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Abstract. Recently some novel strategies have been proposed for neu-
ral network training that set randomly the weights from input to hidden
layer, while weights from hidden to output layer are analytically deter-
mined by Moore-Penrose generalised inverse; such non-iterative strate-
gies are appealing since they allow fast learning. Aim of this study is to
investigate the performance variability when random projections are used
for convenient setting of the input weights: we compare them with state
of the art setting i.e. weights randomly chosen according to a continu-
ous uniform distribution. We compare the solutions obtained by different
methods testing this approach on some UCI datasets for both regression
and classification tasks; this results in a significant performance improve-
ment with respect to conventional method.
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1 Introduction

Methods based on gradient descent (and among them the large family
of techniques based on backpropagation [1]) have largely been used for
training of one of the most common neural architecture, the single hidden
layer feedforward neural network (SLFN). The start-up of these tech-
niques assigns random values to the weights connecting input, hidden
and output nodes; such values are then iteratively modified according
to the error gradient steepest descent direction. The main critics about
gradient descent-based learning are concerned with high computational
cost because of slow convergence and zigzagging behavior showed by such



methods, and relevant risk of converging to poor local minima on the
landscape of the error function [2].

The reduction of computational efforts in training is of great interest
and may become imperative for learning the kind of complicated high-
level relations required e.g. in vision [3, 4], natural language processing
[5, 6], and other typical artificial intelligence tasks.

A wave of interest has recently grown around some non-iterative pro-
cedures based on the evaluation of generalized pseudoinverse matrices.
The idea of using these appealing techniques, usually employed to train
radial basis function neural networks [7], also for different neural archi-
tectures was suggested e.g. in [8]. The work by Huang et al. [9] gave
rise to a great interest in neural network community, originating many
application-oriented studies in the last years devoted to the use of these
single-pass techniques, easy to implement and computationally fast; some
are described e.g. in [10,11,12,13]. A yearly conference is currently being
held on the subject, the International Conference on Extreme Learning
Machines (ELM), and the method is currently dealt with in some journal
special issue, e.g. Soft Computing [14] and the International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems [15].

In the pseudoinverse framework input weights and hidden neurons bi-
ases are selected randomly, usually according to a uniform distribution in
the interval [−1, 1], and no longer modified, while output weights are ana-
lytically determined by a single computation of the Moore-Penrose (MP)
generalized inverse. Since incremental adjustment of weights is completely
avoided these techniques turn out to be very fast when compared to classi-
cal gradient descent approaches; the problem of the possible convergence
to poor local minima is handled by repeatedly applying the method with
a number of random initializations (multistart), thereby obtaining a sam-
pling “at large” of the landscape of the error function.

This paper proposes an improvement to the state-of-the-art and fo-
cuses in initializing input weights and hidden neurons biases with “spe-
cial” random structures — specifically, random projection matrices. The
theoretical rationale for this approach can be found in many studies,
showing random projections as a powerful method for dimensionality
treatment [16, 17, 18] thanks to their property to be almost orthogonal

projections. This feature makes them a potentially useful tool in order to
improve performace when dealing with input data relevant features. This
argument will be deepened in section 3.

The paper is organized as follows. We recall main ideas on SLFN
learning by pseudoinversion in section 2; in section 3 we present funda-



mentals ideas on random projection and finally in section 4 we report
results comparing weights setting.

2 Training by Pseudoinversion

In this section we introduce notation and we recall basic idea concerning
the use of generalized inverse for neural training.

Fig. 1 shows a standard SLFN with P input neurons, M hidden neu-
rons and Q output neurons, non-linear activation functions φ in the hid-
den layer and linear activation functions in the output layer.

Fig. 1. A Single Layer Feedforward Neural Network.

Considering a dataset ofN distinct training samples of (input, output)
pairs (xj , tj), where xj ∈ R

P and tj ∈ R
Q, the learning process for a

SLFN aims at producing the matrix of desired outputs T ∈ R
N×Q when

the matrix of all input instances X ∈ R
N×P is presented as input.

As stated in the introduction, in the state of the art pseudoinverse
approach input weights cij (and hidden neurons biases) are randomly
sampled from a uniform distribution in a fixed interval and no longer
modified.

After having fixed input weights C, the use of linear output units
allows to determine output weights wij as the solution of the linear system
HW = T, where H ∈ R

N×M is the hidden layer output matrix of the
neural network, H = Φ(X C).

Since H is a rectangular matrix, the least square solution W ∗ that
minimises the cost functional ED = ||HW −T ||22, as shown e.g. in [19,20]



is:

W ∗ = H+T. (1)

H+ is the Moore-Penrose generalised inverse (or pseudoinverse) of matrix
H.

Direct use of expression (1) is not anyway the best choice because
most learning problems are ill-posed; regularisation methods have to be
used [21,22] to turn the original problem into a well-posed one, i.e. roughly
speaking into a problem insensitive to small changes in initial conditions.
Among them, Tikhonov regularisation is one of the most common [23,24]:
it minimises the error functional

E ≡ ED + ER = ||HW − T ||22 + λ||W ||22. (2)

With regularisation we introduce a penalty term that not only im-
proves on stability, but also contains model complexity avoiding overfit-
ting, as largely discussed in [25]. Applications to different neural network
models are discussed for instance in [26, 27, 28].

If we consider the singular value decomposition (SVD) of H

H = UΣV T , (3)

the regularised solution Ŵ that minimises the error functional (2) has the
form (see e.g. [29]):

Ŵ = V DUTT . (4)

U ∈ R
N×N and V ∈ R

M×M are orthogonal matrices and D ∈ R
M×N is

a rectangular diagonal matrix whose elements, built using the singular
values σi of matrix Σ, are:

Di =
σi

σ2
i + λ

. (5)

Therefore in our work we always utilise regularised pseudoinversion.
Input weights setting is discussed in next section.

3 Basic Ideas on Random Projections

If XN×P is the original set of N P -dimensional observations,

XRP
N×K = XN×PCP×K (6)

is the projection of the data onto the new K-dimensional space.



Strictly speaking, a linear mapping such as (6) is not a projection
because C is generally not orthogonal and it can cause significant dis-
tortions in the data set. However, and unfortunately, orthogonalizing C
is computationally expensive. Instead, we can rely on a result presented
by Hecht-Nielsen [30]: in a high-dimensional space, there exists a much
larger number of almost orthogonal than strictly orthogonal directions.
Besides, Bingham and Mannila [31] performed an extensive experimen-
tation which allows them to claim that vectors having random directions
might be sufficiently close to orthogonality and equivalently that CTC
would approximate an identity matrix. They estimate the mean squared
difference between CTC and the identity matrix is about 1/K per ele-
ment.

This key idea is confirmed also by the Johnson-Lindenstrauss lemma
[32]: if a set of points in a vector space is randomly projected onto a
selected space of suitable dimension, then the original distances between
the points are approximately preserved in the new space, with only min-
imal distortions. For a simple proof of this result, see [33]. This property
appears to be really appealing because suggests the possibility to preserve
the topological structure of the initial input space while allowing the cre-
ation of a new optimal data representation in the hidden layer space, able
to easy the classification/diagnosis task and to increase performance.

Therefore we can use random projections to project the original P -
dimensional data into a K-dimensional space, using a random entries
matrix CK×P whose columns have unit norm.

Besides, random projection is very simple from a computational stand-
point: the process of forming the random matrix C and projecting the
data matrix X into K dimensions has complexity of order O(PKN);
moreover, if the data matrix X is sparse with about G nonzero entries
per column, the complexity is of order O(GKN).

Actually, a large variety of zero mean, unit variance distributions of el-
ements cij result in a mapping that still satisfies the Johnson-Lindenstrauss
lemma: among them, entries of C can be randomly sampled from a gaus-
sian distribution. Another appealing possibility is using sparse random
projections which have only a small fraction of nonzero elements. For
example, Achlioptas [34] shows that generating random entries cij by

cij =
√
3 ·







+1 with probability 1/6
0 with probability 2/3
−1 with probability 1/6

(7)

one obtains a valid random projection with (expected) density 33%.



A difficulty arises because random projections are mainly used for lin-
early separable tasks although many real world problems are not linearly
separable. Neural networks feature among the tools available to deal with
the latter class of problems, so we propose to join these techniques using
random projections matrices for the setting of input weights while the
subsequent processing by hidden nodes nonlinear activation function will
account for the non-linearity of the problem.

4 Experimental Investigation

In this section we report results of some numerical experiments performed
on the eight benchmark datasets from the UCI repository [35] listed in
Table 1, and investigate neural networks with the architecture shown in
Fig. 1 and sigmoidal hidden neuron activation functions. The number of
input and output neurons is determined by dataset features.

Table 1. UCI datasets characteristics.

Dataset Type N. Instances N. Attributes N. Classes

Abalone Regression 4177 8 -
Cpu Regression 209 6 -
Delta Ailerons Regression 7129 5 -
Housing Regression 506 13 -
Iris Classification 150 4 3
Wine Classification 178 13 3
Diabetes Classification 768 8 2
Landsat Classification 4435 36 7

For the sake of comparison input weights are selected according to i)
the conventional strategy, where cij is sampled from a uniform random
distribution in the interval [−1, 1], that in the following will be referred
to as Unif. or ii) using random projection matrices with elements cij
gaussian distributed, with mean value 0 and variance 1 (in the following
referred to as Gauss.), or iii) using sparse random projection matrices
with 33% average density. All simulations are carried out in Matlab 7.10
environment.

4.1 Regularisation Parameter Calibration

To determine the regularisation parameter value for the three cases, for
each dataset we gradually increase the number of hidden nodes by unit



steps in an unregularised framework (eq. (2), λ = 0); for each selected
hidden layer size, average RMSE (for regression tasks), or average misclas-
sification rate (for classification tasks) were computed over 100 different
initial trials for each input weight setting, i.e. uniform and gaussian.

All datasets show, after an initial steep decrease, a fast error growth
as a function of the hidden layer size, opposite to the monotonically de-
creasing training error.

This effect is typically caused by overfitting, arising when a large
amount of free parameters is available to reproduce almost exactly train-
ing data.

The best performance is associated to an interval of hidden neurons,
that we name critical dimension, in which we decided to look for, accord-
ing to a cross validation scheme, the value of λ resulting in the best score:
its determination concludes the calibration phase.

4.2 Computational Results

Comparison of the relative strengths of the approaches studied in this
work is assessed by evaluation of the mean test error resulting from 100
trials for each fixed size of SLFN in the regularised framework: the test
performance is reported in Table 2.

We underline that the regularised test error features a monotonic de-
crease as a function of hidden neurons number, proving that regularisation
is necessary to provide overfitting control, and to allow optimal exploita-
tion of the superior potential of larger architectures.

In the “Error” columns we report the average value (of 100 trials)
and standard deviation of the RMSE for regression datasets; for classi-
fication datasets, we report average value (of 100 trials) and standard
deviation for the percentage missclassification error. On each row, the
lowest average error figure is highlighted in bold whenever we can prove a
statistically significant dominance of the random-projection initialization
over the random-uniform initialization, assessed with at least a confidence
level of 95%in the Student’s test.

We also report the number of hidden neurons NH and the value of λ
emerged from the calibration phase.

As far as the testing performance is concerned, we can claim a sub-
stantial dominance of the random projections based approach over the
classical uniform initialization.

We then compared the test performance of networks with initializa-
tion based on random projections and trained by pseudoinversion against



the test performances of networks trained with a classical backpropaga-
tion method. The comparison is shown in Table 3; for each dataset, the
“PINV” columns report the error statistics for the winner observed in Ta-
ble 2. Statistics for backpropagation are taken from tunedit.org, except
for the Wine dataset, for which we got better results than tunedit’s ones
by running the backpropagation method on our own under WEKA. For
all datasets in the table we can claim dominance of the pseudoinversion
based approach with a 99% confidence level.

In our experiments, the running times of all the pseudoinversion-based
approaches are substantially equivalent, hence we base the comparison
only on the average error. As far as the comparison with backpropagation
is concerned, pseudoinversion based methods save a relevant amount of
time, being up to 10 times faster than backpropagation. For example,
10 runs of pseudoinversion-based training on the Wine dataset require
0.078 seconds on average whereas backpropagation requires on average
0.721 seconds (times on a laptop with Pentium CPU, 2 GHz clock, 4 GB
RAM); other tests gave roughly similar results.

5 Conclusions

We considered pseudoinversion-based techniques for training of neural
networks feeding them by random projections (gaussian and sparse) ma-
trices of input weights and biases instead of the classical uniform-random
initialization. We believe that the computational results presented in this
paper assess initialization by random projection matrices as a useful tool
for improving performances

Future steps in the research will consider hybridizing the pseudoinversion-
based training technique with basic descent techniques. The rationale be-
hind this is that pseudoinversion-based techniques mostly rely on a pure
random sampling of input weights and biases, whereas it could make sense
trying to profit also from some local exploration of the error landscape.
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Table 2. Random projections vs. random-uniform setting. For Delta Ailerons, the
average errors and standard deviations are multiplied by 10−4.

Dataset Unif . Gauss. Sparse

Error Error Error

Avg StD NH λ Avg StD NH λ Avg StD NH λ

Abalone 2.165 0.004 128 3 · 10−2 2.169 0.009 129 3 · 10−1 2.162 0.006 118 3 · 10−2

Mach. Cpu 57.35 1.7 98 4 · 10−2 56.85 2.8 61 8 · 10−1 57.86 1.6 89 5 · 10−1

Delta Ail.(10−4) 1.636 2 · 10−3 244 3 · 10−3 1.630 4 · 10−3 272 3 · 10−2 1.636 2 · 10−3 225 3 · 10−3

Housing 3.61 0.21 130 8 · 10−3 3.58 0.19 200 5 · 10−2 3.64 0.18 180 7 · 10−2

Iris 1.00 1.1 102 3 · 10−4 1.88 1.1 120 3 · 10−2 1.08 1.0 266 3 · 10−3

Diabetes 20.312 0.8 266 3 · 10−3 20.430 1.0 173 3 · 10−2 20.086 1.0 192 3 · 10−3

Landsat 10.438 0.32 579 3 · 10−3 9.848 0.30 600 3 · 10−2 10.394 0.32 600 3 · 10−3

Wine 2.2542 1.5246 60 3 · 10−2 2.0847 1.6313 70 2 · 10−1 2.5593 1.5704 80 8 · 10−2

Table 3. Random projections based training (pseudoinversion) vs. backpropagation.

Dataset PINV Backprop.

Avg StDev Avg (Ntests) StDev

Abalone 2.162 0.006 2.3044 (35) 0.1908
Mach. Cpu 56.85 2.8 28.6673 (5) 27.3535
Delta Ail. 1.630 · 10−4 4 · 10−7 2 · 10−3 (10) 0.0
Housing 3.58 0.19 4.5492 (35) 0.9517

Iris 1.00 1.1 1.73 (10) 0.85
Diabetes 20.086 1.0 26.52 (31) 2.38
Landsat 9.848 0.30 13.03 (5) 0.63
Wine 2.0847 1.6313 3.77 (10) 0
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