read (1984) (see also Youngs (1992)) the initial

stable configuration (light fluid over heavy fluid) is accelerated downwards by a small rocket motor with an

acceleration larger than gravity. The evolution of the instability is limited in time (by the vertical extension

of the setup) and this required the use of large Atwood numbers or immiscible fluids (Andrews & Dalziel

2010). A more recent variant of this setup, developed by Dimonte & Schneider (1996) uses a linear electric

motor which allows to control the acceleration profile.

The overturning tank developed by Andrews & Spalding (1990) generates the instability by rotating a

narrow tank mounted on a horizontal axis. This setup overcomes the problem of small Atwood numbers

experiments of the Rocket-Rig apparatus and working fluids are typically fresh water and brine solution with

A ' 0.05. The sliding barrier experiment developed by Linden et al. (1994) uses a removable metal sheet to

separate the two layers of fluid at di↵erent density (again brine and fresh water). One of the problem with

this setup is the generation of viscous boundary layers around the sheet when it is removed. The setup was

later improved by Dalziel (1993) who used a nylon fabric wrapped around the metal plate to eliminate the

boundary layers. A similar setup, developed by Rivera & Ecke (2006), uses a stretched latex membrane to

separate the two layers. When the latex membrane is ruptured with a needle the instability starts. This

setup was used for investigating RT mixing at A ' 0.003 and small aspect ratio (lateral dimensions one

fifth the vertical size) and the growth of the mixing layer was found to be slower than t2.

A di↵erent setup, developed by Snider & Andrews (1994), uses a water channel in which two water

streams at di↵erent densities (temperatures) flow parallel separated by a thin horizontal plate. A the end

of the plate the streams enter the test channel where they meet and the RT instability develops. The main

advantage of the present setup is that mixing evolves in space and not in time allowing for time averages

over a statistically stationary state. The original channel were developed for very small Atwood numbers

(A ⇠ 10�3) while a more recent setup developed by Banerjee & Andrews (2006) is capable to reach A ' 1.

Another, and promising technique developed by Huang et al. (2007) makes use of a strong magnetic field

gradient to stabilize a paramagnetic (heavy) fluid over a diamagnetic (light) one. In yet another variant,

the initial configuration is opposite (and stable) and the magnetic field is used to produce the instability

(Baldwin et al. 2015).

point nonlinear e↵ects emerge and the RT flow develops into a di↵erent, nonlinear phase.

This nonlinear phase is characterized by the formation of ascending and descending plumes

which detach from the original region of hot or cold fluid and enter the opposite region,

thus enhancing the transport of heat between the two reservoirs. At this point the interface

between the two regions is not single valued any more and several modes are activated

leading eventually to the turbulent phase.

The phenomenology of the temporal evolution of the turbulent phase can be derived

dimensionally starting from the energy equation. Introducing the kinetic energy density

www.annualreviews.org
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E = (1/2)h|u|2i (where h...i indicates average over the space), from (2) one obtains

dE

dt
= �ghwT i � "

⌫

= �dP

dt
� "

⌫

(5)

where we have introduced the potential energy of the system, P ⌘ ��ghzT i and the viscous

energy dissipation rate "
⌫

= ⌫h(ru)2i. For simplicity, in (5) the (small) contribution of

the thermal di↵usivity is neglected. By introducing the typical velocity fluctuation U , one

has dimensionally from (5)
dU2

dt
' �gU✓0 (6)

because the temperature fluctuation at the integral scale is ✓0 and therefore, by integration,

U(t) ' Agt (7)

i.e. the large-scale velocity fluctuation grows linearly in time. Since this is the velocity

which moves the plumes within the mixing layer, by integration one obtains the dimensional

prediction for the quadratic growth of the layer width h(t)

h(t) = ↵Agt2 (8)

where the dimensionless parameter ↵ represents the e�ciency of the conversion of potential

energy into kinetic energy. The phenomenology of small-scale RT turbulence, which will

be discussed in Section 4, assumes that within the mixing layer a turbulent cascade à la

Kolmogorov develops, with an integral scale h which grows in time according to (8) and an

energy flux given dimensionally by " ' U3/h ' (Ag)2t.
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Figure 2

(Left) Mean temperature profile T (z, t) at times t = 1.4⌧ (red), t = 2.0⌧ (green) and t = 2.6⌧
(blue) from a numerical simulation of RT turbulence (⌧ = (L

z

/Ag)1/2). (Figure from Bo↵etta
et al. (2009)). (Right) Evolution of the mixing layer thickness h(t) and its growth rate ḣ(t)
normalized by the Atwood number A, gravity g and time, as a function of time. (Figure from
Cabot & Cook (2006)).

Figure 2 shows the mean temperature profile T (z, t) as a function of z at di↵erent times.

The profile is obtained by averaging the temperature field shown in Fig. 1 over the horizontal

plane (x, y) and over di↵erent realizations of the numerical simulations. It is evident from

this plot that the inner region of the mixing layer develops a linear temperature profile

T (z, t) ' ��(t)z with a gradient which dimensionally decreases as �(t) ' ✓0/h ' t�2
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(see Bo↵etta et al. (2009) for the 3D case and Celani et al. (2006); Biferale et al. (2010);

Zhou (2013) in two dimensions). Di↵erent definitions of the width of the mixing layer have

been proposed, based on either local or global properties of T (z). The simplest measure is

based on the threshold value h
r

at which T (z) reaches a fraction r of the maximum value,

i.e. T (±h
r

/2) = ⌥r✓0/2 (see, e.g. Dalziel et al. (1999)). Other definitions, proposed by

Cabot & Cook (2006) and Vladimirova & Chertkov (2009), are based on integral quantities,

i.e. h
M

=
R
M(T )dz where M is an appropriate mixing function which has support on the

mixing layer only. Linearity of the mean temperature profile implies statistical homogeneity

inside the mixing layer, a key ingredient for the development of a phenomenological theory

of turbulent fluctuations based on Kolmogorov (1941)(see Section 4). Deviations from this

linear profile, with the crossover of T (z) to the bulk values ±✓0/2 can be indeed understood

as a manifestation of non-homogeneity of turbulence at the edge of the mixing layer. These

deviations can be captured by a mixing length model with a z-dependent eddy di↵usivity

as shown by Bo↵etta et al. (2010a) and Biferale et al. (2011b).

One of the first work which addresses the nonlinear evolution of the interface is due to

Fermi & von Neumann (1955). In their unpublished note, they assume a rectangular plume

which moves vertically pushed by gravity. In the simplified version of up-down symmetry

(Boussinesq approximation) the variation of potential energy given by a couple of plumes

(of densities ⇢1 and ⇢2) of square base b2 and height h moving in the region of di↵erent

density is

�P = (⇢1 � ⇢2)b
2gh2 (9)

which is negative as potential energy decreases. If the plumes are moving with constant

vertical velocity ḣ the change of kinetic energy in the system is

�E =
1
2
(⇢1 + ⇢2)b

2hḣ2 (10)

By using the Euler-Lagrange equation @L/@h = d/dt(@L/@ḣ) for the Lagrangian L =

E � 2↵P , one obtains

ḧh+
1
2
ḣ2 = 4↵Agh (11)

where ↵ is the same parameter as in (8), here representing (with a factor 2) the fraction

of potential energy which is converted into kinetic energy of the plumes (while the fraction

1� 2↵ is dissipated by viscosity and di↵usivity). The solution to (11) for an initial height

h(0) = h0 is given by

h(t) = h0 + 2(↵Agh0)
1/2t+ ↵Agt2 (12)

When extended from single plume to the whole interface, this solution shows that asymptot-

ically the growth of the mixing layer follows the well-known accelerated law h(t) = ↵Agt2,

but this regime dominates after a transient which lasts up to a time /
⇣

h0
↵Ag

⌘1/2
.

Recently, the Fermi & von Neumann (1955) result (11) has been rediscovered by di↵erent

authors and using di↵erent arguments. Ristorcelli & Clark (2004) used a self-similar analysis

of the Navier-Stokes equation, while Cook et al. (2004) used a mass flux and energy balance

argument. They both obtain the same equation for the growth of the mixing width h

ḣ2 = 4↵Agh (13)

which is a particular case of (11) and admits the same solution (12).

www.annualreviews.org
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One useful application of this approach is for data analysis in order to measure the

dimensionless coe�cient ↵. The determination of ↵ and its possible universality has been

indeed object of many studies. The picture which emerges is that the measurement of

↵ from the fit of h(t) with t2 is sensitive to the transient behavior which depends on

the initial perturbation of the interface. It has been found that, in general, experimental

measurements give a value of ↵ in the range 0.05�0.07 (Snider & Andrews 1994; Read 1984;

Dimonte & Schneider 1996; Linden et al. 1994; Schneider et al. 1998; Banerjee & Andrews

2006) while numerical simulations report lower values around 0.03 (Cabot & Cook 2006;

Vladimirova & Chertkov 2009; Dimonte et al. 2004; Young et al. 2001; Youngs 1991). One

possible origin of this di↵erence is due to the presence of long wavelength perturbations in

the experiments, while numerical simulations are usually perturbed at small scales. Indeed,

when these longwave perturbations are present in the initialization of the simulations, the

results are closer to the experiments. The basic idea of this approach is to use directly

(13), i.e. to measure ↵ as ↵ = ḣ2/(4Agh) instead of ↵ = h/(Agt2). The comparison of

the two methods is shown in Fig. 2 which shows that the “similarity method” converges

to a constant value of ↵ much faster than the standard method. The slow convergence of

h/(Agt2) (due to the presence of the constant and linear terms in (12)) is probably one

of the reasons why di↵erent simulations, characterized by di↵erent Reynolds numbers (i.e.

resolutions) give di↵erent results for the value of ↵.

3.1. Global heat transfer scaling

Rayleigh-Taylor turbulence represents an example of turbulent thermal convection in which

heat is transferred, thanks to the work done by buoyancy forces, between cold (heavy) and

hot (light) portion of fluid. The transfer of heat in RT turbulence is inherently associated

to the presence of turbulence, as the turbulent layer, during its growth, penetrates and

mixes the two reservoirs of fluids at di↵erent temperatures. In this sense, thermal transfer

in RT turbulence is very di↵erent from the phenomenology observed in Rayleigh-Bénard

turbulence, probably the most studied prototype of turbulent convection (see, for example,

the reviews by Siggia (1994), Bodenschatz et al. (2000) and Lohse & Xia (2010)). With-

out entering into details, we recall that the heat transfer in Rayleigh-Bénard convection is

dominated by the physics at the boundary layers (both thermal and kinetic) which develop

in correspondence of the two plates. Those boundary layers, together with the large-scale

convective motion, are responsible of the transfer of heat between the two plates and di↵er-

ent regimes have been identified according to the dominant contribution (thermal or kinetic

boundary layer or bulk) (Grossmann & Lohse 2000; Ahlers et al. 2009).

In general, the dimensionless measure of the heat transfer e�ciency is given by the Nus-

selt number Nu, defined as the ratio of the global turbulent heat transfer to the molecular

one, while turbulence intensity is measured, as usual, by the Reynolds number Re. These

two numbers depend on the control parameters which are the Rayleigh number Ra (a di-

mensionless measure of the temperature di↵erence which forces the system) and the Prandtl

number Pr = ⌫/. A basic problem in thermal convection is the characterization of the

state of the system as a function of the parameters, i.e. the functional relation Nu(Ra, Pr)

and Re(Ra, Pr). Many experimental (Niemela et al. 2000; Funfschilling et al. 2009) and

numerical (Stevens et al. 2010) studies, supported by theoretical arguments (Siggia 1994;

Grossmann & Lohse 2000; Ahlers et al. 2009) show that, for Rayleigh numbers much larger

8 Bo↵etta and Mazzino



than the critical for the onset of convection, a scaling regime develops under which

Nu ' Ra�Pr� Re ' Ra�

0
Pr�

0
(14)

Several theories have been proposed to predict the values of the scaling exponents in (14)

in Rayleigh-Bénard convection (see the review by Siggia (1994) and Ahlers et al. (2009)).

Without entering into details, we mention that recent experimental and numerical data,

characterized by a wide extension in the parameter space and high precision, show that

probably the heat transfer in Rayleigh-Bénard convection cannot be captured by simple

scaling laws and this phase diagram in the (Ra, Pr) space is more complex than expected

(Grossmann & Lohse 2000; Ahlers et al. 2009).

One “fixed point” in the space of the theories on turbulent convection is that, for large

enough Rayleigh number, the e↵ects of boundary layers disappear and a transition to a new

regime dominated by bulk contributions occurs. This regime, first predicted by Kraichnan

(1962) and later discussed by Spiegel (1971), is known as the ultimate state of thermal

convection, and is characterized by the simple set of scaling exponents � = � = �0 = 1/2,

�0 = �1/2. In spite of the large body of experimental and numerical e↵orts, the ultimate

regime remained elusive in Rayleigh-Bénard convection, even at the largest Ra number

achieved. On the contrary, it has been observed both in numerical simulations of convection

in the absence of boundaries by Lohse & Toschi (2003) and in laboratory experiments in

convective cells with elongated geometries which reduce the e↵ects of upper and lower walls

by Gibert et al. (2006) and by Cholemari & Arakeri (2009).

The above discussion suggests that RT turbulence is a good candidate to observe the ul-

timate regime. No boundary layers are indeed present in the RT system. The ultimate state

scaling emerges from the energy balance (5). The appropriate definition of the Rayleigh

number is in terms of the mixing layer height h as Ra ⌘ �g✓0h
3/(⌫), while the Reynolds

and the Nusselt number are respectively Re ⌘ Uh/⌫ (U is a typical large-scale velocity)

and Nu = hwT ih/(✓0). We can rewrite (5) as


�g✓0
h

Nu =
d

dt

1
2
hu2i+ "

⌫

(15)

By using the dimensional behavior (7-8) for h(t) and U(t) we obtain the temporal behavior

Nu ' (�g✓0)
2t3/. From the above definition of the Rayleigh number we have Ra '

(�g✓0)
4t6/(⌫) and therefore

Nu ' Ra1/2Pr1/2 (16)

Similarly, from the definition of the Reynolds number we have Re ' (�g✓0)
2t3/⌫ and thus

Re ' Ra1/2Pr�1/2 (17)

We remark that the energy balance leading to (15) is independent of the dimensionality and

therefore the ultimate state regime is expected to hold also in 2D RT turbulence despite

the fact that in this case the energy flows to large scales (and hence "
⌫

= 0) generating a

di↵erent spectrum (see Section 4).

The functional dependence Nu(Ra, Pr) and Re(Ra, Pr) obtained from direct numerical

simulations of RT turbulence at high resolution are shown in Fig. 3. Several simulations,

characterized by di↵erent Pr numbers, have been performed starting from the same initial

condition. Numerical data for the Nusselt number Nu are compatible with the scaling (16)

for Ra > 107 and for 0.2  Pr  10. Some statistical fluctuations are observed, in particular
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Figure 3

Nusselt (Nu, left) and Reynolds (Re, right) numbers as a function of Rayleigh number Ra from a
set of direct numerical simulations of RT turbulence at di↵erent Prandtl number: Pr = 0.2 (red
open circles), Pr = 1.0 (green closed circles), Pr = 2.0 (blue open upper triangles), Pr = 5.0 (pink
closed upper triangles), Pr = 10.0 (cyan open lower triangles) and Pr = 50.0 (black closed lower
triangles). The line in the main plot represents Ra

1/2 scaling. Lower insets: Nu (left) and Re

(right) vs Pr at fixed Ra = 3⇥ 108. The lines in the insets represent the best fit exponents 0.51
(left) and �0.54 (right). Figure taken from Bo↵etta et al. (2012b).

for high Pr. The inset in Fig. 3 shows the dependence on Pr obtained by computing Nu at

fixed Ra. The best fit gives a slope 0.51± 0.02, compatible with (16). The analysis for the

Reynolds number shows a similar result, marginally compatible with (17) for Ra > 106. At

variance with Nu, here the dependence on Pr gives a best fit slope (�0.54 ± 0.01) which

deviates from the theoretical prediction. The origin of this small deviation is unknown, but

it could originate from finite size e↵ects which a↵ect the definition of integral quantities.

4. Two-point statistical observables

Two-point statistical observables, which involve averaged field di↵erences between couple

of points, are key observables in turbulence (see, e.g., Frisch (1995) and Sreenivasan & An-

tonia (1997)) since they are linked to experimentally measurable scale-dependent quantities

as, by way of example, the kinetic energy spectrum or the potential energy spectrum in

gravity driven flows. A long-standing challenge in RT turbulence is to determine universal

scaling laws for inertial range two-point statistics, as done by Kolmogorov (1941) in ideal

hydrodynamics turbulence.

Di↵erent theories for turbulent fluctuations have been proposed for RT turbulence over

the years. Chertkov (2003) analyzed the advanced mixing regime of the RT turbulence

in the small Atwood number Boussinesq approximation. A Kolmogorov–Obukhov (in

short, K41) scenario for velocity and temperature spectra is predicted in three dimensions

while a Bolgiano–Obukhov (in short, BO59) scenario is shown to arise in two dimensions.

Mikaelian (1989) derived the turbulent energy and its spectrum in the Canuto–Goldman

model (Canuto & Goldman 1985) when the turbulence is generated by an instability hav-

ing a power-law growth rate. This model does not predict a Kolmogorov spectrum. For

quantitative results in this respect see the paper by Soulard et al. (2015).

Zhou (2001) proposed a modification of the classical Kolmogorov framework by substi-

tuting the time-scale for the decay of transfer function correlations, resulting from nonlinear

10 Bo↵etta and Mazzino



interactions, with the typical time-scale arising from the linear theory of RT instability,

(kgA)�1/2. A non Kolmogorov scaling, k�7/4, emerges for the energy spectrum. The in-

sertion of a linear time-scale in a fully developed turbulent regime seems however not fully

justified. On the basis of symmetries of turbulent dynamics, Abarzhi (2010a) analyzed the

influence of momentum transport on the properties of the turbulent RT system. The result-

ing scaling law is k�2 and thus distinct from the Kolmogorov scaling. A similar spectrum

was proposed within the “momentum model” by Sreenivasan & Abarzhi (2013). Soulard

& Gri↵ond (2012) calculate the anisotropic correction to the isotropic inertial range Kol-

mogorov scaling in terms of a perturbative approach. This approach is justified on the basis

of the numerical evidences found by Bo↵etta et al. (2009) for 3D RT turbulence showing

that, at small scales, the contribution of buoyancy forces to the energy flux becomes much

smaller than the contribution of the inertial non-linear forces. Their results do not contradict

the theory by Chertkov (2003). Moreover, Soulard (2012) adapted the Monin-Yaglom rela-

tion to RT turbulence both in three dimensions, which confirms the Kolmogorov-Obukhov

theory, and in two dimensions where it recovers the Bolgiano–Obukhov scenario proposed

by Chertkov (2003). Finally, Poujade (2006) proposed a theory, based on a spectral equa-

tion, showing that a balance mechanism between buoyancy and spectral energy transfer

can settle at low wave numbers in the self-similar regime. The above balance constrained

velocity spectrum in a way incompatible with Kolmogorov–Obukhov mechanism. It has

however to be pointed out that the theory does not rule out a Kolmogorov-Obukhov sce-

nario at intermediate wave numbers. This proliferation of theoretical models, all reasonable

and plausible, are ascribed to the variety of dynamical regimes in RT turbulence mainly

due to the non stationarity of the process.

The phenomenological theory by Chertkov (2003) consider a mixing layer in the self-

similar regime with an integral scale h(t) and large scale velocity U(t) given by (8) and (7)

respectively. Starting from these assumptions, for the 3D case Chertkov (2003) proposed

a quasi-stationary, adiabatic, generalization of Kolmogorov–Obukhov picture of steady

Navier–Stokes turbulence (Kolmogorov 1941; Obukhov 1941). The first step is to assume

the existence of an inertial-range of scales characterized by a scale-independent kinetic

energy flux, "(t), given by the usual K41 relation:

"(t) =
U(t)3

h(t)
' (�g✓0)

2t (18)

where we neglect the coe�cient ↵ = O(1). Because of the explicit time dependence, the

assumption of scale-independence is justified only if the variation of the flux, a large-scale

quantity, is slow to allow small-scale fluctuations to adjust adiabatically to the current value

of the flux (Chertkov 2003). If " is scale-independent, following the standard Kolmogorov

argument one can write " ' �ru
3

r

where �
r

u is the velocity fluctuation on a scale r belonging

to the inertial range ⌘(t) ⌧ r ⌧ h(t) and ⌘ is the analogous of the Kolmogorov’s viscous

scale, to be determined in the following. By standard power-counting and exploiting (18)

one gets:

�
r

u(t) ' (�g✓0)
2/3r1/3t1/3 (19)

The same adiabatic idea extended to temperature fluctuations, �
r

T , which are supposed,

as velocity fluctuations, to cascade toward smaller and smaller scales at a constant rate,

leads to the generalization of the Obukhov–Corrsin theory (in short OC51) of passive scalar
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advection (Obukhov 1949; Corrsin 1951)

✏
T

(t) ' ✓20U

h
' �

r

T 2�
r

u

r
(20)

valid in the same range of scales of (19). Exploiting (19), the scaling prediction for �
r

T

follows from (20):

�
r

T (t) ' ✓0(�g✓0)
�1/3r1/3t�2/3 (21)

By simple power counting it is easy to show from (19) and (21) that temperature fluctuations

are passive within the inertial range of scales, i.e. "(t) � �g�
r

T �
r

u, in accord with the

assumption that buoyancy only acts on scales around the integral scale h(t).

The Kolmogorov (viscous) scale ⌘(t) is defined as the scale below which the kinetic

energy coming from the inertial range is dissipated by viscosity. It is defined by the balance

�
⌘

u3/⌘ ' ⌫�
⌘

u2/⌘2 from which, extending the validity of (19) down to r = ⌘, one has:

⌘(t) ' ⌫3/4t�1/4(�g✓0)
�1/2 (22)

This time behavior has been verified via three-dimensional DNS by Ristorcelli & Clark

(2004). From Eq. (22) the viscous Kolmogorov time-scale ⌧
⌘

⌘ ⌘/�
⌘

u is

⌧
⌘

' (�g✓0)
�1⌫1/2t�1/2 . (23)

Note that h(t)/⌘(t) increases in time as t9/4.

Two-dimensional turbulence is characterized by two inviscid conserved quantities, ki-

netic energy and enstrophy. On the basis of standard arguments valid in 2D hydrodynamic

turbulence (Bo↵etta & Ecke 2012), a double-cascade scenario sets in with energy flowing

toward large scales (with respect to the pumping scale) and enstrophy going to small scale.

This scenario in not compatible with the argument developed for 3D as the assumption

"(t) � �g�
r

T �
r

u is violated at large scales.

Chertkov (2003) proposed a new scenario in which buoyancy and velocity fluctuations

balance scale by scale. This is the essence of the Bolgiano–Obukhov scenario introduced

in the context of Rayleigh–Bérnard convection (Bolgiano 1959; Obukhov 1959; Siggia 1994;

Lohse & Xia 2010). In this case, temperature is active at all scales and the resulting scaling

laws emerge by balancing
�
r

u2

r
' �g�

r

T (24)

with temperature fluctuations cascading toward small scales at a constant rate according

to (20). Combining (20) and (24) one obtains the Bolgiano scaling laws for both velocity

and temperature fluctuations:

�
r

u ' (�g✓0)
2/5r3/5t�1/5 (25)

�
r

T ' ✓0(�g✓0)
�1/5r1/5t�2/5 (26)

together with the prediction for the viscous scale ⌘(t) and its associated time-scale ⌧
⌘

⌘
⌘/�

⌘

u:

⌘(t) ' (�g✓0)
�1/4⌫5/8t1/8 ⌧

⌘

' (�g✓0)
�1/2⌫1/4t1/4 (27)

valid for ⌫ � . The ratio between the integral scale h(t) and the viscous scale ⌘(t) now

increases as t15/8, slower than in 3D.
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4.1. Spatial and temporal scaling laws of structure functions and spectra

The scaling relationships (19) and (21), in 3D, and (25) and (26), in 2D, set the dimensional

predictions for both velocity and temperature fluctuations in the spatial and temporal

domain. Neglecting possible intermittency fluctuations, these predictions can be used to

build (dimensional) scaling laws of structure functions and isotropic spectra. For the 3D

case, velocity and temperature structure functions and spectra are

S
p

(r) = h
h
(u(r, t)� u(0, t)) · r

r

i
p

i ' (�g✓0)
2p/3tp/3rp/3 (28)

E(k) ' (�g✓0)
4/3t2/3k�5/3 (29)

ST

p

(r) = h[T (r, t)� T (0, t)]pi ' ✓p0(�g✓0)
�p/3t�2p/3rp/3 (30)

E
T

(k) ' ✓20(�g✓0)
�2/3t�4/3k�5/3 (31)

while for the 2D case:

S
p

(r) = h
h
(u(r, t)� u(0, t)) · r

r

i
p

i ' (�g✓0)
2p/5t�p/5r3p/5 (32)

E(k) ' (�g✓0)
4/5t�2/5k�11/5 (33)

ST

p

(r) = h[T (r, t)� T (0, t)]pi ' ✓p0(�g✓0)
�p/5t�2p/5rp/5 (34)

E
T

(k) ' ✓20(�g✓0)
�2/5t�4/5k�7/5 (35)

In the above expressions, brackets denote space averages within the mixing layer under

the hypothesis of small-scale homogeneity and isotropy. Homogeneity actually follows from

the observation that the horizontally ensemble-averaged temperature field, T (z), behaves

linearly along the gravitational direction (see Section 3) together with the fact that the

equation for the horizontally ensemble-averaged velocity reduces to @p(z)/@z = �gT (z).

From these two remarks it immediately follows that temperature fluctuations around T (z)

are homogeneous and the same is for the velocity: this is indeed forced by temperature fluc-

tuations, the horizontally averaged temperature being balanced by the averaged pressure

field as stated above. The above scenario is confirmed by a deep analysis on the distribution

of the local dissipation scale carried out in two-dimensions by Qiu et al. (2014). The ten-

dency toward isotropy restoration of small-scale fluctuations has been numerically verified

by Biferale et al. (2010) in two dimensions and by Bo↵etta et al. (2009) and Bo↵etta et al.

(2010d) in three dimensions, and by Ramaprabhu & Andrews (2004) in an experimental

investigation.

The validity of the BO59 scenario encoded in the scaling relations (32)–(35) has been

first addressed by means of DNS in two dimensions by Celani et al. (2006), exploiting a

standard pseudo-spectral method, and successively by Biferale et al. (2010) using a thermal

lattice Boltzmann method. In the left panels of Figure 4 we report from Celani et al. (2006)

the velocity (left) and temperature (right) structure functions of orders p = 2, p = 4 and

p = 6. The curves for p = 2 closely agree with the Chertkov (2003) theory both for the

spatial and for the temporal scaling. A close look at higher orders reveals the presence of

non-negligible deviations with respect to the dimensional predictions. The presence of these

intermittency corrections have been also confirmed by Biferale et al. (2010) and Zhou (2013).

Intermittency was not observed for the velocity structure functions which exhibit, within
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Figure 4

Isotropic moments of the longitudinal velocity di↵erences (a) and temperature di↵erences (b) of
order 2 (red full circles), 4 (pink crosses) and 6 (blue empty circles) obtained by averaging over all
directions of separation r. In plot (a) dashed lines represent the Bolgiano dimensional prediction
S

p

(r) ' r

3p/5, while in plot (b) scaling exponents for p = 4 and p = 6 are anomalous. Figure from
Celani et al. (2006).

error bars, dimensional scaling, as in the case of the inverse cascade in 2D Navier-Stokes

turbulence (Bo↵etta & Ecke 2012).

It is interesting to note that the set of scaling exponents for velocity and temperature

structure functions obtained by Celani et al. (2006) are in remarkable agreement with the

scaling exponents found for the 2D turbulent RB system forced by the mean gradient

analyzed by Celani et al. (2002). This support the universality of scaling exponents in two

systems with di↵erent boundary conditions. At the level of spectral observables for both

velocity and temperature, the confirmation of the BO59 scaling, both in space and in time,

has received a strong support from the numerical simulations by Zhou (2013).

Let us now consider the three-dimensional case. Evidences of energy cascade from large

to small length scales with an associated K41 spectrum (for both velocity and density)

have been provided by an air-helium gas channel experiment by Banerjee et al. (2010) (see

Figure 5). Their observation is consistent with previous measurements in the water channel

by Ramaprabhu & Andrews (2004) and Mueschke et al. (2006). However, the mixing layer

does not have a su�cient range of scales to make a definitive assessment of the spectral

behavior. A detailed analysis based on image processing techniques have been employed

by Dalziel et al. (1999) to provide the internal structure and statistics of the concentration

field. Concentration power spectra have been analyzed and the Obukhov–Corrsin scenario

turned out to be compatible with the experimental observations. A similar conclusion has

been drawn by Wilson & Andrews (2002) (Figure 5).

A confirmation of the K41 scenario also arrived from high-resolution numerical simula-

tions. We refer to the numerical simulations by Young et al. (2001), the numerical studies by

Dimonte et al. (2004) and Cabot & Cook (2006) and the study by Vladimirova & Chertkov

(2009) where it is stated that the range of scales compatible with the Kolmogorov scaling

grows with time and that the viscous scale decreases with time in accordance with predic-

tions by Chertkov (2003). A clear k�5/3 power law has also been extracted for the vertical

velocity spectrum and for the density obtained from accurate LES by Cook et al. (2004).

The advantage of numerical strategies with respect to experiments is that information

on the intermittency corrections becomes available. We cite in this respect the works by

Matsumoto (2009), Bo↵etta et al. (2009) and Bo↵etta et al. (2010d) (see Figure 5). In these

14 Bo↵etta and Mazzino
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Figure 5

Kinetic energy and density/temperature variance spectra for di↵erent Rayleigh-Taylor turbulent
flows. Upper left: turbulent kinetic energy spectrum E

v

0 , density fluctuations spectrum E

⇢

0 and
correlation spectrum E

⇢

0
v

0 from an air-helium gas experiment at Atwood number A = 0.03

(Banerjee et al. 2010). Spectra are compensated with k

�5/3 to show the range of Kolmogorov
scaling. Upper right: density fluctuation spectra from a water experiment at small Atwood number
and Pr = 7 by Wilson & Andrews (2002). Both the inertial (�5/3) and the viscous-convective
(�3) regimes are observed. Lower left: Kinetic energy and temperature (density) variance from
direct numerical simulations of the Boussinesq equations (Bo↵etta et al. 2009). The dashed lines
represent Kolmogorov scaling. The inset displays the time evolution of the kinetic energy (⇥) and
temperature (+) spectra compared with the dimensional predictions t

2/3 and t

�4/3 respectively.
Lower right: density (temperature) structure functions from direct numerical simulations of the
Boussinesq equations (Matsumoto 2009). Solid lines represent the dimensional Kolmogorov
predictions S

T

p

(r) ' r

p/3, while dashed lines represent the anomalous exponents of a passive
scalar with mean scalar gradient (Watanabe & Gotoh 2006). Figures takes from the cited articles.

latter two papers it is shown that scaling exponents of isotropic longitudinal velocity struc-

ture functions are indistinguishable from those of Navier-Stokes turbulence at comparable

Reynolds number (see, e.g., Warhaft (2000) and Watanabe & Gotoh (2004)), a result in

support of the universality of turbulence with respect to the forcing mechanism. A similar

conclusion was drawn by Antonelli et al. (2007) for buoyancy-dominated turbulent flows in

the atmospheric convective boundary layer.
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4.2. Bolgiano scaling and Bolgiano length

We have seen in Section 4 that according to the theory of Chertkov (2003), the Bolgiano scale

L
B

= "5/4"
�3/4
T

(�g)�3/2 (above which the buoyancy forces overcomes the inertial forces)

coincides with the integral scales, L
B

' h in three dimensions, while it is the smallest

active scale L
B

' ⌘ in two dimensions. Therefore the inertial range of scales ⌘ ⌧ r ⌧ h

display K41 scaling in 3D and BO59 scaling in 2D and the Bolgiano scale does not appear

explicitly in the range of active scales. The identification of the Bolgiano scale, and of the

associated BO59 scaling, is one of the open problems in the study of turbulent convection,

in particular for Rayleigh-Benard convection (Lohse & Xia 2010).
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Figure 6

(Left) Vertical section of the temperature field for a simulation of confined RT turbulence at
resolution 4096⇥ 128⇥ 8192 with aspect ratio L

y

/L

x

= 1/32, L
z

/L

x

= 2. Quasi-two-dimensional
plumes are evident at large scales, together with small scale three-dimensional fluctuations. The
small black bar represents the dimension L

y

of the confining transverse direction. (Right) Second
order velocity (red circles) and temperature (blue squares) structure functions computed in the
central part of the mixing layer shown on the left. Dotted lines represent Kolmogorov scaling x

2/3

expected for small scale (below L

y

) fluctuations. Solid lines show Bolgiano scaling x

6/5 and x

2/5

(for velocity and temperature SF respectively) predicted for scales x > L

y

.

The idea of Bo↵etta et al. (2012a) is that the Bolgiano scale could emerge in the inertial

range by considering a configuration intermediate between 2D and 3D. This simple idea

has been verified by Bo↵etta et al. (2012a) by means of high-resolution direct numerical

simulations of a geometrically confined turbulent RT system with one side, L
y

, much smaller

than the other two, L
x

and L
z

. At small times, when h(t) ⌧ L
y

, the dynamics is purely

three-dimensional. When the mixing layer length becomes larger than L
y

, the system is

e↵ectively two-dimensional at large scale. The scale L
y

is thus expected to be the Bolgiano

length of the system, at which a transition from K41 to BO59 occurs. This is shown in

Figure 6. In the left panel we report a vertical section (x � z) of the temperature field

where large-scale 2D structures coexist with small-scale 3D turbulence. The presence of

two di↵erent scaling regimes is displayed in the right panel where structure functions for

both velocity and temperature fluctuations are shown. Note that the crossover between the

two scalings appears at L
y

which is therefore identified as the Bolgiano scale of the system.
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We conclude this section by recalling that the e↵ects of geometrical confinement in

RT turbulence can be even more dramatic when two dimensions are confined (in a quasi-

one-dimensional geometry). In this case also large scale quantities are a↵ected by the

confinement: for example the width of the mixing layer h(t) displays an anomalous, sub-

di↵usive growth as observed experimentally by Dalziel et al. (2008) and numerically by

Lawrie & Dalziel (2011) and by Bo↵etta et al. (2012c).

5. Viscoelastic Rayleigh-Taylor turbulence

Polymer additives produce dramatic e↵ects on turbulent flows, the most important being

the reduction of turbulent drag up to 80 % when few parts per million of long-chain polymers

are added to water (Virk 1975). The natural framework of drag-reduction studies is the

case of pipe flow or channel flow: within this context, the reduction of the frictional drag

manifests as an increase of the mean flow across the pipe or channel at given pressure drop.

In turbulent convection, together with mass, also heat is transported by the flow, therefore

an intriguing question is whether also turbulent heat transport is a↵ected, and in particular

if it can be enhanced by the presence of polymers. This issue has been addressed only in

recent years within the framework of Rayleigh-Benard turbulent convection. These recent

studies have shown that, in the range of Ra numbers investigated where the contribution to

the dissipation rates from the boundary layers are significant, polymers reduce the global

heat transport by a small amount as found in the experiments by Ahlers & Nikolaenko

(2010). An enhancement of the heat transport has been observed locally by Xie et al.

(2015) within the bulk region of turbulent thermal convection, where the e↵ects of boundary

layers is negligible and also in numerical simulations by Benzi et al. (2010) of homogeneous

convection, in which boundaries have been removed. It is therefore natural to investigate if

and how polymer additives a↵ect the dynamics of RT turbulence. Indeed, the development

of the mixing layer implies a vertical transport of mass under the e↵ect of gravity which has

analogies with the transport in the channel under pressure forces. Moreover, the absence of

boundary layers in the development of RT turbulence suggests that the e↵ects of polymer

additives can be very di↵erent with respect to the case of RB convection.

Theoretical studies of polymer additives in turbulence are usually based on viscoelastic

models in which polymer e↵ects are embodied in a positive symmetric conformation tensor

�(x, t) = hRRi/R2
0 representing the local polymer elongation averaged over the thermal

noise (and normalized to the equilibrium length R0) (Bird et al. 1977). One of the simplest

viscoelastic models is the linear Oldroyd-B model which, for the OB framework, reads

@
t

u+ u ·ru = �rp+ ⌫r2
u� �gT +

2⌫�
⌧
p

r · �

@
t

T + u ·rT = r2T (36)

@
t

� + u ·r� = (ru)T · � + � · (ru)� 2
⌧
p

(� � I) + 
p

r2�

In (36) � is the zero-shear polymer contribution to the total viscosity ⌫
T

= ⌫(1+�) (which is

proportional to the polymer concentration), ⌧
p

is the (longest) polymer relaxation time (i.e.

the Zimm relaxation time for a linear chain (Bird et al. 1977)) and 
p

represents a polymer

di↵usivity needed to prevent numerical instabilities (Sureshkumar & Beris 1995). When the

fluid is at rest, polymer conformation tensor relaxes to the equilibrium configuration � = I
which is therefore the initial condition at t = 0. As turbulence develops in the mixing layer,
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polymers are stretched and produce an elastic stress on the flow proportional to r · �.
The presence of polymers changes the energy balance with respect to the Newtonian

fluid. The total energy has an additional elastic contribution ⌃ = ⌫�

⌧p
[htr�i � 3] and this

changes (15) to


�g✓0
h

Nu =
dE

dt
+

d⌃
dt

+ "
⌫

+ "⌃ (37)

where "⌃ = 2⌃/⌧
p

is the elastic dissipation.

A first indication on the e↵ects of polymer solution in the development of Rayleigh-

Taylor turbulence is provided by the linear stability analysis of viscoelastic RT model (36).

It has been shown by Bo↵etta et al. (2010c) that polymer solution speeds up the linear

phase of the RT instability by a factor which increases with the elasticity of the solution

(proportional to ⌧
p

). This phenomenon is reminiscent of the polymer drag reduction in pipe

flow.

For the nonlinear phase, we assume that initially turbulence follows the three-

dimensional K41 scenario described in Section 4.1. The viscous time-scale (23) decreases

as ⌧
⌘

' (�g✓0)
�1⌫1/2t�1/2, and therefore the Weisenberg number Wi ⌘ ⌧

p

/⌧
⌘

, a measure

of the relative strength of stretching due to velocity gradients and polymer relaxation, thus

grows as Wi ' t1/2. Therefore, even in the presence of a very small polymer relaxation time

⌧
p

, a coil-stretch transition by which polymers become active is thus expected for su�ciently

long evolution times.

Let us now consider the two-dimensional case. In this case, the initial dynamics is

ruled by the BO scaling according to which the viscous time-scale is now given by (27):

⌧
⌘

' (�g✓0)
�1/2⌫1/4t1/4. Therefore in this case the Weisenberg number decreases in time

as Wi ' t�1/4 and polymers will eventually recover (or remain in) the coiled state.

On the basis of the above dimensional arguments, one may conjecture that viscoelastic

e↵ects in three dimensions become more and more relevant as the system evolves. The

opposite conclusion can be drawn in two dimensions where the role played by polymers is

expected to be transient and to disappear in the late stage of the evolution.

The e↵ect of polymers in RT turbulence has been studied by Bo↵etta et al. (2010b) and

Bo↵etta et al. (2011) on the basis of direct numerical simulations of the viscoelastic model

(36). As a result of these papers, it has been shown that in the viscoelastic case the mixing

layer growth is faster than in the Newtonian case. Polymers thus make the transfer of mass

more e�cient, a fact that amounts to saying that the large-scale mixing is enhanced. The

opposite happens for the small-scale mixing: temperature variance has been found to be

larger in the viscoelastic case than in the Newtonian case. Thermal plumes are thus more

coherent in the viscoelastic case, a fact that is expected to contribute to enhance the heat

transfer with respect to the Newtonian case. The temperature variance indeed enters in

the definition of Nusselt number (see Section 3.1). It turns out that the e↵ect of polymers

is to increase the values attained by Nu and Ra at late time. Both in the Newtonian case

and in the viscoelastic one, the ultimate-state scaling Nu ' Ra1/2 has been observed.

The polymer heat transfer enhancement in RT turbulence can be interpreted in terms of

polymer drag reduction between rising and sinking plumes. For the RT turbulent system, a

quantitative definition of drag in terms of the dimensionless coe�cient ↵ (see Section 3) has

been proposed by Bo↵etta et al. (2011). The increase of ↵ induced by polymers observed

by Bo↵etta et al. (2010b) and Bo↵etta et al. (2011) has been interpreted as a reduction

of the turbulent drag, as the RT viscoelastic system is able to convert more e�ciently

potential energy into kinetic energy contained in large plumes. Conversely, it turns out
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that the turbulent transfer of kinetic energy toward small scales is reduced, thus reducing

the viscous dissipation. With respect to Newtonian turbulence, a suppression of small-scale

velocity fluctuations is observed and it is accompanied by an increase of kinetic energy of

the large-scale velocity components. This is the phenomenology of polymer drag reduction

observed in homogeneous, isotropic turbulence (see, e.g. De Angelis et al. (2005)).

6. Rayleigh-Taylor turbulence in the presence of rotation

It is well-established that the Coriolis force in rotating fluids can reduce the instability of

a flow. The e↵ect of rotation on Rayleigh-Taylor instability was first considered by Chan-

drasekhar (1961), who concluded that it slows down the instability, and later extended by

Tao et al. (2013) to the nonlinear stage. These predictions have been confirmed by nu-

merical simulations by Carnevale et al. (2002) and more recently by the experiments by

Baldwin et al. (2015). The e↵ect of rotation on the turbulent phase is less clear. In the case

Figure 7

Rotating RT turbulence. The two images on the left show the evolution of the RT instability of a
paramagnetic liquid (pink) above a diamagnetic liquid (clear) without rotation (upper) and with
⌦ = 4.6 rad s�1 (lower) (Figure taken from Baldwin et al. (2015)). The two images on the right
represent the temperature field, at the same time t = 20⌧ , for two simulations of the OB equations
with the Coriolis force starting from the same initial condition, with ⌦ = 0 (left) and with
⌦⌧ = 20 (right) (⌧ = (L

z

/Ag)1/2).

of Rayleigh-Benard convection it has been shown that turbulence can increase the vertical

heat transfer at moderate rotation (and Rayleigh number) by enhancing the Ekman pump-

ing of temperature from the boundaries. For stronger rotation, the bidimensionalization of

the flow by the Taylor-Proudmann e↵ect (Tritton 1988) reduces the vertical flow and the

heat transfer. As Rayleigh-Taylor has no boundary layers, we expect that here rotation

suppresses monotonically the vertical transfer of heat.

The e↵ect of rotation on RT turbulence can be studied, in the OB framework, by

adding the Coriolis force 2⌦ ⇥ u (with ⌦ = (0, 0,⌦)) to (2). The dimensionless Rossby

number Ro = U/(2⌦h), which measures the relative strength of the inertial forces to the

www.annualreviews.org

•
Rayleigh-Taylor turbulence 19



Coriolis force, here is found to decrease, using (7-8), as Ro ' 1/(⌦t). Therefore the e↵ect of

rotation, even if negligible at the initial time, becomes more important and competes with

the inertial, and buoyancy, forces for t & 1/⌦. Figure 7 shows that the e↵ect of rotation

is evident already at a qualitative level with the deformation of the thermal plumes which

become elongated as a manifestation of the Taylor-Proudman theorem. The suppression of

vertical fluctuations causes a reduction in the growth of the mixing layer which is found to

be monotonic in ⌦. Therefore, from the discussion in Section 3.1 the evolution of both Ra

and Nu (proportional to h3 and h respectively) is slowed down by rotation. Moreover the

turbulent heat transfer is reduced by rotation also at a given Ra: as a consequence of the

suppression of the vertical fluctuations, the correlation hwT i is reduced with respect to the

non-rotating case.

7. Reactive Rayleigh-Taylor turbulence

Recently there has been an increasing interest in reactive RT turbulence which finds ap-

plications in several natural phenomena and technological applications, as discussed in the

Introduction. Without entering into details, we address here only the general question of

how reaction a↵ects the phenomenology of RT turbulence. In particular, the competition

between gravitational forces, which mixes the two fluids and produces a mixing layer with

uniform temperature, and combustion which produces a propagating front which works

against mixing. Vladimirova & Rosner (2003) study the e↵ect of turbulence on the speed

Figure 8

Reactive RT turbulence. Vertical sections of the temperature field at time t = 128 for two 3D
simulations of RT turbulence with di↵erent reaction times: ⌧

r

= 1600 � t (left) and ⌧

r

= 16 ⌧ t

(right). Observe vertical shift of the mixing layer due to the propagation of the reaction. Image:
courtesy of N. Vladimirova.

of a front propagating vertically against gravity by two-dimensional simulations in an elon-

gated domain. Chertkov et al. (2009) extended these simulations to an unconfined domain

(with periodic boundary conditions) with a FKPP reaction model (Fisher 1937) charac-

terized by a reaction time ⌧
r

, while Hicks (2015) used a di↵erent reaction linearly stable

at the ignition temperature. The peculiarity of RT turbulence, with respect to other ex-
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amples of turbulent combustion, is that here the ratio of the turbulent mixing time T to

the reaction time (the so-called Damköler number Da = T/⌧
r

) grows linearly in time as

T ' h(t)/U(t) ' t. Therefore, even in the case of slow reaction, the system will undergo

a transition to the fast reaction regime Da > 1 in which a new segregated stage appears.

In this new regime, the mixing layer is characterized by the presence of pure phase, shown

in Fig. 8, as the turbulent temperature fluctuations have been eliminated by combustion

and separated by a thin active interface. Similar results have been obtained by Biferale

et al. (2011a) and by Hicks & Rosner (2010) for the two-dimensional case. One interesting

result of these investigations is that, in spite of the strong e↵ects on the distribution of the

temperature field (which is already evident from Fig. 8), the amplitude and the speed of

the mixing layer is weakly a↵ected by the reaction. The main e↵ect in the fast reaction

regime is a vertical drift of the mixing layer due to the propagation of the front.

SUMMARY POINTS

1. The development of a direct cascade of energy in the mixing layer with Kolmogorov-

Obukhov spectrum is well established by experiments and numerical simulations.

2. In two dimensions, numerical simulations and theoretical arguments support the

presence of an inverse cascade of energy with Bolgiano-Obukhov scaling, with tem-

perature fluctuations injecting energy at all scales.

3. RT turbulence undergoes a transition from a three- to two-dimensional phenomenol-

ogy when the width of the mixing layer becomes larger than the scale of confinement.

This latter is identified with the Bolgiano scale.

4. RT system provides a natural realization of the ultimate state of thermal convection

thus highlighting the relationship between the absence of boundary layers and the

emergence of the ultimate state scaling, both in two and three dimensions.

5. Heat transfer in the RT convection can be enhanced via polymer additives. This

phenomenon is accompanied by a speed-up of the mixing layer growth.

FUTURE ISSUES

1. A challenge for future experiments is to measure small-scale velocity and temper-

ature fluctuations, both in two- and in three-dimensional configurations and to

identify the Bolgiano scale in confined experiments.

2. Experiments in viscoelastic RT mixing should confirm the enhancement of heat

transfer observed in simulations and clarify the di↵erences between RT and RB in

this respect.

3. A better understanding of the e↵ect of rotation on RT turbulence is important for

astrophysical applications.

4. A better understanding of the role of surface tension for immiscible RT turbulence

with the verification of the theoretical predictions.

5. Theoretical, numerical and experimental studies of RT turbulence and mixing of

complex particles.
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