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T. Wasemw, B. Wohlfarthw, H. Zaunickw, D. Irelandx, G. Rosnerx, B. Seitzx,
P.N. Deepaky, A. Kulkarniy, A. Apostolouz, M. Babaiz, M. Kavatsyukz, P. Lemmensz,
M.Lindemulderz, H. Loehnerz, J. Messchendorpz, P. Schakelz, H. Smitz, M. Tiemensz,

J.C. van der Weelez, R. Veenstraz, S. Vejdaniz, K. Duttaaa, K. Kalitaaa, A. Kumarab,
A. Royab, H. Sohlbachac, M. Baiad, L. Bianchiad, M. Büscherad, L. Caoad, A. Cebullaad,
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bkÖsterreichische Akademie der Wissenschaften, Stefan Meyer Institut für Subatomare Physik, Wien, Austria

blTechnische Hochschule Mittelhessen, 61169 Friedberg, Germany

Abstract

Bound nuclear systems with two units of strangeness are still poorly known despite their importance for many strong interaction
phenomena. Stored antiprotons beams in the GeV range represent an unparalleled factory for various hyperon-antihyperon pairs.
Their outstanding large production probability in antiproton collisions will open the floodgates for a series of new studies of
systems which contain two or even more units of strangeness at the PANDA experiment at FAIR. For the first time, high resolution
γ-spectroscopy of doubly strange ΛΛ-hypernuclei will be performed, thus complementing measurements of ground state decays of
ΛΛ-hypernuclei at J-PARC or possible decays of particle unstable hypernuclei in heavy ion reactions. High resolution spectroscopy
of multistrange Ξ−-atoms will be feasible and even the production of Ω−-atoms will be within reach. The latter might open the
door to the |S |=3 world in strangeness nuclear physics, by the study of the hadronic Ω−-nucleus interaction. For the first time it
will be possible to study the behaviour of Ξ+ in nuclear systems under well controlled conditions.

c© 2016 Published by Elsevier Ltd.

Keywords: strangeness, hypernuclei, hyperatoms, antiprotons

1. Where QCD meets Gravity1

One of the biggest challenges for physics in this century will be the unification of the four known fundamental2

forces within a common theoretical framework. Pure, matter-free strong-field gravity can be studied when black3

holes merge and gravitational waves are emitted [1]. Eventually, precise observations of gravitational waves will4

∗Corresponding author.
Email address: pochodza@kph.uni-mainz.de (J. Pochodzalla)

1Part of doctoral thesis.
2Part of master thesis.
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ground state

particle
unstable

states

Figure 1. Left: Various decays which allow to study the level scheme of ΛΛ-hypernuclei. Right: Production scheme of Ξ−-hyperatoms and
ΛΛ-hypernuclei at PANDA.

constrain or even refute theories of modified gravity in the strong-field regime. Similar strong gravitational fields5

are also at work in compact stellar object, called neutron stars [2]. However, the formation of neutron stars are6

influenced by all four known fundamental forces. Their destiny is determined by the equation of state (EoS). The well7

understood electromagnetic interaction plays a minor role for their EoS and the weak interaction only enters indirectly8

by introducing additional hadronic degrees-of-freedom when high densities are approached. Therefore, neutron stars9

are unique cosmic laboratories to study the interplay between the strong QCD force on one side and gravity on the10

other side in extreme conditions which are not accessible by any other objects in the universe [2].11

The recent observation of massive neutron stars with about twice the solar mass [3, 4] and the expected appear-12

ance of hyperons at about two times nuclear density remains an unresolved mystery in neutron stars (hyperon puzzle).13

At present, our incomplete understanding of the underlying baryon-baryon and of even more subtle multi-body in-14

teractions in baryonic systems seems to be the most probable reason for this dilemma. As an alternative solution to15

this puzzle the role of gravity has been questioned [5–7]. In the future, gravitational waves from merging neutron16

stars might help to probe gravity in this high density regime. The complemental study of the strong force in these17

objects and the determination of the EoS remains even after many decades of research one of the biggest challenge for18

physics. High energy nuclear reactions, radioactive beams mapping the chart of nuclear stability and precision studies19

of nuclear few body systems contribute to this task. Strangeness nuclear physics with its many facets is an essential20

protagonist in this big adventure.21

Bound strange systems - hypernuclei as well as hyperatoms - represent unique laboratories for multi-baryon in-22

teractions in the strangeness sector. The confirmation of the substantial charge symmetry breaking in the J=0 ground23

states of the A=4 mirror hypernuclei 4
Λ

H and 4
Λ

He by precision measurements at MAMI [8] and at J-PARC [9] making24

use of novel techniques demonstrates impressively the necessity to combine complementary methods in strangeness25

nuclear physics [10]. The case of ΛΛ-hypernuclei is another example for the need for such a cooperation (Fig. 1, left).26

Complex hypernuclear systems incorporating two hyperons can be studied by the E07 Collaboration at J-PARC using27

kaon beams [11], in antiproton-nucleus interactions in PANDA at FAIR [12], in massive nucleus-nucleus collisions28

[13–15] in the CBM and NUSTAR experiments at FAIR, STAR at RHIC [16] and ALICE at CERN [17]. Because of29

the two-step production mechanism of ΛΛ-hypernuclei, spectroscopic studies based on two-body kinematics cannot30

be performed and spectroscopic information can only be obtained via their decay products. Experiments at J-PARC31

using kaon beams and nuclear emulsions will provide precise information on the absolute ground state masses of32

ΛΛ-hypernuclei. Obviously, information on excited states can not be extracted from emulsion experiments. In prin-33

ciple also the kinetic energies of weak decay products are sensitive to the binding energies of the two Λ hyperons.34

While the double pionic decay of light ΛΛ-hypernuclei can be used as an effective filter to reduce the background as35

it is foreseen at PANDA, the unique identification of hypernuclei ground states exclusively via their pionic decay in36

counter experiments is usually hampered by the limited momentum resolution (see e.g. [18]). The spectrum of ex-37

5



The PANDA Collaboration / Nuclear Physics A 00 (2016) 1–15 6

Figure 2. Left: Production probability of Ξ− (blue dots) and Ξ− with momenta below 500 MeV/c (red triangles) predicted by GiBUU simulations
for 2.9 GeV/c p interactions with three possible target materials. Right: Produced charged particles within the angular range covered by the silicon
detectors of the secondary target (blue circles) and neutrons in the acceptance of the Germanium array (red triangles) normalized to the number of
Ξ− with momenta less than 500 MeV/c.

cited particle stable states will be explored at the PANDA experiment by performing high resolution γ-spectroscopy.38

Finally, two-particle correlation studies between Λ-hypernuclei and Λ hyperons similar to conventional two particle39

correlation studies in heavy ion reactions (see e.g. [19]) may explore particle-unstable resonances in ΛΛ-hypernuclei.40

Combining these three different methods we will have access to the complete level scheme of ΛΛ-hypernuclei.41

Complemented by hyperon-hyperon correlation studies in heavy ion collisions, these measurements will provide42

comprehensive information on the hyperon-hyperon interaction and on the role of ΛΛ - ΣΣ - ΞN mixing in nuclei [20].43

2. High resolution 
-spectroscopy of ��-hypernuclei at FAIR44

Since the first ideas of an antiproton storage ring HESR at the international Facility for Antiproton and Ion Re-45

search (FAIR), the high resolution γ-spectroscopy of ΛΛ-hypernuclei is part of the core programme of the PANDA46

experiment [12, 21, 22]. To produce ΛΛ-hypernuclei in a ‘controlled’ way the conversion of a captured Ξ− and a47

proton into two Λ particles can be used (see right part of Fig. 1). The essential ingredient for the hypernuclear and48

hyperatom studies planned at PANDA is therefore the production of slow Ξ− which can be stopped prior to their49

decay in a secondary target, eventually leading to the formation of bound hyperonic systems. Combined with large50

cross sections for the production of associated hyperon-antihyperon pairs, antiprotons circulating in a storage ring51

are ideally suited for exploring strange baryonic systems. Low momentum Ξ− can be produced via the pp → Ξ−Ξ+
52

or pn → Ξ−Ξ0 reactions within a complex nucleus where the produced Ξ− can re-scatter [12]. The advantage as53

compared to the kaon induced Ξ production is that antiprotons are stable and can be retained in a storage ring thus54

allowing rather high luminosities. Reactions close to the ΞΞ threshold also minimize the production of associated55

particles as well as the number of secondary particles produced in other nuclear reactions.56

In addition to the general purpose PANDA setup [22], the hypernuclear experiment requires a dedicated primary57

target to produce low momentum Ξ−, an active secondary target of silicon layers and a suitable amount of absorber58

material to stop the Ξ− hyperons and to detect pions from the weak decay of ΛΛ- and Λ-hypernuclei and a high purity59

germanium (HPGe) array as γ-detectors. The design of the hypernucleus setup is approaching its final stage and60

the construction of the required detector components has started (see below). In the following we will present some61

details concerning the choice of the primary target as an example of these studies.62

The main task of the primary target is the production of Ξ− hyperons which can be slowed down and finally stopped63

in the secondary target material prior to their decay. The stopping probability depends on the detailed geometry of64

the target setup. In order to identify the optimal target material we performed a set of simulations with the Giessen65

Boltzmann-Uehling-Uhlenbeck transport model (GiBUU, Release 1.5) [23] followed by full GEANT4 simulations66

6
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Target- Ξ− production Ξ− stopping luminosity FoM
material probability probability loss factor
12C (2.22±0.02)·10−5 (3.24±0.04)·10−3 0.539 (3.87±0.06)·10−8

28Si (2.42±0.04)·10−5 (3.41±0.07)·10−3 0.339 (2.80±0.08)·10−8

48Ti (2.48±0.04)·10−5 (3.79±0.07)·10−3 0.245 (2.31±0.05)·10−8

Table 1. Ξ− production probability with respect to all inclusive interactions predicted by GiBUU transport calculations and stopping probability
within the secondary boron absorbers for all produced Ξ− for primary targets made of 12C, 28Si, and 48Ti. The fourth column gives the luminosity
decrease caused by Coulomb scattering and energy straggling [24]. As a figure-of-merit (FoM) the product of these three numbers is given in the
last column.

[25] taking into account all details of the secondary target geometry. Because of the finite lifetime of hyperons only67

Ξ−’s with momenta below 500 MeV/c have a sizable chance to be stopped prior to their decay. The Ξ− production68

with respect all nuclear interactions in heavy targets shows only a slight enhancement, somewhat less than in previous69

preliminary cascade calculations [26] (Fig. 2, left). However, heavier targets cause substantial beam heating mainly70

by Coulomb scattering and energy straggling [24]. Tab. 1 presents the Ξ− production probability with respect to all71

inclusive interactions predicted by GiBUU transport calculations and their stopping probability for primary targets72

made of 12C, 28Si, and 48Ti. The fourth column gives the luminosity decrease caused by Coulomb scattering and73

energy straggling in the HESR [24]. As a figure-of-merit (FoM) the product of these three numbers is given in the last74

column. As can be seen from this table, a light carbon target is clearly preferable.75

In addition, there are several other points which need to be considered and which also favour carbon as a primary76

Target- Thermal conductivity Tensile modulus density melting/transition temperature
material [W/mK] [GPa] [g/cm3] [◦C]
CVD Diamond 1800-2500 1050-1210 3.52 3500 [1500]
DIALEADTM fiber [27] 800 935 2.20 2500
28Si 149 130-185 2.33 1414
48Ti 22 110 4.51 1668
natCu 401 120 8.96 1538

Table 2. Physical properties of possible target materials. As reference the numbers for copper are also given. Note, that the graphitization of
diamond takes place already at lower temperature around 1500 ◦C. The DIALEADTM carbon fiber is produced at temperature around 3000 ◦C and
gets malleable around 2500 ◦C [27].
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Figure 4. Left: CAD drawing of the primary target setup. Right: Distribution of the Ξ− stopping points in layers of the secondary target material
in a plane transverse to the beam direction. The empty bands mark the location of the silicon strip detectors. Because of the finite lifetime of Ξ−, a
minimal distance between the primary target and the absorber material is essential to reach the optimal stopping probability.

target material. The primary target consists of a thin filament which will be operated in the halo of the antiproton77

beam. The continuous decrease of the number of antiprotons circulating in the HESR will be compensated by moving78

the target filament closer to the beam axis. A similar scheme was already developed by the EDDA collaboration at79

COSY [28]. The left part of Fig. 3 shows a possible HESR cycle during the startup phase of PANDA. In this phase80

the antiproton collector ring RESR will not be available and the maximum number of antiprotons circulating in the81

HESR is therefore limited to 1010. Furthermore, the minimal expected p production rate is 5.6·106 s−1. Such a scenario82

allows an average interaction rate over the full cycle of at least 2.2·106 s−1 in case of a target fiber with a radius of83

5 �m. The constant luminosity during the measurement period of 2000 s is achieved by moving the carbon filament84

from a distance of 3 mm down to about 2.5 mm from the beam center. Since at present the detailed shape of the beam85

profile is not known, we assumed a gaussian distribution with a width of σ=1 mm. At PANDA the rate measured by86

the luminosity monitor will be used to control the interaction rate independently of the exact distribution of the beam87

profile.88

Figure 5. Left: Final design of one of the triple PANDA Germanium Assembly PANGEA. Right: Expected full energy-peak efficiency of the
PANGEA setup in PANDA.
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Figure 6. Left: Reconstruction efficiency of negative pions emitted isotropically from hypernuclei produced in the absorbers of the secondary
target. Right: Relative momentum resolution of reconstructed weak decay pions as function of their momentum.

Replacing the internal target during operation is difficult in a storage ring experiment. Therefore, the thermal and89

mechanical stabilities of the target are important issues for a safe operation over several months. Besides diamond,90

silicon and titanium we also consider a carbon nanofiber [27] as potential target. All these materials show high91

melting temperatures and good electric conductivity (see Tab. 2). For comparison the properties of copper are also92

listed. At 4·106 interactions per second more than 50 �W will be deposited in the target filament by the energy loss of93

antiprotons passing the target. Heat transport calculations, assuming a gaussian distributed beam with σ=1 mm and94

target radii of 5 �m resulted in maximum temperatures indicated by the open circles in the right part of Fig. 3.95

For all four target materials this temperature is below the melting temperature indicated by the red shaded region96

in Fig. 3. However, increasing the beam intensity by a factor of 10, the titanium target is likely to be destroyed. The97

same happens to a silicon strip target if the full beam crosses the target accidentally. On the other hand, a diamond or98

carbon fiber target can be safely operated even at the highest interaction rate expected at PANDA (see blue squares in99

Fig. 3).100

Particle background is another important issue. The right part of Fig. 2 shows the produced charged particles101

within the angular range covered by the silicon detectors of the secondary target (blue circles) and neutrons in the ac-102

ceptance of the Germanium array (red triangles) normalized to the number of Ξ− with momenta less than 500 MeV/c.103

Because of the more backward oriented particle distributions for heavier target nuclei, the background situation also104

favors a light target material.105

Because of the short lifetime of the Ξ− hyperons and their brief stopping time in the secondary target, it is essential106

to place the secondary absorber as close as possible to the primary target to reach a maximum stopping probability.107

Since the distance between the antiproton beam and the wall of the vacuum chamber must not go below a limit of108

10 mm, the usage of a thin vacuum window (areal density ≈ 100 mg/cm2) would require an additional offset of 1-2 mm109

due to the inward bending of the window foil. In order to avoid such a foil we have decided to build the wall of the110

vacuum chamber in the region of the secondary target out of 1 mm thick secondary absorber material. Additional111

absorber material will be placed inside the vacuum chamber in the edges, thus forming a cylindrical beam pipe (see112

Fig. 4). Beryllium, boron, boron carbide or diamond are possible window materials. In the following we show results113

for boron absorbers. The distribution of the Ξ− stopping points shown in Fig. 4 illustrates the necessity to place the114

absorber material as close as possible to the beam axis.115

The ΛΛ-hypersystems produced at PANDA after the Ξ− conversion into to Λ hyperons, are usually highly excited116

and may fragment [21]. Sometimes particle bound ΛΛ-hypernuclei will be produced. Those in excited states will117

decay via γ-emission which will be detected in an germanium detector system placed at backward angles. For the118

PANDA Germanium array, 48 EUROBALL detectors need to be reconfigured into triple units. The PANGEA (PANda119

GErmanium Array) triple cluster is a cooperative project between GSI Darmstadt and the Helmholtz Institute Mainz120
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for the PANDA collaboration (see left part in Fig. 5). The unique feature of the PANGEA cryostat is its minimal121

cross section actually defined by the footprint of the triple crystal arrangement, and the use of an electrical cooling122

engine (X-Cooler II, III from MMR, respectively Ametec). At the Super-FRS the same components will be used123

by the DEGAS (DESPEC Germanium Array Spectrometer) detectors [29]. The only mechanical difference is that124

the PANGEA triple cryostat has a flexible neck between the cooling engine and the detector head. Reconfiguring125

PANGEA into DEGAS this flexible neck will be replaced by a simple rigid tube. The PANGEA triple cryostat126

comprises on board preamplifiers, high voltage (HV) modules, a bias shut down (BSD) modul, a power supply module127

generating all the voltage needed from 48V supply, ADC modules based on nanoMCA-module (LabZY) and a control128

module based on a micro controller. The PANGEA triple clusters will be arranged at backward angles. The right part129

of Fig. 5 shows the expected efficiency of this setup in PANDA.130

Light ΛΛ-hypernuclei in the mass region below A ≈ 12 which have reached their ground state will decay weakly131

emitting eventually one or two negative pions (see Fig. 1). The momenta of these pions are expected to cover a range132

from about 70 to 140 MeV/c [18, 30]. The left part of Fig. 6 shows the reconstruction efficiency of pions in this133

momentum range emitted isotropically from the Ξ− stopping points displayed in the right part of Fig. 4. Because of134

the compact geometry of the secondary target, efficiencies larger than 70% can be achieved. The momenta of these135

pions can be reconstructed with a relative precision (FWHM) of better than 11% (see right part of Fig. 6). This good136

reconstruction capability of the secondary target allows to use these low momentum pions as a selection criterion for137

hypernucleus production and will help to reduce background events. According to the GiBUU simulations for about138

half of the produced Ξ− in p12C reactions a Ξ0 ('30%) or a Ξ+ ('18%) escapes the 12C target nucleus. These Ξ decay139

with nearly 100% into an Λπ which will be used as an additional, rather exclusive trigger.140

Not all steps shown in the scheme in the right part of Fig. 1 can be treated by GEANT simulations as e.g. the141

atomic cascade. They require independent theoretical input. The final rate estimate takes the Ξ− production and142

stopping probability (Tab. 1) as well as the capture, conversion and fragmentation processes (see e.g. [21, 31–34])143

into account. In our approach we take the excited ΛΛ pre-fragment formed after the Ξ−p → ΛΛ conversion as a144

starting point [21]. At an average antiproton interaction rate of 5·106 s−1 and with the present design, PANDA will145

produce approximately 3.3·104 Ξ−’s per day stopped within the boron absorber of the secondary target. Triggering146

on the detection of two successive weak pionic [35] decays or the Λ detected within the PANDA setup and with the147

full energy γ-efficieny (Fig. 5) we expect approximately 10 detected γ-transitions per month for several ΛΛ-nuclei148

produced in the fragmentation process after the pΞ− → ΛΛ conversion (see e.g. [21]). A major task for the future is149

to develop by means of the GiBUU events a strategy to further suppress inclusive low momentum pion events. The150

topology of the pion tracks (e.g. closed distance of approach with respect to the target filament) and the associated151

particles measured within the PANDA detector are presently being studied.152

3. Hyperatoms at PANDA153

A well understood detection system and high luminosities will be mandatory for the study of ΛΛ-hypernuclei at154

PANDA. During the initial operation of the hypernuclear setup we therefore plan to study Ξ−-atoms [12, 36] (see also155

right part of Fig. 1). At the same time such a measurement will allow to develop and to test the hypernuclear setup of156

PANDA under real running conditions.157

In line with the ΛΛ-hypernucleus study, a close proximity between the primary target and the secondary absorber158

is mandatory. In this case absorbers can be heavy elements like Fe or Ta. As before, the vacuum chamber can be built159

from this absorber material, thus optimizing the hyperon stopping probability. At the same time the geometry of the160

secondary absorber should minimize the absorption of the atomic X-rays. A first preliminary design of the secondary161

absorber is shown in the left part of Fig. 7. The shape of the rim is optimized for maximum Ξ− stopping at minimal162

losses of γ’s emitted from the hyperatoms. The distribution of the Ξ− stopping points are shown in the right part of163

Fig. 7. Even at an antiproton interaction rate of 2·106 s−1 PANDA will be able to produce approximately 6·105 stopped164

Ξ− hyperons per month in these heavy targets which is comparable to the maximum rate expected at J-PARC of about165

7·105 stopped Ξ− per month [37]. Since only very little information on Ξ− production in antiproton-nucleus collisions166

is presently available, it is clear that the design of the secondary absorber should be finalized once better experimental167

information on the angular and momentum distributions of Ξ− will be available.168

The study of Ξ−-atoms will also serve as an initial step towards a study of Ω−-atoms. Like all composite particles169

baryons are expected to be deformed objects. However, for spin J=0 and 1/2 hadrons, the spectroscopic quadrupole170
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Figure 7. Left: Schematic drawing of the secondary target chamber for the hyperatom study at PANDA. The beam enters from left. Right: Stopping
points predicted by full GEANT simulations which are based on GiBUU events. The shape of the rim is optimized for maximum Ξ− stopping and
minimal losses of γ’s emitted from the hyperatoms.

moment Q vanishes even though the intrinsic quadrupole moment Q0 may be finite. On the other hand, for spin-3/2171

particles the intrinsic quadrupole moment can be deduced from the spectroscopic moment according to (see e.g. [38])172

Q =
J(2J − 1)

(J + 1)(2J + 3)
Q0. (1)

The long lifetime and its spin 3/2 makes the Ω− the only candidate to obtain direct experimental information on the173

shape of an individual baryon. This measurement would be an important complement to the world wide activities174

trying to nail down the shape of the proton or the transition quadrupole moment of baryons.175

Model QΩ [e·fm2] Ref.
NRQM 0.02 [39]
NRQM 0.004 [40]
NRQM 0.031 [41]
SU(3) Bag model 0.052 [42]
NRQM with mesons 0.0057 [43]
NQM 0.028 [44]
Lattice QCD 0.004 ±0.005 [45]
HBχPT 0.009 ±0.005 [46]
Skyrme 0.024 [47]
Skyrme 0.0 [48]
QM 0.022 [49]
χQM 0.026 [50]
GP QCD 0.024 [51]
Lattice QCD 0.0086±0.0012 [52]
QCD-SR 0.1 ±0.03 [53]
χPT+qlQCD 0.0086 [54]
Lattice QCD 0.0118±0.0012 [55, 56]
RQM+Lattice QCD 0.0096±0.0002 [56]

Table 3. Predictions for the quadrupole moment of the Ω− baryon.

Measuring the quadrupole moment of the Ω−, or setting a limit to its value, would provide very useful constraints176

on the composite models of baryons (see Tab. 3). Unlike in the case of the nucleon, pion exchange is not relevant177

and the role of heavier mesons is strongly suppressed. Therefore, meson cloud corrections to the valence quark core178
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are expected to be small [56]. Because contributions from light quarks are small, the quadrupole moment of the Ω−179

will also be a sensitive benchmark test for lattice QCD simulations. For negatively charged baryons like the Ω−, a180

positive (negative) quadrupole form factor would signal an oblate (prolate) distribution of the three s-quarks. All181

recent calculations predict an intrinsic quadrupole moment QΩ of the order of 0.01 e·fm2 (see Tab. 3).182

It is important to note that the deformation of the Ω− baryon is only one aspect of Ω−-hyperatoms addressed183

at PANDA. Similar to the case of Ξ−-atoms, the shift and broadening of transitions between orbits close to the184

nucleus provide a complementary tool for studying strong interactions and nuclear medium effects [57, 58]. Thus,185

Ω−-hyperatoms represent a unique chance to explore the interaction of |S |=3 baryons in a nuclear system.186

Indeed, it was was suggested by Alvarez [59] that three emulsion events observed in 1954 [60, 61] can be inter-187

preted as Ω− decays (10 years prior to its discovery at Brookhaven [62]). Out of these 3 events, two can be attributed to188

the decay of atomically bound Ω−. This observation suggests that the formation of Ω−-atoms is possible and may not189

be unusual once a Ω− hyperon has been slowed down. Unfortunately, not even the elementary production cross section190

for Ω−Ω+ pairs in antiproton-proton collisions is experimentally known and even predictions are scarce [63] and may191

have large uncertainties. Therefore, quantitative predictions for the yield of atomic transitions in Ω−-atoms are not192

possible at the moment. Nevertheless, although the present considerations indicate that the study of Ω−-atoms will193

not be a day-1 experiment at PANDA, this discussion also shows that such a measurement is within reach. Of course,194

like in the case of ΛΛ-hypernuclei, a well understood detection system and high luminosities will be mandatory for195

this measurement.196

4. Anticascades in Nuclei197

The interaction of antibaryons in nuclei provides a unique opportunity to elucidate strong in-medium effects in198

baryonic systems. Unfortunately, antihyperons annihilate quickly in nuclei and conventional spectroscopic studies of199

bound systems are not feasible. Complementing the information on Ξ− from hyperatoms, quantitative information on200

the antihyperon potentials may be obtained via exclusive antihyperon-hyperon pair production close to threshold in201

antiproton-nucleus interactions [64–66]. The preliminary calculations of Ref. [64, 65] revealed significant sensitivities202

of the transverse momentum asymmetry αT which is defined in terms of the transverse momenta of the coincident203

particles204

αT =
pT (Y) − pT (Y)

pT (Y) + pT (Y)
(2)

to the depth of the antihyperon potential. In order to go beyond the simplified calculations presented in Refs. [64, 65]205

and to include simultaneously secondary deflection and absorption effects, we recently performed [66] more realistic206

calculations of this new observable with the Giessen Boltzmann-Uehling-Uhlenbeck transport model (GiBUU, Re-207

lease 1.5) [23] for ΛΛ pairs. Here we present first results for Ξ+Ξ− pairs produced in p+12C interactions at 2.9 GeV/c.208

Fig. 8 shows the GiBUU prediction for the average transverse asymmetry αT (Eq. 2) plotted as a function of the209

longitudinal momentum asymmetry αL which is defined for each event as210

αL =
pL(Y) − pL(Y)

pL(Y) + pL(Y)
. (3)

As for ΛΛ pairs [66], the Σ−Λ pairs (left) show a remarkable sensitivity of αT on the scaling factor ξΛ of the Λ-potential211

[66]. In the GiBUU code non-linear derivative interactions are not yet included and a simple scaling factor ξp = 0.22212

was already previously applied for the antiproton potential to ensure a Schrödinger equivalent antiproton potential of213

about 150 MeV at saturation density [67]. No experimental information exists so far for antihyperons in nuclei and214

G-parity symmetry is therefore usually adopted to specify their default potentials. While this corresponds to ξΛ = 1, a215

value of ξΛ ≈ = 0.2 might be a more appropriate considering antiproton data. In Ref. [66] it was demonstrated that the216

sensitivity of αT to the scaling factor ξΛ is strongly related to re-scattering processes of the hyperons and antihyperons217

within the target nucleus. For positive values of αL where the Λ is emitted backward with respect to the hyperon, the218

statistics is too low to draw quantitative conclusions in the present simulation.219

In the right part of Fig. 8 we show the first attempt to calculate the momentum asymmetry for Ξ−Ξ+-pair production220

in 2.9 GeV/c p-12C interactions. In these GiBUU calculations about 79 million inclusive events were generated for221
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Figure 8. Average transverse momentum asymmetry as a function of the longitudinal momentum asymmetry for Σ−Λ pairs (left) and Ξ−Ξ+ pairs
(right) produced exclusively in 1.696 GeV/c p-20Ne and 2.9 GeV/c p-12C interactions, respectively. The different symbols show the GiBUU
predictions for different scaling factors for the antihyperon potentials.

each scaling factor ξΞ+ of the Ξ+ potential. In addition, the production of hyperon-antihyperon pairs was artificially222

enhanced by a factor of 10 [66]. Thus, the present statistics corresponds to 790 million inclusive reactions. For an223

average antiproton interaction rate of 2·106 s−1 this would reflect a running time of about 6 minutes. For each value224

of the scaling factor ξΞ+ about 1800 Ξ−Ξ+ pairs were found. Obviously even this large amount of produced events225

does not allow to determine the sensitivity of the simulations to the anticascade potential. At least a factor of 10 more226

events will be needed to draw quantitative conclusions on the Ξ+-potential. However, what the present calculations227

already show is that the variation of the transverse asymmetry for 0≤ ξΞ+ ≤1 does not exceed a value of 0.1. This is228

consistent with the calculations presented in Refs. [64, 65].229

Assuming a pair reconstruction probability of 10% (1%), PANDA may detect about 30 (3) Ξ−Ξ+ pairs per minute.230

The accumulation of 105 Ξ−Ξ+ pairs will then require a running time of about 2 day (23 days). Such periods are231

compatible with the earlier estimates based on a schematic model [64, 65]. Thus this measurement can easily be232

performed at PANDA once a reasonable interaction rate for nuclear targets has been established.233

To summarize, stored antiprotons beams in the GeV range represent a unparalleled factory for hyperon-antihyperon234

pairs. Their outstanding large production probability in antiproton collisions will open the floodgates for a series of235

new studies of strange hadronic systems with unprecedented precision. Several of these unique experiments are pos-236

sible at reduced luminosities in the commisioning phase of PANDA, like the study of antihyperons in nuclear systems237

and the spectroscopy of multistrange Ξ-atoms. The high resolution γ-spectroscopy of ΛΛ-hypernuclei will require an238

interaction rate in the region of 5·106 s−1. The spectroscopy of Ω−-atoms will be challenging, but seems possible.239
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