
08 May 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Context-Free Session Type Inference

Publisher:

Published version:

DOI:10.1007/978-3-662-54434-1_30

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1634961 since 2017-05-19T08:37:44Z



This full text was downloaded from iris - AperTO: https://iris.unito.it/

iris - AperTO

University of Turin’s Institutional Research Information System and Open Access Institutional Repository

This is the author's final version of the contribution published as:

Padovani, Luca. Context-Free Session Type Inference, in: Programming
Languages and Systems, Springer, 2017, 978-3-662-54433-4, pp: 804-830.

The publisher's version is available at:
http://link.springer.com/content/pdf/10.1007/978-3-662-54434-1_30

When citing, please refer to the published version.

Link to this full text:
http://hdl.handle.net/2318/1634961



Context-Free Session Type Inference

Luca Padovani?

Dipartimento di Informatica, Università di Torino, ITALY
luca.padovani@di.unito.it

Abstract. Some interesting communication protocols can be precisely
described only by context-free session types, an extension of conventional
session types with a general form of sequential composition. The com-
plex metatheory of context-free session types, however, hinders the defi-
nition of corresponding checking and inference algorithms. In this work
we address and solve these problems introducing a new type system for
context-free session types of which we provide two OCaml embeddings.

1 Introduction

Session types [9, 10, 12] are an established formalism for the enforcement of
communication protocols through static analysis. Recently, Thiemann and Vas-
concelos [25] have proposed context-free session types to enhance the expressive-
ness of conventional session types. Protocols that benefit from such enhancement
include the serialization of tree-like data structures and XML documents [25],
interactions with non-uniform objects such as stacks and reentrant locks [19, 6],
and recursive protocols for trust management [24]. Thiemann and Vasconcelos
[25] study the metatheory of context-free session types, leaving the definition of
a type checking algorithm for future work. In this paper we point out additional
issues that specifically afflict context-free session type inference and we describe
a practical solution to its implementation.

1let stack =
2let rec none u =
3match branch u with
4| `Push u →
5let x, u = receive u
6in none (some x u)
7| `End u → u
8and some y u =
9match branch u with
10| `Push u →
11let x, u = receive u
12in some y (some x u)
13| `Pop u → send y u
14in none

Let us consider the OCaml code on the
right to illustrate the problem concretely.
The code models a stack, a non-uniform
object [19, 22] offering different interfaces
through a session endpoint u depending
on its internal state. An empty stack
(lines 2–7) accepts either a Push or an
End operation. In the first case, the stack
receives the element x to be pushed and
moves into the non-empty state with the
recursive application some x u. In the
second case, it just returns the endpoint
u. A non-empty stack (lines 8–13) with y
on top accepts either a Push operation, as
? Partly supported by European project HyVar (grant agreement H2020-644298).



in the empty case, or a Pop operation, in which case it sends y back to the client.
When an application some x u terminates, meaning that x has been popped,
the stack returns to its previous state, whatever it was (lines 6 and 12). Note
that, according to established conventions [8], all session primitives including
send return the endpoint u possibly paired with the received message (receive)
or injected through a tag that represents an operation (branch). Using the FuSe
implementation of binary sessions [21], OCaml infers for stack the type Sreg → β
where Sreg is the (equi-recursive) session type that satisfies the equation

Sreg = &[Push : ?α;Sreg] (1.1)

according to which the client can only push elements of type α. To understand
the reason why the End and Pop operations are not allowed by Sreg, we have to
consider that conventional session types can only describe protocols whose set
of (finite) traces is regular, whereas the set of (finite) traces that describe legal
interactions with stack is isomorphic to the language of balanced parentheses, a
typical example of context-free language that is not regular. The session type Sreg
above corresponds to the best ω-regular and safe approximation of this context-
free language that OCaml manages to infer from the code of stack. When OCaml
figures that the session type cannot precisely track whether the stack is empty
or not, it computes the “intersection” of the interfaces of these two states, which
results in Sreg (along with warnings informing that lines 7 and 13 are dead code).

Driven by similar considerations, Thiemann and Vasconcelos [25] propose
context-free session types as a more expressive protocol description language.
The key idea is to enforce the order of interactions in a protocol using a general
form of sequential composition ; instead of the usual prefix operator. For
example, the context-free session types Snone and Ssome that satisfy the equations

Snone = &[Push : ?α;Ssome;Snone, End : 1]
Ssome = &[Push : ?α;Ssome;Ssome, Pop : !α] (1.2)

provide accurate descriptions of the legal interactions with stack: all finite, max-
imal traces described by Snone have each Push eventually followed by a matching
Pop. The “empty” protocol 1 marks the end of a legal interaction. Using Thie-
mann and Vasconcelos’ type system, it is then possible to work out a typing
derivation showing that stack has type Snone;A→ A, where A is a session type
variable that can be instantiated with any session type.

In the present work we address the problem of inferring a type as precise
as Snone;A → A from the code of a function like stack. There are two major
obstacles that make the type system in [25] unfit as the basis for a type inference
algorithm: (1) a structural rule that rearranges session types according to the
monoidal and distributive laws of sequential composition and (2) the need to
support polymorphic recursion which, as explained in [25], ultimately arises as a
consequence of (1). Type inference in presence of polymorphic recursion is known
to be undecidable in general [13], a problem which often requires programmers to
explicitly annotate polymorphic-recursive functions with their type. In addition,
the liberal handling of sequential compositions means that functions like stack



admit very different types (such as Sreg → β and Snone;A → A) which do
not appear to be instances of a unique, more general type scheme. It is therefore
unclear which notion of principal type should guide the type inference algorithm.

These observations lead us to reconsider the way sequential compositions are
handled by the type system. More specifically, we propose to eliminate sequential
compositions through an explicit, higher-order combinator @> called resumption
that is akin to functional application but has the following signature:

@> : (T → 1)→ T;S → S (1.3)

Suppose f : T → 1 is a function that, applied to a session endpoint of type
T , carries out the communication over the endpoint and returns the depleted
endpoint, of type 1. Using @> we can supply to f an endpoint u of type T;S
knowing that f will take care of the prefix T of T;S leaving us with an endpoint
of type S. In other words, @> allows us to modularize the enforcement of a
sequential protocol T;S by partitioning the program into a part – the function
f – that carries out the prefix T of the protocol and another part – the evaluation
context in which f @> u occurs – that carries out the continuation S.

This informal presentation of @> uncovers a potential flaw of our approach.
The type T → 1 describes a function that takes an endpoint of type T and
returns an endpoint of type 1, but does not guarantee that the returned endpoint
is the same endpoint supplied to the function. Only in this case the endpoint
can be safely resumed. What we need is a type-level mechanism to reason about
the identity of endpoints. Similar requirements have already arisen in different
contexts, to identify regions [30, 2] and to associate resources with capabilities [1,
28, 26]. Reframing the techniques used in these works to our setting, the idea is
to refine endpoint types to a form [T ]ρ where ρ is a variable that represents the
abstract identity of the endpoint at the type level. The signature of @> becomes

@> : ([T ]ρ → [1]ρ)→ [T;S]ρ → [S]ρ (1.4)

where the fact that the same ρ decorates both [T ]ρ and [1]ρ means that @> can
only be used on functions that accept and return the same endpoint. In turn,
the fact that the same ρ decorates both [T;S]ρ and [S]ρ guarantees that f @> u
evaluates to the same endpoint u that was supplied to f , but with type S.

Going back to stack, how should we patch its code so that the (inferred)
session type of the endpoint accepted by stack is Snone instead of Sreg? We are
guided by an easy rule of thumb: place resumptions in the code anywhere a
; is expected in the corresponding point of the protocol. In this specific case,

looking at the protocols (1.2), we turn the recursive applications (some x u) on
lines 6 and 12 to (some x @> u). Thus, using the type system we present in this
paper, we obtain a typing derivation proving that the revised stack has type
[Snone]ρ → [1]ρ. Most importantly, the type system makes no use of structural
rules or polymorphic recursion and there is no ambiguity as to which protocol
stack is supposed to carry out, for occurrences of ; in a protocol are tied to
the occurrences of @> in code that complies with such protocol.



As we will see, these properties make our type system easy to embed in any
host programming language supporting parametric polymorphism and (option-
ally) existential types. This way, we can benefit from an off-the-shelf solution
to context-free session type checking and inference instead of developing specific
checking/inference algorithms. In the remainder of the paper:

– We formalize a core functional programming language called FuSe{} featuring
threads, session-based communication primitives and a distinctive low-level
construct for resuming session endpoints (Section 2). The semantics of re-
sumption combinators (including @>) will be explained using this construct.

– We equip FuSe{} with an original sub-structural type system that features
context-free session types and abstract endpoint identities (Section 3). We
prove fundamental properties of well-typed programs emphasizing the im-
plications of these properties in presence of resumptions.

– We detail two implementations of FuSe{} primitives as OCaml modules which
embed FuSe{} type discipline into OCaml’s type system (Section 4). The two
modules solve the problems of context-free session type checking [25] and
inference, striking different balances between static safety and portability.

We defer a more technical discussion of related work to the end of the pa-
per (Section 5). Proofs and additional technical material can be found in the
associated technical report [20]. All the code in shaded background can be type
checked, compiled and run using OCaml and both implementations of FuSe{} [21].

2 A Calculus of Functions, Sessions and Resumptions

The syntax of FuSe{} is given in Table 1 and is based on infinite sets of variables,
identity variables, and of session channels. We use an involution · that turns
an identity variable or channel into the (distinct) corresponding identity co-
variable or co-channel. Each session channel a has two endpoints, one denoted
by the channel a itself, the other by the corresponding co-channel a. We say that
a is the peer endpoint of a and vice versa. Given an endpoint ε, we write ε for
its peer. A name is either an endpoint or a variable. An identity is either an
endpoint or an identity (co-)variable. We write ι for the co-identity of ι, which
is defined in such a way that ρ = ρ.

The syntax of expressions is mostly standard and comprises constants, vari-
ables, abstractions, applications, and two forms for splitting pairs and matching
tagged values. Constants, ranged over by c, comprise the unitary value (), the
pair constructor pair, an arbitrary set of tags C for tagged unions, the fixpoint
operator fix, a primitive fork for creating new threads, and a standard set
of session primitives [8] whose semantics will be detailed shortly. To improve
readability, we write (e1,e2) in place of the saturated application pair e1 e2.
In addition, the calculus provides abstraction, application, packing and unpack-
ing of identities. These respectively correspond to introduction and elimination
constructs for universal and existential types, which are limited to identities in
the formal development of FuSe{}. The distinguishing feature of FuSe{} is the



Table 1. FuSe{}: syntax (‡ marks the runtime syntax not used in source programs).

Notation x, y ∈ Var variables
ρ ∈ IdVar identity variables

a, b ∈ Channel session channels
ε ∈ Channel ∪ Channel endpoints
u ∈ Channel ∪ Channel ∪Var names
ι ∈ Channel ∪ Channel ∪ IdVar ∪ IdVar identities

Process P,Q ::= 〈e〉 thread
| P |Q parallel composition‡

| (νa)P session‡

Expression e ::= v value
| x variable
| e e′ value application
| e [ι] identity application
| let x, y = e1 in e2 pair splitting
| match e with {Ci ⇒ ei}i∈I pattern matching
| dι, ee packing
| let dρ, xe = e1 in e2 unpacking
| {e}u resumption

Value v, w ::= c | (v,w) | C v data
| pair v | fork v | send v | select v partial application
| λx.e | Λρ.v | fix v abstraction
| ε endpoint‡

| dε, ve package‡

Constant c ::= () | pair | C | fix | fork
| create | send | receive | select | branch

resumption construct {e}u indicating that e uses the endpoint u for completing
some prefix of a sequentially composed protocol. As we will see in Example 1,
resumptions are key to define operators such as @> introduced in Section 1. Val-
ues are fairly standard except for two details that are easy to overlook. First,
fix v is a value and reduces only when applied to a further argument. This ap-
proach, already used by Tov [26], simplifies the operational semantics (and the
formal proofs) sparing us the need to η-expand fix each time it is unfolded [31].
Second, the body of an identity abstraction Λρ.v is a value and not an arbitrary
expression. This restriction, inspired by [28, 26], simplifies the type system with-
out affecting expressiveness since the body of an identity abstraction is usually
another (identity or value) abstraction. In this respect, the fact that fix v is a
value allows us to write identity-monomorphic, recursive functions of the form
Λρ.fix λf. · · · which are both common and useful in practice. Processes are
parallel compositions of threads possibly connected by sessions. Note that the
restriction (νa)P binds the two endpoints a and a in P . The definition of free
and bound names for both expressions and processes is the obvious one. We
identify terms modulo alpha-renaming of bound names.



Table 2. FuSe{}: operational semantics.

Reduction of expressions e→ e′

[R1] (λx.e) v → e{v/x}
[R2] (Λρ.v) [ε] → v{ε/ρ}
[R3] fix v w → v (fix v) w
[R4] let x, y = (v,w) in e → e{v, w/x, y}
[R5] match (Ck v) with {Ci ⇒ ei}i∈I → ek v k ∈ I
[R6] let dρ, xe = dε, ve in e → e{ε/ρ}{v/x}
[R7] {(v,ε)}ε → (v,ε)

Reduction of processes P → Q

[R8] 〈E [fork v w]〉 → 〈E [()]〉 | 〈v w〉
[R9] 〈E [create ()]〉 → (νa)〈E [da, (a,a)e]〉 a fresh

[R10] 〈E [send v ε]〉 | 〈E ′[receive ε]〉 → 〈E [ε]〉 | 〈E ′[(v,ε)]〉
[R11] 〈E [select v ε]〉 | 〈E ′[branch ε]〉 → 〈E [ε]〉 | 〈E ′[v ε]〉
[R12] 〈E [e]〉 → 〈E [e′]〉 if e→ e′

[R13] P |R → Q |R if P → Q
[R14] (νa)P → (νa)Q if P → Q
[R15] P → Q if P ≡ P ′ → Q′ ≡ Q

Table 2 defines the (call-by-value) operational semantics of FuSe{}, where we
write e{v/x} and e{ι/ρ} for the (capture-avoiding) substitutions of values and
identities in place of variables and identity variables, respectively. Evaluation
contexts are essentially standard, with the obvious addition of {E }u:

Context E ::= [ ] | E e | v E | dι,E e | let dρ, xe = E in e | {E }u
| let x, y = E in e | match E with {Ci ⇒ ei}i∈I

Reduction of expressions is mostly conventional. The reduction rule [R7] erases
the resumption { · }ε around a pair (v,ε), provided that the endpoint in the
right component of the pair matches the annotation of the resumption. The type
system for FuSe{} that we are going to define enforces this condition statically.
However, the rule also suggests an implementation of resumptions based on a
simple runtime check: {(v,ε)}ε′ reduces to (v,ε) if ε and ε′ are the same end-
point and fails (e.g. raising an exception) otherwise. This alternative semantics
may be useful if the type system of the host language is not expressive enough
to enforce the typing discipline described in Section 3. We will consider this al-
ternative semantics for one of the two implementations of FuSe{} (Section 4.2).

Reduction of processes is essentially the same appearing in [8, 25]. Rule [R8]
describes the spawning of a new thread, whose body is the application of fork’s
arguments. We have chosen this semantics of fork so that it matches OCaml’s.
Rule [R9] models session initiation, whereby create reduces a pair with the two
endpoints of the newly created session. Compared to [8], we have one primitive
that returns both endpoints of a new session instead of a pair of primitives that
synchronize over shared/public channels. This choice is mostly a matter of sim-
plicity: session initiation based on shared/public channels can be programmed



on top of this mechanism. Also, the pair returned by create is packed to ac-
count for the fact that the caller of create does not know the identities of the
endpoints therein. Note that, in the residual process, the leftmost occurrence of
a represents an identity, hence it does not count as an actual usage of the end-
point a. Rules [R10] and [R11] model the exchange of messages. The first one moves
the message from the sender to the receiver, pairing the message with the contin-
uation endpoint on the receiver side. The second one applies the first argument
of select to the receiver’s continuation endpoint. Typically, the first argument
of select will be a tag C which is effectively the message being exchanged in
this case. We adopt this slightly unusual semantics of select because it models
accurately the implementation and, at the same time, it calls for specific fea-
tures of the type system concerning the type-level identification of endpoints.
Rule [R12] lifts reductions from expressions to processes and rules [R13–R15] close
reductions under parallel compositions, restrictions, and structural congruence,
which is basically the same of the π-calculus and is therefore omitted.

3 Type System

In this section we define the typing discipline for FuSe{}. To keep the formal
development as simple as possible, we work with a minimal type system and limit
polymorphism to identity variables. These limitations do not have interesting
effects on resumptions and will be lifted in the actual implementation.

The (finite) syntax of kinds, types, and session types is given below:

Kind κ ::= U | L
Type t, s ::= unit | t× s | {Ci of ti}i∈I | t→κ s | [T ]ι | ∃ρ.t | ∀ρ.t

Session type T, S ::= 0 | 1 | ?t | !t | &[Ci : Ti]i∈I | ⊕[Ci : Ti]i∈I | T;S

Instead of introducing concrete syntax for recursive (session) types, we let
t, s and T , S range over the possibly infinite, regular trees generated by the
above constructors for types and session types, respectively. We introduce re-
cursive (session) types as solutions of finite systems of (session) type equations,
such as (1.1). The shape of the equation, with the metavariable Sreg occurring
unguarded on the lhs and guarded by at least one constructor on the rhs, guar-
antees that the equation has exactly one solution [3]. Type equality corresponds
to regular tree equality.

The kinds U and L are used to classify types as unlimited and linear, respec-
tively. Types of kind U denote values that can be used any number of times.
Types of kind L denote values that must be used exactly once. We have to
introduce a few more notions before seeing how kinds are assigned to types.

Types include a number of base types (such as unit, int and possibly others
used in the examples), products t × s, and tagged unions {Ci of ti}i∈I . The
function type t →κ s has a kind annotation κ indicating whether the function
can be applied any number of times (κ = U) or must be applied exactly once
(κ = L). This latter constraint typically arises when the function contains linear
values in its closure. We omit the annotation κ when it is U. An endpoint type



[T ]ι consists of a session type T , describing the protocol according to which
the endpoint must be used, and an identity ι of the endpoint. Finally, we have
existential and universal quantifiers ∃ρ.t and ∀ρ.t over identity variables. These
are the only binders in types. We write fid(t) for the set of identities occurring
free in t and we identify (session) types modulo renaming of bound identities.

A session type describes the sequence of actions to be peformed on an end-
point. The basic actions ?t and !t respectively denote the input and the output
of a message of type t. As in [25] and unlike most presentations of session types,
these forms do not specify a continuation, which can be attached using sequential
composition. External choices &[Ci : Ti]i∈I and internal choices ⊕[Ci : Ti]i∈I
describe protocols that can proceed according to different continuations Ti each
associated with a tag Ci. When the choice is internal, the process using the end-
point selects the continuation. When the choice is external, the process accepts
the selection performed on the peer endpoint. Therefore, an external choice cor-
responds to an input (of a tag Ci) and an internal choice to an output. Sequential
composition T;S combines two sub-protocols T and S into a protocol where all
the actions in T are supposed to be performed before any action in S. We have
two terminal protocols: 0 indicates that no further action is to be performed
on the endpoint; 1 indicates that the endpoint is meant to be resumed. As we
will see, this distinction affects also the kinding of endpoint types: an endpoint
whose protocol is 0 can be discarded for it serves no purpose; an endpoint whose
protocol is 1 must be resumed exactly once.

We proceed defining a labeled transition system that formalizes the (observ-
able) actions allowed by a protocol. This notion is instrumental in defining pro-
tocol equivalence which, in turn, is key in various parts of the type system.

Definition 1 (protocol LTS). Let done(·) be the least predicate on protocols
inductively defined by the following axiom and rule:

done(1)
done(T ) done(S)

done(T;S)

Let µ−→ be the least family of relations on protocols inductively defined by the
following axioms and rules, where µ ranges over labels ?t, !t, ?C, !C:

?t ?t−→ 1 !t !t−→ 1
k ∈ I

&[Ci : Ti]i∈I
?Ck−→ Tk

k ∈ I

⊕[Ci : Ti]i∈I
!Ck−→ Tk

T
µ−→ T ′

T;S µ−→ T ′;S
done(T ) S

µ−→ S′

T;S µ−→ S′

Protocol equivalence is defined in terms of a bisimulation relation:

Definition 2 (equivalent protocols). We write ∼ for the largest binary rela-
tion on protocols such that T ∼ S implies:

– done(T ) if and only if done(S);



– T
µ−→ T ′ implies S µ−→ S′ and T ′ ∼ S′;

– S
µ−→ S′ implies T µ−→ T ′ and T ′ ∼ S′.

We say that T and S are equivalent if T ∼ S holds.

Note that 0 is equivalent to all non-resumable session types that cannot make
any progress. For example, T1 = T1;S and T2 = 1;T2 are all equivalent to 0.

Proposition 1 (properties of ∼). The following properties hold:

1. (equivalence) ∼ is reflexive and transitive;
2. (associativity) T;(S;R) ∼ (T;S);R;
3. (unit) 1;T ∼ T;1 ∼ T .
4. (congruence) T ∼ T ′ and S ∼ S′ imply T;S ∼ T ′;S′.

The congruence property of ∼ is particularly important in our setting since
we use sequential composition as a modular construct for structuring programs.
We do not identify equivalent session types and assume that sequential compo-
sition associates to the right: T;S;R means T;(S;R). Although equivalence is
decidable, this fact has little importance in our setting compared to [25] since ∼
is never used in the typing rules concerning user syntax.

We are now ready to classify types according to their kind. We resort to a
coinductive definition to cope with possibly infinite types.

Definition 3 (kinding). Let :: be the largest relation between types and kinds
such that t :: κ implies either κ = L or

– t = unit or t = t1 → t2 or t = [T ]ι and T ∼ 0, or
– t = ∃ρ.s or t = ∀ρ.s and s :: κ, or
– t = t1 × t2 and ti :: κ for every i = 1, 2, or
– t = {Ci of ti}i∈I and ti :: κ for every i ∈ I.

We say that t is unlimited if t :: U and that t is linear if its only kind
is L, namely if t :: κ implies κ = L. Endpoint types with a non-terminated
session type and function types with kind annotation L are linear since they
denote values that must be used exactly once. Base types and function types
with kind annotation U are unlimited since they denote values that can be used
(or discarded) without restrictions. Note that the kind of a function type t→κ s
solely depends on κ, but not on the kind of t or s. For example, [?int]ι → int
is unlimited even if [?int]ι is not. Endpoint types [T ]ι are unlimited if T ∼ 0:
non-resumable endpoints on which no further actions can be performed can be
discarded. On the contrary, [1]ι is linear, since it denotes an endpoint that must
be resumed once. The kind of existential and universal types, products and
tagged unions is determined by that of the component types. For example, the
type t = {Nil of unit, Cons of int × t} of integer lists is unlimited, whereas
the type int× [1]ι is linear. Finally, note that Definition 3 accounts for a form
of subkinding: t :: U implies t :: L. This is motivated by the observation that it
is safe to use a value of an unlimited type exactly once.



Table 3. Type schemes of FuSe{} constants.

() : unit
pair : t→ s→κ t× s t :: κ

Cj : tj → {Ci of ti}i∈I j ∈ I
fix : ((t→ s)→ t→ s)→ t→ s
fork : (t→ unit)→ t→ unit

create : unit→ ∃ρ.([T ]ρ × [T ]ρ)
send : t→ [!t;T ]ι →κ [T ]ι t :: κ

receive : [?t;T ]ι → t× [T ]ι
select : ([Tj ]ι →κ {Ci of [Ti]ι}i∈I)→ [⊕[Ci : Ti]i∈I ]ι →κ [Tj ]ι j ∈ I
branch : [&[Ci : Ti]i∈I ]ι → {Ci of [Ti]ι}i∈I

As usual, the session types associated with peer endpoints must be dual to
each other to guarantee communication safety. Duality expresses the fact that
every input action performed on an endpoint is matched by a corresponding
output performed on its peer and is defined thus:

Definition 4 (session type duality). Session type duality is the function ·
coinductively defined by the following equations:

0 = 0
1 = 1

?t = !t
!t = ?t

&[Ci : Ti]i∈I = ⊕[Ci : T i]i∈I
⊕[Ci : Ti]i∈I = &[Ci : T i]i∈I

T;S = T;S

It is easy to verify that duality is an involution, that is T = T .
The type system makes use of two environments: identity environments ∆ are

sets of identities written ι1, . . . , ιn, representing the endpoints statically known
to a program fragment; type environments Γ are finite maps from names to types
written u1 : t1, . . . , un : tn associating a type with every (free) name occurring
in an expression. We write ∆,∆′ for ∆ ∪ ∆′ when ∆ ∩ ∆′ = ∅. We write Γ(u)
for the type associated with u in Γ , dom(Γ) for the domain of Γ , and Γ1, Γ2 for
the union of Γ1 and Γ2 when dom(Γ1) ∩ dom(Γ2) = ∅. We extend kinding to type
environments in the obvious way, writing Γ :: κ if Γ(u) :: κ for all u ∈ dom(Γ).
We also need a more flexible way of combining type environments that allows
names with unlimited types to be used any number of times.

Definition 5 (environment combination [15]). We write + for the partial
operation on type environments such that:

Γ + Γ ′ def= Γ , Γ ′ if dom(Γ) ∩ dom(Γ ′) = ∅
(Γ , u : t) + (Γ ′, u : t) def= (Γ + Γ ′), u : t if t :: U

Note that Γ + Γ ′ is undefined if Γ and Γ ′ contain associations for the same
name with different or linear types. When Γ :: U, we have that Γ + Γ is always
defined and equal to Γ itself.

The type schemes of FuSe{} constants are given in Table 3 as associations
c : t. Note that, in general, each constant has infinitely many types. Although



Table 4. FuSe{}: static semantics.

Typing rules for expressions ∆; Γ ` e : t

[t-const]

∆; Γ ` c : t
Γ :: U
c : t

[t-split]
∆; Γ1 ` e1 : t1 × t2 ∆; Γ2, x : t1, y : t2 ` e2 : t

∆; Γ1 + Γ2 ` let x, y = e1 in e2 : t

[t-name]

∆; Γ , u : t ` u : t
Γ :: U

[t-case]

∆; Γ1 ` e : {Ci of ti}i∈I ∆; Γ2 ` ei : ti →κi t (i∈I)

∆; Γ1 + Γ2 ` match e with {Ci ⇒ ei}i∈I : t

[t-fun]
∆; Γ , x : t ` e : s

∆; Γ ` λx.e : t→κ s
Γ :: κ

[t-app]
∆; Γ1 ` e1 : t→κ s ∆; Γ2 ` e2 : t

∆; Γ1 + Γ2 ` e1 e2 : s

[t-id-fun]
∆, ρ; Γ ` v : t

∆; Γ ` Λρ.v : ∀ρ.t

[t-id-app]
∆; Γ ` e : ∀ρ.t

∆; Γ ` e [ι] : t{ι/ρ}
ι ∈ ∆

[t-resume]
∆; Γ , u : [T ]ι ` e : t× [1]ι

∆; Γ , u : [T;S]ι ` {e}u : t× [S]ι

[t-pack]
∆; Γ ` e : t{ι/ρ}
∆; Γ ` dι, ee : ∃ρ.t

ι ∈ ∆

[t-unpack]
∆; Γ1 ` e1 : ∃ρ.t ∆, ρ; Γ2, x : t ` e2 : s
∆; Γ1 + Γ2 ` let dρ, xe = e1 in e2 : s

Typing rules for processes ∆; Γ ` P

[t-thread]
∆; Γ ` e : unit
∆; Γ ` 〈e〉

[t-par]

∆; Γi ` Pi (i=1,2)

∆; Γ1 + Γ2 ` P1 | P2

[t-session]
∆, a, a; Γ , a : [T ]a, a : [S]a ` P

∆; Γ ` (νa)P
T ∼ S

most associations are as expected, it is worth commenting on a few details.
First, observe that the kind annotation κ in the types of pair, send and select
coincides with the kind of the first argument of these constants. In particular,
when t is linear and pair/send/select is supplied one argument v of type t,
the resulting partial application is also linear. Second, in accordance with their
operational semantics (Table 2) all the primitives for session communications
(send, receive, select, and branch) return the very same endpoint they take
as input as indicated by the identity ι that annotates the endpoint types in both
the domain and range of these constants. Finally, in an application select v ε the
function v is meant to be applied to the peer of ε. This constraint is indicated by
the use of the co-identity ι and is key for the soundness of the type system. Note
also that the codomain of v matches the return type of branch, following the fact
that v is applied to the peer of ε after the communication has occurred (Table 2).
Finally, create returns a packaged pair of endpoints with dual session types. The
package must be opened before the endpoints can be used for communication.



The typing rules for FuSe{} are given in Table 4 and derive judgments ∆; Γ `
e : t for expressions and ∆; Γ ` P for processes. When present, side conditions are
written to the right of the rule to which they apply. A judgment is well formed
if all the identities occurring free in Γ and t are included in ∆. From now on we
make the implicit assumption that all judgments are well formed.

We now discuss the most important aspects of the typing rules. In [t-const],
the implict well-formedness constraint on typing judgments restricts the set of
types that we can give to a constant to those whose free identities occur in
∆. In [t-const] and [t-name], the unused part of the type environment must be
unlimited, to make sure that no linear name is left unused. The elimination rules
for products and tagged unions are standard. Note the use of + for combining
type environments so that the same linear resource is not used multiple times in
different parts of an expression. Rules [t-fun] and [t-app] deal with function types.
In [t-fun], the kind annotation on the arrow must be consistent with the kind of
the environment in which the function is typed. If any name in the environment
has a linear type, then the function must be linear itself to avoid repeated use of
such name. By contrast, the kind annotation plays no role in [t-app]. Abstraction
and application of identities are standard. The side condition in [t-id-app] makes
sure that the supplied identity is in scope. This condition is not necessarily
captured by the well formedness of judgments in case ρ does not occur in t.
Packing and unpacking are also standard. The identity variable ρ introduced
in [t-unpack] is different from any other identity known to e2. This prevents e2
from using ρ in any context where a specific identity is required. Also, well
formedness of judgments requires fid(s) ⊆ ∆, meaning that ρ is not allowed to
escape its scope. The most interesting and distinguishing typing rule of FuSe{}

is [t-resume]. Let us discuss the rule clockwise, starting from {e}u and recalling
that the purpose of this expression is to resume u once the evaluation of e is
completed. The rule requires u to have a type of the form [T;S]ι, which specifies
the identity ι of the endpoint and the protocols T and S to be completed in this
order. Within e the type of u is changed to [T ]ι and the evaluation of e must
yield a pair whose first component, of type t, is the result of the computation and
whose second component, of type [1]ι, witnesses the fact that the prefix protocol
T has been entirely carried out on u. Once the evaluation of e is completed, the
type of the endpoint in the pair is reset to the suffix S. The same identity ι
relates all the occurrences of the endpoint both in the type environments and in
the expressions. Note that the annotation u in { · }u does not count as a proper
“use” of u. Its purpose is solely to identify the endpoint being resumed.

The typing rules for processes are mostly unremarkable. In [t-session] the two
peers of a session are introduced both in the type environment and in the identity
environment. The protocols T and S of peer endpoints are required to be dual to
each other modulo protocol equivalence. The use of ∼ accounts for the possibility
that sequential compositions may be arranged differently in the threads using
the two peers. For instance, one thread might be using an endpoint with protocol
T , and its peer could have type 1;T in a thread that has not resumed it yet.
Still, T ∼ 1;T = 1;T .



We state a few basic properties of the typing discipline focusing on those
more closely related to resumptions. To begin with, we characterize the type
environments in which expressions and processes without free variables reduce.

Definition 6. We say that Γ is ground if dom(Γ) contains endpoints only; that
it is well formed if ε ∈ dom(Γ) implies Γ(ε) = [T ]ε; that it is balanced if ε, ε ∈
dom(Γ) implies Γ(ε) = [T ]ε and Γ(ε) = [S]ε and T ∼ S.

Note that in a well-formed environment the type associated with endpoint ε
is annotated with the correct identity of ε, that is ε itself.

As usual for session type systems, we must take into account the possibility
that the type associated with session endpoints changes over time. Normally this
only happens when processes use endpoints for communications. In our case,
however, also expressions may change endpoint types because of resumptions.
In order to track these changes, we introduce two relations that characterize the
evolution of type environments alongside expressions and processes. The first
relation is the obvious extension of equivalence ∼ to type environments:

Definition 7 (equivalent type environments). Let Γ = {εi : [Ti]εi}i∈I and
Γ ′ = {εi : [Si]εi

}i∈I . We write Γ ∼ Γ ′ if Ti ∼ Si for every i ∈ I.

The second relation includes ∼ and mimics communications at the type level:

Definition 8. Let  be the least relation between type environments such that:

Γ  Γ ′ if Γ ∼ Γ ′
Γ , ε : [!t;T ]ε, ε : [?t;S]ε  Γ , ε : [T ]ε, ε : [S]ε

Γ , ε : [⊕[Ci : Ti]i∈I ]ε, ε : [&[Ci : Si]i∈I ]ε  Γ , ε : [Tk]ε, ε : [Sk]ε if k ∈ I

Concerning subject reduction for expressions, we have:

Theorem 1 (SR for expressions). Let ∆; Γ ` e : t where Γ is ground and well
formed. If e→ e′, then ∆; Γ ′ ` e′ : t for some Γ ′ such that Γ ∼ Γ ′.

Theorem 1 guarantees that resumptions in well-typed programs do not change
arbitrarily the session types of endpoints. The only permitted changes are those
allowed by session type equivalence. Concerning progress, we have:

Theorem 2 (progress for expressions). If Γ is ground and well formed and
∆; Γ ` e : t and e X→, then either e is a value or e = E [K v] for some E , v, w,
and K ∈ {fork w, create, send w, receive, select w, branch}.

That is, an irreducible expression that is not a value is a term that is meant to
reduce at the level of processes. Note that a resumption {(v,ε)}ε′ is not a value
and is meant to reduce at the level of expressions via [R7]. Hence, Theorem 2
guarantees that in a well-typed program all such resumptions are such that
ε = ε′. An alternative reading for this observation is that each endpoint is
guaranteed to have a unique identity in every well-typed program.



Theorem 3 (SR for processes). Let ∆; Γ ` P where Γ is ground, well formed
and balanced. If P → Q, then ∆; Γ ′ ` Q for some Γ ′ such that Γ  ∗ Γ ′.

Apart from being a fundamental sanity check for the type system, Theo-
rem 3 states that the communications occurring in processes are precisely those
permitted by the session types in the type environments. Therefore, Theorem 3
gives us a guarantee of protocol fidelity. A particular instance of protocol fi-
delity concerns sequential composition: a well-typed process using an endpoint
with type T;S is guaranteed to perform the actions described by T first, and
then those described by S. Other standard properties including communication
safety and (partial) progress for processes can also be proved [21].

Example 1 (resumption combinators). In prospect of devising a library imple-
mentation of FuSe{}, the resumption expression { ·}u is challenging to deal with,
for its typing rule involves an non-trivial manipulation of the type environment
whereby the type of u changes as u flows into and out of the expression. In
practice, it is convenient to encapsulate { · }u expressions in two combinators
that can be easily implemented as higher-order functions (Sections 4.2 and 4.3):

@= def= λf.λx.{f x}x
@> def= λf.λx.let _, x = {((),f x)}x in x

The combinator @= is a general version of @> that applies to functions re-
turning an actual result in addition to the endpoint to be resumed. We derive

∆; f : [T ]ι →κ t× [1]ι ` f : [T ]ι →κ t× [1]ι ∆;x : [T ]ι ` x : [T ]ι
∆; f : [T ]ι →κ t× [1]ι, x : [T ]ι ` f x : t× [1]ι

∆; f : [T ]ι →κ t× [1]ι, x : [T;S]ι ` {f x}x : t× [S]ι
∆; f : [T ]ι →κ t× [1]ι ` λx.{f x}x : [T;S]ι →κ t× [S]ι

∆; ∅ ` λf.λx.{f x}x : ([T ]ι →κ t× [1]ι)→ [T;S]ι →κ t× [S]ι

for every T , ι, t and S such that fid(T ) ∪ fid(t) ∪ fid(S) ∪ {ι} ⊆ ∆. A similar
derivation allows us to derive

∆; ∅ ` @> : ([T ]ι →κ [1]ι)→ [T;S]ι →κ [S]ι

In the implementation we will give @= and @> their most general type by
leveraging OCaml’s support for parametric polymorphism. Other combinators
for resuming two or more endpoints can be defined similarly. For example,

@@> def= λf.λx.λy.let y, x = {let x, y = {f x y}y in (y,x)}x in (x,y)

is analogous to @>, but resumes two endpoints at once. �

Example 2 (alternative communication API). It could be argued that the com-
munication primitives send and receive are not really “primitive” because their



types make use of both I/O actions and sequential composition. Alternatively,
we could equip FuSe{} with two primitives send' and receive' having the same
operational semantics as send and receive but the following types:

send' : t→ [!t]ι →κ [1]ι t :: κ
receive' : [?t]ι → t× [1]ι

Starting from send' and receive', send and receive could then be derived
with the help of @= and @>, used below in infix notation:

send def= λz.λx.send' z @> x
receive def= λx.receive' @= x

We find a communication API based on send' and receive' appealing for
its cleaner correspondence between primitives and session type constructors. In
particular, with this API the resumption combinators account for all occurrences
of ; in protocols. In the formal model of FuSe{}, we have decided to stick to the
conventional typing of send and receive for continuity with other presentations
of similar calculi [8, 29, 25]. �

Example 3. This example illustrates the sort of havoc that could be caused if two
endpoints had the same identity. As a particular instance, we see the importance
of distinguishing the identity of peer endpoints. The derivation

...
x : [1]ι, y : [1]ι ` (y,x) : [1]ι × [1]ι

x : [1]ι, y : [1;S]ι ` {(y,x)}y : [1]ι × [S]ι

...
x̂ : [S]ι, ŷ : [1]ι ` (x̂,ŷ) : [S]ι × [1]ι

x : [1]ι, y : [1;S]ι ` let ŷ, x̂ = {(y,x)}y in (x̂,ŷ) : [S]ι × [1]ι
x : [1;T ]ι, y : [1;S]ι ` {let ŷ, x̂ = {(y,x)}y in (x̂,ŷ)}x : [S]ι × [T ]ι

x : [1;T ]ι ` λy.{let ŷ, x̂ = {(y,x)}y in (x̂,ŷ)}x : [1;S]ι →L [S]ι × [T ]ι
` λx.λy.{let ŷ, x̂ = {(y,x)}y in (x̂,ŷ)}x : [1;T ]ι → [1;S]ι →L [S]ι × [T ]ι

can be used to type check a function that, applied to two endpoints x and y whose
types are [1;T ]ι and [1;S]ι respectively, returns a pair containing the same two
endpoints, but with their types changed to [S]ι and [T ]ι. If there existed two
endpoints ε1 and ε2 with the same identity ι from two different sessions, the
function could be used to exchange their protocols, almost certainly causing
communication errors in the rest of the computation. If ε1 and ε2 were the peers
of the same session, then communication safety would still be guaranteed by the
condition T ∼ S, but protocol fidelity would be violated nonetheless. �

4 Context-Free Session Types in OCaml

In this section we detail two different implementations of FuSe{} communication
and resumption primitives as OCaml functions. We start defining a few basic data



structures and a convenient OCaml representation of session types (Section 4.1)
before describing the actual implementations. The first one (Section 4.2) is eas-
ily portable to any programming language supporting parametric polymorphism,
but relies on lightweight runtime checks to verify when an endpoint can be safely
resumed. The second implementation (Section 4.3) closely follows the typing dis-
cipline of FuSe{} presented in Section 3, but relies on more advanced features
(existential types) of the host language. The particular implementation we de-
scribe is based on OCaml’s first-class modules [7, 32]. We conclude the section
revisiting and extending the running example of [25] (Section 4.4).

4.1 Basic Setup

To begin with, we define a simple module Channel that implements unsafe com-
munication channels. In turn, Channel is based on OCaml’s Event module, which
implements communication primitives in the style of Concurrent ML [23].

module Channel : sig
type t
val create : unit → t (* create a new unsafe channel *)
val send : α → t → unit (* send a message of type α *)
val receive : t → α (* receive a message of type α *)

end = struct
type t = unit Event.channel
let create = Event.new_channel
let send x u = Event.sync (Event.send u (Obj.magic x))
let receive u = Obj.magic (Event.sync (Event.receive u))

end

An unsafe channel is just an Event.channel for exchanging messages of type
unit. The unit type parameter is just a placeholder, for communication primi-
tives perform unsafe casts (with Obj.magic) on every exchanged message. Note
that Event.send and Event.receive only create synchronization events, and
communication only happens when these events are passed to Event.sync. Using
Event channels is convenient but not mandatory: the rest of our implementation
is essentially independent of the underlying communication framework.

The second ingredient of our library is an implementation of atomic boolean
flags. Since OCaml’s type system is not substructural we are unable to distinguish
between linear and unlimited types and, in particular, we are unable to prevent
multiple endpoint usages solely using the type system. Following ideas of Tov
and Pucella [27] and Hu and Yoshida [11] and the design of FuSe [21], the idea is
to associate each endpoint with a boolean flag indicating whether the endpoint
can be safely used or not. The flag is initially set to true, indicating that the
endpoint can be used, and is tested by every operation that uses the endpoint.
If the flag is still true, then the endpoint can be used and the flag is reset to
false. If the flag is false, then the endpoint has already been used in the past
and the operation aborts raising an exception. Atomicity is needed to make sure



that the flag is tested and updated in a consistent way in case multiple threads
try to use the same endpoint simultaneously.
module Flag : sig

type t
val create : unit → t (* create a new atomic boolean flag *)
val use : t → unit (* mark as used or raise exception *)

end = struct
type t = Mutex.t
let create = Mutex.create
let use f = if not (Mutex.try_lock f) then raise Error

end

We represent an atomic boolean flag as a Mutex.t, that is a lock in OCaml’s
standard library. The value of the flag is the state of the mutex: when the mutex
is unlocked, the flag is true. Using the flag means attempting to acquire the
lock with the non-blocking function Mutex.try_lock. As for Event channels, the
mutex is a choice of convenience more than necessity. Alternative realizations,
possibly based on lightweight compare-and-swap operations, can be considered.

We conclude the setup phase by defining a bunch of OCaml singleton types
in correspondence with the session type constructors:

type 0 = End
type 1 = Resume
type ϕ msg = Message (* either ?ϕ or !ϕ *)
type ϕ tag = Tag (* either &[ϕ] or ⊕[ϕ] *)
type (α,β) seq = Sequence (* α;β *)

The type parameter ϕ is the type of the exchanged message in msg and a
polymorphic variant type representing the available choices in tag. The type
parameteres α and β in seq stand for the prefix and suffix protocols of a se-
quential composition α;β. The data constructors of these types are never used
and are given only because OCaml is more liberal in the construction of recur-
sive types when these are concrete rather than abstract. Hereafter, we use τ1,
τ2, . . . to range over OCaml types and α, β, . . . , ϕ to range over OCaml type
variables. Considering that OCaml supports equi-recursive types, we ignore once
again the concrete syntax for expressing infinite session types and work with
infinite trees instead. OCaml uses the notation τ as α for denoting a type τ in
which occurrences of α stand for the type as a whole.

4.2 A Dynamically Checked, Portable Implementation

The first implementation of the library that we present ignores identities in types
and verifies the soundness of resumptions by means of a runtime check. In this
case, an endpoint type [T ]ι is encoded as the OCaml type (τ1,τ2) t where τ1
and τ2 are roughly determined as follows:

– when T is a self-dual session type constructor (either 0, 1, or ; ), then both
τ1 and τ2 are the corresponding OCaml type (0, 1, or seq, respectively);



– when T is an input (either ?t or &[Ci : Ti]i∈I), then τ1 is the encoding the
received message/choice and τ2 is 0; dually when T is an output.

More precisely, types and session types are encoded thus:

Definition 9 (encoding of types and session types). Let J·K and 〈〈·〉〉 be the
encoding functions coinductively defined by the following equations:

J0K = (0,0) t
J1K = (1,1) t
J?tK = (〈〈t〉〉 msg,0) t
J!tK = (0,〈〈t〉〉 msg) t

J&[Ci : Ti]i∈IK = ({Ci of JTiK}i∈I tag,0) t
J⊕[Ci : Ti]i∈IK = (0,{Ci of JTiK}i∈I tag) t

JT;SK = ((JT K,JSK) seq,(JT K,JSK) seq) t
〈〈[T ]ι〉〉 = JT K

where 〈〈·〉〉 is extended homomorphically to all the remaining type constructors
erasing kind annotations on arrows and existential and universal quantifiers.

Note that identities ι in endpoint types are simply erased; we will revise this
choice in the second implementation (Section 4.3). The encoding is semantically
grounded through the relationship between sessions and linear channels [14, 5,
4, 21] and is extended here to sequential composition for the first time. The
distinguishing feature of this encoding is that is makes it easy to express session
type duality constraints solely in terms of type equality:

Theorem 4. If JT K = (τ1,τ2) t, then JT K = (τ2,τ1) t.

That is, we pass from a session type to its dual by flipping the type parameters
of the t type. This also works for unknown or partially known session types: the
dual of (α,β) t is (β,α) t.

We can now look at the concrete representation of the type (α,β) t:

type (α,β) t = { chan : Channel.t; pol : int; once : Flag.t }

An endpoint is a record with three fields, a reference chan to the unsafe
channel used for the actual communications, an integer number pol ∈ {+1,−1}
representing the endpoint’s polarity, and an atomic boolean flag once indicating
whether the endpoint can be safely used or not. Of course, this representation is
hidden from the user of the library and any direct access to these fields occurs
via one of the public functions that we are going to discuss.

The FuSe{} primitives for session communication are implemented by cor-
responding OCaml functions with the following signatures, which are directly
related to the type schemes in Table 3 through the encoding in Definition 9:

val create : unit → (α,β) t × (β,α) t
val send' : ϕ → (0,ϕ msg) t → (1,1) t
val receive' : (ϕ msg,0) t → ϕ× (1,1) t
val select : ((β,α) t → ϕ) → (0,ϕ tag) t → (α,β) t
val branch : (ϕ tag,0) t → ϕ
val (@=) : ((α,β) t → ϕ× (1,1) t) →

(((α,β) t,(γ,δ) t) seq,((β,α) t,(δ,γ) t) seq) t →
ϕ× (γ,δ) t



We take advantage of parametric polymorphism to give these functions their
most general types. We implement the alternative communication API with the
primitives send' and receive' because their type signatures are simpler. From
these functions, send and receive can be easily derived as shown in Example 2.
We also omit @> which is just a particular instance of @= (Example 1). The types
for select and branch are slightly more general than those in Table 3, but the
tossing of tags between choices and unions cannot be expressed as accurately in
OCaml without fixing the set of tags. The given typing is still sound though.

Since this version of the library ignores endpoint identities, the endpoints
returned by create are already unpackaged. The implementation of create is

let create () = let ch = Channel.create () in
{ chan = ch; pol = +1; once = Flag.create () },
{ chan = ch; pol = -1; once = Flag.create () }

and consists of the creation of a new unsafe channel ch and two records referring
to it with opposite polarities and each with its own validity flag.

The communication primitives are defined in terms of corresponding opera-
tions on the underlying unsafe channel and make use of an auxiliary function

let fresh u = { u with once = Flag.create () }

that returns a copy of u with once overwritten by a fresh flag. We have:

let send' x u = Flag.use u.once; Channel.send x u.chan; fresh u
let receive' u = Flag.use u.once; (Channel.receive u.chan, fresh u)
let select f u = Flag.use u.once; Channel.send f u.chan; fresh u
let branch u = Flag.use u.once; Channel.receive u.chan (fresh u)

The flag associated with the endpoint u is used before communication takes
place and refreshed just before the endpoint is returned to the user. It is not
possible to refresh the flag by just releasing the lock in it, for any existing alias
to the endpoint must be permanently marked as invalid [21].

We complete the module with the implementation of @=, shown below:

let (@=) scope u =
let res, v = scope (Obj.magic u) in
if u.chan == v.chan && u.pol = v.pol then (res, Obj.magic v)
else raise Error

The endpoint u is passed to scope, which evaluates to a pair made of the
result res of the computation and the endpoint v to be resumed. The cast
Obj.magic u is necessary to turn the type of u from T;S to T , as required by
scope. The second line in the body of @= checks that the endpoint v resulting
from the evaluation of scope is indeed the same endpoint u that was fed in
it. Note the key role of the polarity in checking that u and v are the same
endpoint and the use of the physical equality operator ==, which compares only
the references to the involved unsafe channels. An exception is raised if v is
not the same endpoint as u. Otherwise, the result of the computation and v
are returned. The cast Obj.magic v effectively resumes the endpoint turning



its type from 1 to S. The two casts roughly delimit the region of code that we
would write within { · }u in the formal model.

4.3 A Statically Checked Implementation

The second implementation we present reflects more accurately the typing in-
formation in endpoint types, which includes the identity of endpoints. In this
case, we represent an endpoint type [T ]ρ as an OCaml type (τ1,τ2,ρ,ρ) t where
τ1 and τ2 are determined from T in a similar way as before. In addition, the
phantom type parameter ρ is the (abstract) identity of the endpoint and ρ that
of its peer (we represent identity variables as OCaml type variables and assume
that ρ is another OCaml type variable distinct from ρ). More formally, the revised
encoding of (session) types into OCaml types is given below:

Definition 10 (revised encoding of types and session types). Let J·Kι and
〈〈·〉〉 be the encoding functions coinductively defined by the following equations:

J0Kι = (0,0,ι,ι) t
J1Kι = (1,1,ι,ι) t
J?tKι = (〈〈t〉〉 msg,0,ι,ι) t
J!tKι = (0,〈〈t〉〉 msg,ι,ι) t

J&[Ci : Ti]i∈IKι = ({Ci of JTiKι}i∈I tag,0,ι,ι) t
J⊕[Ci : Ti]i∈IKι = (0,{Ci of JTiKι}i∈I tag,ι,ι) t
JT;SKι = ((JT Kι,JSKι) seq,(JT Kι,JSKι) seq,ι,ι) t

〈〈[T ]ι〉〉 = JT Kι

where 〈〈·〉〉 is extended homomorphically to all the remaining type constructors
erasing kind annotations on arrows and existential and universal quantifiers.

In Definition 10, ι is always an identity (co-)variable for we apply the encoding
to user types in which these variables are never instantiated. Once again, the
relation between the encoding of a session type and that of its dual can be
expressed in terms of type equality:

Theorem 5. If JT Kι = (τ1,τ2,ι,ι) t, then JT Kι = (τ2,τ1,ι,ι) t.

The concrete representation of (α,β,ι,ι) t is the same that we have given
in Section 4.2. As an optimization, the pol field of that representation could be
omitted since there it is only necessary to verify an endpoint equality condition
which is statically guaranteed by the implementation we are discussing now.

The easiest way of representing an existential type in OCaml is by means of
its built-in module system [17]. In our case, we have to make sure that create
returns a packaged pair of peer endpoints, each with its own identity. The OCaml
representation of this type can be given by the following module signature

module type Package = sig
type i and j
val unpack : unit → (α,β,i,j) t × (β,α,j,i) t

end

which contains two abstract type declarations i and j, corresponding to the
identities of the two endpoints, and a function unpack to retrieve the endpoints



once the module with this signature has been opened. Concerning the implemen-
tation of Package, there are two technical issues we have to address, both related
to the fact that there cannot be two different endpoints with the same identity.
First, we have to make sure that each session has its own implementation of the
Package module signature. To this aim, we take advantage of OCaml’s support
for first-class modules [7, 32], allowing us to write a function (create in the
specific case) that returns a module implementation. The second issue is that
we cannot store the two endpoints directly in the module, for the types of the
endpoints contain type variables (α and β in the above signature) which are not
allowed to occur free in a module. For this reason, we delay the actual creation
of the endpoints at the time unpack is applied. This means, however, that the
same implementation of Package could in principle be unpacked several times,
instantiating different sessions whose endpoints would share the same identities.
To make sure that unpack is applied at most once for each implementation of
Package we resort once again to an atomic boolean flag.

The signatures of the functions implementing the communication primitives
are essentially the same that we have already seen in Section 4.2, except for the
presence of identity variables ρ and σ and the type of create, which now returns
a packaged pair of endpoints:

val create : unit → (module Package)
val send' : ϕ → (0,ϕ msg,ρ,σ) t → (1,1,ρ,σ) t
val receive' : (ϕ msg,0,ρ,σ) t → ϕ× (1,1,ρ,σ) t
val select : ((β,α,σ,ρ) t → ϕ) → (0,ϕ tag,ρ,σ) t → (α,β,ρ,σ) t
val branch : (ϕ tag,0,ρ,σ) t → ϕ
val (@=) : ((α,β,ρ,σ) t → ϕ× (1,1,ρ,σ) t) →

(((α,β,ρ,σ) t,(γ,δ,ρ,σ) t) seq,
((β,α,σ,ρ) t,(δ,γ,σ,ρ) t) seq,ρ,σ) t →
ϕ× (γ,δ,ρ,σ) t

Note in particular the type of select, where we refer to both an endpoint
and its peer by flipping the type parameters corresponding to session types (α
and β) and those corresponding to identity variables (ρ and σ) as well.

The implementation of create is shown below, in which Previous.create
refers to the version of create detailed in Section 4.2:

let create () =
let once = Flag.create () in
(module struct

type i and j
let unpack () = Flag.use once; Previous.create ()

end : Package)

The implementation of the I/O primitives is the same as in Section 4.2 and
need not be repeated here. The resumption combinator shrinks to a simple cast

let (@=) = Obj.magic



since the equality condition on endpoints that is necessary for its soundness is
now statically guaranteed by the type system. The cast is necessary because @=
coerces its first argument to a function with a different type. With this imple-
mentation of FuSe{}, a session is typically created thus

let module A = (val create ()) in (* create session *)
let a, b = A.unpack () in (* unpack endpoints *)
fork server a; (* fork server *)
client b (* run client *)

where client and server are suitable functions that use the two endpoints of
the session without making any assumption on their identities. Otherwise, the
abstract types A.i and A.j would escape their scope, resulting in a type error.

4.4 Extended Example: Trees Over Sessions

In this section we revisit and expand an example taken from [25] to show how
context-free session types help improving the precision of (inferred) protocols
and the robustness of code. We start from the declaration

type α tree = Leaf | Node of α × α tree × α tree

defining an algebraic representation of binary trees, and we consider the following
function, which sends a binary tree over a session endpoint. Note that, for the
sake of readability, in this section we assume that OCaml polymorphic variant
tags are curried as in the formal model and write for example `Node instead of
its η-expansion fun x → `Node x.

1 let send_tree t u =
2 let rec send_tree_aux t u =
3 match t with
4 | Leaf → select `Leaf u
5 | Node (x, l, r) → let u = select `Node u in
6 let u = send x u in
7 let u = send_tree_aux l u in
8 let u = send_tree_aux r u in u
9 in select `Done (send_tree_aux t u)

The auxiliary function send_tree_aux serializes a (sub)tree t on the end-
point u, whereas send_tree invokes send_tree_aux once and finally sends a
sentinel label `Done that signals the end of the stream of messages. FuSe infers
for send_tree the type α tree→ Treg → A where Treg is the session type

Treg = ⊕[`Leaf : Treg, `Node : !α;Treg, `Done : A] (4.1)

and A is a session type variable (the code in send_tree does not specify in any
way how u will be used when send_tree returns). Without the sentinel `Done,
the protocol Treg inferred by OCaml would never terminate (like Sreg in (1.1))
making it hardly useful. Even with the sentinel, though, Treg is very imprecise.



For example, it allows the labels `Node, `Leaf, and `Done to be selected in this
order, even though send_tree never generates such a sequence.1

To illustrate the sort of issues that this lack of precision may cause, it helps
to look at a consumer process that receives a tree sent with send_tree:

1 let receive_tree u =
2 let rec receive_tree_aux u =
3 match branch u with
4 | `Leaf u → Leaf, u
5 | `Node u → let x, u = receive u in
6 let l, u = receive_tree_aux u in
7 let r, u = receive_tree_aux u in
8 Node (x, l, r), u
9 | _ → assert false (* impossible *)

10 in let t, u = receive_tree_aux u in
11 match branch u with
12 | `Done u → (t, u)
13 | _ → assert false (* impossible *)

This function consists of a main body (lines 2–9) responsible for building up a
(sub)tree received from u, the bootstrap of the reception phase (line 10), and a fi-
nal reception that awaits for the sentinel (lines 11–13). For receive_tree, OCaml
infers the type Treg → α tree×A. The fact that send_tree and receive_tree
use endpoints with dual session types should be enough to reassure us that the
two functions communicate safely within the same session. Unfortunately, our
confidence is spoiled by two suspicious catch-all cases (lines 9 and 13) without
which receive_tree would be ill typed. In particular, omitting line 9 would
result in a non-exhaustive pattern matching (lines 3–8) because label `Done can
in principle be received along with `Leaf and `Node. A similar issue would arise
omitting line 13. Omitting both lines 9 and 13 would also be a problem. In
search of a typing derivation for receive_tree, OCaml would try to compute
the intersection of the labels handled by the two pattern matching constructs,
only to find out that such intersection is empty.

We clean up and simplify send_tree and receive_tree using resumptions:

1 let rec send_tree t u =
2 match t with
3 | Leaf → select `Leaf u
4 | Node (x, l, r) → let u = select `Node u in
5 let u = send x u in
6 let u = send_tree l @> u in (*resumption*)
7 let u = send_tree r u in u
8 let rec receive_tree u =
9 match branch u with

1 The claim made in [25] that send_tree_aux is ill typed is incorrect. There exist
typing derivations for send_tree_aux proving that it has type α tree→ T → T for
every T that satisfies the equation T = ⊕[`Leaf : T, `Node : !α;T, . . . ].



10 | `Leaf u → Leaf, u
11 | `Node u → let x, u = receive u in
12 let l, u = receive_tree @= u in (*resumption*)
13 let r, u = receive_tree u in Node (x, l, r), u

In send_tree we use the simple resumption @> since the function only returns
the endpoint u. In receive_tree we use @= since the function returns the re-
ceived tree in addition to the continuation endpoint. Note that we no longer need
an explicit sentinel message `Done that marks the end of the message stream
because the protocol now specifies exactly the number of messages needed to
serialize a tree. For the same reason, the catch-all cases in receive_tree are
no longer necessary. For these functions, OCaml respectively infers the types
α tree → [Tcf]ρ → [1]ρ and [Tcf]ρ → α tree × [1]ρ where Tcf is the session
type such that

Tcf = ⊕[`Leaf : 1, `Node : !α;Tcf;Tcf]

The leftmost occurrence of ; in !α;Tcf;Tcf is due to the communication
primitive (either send or receive) and the rightmost one to the resumption.

Note that the only difference between the revised send_tree and the homony-
mous function presented in [25] is the occurrence of @>. All the other examples
in [25] can be patched similarly by resuming endpoints at the appropriate places.

5 Related work

The work most closely related to ours is [25] in which Thiemann and Vasconcelos
introduce context-free session types, develop their metatheory, and prove that
session type equivalence is decidable. In [25], the only typing rules that can
eliminate sequential compositions are those concerning send and receive. This
choice calls for a type system with (1) a structural rule that rearranges sequential
compositions in session types and (2) support for polymorphic recursion. As a
consequence, context-free session type checking, left as an open problem in [25],
appears to rely crucially on type annotations provided by the programmer. In
contrast, our approach relies on the use of resumptions inserted in the code. As
we have seen in Section 4, this approach makes it easy to embed the resulting
typing discipline in a host programming language and to take advantage of
its type inference engine. Overall, we think that our approach strikes a good
balance between expressiveness and flexibility: resumptions are unobtrusive and
typically sparse, their location is easy to spot in the code, and they give the
programmer complete control over the occurrences of sequential compositions in
session types, resolving the ambiguities that arise with context-free session type
inference (Sections 1 and 4.4).

A potential limitation of our approach compared to [25] is that we require
processes operating on peer endpoints of a session to mirror each other as far
as the placement of resumptions is concerned. For example, a process using
an endpoint with type (!int;1);?bool may interact with another process that
uses an endpoint with type (?int;1);!bool, but not with a process using an



endpoint with type ?int;!bool even though (?int;1);!bool ∼ ?int;!bool.
Both processes must resume the endpoints they use after the exchange of the
first message. Understanding the practical impact of this limitation requires an
extensive analysis of code that deals with context-free protocols. We have not
pursued such investigation, but we can make two observations nonetheless. First,
resumptions are often used in combination with recursion and interacting recur-
sive processes already tend to mirror each other by their own recursive nature.
We can see this by comparing send_tree and receive_tree (Section 4.4) and
also by looking at the examples in [25]. Second, it is easy to provide explicit co-
ercions corresponding to laws of ∼. Such coercions, whose soundness is already
accounted for by Theorem 1, can be used to rearrange sequential compositions
in session types. For example, a coercion (A;1);B → A;B composed with a
function ?int;!bool → α would turn it into a function (?int;1);!bool → α.
The use of coercions augments the direct involvement of the programmer, but is
a low-cost solution to broaden the cases already addressed by plain resumptions.

FuSe [21] is an OCaml implementation of binary sessions that combines static
protocol enforcement with runtime checks for endpoint linearity [27, 11] and
resumption safety (Section 4.2). Support for sequential composition of session
types based on resumptions was originally introduced in FuSe to describe iter-
ative protocols, showing that a class of unbounded protocols could be described
without resorting to (equi-)recursive types. The work of Thiemann and Vascon-
celos [25] prompted us to formalize resumptions and to study their implications
to the precision of protocol descriptions. This led to the discovery of a bug in
early versions of FuSe where peer endpoints were given the same identity (cf.
the discussion at the end of Example 3) and then to the development of a fully
static typing discipline to enforce resumption safety (Sections 3 and 4.3).

The use of type variables abstracting over the identity of endpoints has been
inspired by works on regions and linear types [30, 2], by L3 [1], a language with
locations supporting strong updates, and Alms [28, 26], an experimental general-
purpose programming language with affine types. In these works, abstract iden-
tities are used to associate an object with the region it belongs to [30, 2], or
to link the (non-linear) reference to a mutable object with the (linear or affine)
capability for accessing it. Interestingly, in these works separating the reference
from the capability (hence the use of abstract identities) is not really a neces-
sity, but rather a technique that results in increased flexibility: the reference can
be aliased without restrictions to create cyclic graphs [1] or to support “dirty”
operations on shared data structures [28]. In our case, endpoint identities are
crucial for checking the safety of resumptions. As one of the anonymous reviewers
pointed out, the technique of using type variables abstracting over regions can
be traced back to the implementation of stateful computations in Haskell [16],
which was further elaborated and proven safe in [18].

Acknowledgments. The author is grateful to the anonymous ESOP reviewers for
their detailed and valuable feedback and to Hernán Melgratti for reading and
commenting on an early draft of the paper.



References

[1] Amal Ahmed, Matthew Fluet, and Greg Morrisett. L3: A linear language
with locations. Fundamenta Informaticae, 77(4):397–449, 2007.

[2] Arthur Charguéraud and François Pottier. Functional translation of a cal-
culus of capabilities. In Proceedings of ICFP’08, pages 213–224. ACM, 2008.

[3] Bruno Courcelle. Fundamental properties of infinite trees. Theoretical Com-
puter Science, 25:95–169, 1983.

[4] Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types revis-
ited. In Proceedings of PPDP’12, pages 139–150. ACM, 2012.

[5] Romain Demangeon and Kohei Honda. Full abstraction in a subtyped pi-
calculus with linear types. In Proceedings of CONCUR’11, LNCS 6901,
pages 280–296. Springer, 2011.

[6] Gert Florijn. Object protocols as functional parsers. In Proceedings of
ECOOP’95, LNCS 952, pages 351–373. Springer, 1995.

[7] Alain Frisch and Jacques Garrigue. First-class modules and composable
signatures in Objective Caml 3.12. In ACM SIGPLAN Workshop on ML,
2010.

[8] Simon J. Gay and Vasco Thudichum Vasconcelos. Linear type theory for
asynchronous session types. Journal of Functional Programming, 20(1):19–
50, 2010.

[9] Kohei Honda. Types for dyadic interaction. In Proceedings of CONCUR’93,
LNCS 715, pages 509–523. Springer, 1993.

[10] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language prim-
itives and type disciplines for structured communication-based program-
ming. In Proceedings of ESOP’98, LNCS 1381, pages 122–138. Springer,
1998.

[11] Raymond Hu and Nobuko Yoshida. Hybrid Session Verification through
Endpoint API Generation. In Proceedings of FASE’16, LNCS 9633, pages
401–418. Springer, 2016.

[12] Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Lúıs Caires, Marco Car-
bone, Pierre-Malo Deniélou, Dimitris Mostrous, Luca Padovani, António
Ravara, Emilio Tuosto, Hugo Torres Vieira, and Gianluigi Zavattaro. Foun-
dations of session types and behavioural contracts. ACM Computing Sur-
veys, 49(1):3, 2016.

[13] A. J. Kfoury, Jerzy Tiuryn, and Pawel Urzyczyn. Type reconstruction in
the presence of polymorphic recursion. ACM Transactions on Programming
Languages and Systems, 15(2):290–311, 1993.

[14] Naoki Kobayashi. Type systems for concurrent programs. In 10th An-
niversary Colloquium of UNU/IIST, LNCS 2757, pages 439–453. Springer,
2002. Extended version available at http://www.kb.ecei.tohoku.ac.jp/
˜koba/papers/tutorial-type-extended.pdf.

[15] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity
and the pi-calculus. ACM Transactions on Programming Languages and
Systems, 21(5):914–947, 1999.

http://www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf
http://www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf


[16] John Launchbury and Simon L. Peyton Jones. State in Haskell. Lisp and
Symbolic Computation, 8(4):293–341, 1995.

[17] John C. Mitchell and Gordon D. Plotkin. Abstract types have existential
type. ACM Transactions on Programming Languages and Systems, 10(3):
470–502, 1988.

[18] Eugenio Moggi and Amr Sabry. Monadic encapsulation of effects: a revised
approach (extended version). Journal of Functional Programming, 11(6):
591–627, 2001.

[19] Oscar Nierstrasz. Regular types for active objects. In Proceedings of OOP-
SLA’93, pages 1–15. ACM, 1993.

[20] Luca Padovani. Context-free session type inference. Technical report, Uni-
versità di Torino, 2016. Available at https://hal.archives-ouvertes.
fr/hal-01385258/document, last accessed 04 Jan 2017.

[21] Luca Padovani. A Simple Library Implementation of Binary Sessions. Jour-
nal of Functional Programming, 27, 2017.

[22] António Ravara and Vasco Thudichum Vasconcelos. Typing non-uniform
concurrent objects. In Proceedings of CONCUR’00, LNCS 1877, pages 474–
488. Springer, 2000.

[23] John H. Reppy. Concurrent Programming in ML. Cambridge University
Press, 1999.

[24] Mario Südholt. A model of components with non-regular protocols. In
Revised Selected Papers of SC’05, LNCS 3628, pages 99–113. Springer, 2005.

[25] Peter Thiemann and Vasco T. Vasconcelos. Context-Free Session Types. In
Proceedings of ICFP’16, pages 462–475. ACM, 2016.

[26] Jesse A. Tov. Practical Programming with Substructural Types. PhD thesis,
Northeastern University, 2012.

[27] Jesse A. Tov and Riccardo Pucella. Stateful Contracts for Affine Types. In
Proceedings of ESOP’10, LNCS 6012, pages 550–569. Springer, 2010.

[28] Jesse A. Tov and Riccardo Pucella. Practical affine types. In Proceedings
of POPL’11, pages 447–458. ACM, 2011.

[29] Philip Wadler. Propositions as sessions. Journal of Functional Program-
ming, 24(2-3):384–418, 2014.

[30] David Walker and Kevin Watkins. On regions and linear types. In Proceed-
ings of ICFP’01, pages 181–192. ACM, 2001.

[31] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type
soundness. Information and Computation, 115(1):38–94, 1994.

[32] Jeremy Yallop and Oleg Kiselyov. First-class modules: hidden power and
tantalizing promises. In ACM SIGPLAN Workshop on ML, 2010.

https://hal.archives-ouvertes.fr/hal-01385258/document
https://hal.archives-ouvertes.fr/hal-01385258/document

	Context-Free Session Type Inference

