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Abstract

Today, there is considerable interest in personal healthcare. The perva-

siveness of technology allows to precisely track human behavior; however, when

dealing with the development of an intelligent assistant exploiting data acquired

through such technologies, a critical issue has to be taken into account; namely,

that of supporting the user in the event of any transgression with respect to

the optimal behavior. In this paper we present a reasoning framework based on

Simple Temporal Problems that can be applied to a general class of problems,,

which we called “cake&carrot problems”, to support reasoning in presence of

human transgression. The reasoning framework offers a number of facilities to

ensure a smart management of possible “wrong behaviors” by a user to reach

the goals defined by the problem.

This paper describes the framework by means of the prototypical use case

of diet domain. Indeed, following a healthy diet can be a difficult task for

both practical and psychological reasons and dietary transgressions are hard to

avoid. Therefore, the framework is tolerant to dietary transgressions and adapts

the following meals to facilitate users in recovering from such transgressions.

Finally, through a simulation involving a real hospital menu, we show that the

framework can effectively achieve good results in a realistic scenario.
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1. Introduction

Patient empowerment in healthcare is a challenging goal for medical infor-

matics. The ubiquity of technology allows a pervasive tracking of the human

behavior that produce a considerable amount of data. The basic principle of

“quantified self”, that has recently been adopted to indicate a field of study5

for the ubiquitous monitoring of human activities, is to use electronic sensors

to acquire user data. Quantified self answers the necessity to monitor, to show

and sometimes suggest virtuous choices in smart systems designed for personal

healthcare. In general, in the personal healthcare domain, users can track some

personal data regarding their activities; in fact, it could be useful to exploit such10

data in order to elicit a virtuous behavior regarding specific goals, e.g., losing

weight, following a healthy diet, exercising regularly, increasing water drinking,

increasing sleeping time or correctly assuming drugs.

In the personal healthcare domain it is possible to characterize a class of

problems with some distinctive features, specifically: (1) a quantitative overall15

goal to be reached by summing up the contributions of a number of quantitative

sub-goals; (2) the presence of constraints that allow for some tolerance in the

sub-goals without necessarily precluding the fulfillment of the overall goal; (3)

the possibility of non-optimal human behavior, i.e., transgressions; (4) the op-

portunity to compensate earlier transgressions with respect to the fulfillment of20

the overall goals. For instance, a user may be recommended to score an average

number of 10,000 steps per day (sub-goal) for reaching a total of 70,000 steps

a week (overall goal). In order to guide a virtuous behavior, a smart system

should account that users could not always make all the 10,000 steps per day

and, moreover, it should support the users in compensating their transgressions25

by walking more steps in the following days to reach the overall goal. Another

example is related to food: to follow a diet and assume the correct amount of
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nutrients over a week (overall goal), it could be useful to compensate a trans-

gression in a meal with the subsequent meals (sub-goals) of the week. We call

problems of this class cake&carrot problems, to remind that a transgression (e.g.,30

eating cake today) should be compensated by a virtuous behavior (e.g., eating

carrots tomorrow).

A smart system coping with cake&carrot problems should also account for

a set of challenging issues that, in a realistic scenario, can be associated with

such problems, such as (5) a possible indeterminacy in the recording of the35

numeric value associated to a specific sub-goal fulfillment – for instance, the

exact number of steps scored in a walk or the precise amount of eaten food

could be unknown; (6) the unavailability of a “perfect” compensating action

and thus the necessity to choose among a set of non-optimal possibilities – for

instance, a specific destination that allows to perform the required number of40

steps could not be reached or the perfect meal that counterbalances an excess

could not be taken; (7) the presence of possibly contrasting multiple factors to

be satisfied at the same time – for instance, if users decide to wake up earlier

to go for a walk then they may not get enough sleep, or if they decide for

a low-calorie dish they may not reach an adequate protein quote; and (8) the45

possibility of multiple transgressions, even in following the compensating actions

– for instance, in a day following a first transgression, users may be not able

to score all the proposed steps, or they may be not willing to eat the proposed

compensating meal.

In this paper we describe an artificial intelligence framework – an extension50

of the Simple Temporal Problem (henceforth, STP) formalism – that is able to

deal with cake&carrot problems supporting users wishing to counterbalance a

transgressions. For the sake of clarity we chose to illustrate our framework using

a dietary scenario as a prototypical example of carrot&cake problems. In this

scenario, the reasoning framework acts as a sort of virtual dietitian continually55

supporting the users when dealing with a specific diet.

Following a healthy diet is hard since transgressions are frequent. For ex-

ample, many people are forced to eat out on a daily basis, relying on a limited
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number of dishes to choose from. On the other hand, during holidays meals

providing a significantly high calorie content are consumed for several days in a60

row. Thus, while dietary transgressions are difficult to avoid, when a transgres-

sion occurs, it is useful to be aware of its consequences and dynamically adjust

the upcoming meals taking into account the impact of such transgressions in

order to effectively compensate. Experimental studies show that people may

not be able to adjust their diets for psychological reasons too. A well-known65

phenomenon that shows this peculiar human behavior is called the Stock-Flow

failure. A very simple metaphor of the dynamics of body weight gain/loss is the

bathtub water level, which is determined both by the rate of water flowing in

and the rate of water draining out. However, people may encounter some diffi-

culties to adapt their eating behavior in order to take into account this dynamic70

model. In particular, experimental data show that the necessity to compensate

high calorie meals with low calorie meals to regulate the body weight is often

disregarded [1].

There are two mains contributions in this paper. The first contribution

is methodological and consists in extending STP for supporting cake&carrot75

problems. More specifically, we have 1) extended STP for supporting also in-

determinate constraints and 2) exploited the minimal network computed by

the constraint propagation algorithms to offer some reasoning facilities such as,

making reference to the dietary use case:

• checking the compatibility of specific meals with specific diets;80

• adjusting a diet upon a dieter’s actual food intake;

• adjusting a diet upon a dieter’s future estimated food intake;

• determining the possible consequences that indulging on specific foods can

have on a specific diet;

• simulating the impact of a hypothetical meal on the overall diet;85

• choosing the “best” meal among a set of possible meals;
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• providing a symbolic evaluation of the adequacy of a meal to the diet;

• supporting imprecision/indeterminacy in food intake.

The second contribution is applicative and consists in 1) the formalization

of diets and food intakes in terms of STP to design a system tolerant to dietary90

transgressions and capable to adjust the rest of a diet, in terms of its macronu-

trients values, to recover from such transgressions and 2) a quantitative eval-

uation of the reasoning mechanisms in a controlled realistic hospital scenario,

where we considered various types of users and various degrees of transgression

disregarding the dietary suggestions provided by the reasoning framework.95

The rest of the paper is organized as follows: in Section 2, we introduce some

background notions regarding the Simple Temporal Problem framework. In

Section 3, we describe the methodological contribution of the paper by proposing

several facilities for reasoning in the diet domain. In Section 4, we describe an

experimental evaluation of the reasoning module in a realistic context by using100

the simulation paradigm. Finally, in Section 5 we draw some conclusions and

compare our system to related works.

2. Background

In this section we introduce the framework of STP and we point out some

limitations that it is necessary to overcome for modeling the class of problems105

we are addressing.

An STP constraint [2] restricts the distance between two time points to be

between a lower bound and an upper bound. It has the form c ≤ x − y ≤ d,

where x and y are time points and c and d are numbers (both discrete and

real numbers are admitted). Also strict inequalities (i.e., <) are admitted and110

−∞ and +∞ can be used for denoting the fact that there is no lower or upper

bound, respectively.

An STP is a conjunction of STP constraints and it can be represented as a

graph whose nodes are the time points and the arcs are labeled with the STP

constraint between the points.115
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A solution of an STP is an assignment of a value to each time point such

that all STP constraints of the STP are satisfied.

The problem of determining the consistency of an STP, i.e., whether there

exists a solution, is tractable and it can be solved by detecting whether in

the graph there exists a negative cycle. All-pairs shortest paths algorithms on120

weighted graphs such as Floyd-Warshall’s algorithms can determine the con-

sistency of an STP and, in case the STP is consistent, they also compute the

minimal network [2].

A minimal network is an STP equivalent to the original STP (i.e., it has the

same solutions) and it makes explicit all the implied STP constraints by repre-125

senting the strictest constraint between each pair of points, which corresponds

to the minimum and maximum distance between each pair of points. A minimal

network has the property of being decomposable, i.e., any partial assignment of

values to time points that is consistent with the STP constraints in the minimal

network between those time points can be extended to a solution of the STP130

[2]. Thus, each value in an STP constraint within a minimal network is present

in at least one solution of the STP.

It has been proven that Floyd-Warshall’s algorithm, which has a computa-

tional cost cubic in the number of time points, is correct and complete on STP

[2]. Its temporal computational cost is cubic in the number of the time points.135

Limitations of STP for modeling diet dynamics

Usually STP is used to represent time constraints in a static view: first the

temporal problem is modeled and then it is checked in terms of satisfiability

by propagating the constraints. This modeling methodology does not directly

support a dynamic view over the constraints satisfaction problem. In other140

words, STP does not account for an evolution of the model that is a consequence

of the interaction of the system with the external world. This limitation has two

important consequences: (1) it does not allow to model system-user interaction

and (2) it does not allow for a formal distinction between constraints modeling

possibilities on the future and constraints modeling indeterminacy over the past,145

6



which have a different semantics and require a different support.

We will show in Section 3 our extension of the STP model to overcome these

limitations in order to dynamically model a diet. In particular, our proposal

extends the standard STP framework in many ways:

• it enhances the static STP framework with a number of algorithms to150

support system-user interaction;

• it proposes the contemporary use of three different STPs to simultaneously

consider the three macronutrients;

• it provides a different support for the constraints that represent indetermi-

nacy in the past and the constraints representing variance on the future.155

In particular, the constraints over the past model indeterminacy/impreci-

sion in the energy intake, whereas the constraints over the future model

the different choices that the user can make on the future meal. Thus, it is

straightforward to notice that, whatever the user will do in the future, the

past constraints should not change. This ontological distinction between160

past and future constraints is not usually modeled in STP and needs a

special treatment in our formalization.

The problem tackled by our extension of STP regarding the indeterminate

constraints has some resemblance with the problem of temporal controllabil-

ity. When dealing with temporal constraints, it is possible to distinguish be-165

tween constraints under the control of the user or the agent (i.e., controllable

constraints) and constraints that depend on the external world, which can be

unknown or partially unknown (i.e., non-controllable constraints). These dis-

tinction resembles our distinction between STP constraints on future meals,

which are controllable, and constraints representing indeterminacy, which are170

not controllable. Several approaches have been proposed in literature to deal

with controllability (see, e.g., [3, 4, 5]), but, in general, their adaptation to the

problems we tackled is not trivial. Moreover, in our work we exploit the pecu-

liar topology of cake&carrot problems represented as an STP for reasoning over
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constraints representing indeterminacy.175

3. Materials and methods

In this section we describe the algorithms underlying the different reasoning

facilities that our approach provides. In Section 3 we describe the STP reasoning

module. In particular, in Section 3.1 we describe how we model a diet with

STP, in Section 3.2 we describe how we exploit STP to represent the food180

that users consume and its impact on their diets, in Section 3.3 we extend the

STP framework to also take into account the eaten food when there is some

imprecision/indeterminacy on its quantity and composition. In all three cases

we detail how we obtain the minimal network of a diet. In Section 3.4 we discuss

some reasoning facilities that can be offered by exploiting the minimal network185

and we describe the relative algorithms. For the sake of readability we have

included in the text only the most comprehensive and novel algorithms; the

others can be found in Appendix A.

3.1. Modeling diets in STP

The necessity to encourage people to embrace a healthy diet has been pro-190

moted by FAO [6]. Many countries adapted these guidelines in order to blend

them into their specific food tradition. In Italy, for example, the Italian Soci-

ety for Human Nutrition has recently produced a study with recommendations

to be used by specialized operators [7]. In particular, it has been proven that

an excessive calorie intake – and a possible subsequent obesity – increases the195

risk of developing chronic disease and decreases life expectancy [8]. In order to

restrict the calorie intake, one of the most important factors to be taken into

account in a diet is the total energy requirement. Another important factor to

consider in a diet is the specific requirement in terms of nutrients and macronu-

trients such as proteins, carbohydrates and lipids. In particular, the literature200

on this subject provides systems of Dietary Reference Values (henceforth DRVs)

that should be followed for extended periods of time. In the running example,
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without loss of generality we refer to the Italian values [7]. Such values have

to be customized for the specific patients according to characteristics such as

weight, gender, age and lifestyle.205

Example. A 40-year-old male who weighs 71.3 kg has an estimated basal

metabolic rate of 1690 kcal/day.

The metabolic rate value is then adjusted using a factor related with the

specific person’s physical activity; for example, if the person has a sedentary

lifestyle, a factor of 1.45 is employed and he has a total energy requirement of210

1690 · 1.45 = 2450 kcal/day.

Moreover, [7] prescribes that a population reference intake for each macronu-

trient is the DRV that covers the physiological needs of most of the healthy or

apparently healthy population (97.5% of people). In [7] the DRVs for a male

adult are computed by considering 0.9 grams of proteins a day for each kilogram215

of the patient’s weight, the lipids must be between 20% and 35% of the total

energy requirement, the carbohydrates cover the remaining energy requirement.

In the example, following [7], the daily diet is recommended to be provided

with 260 kcal/day of proteins, 735 kcal/day of lipids and 1455 kcal/day of car-

bohydrates. Our framework does not depend on the particular formula used220

to compute the total energy requirement or the macronutrients requirements,

and it is possible to employ other formulas or the dietitian can even empirically

estimate the value for specific patients.

We represent the DRVs as STPs; more precisely, we use an STP constraint

to represent – instead of temporal distance between time points – the minimum225

and maximum admissible DRV for a macronutrient.

In our system and in the experiments in Section 4 we adopt three separate

STPs, one for each macronutrient, CarbohydratesDietSTP, ProteinsDietSTP

and LipidsDietSTP, and we consider separately the intake and the requirement

of each macronutrient. For the sake of readability, in this section, instead of230

considering three macronutrients and three STPs, we focus the discussion only

on the total energy requirement represented as the STP DietSTP ; however,

the same discussion should be applied for each STP modeling a macronutrient.
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Indeed, the results that we prove in this section for one single STP are still

valid in the case of multiple STPs since the correctness and compatibility of235

the whole system depends on the correctness and compatibility of each single

STP independently evaluated. Note that the idea of using distinct STPs for

modeling different macronutrients can be used for cake&carrot problems to si-

multaneously account for different activities. For instance, sleeping and running

activities, which are competing in the daily time scheduling, could be accounted240

for by using two different STPs in order to indirectly verify their compatibility.

Moreover, without loss of generality, we focus the discussion on a diet over

a week, from Sunday to Saturday.

For representing the total energy requirements of the example in Section 3.1,

the user’s daily energy requirement of 2450 kcal/day is represented in DietSTP245

by the STP constraint 2450 ≤ dayE−dayS ≤ 2450, where dayE and dayS stand

for the start and the end of the day, and the recommendation to eat a lunch of

minimum 500 kcal and maximum 600 kcal is represented by the STP constraint

500 ≤ lunchE− lunchS ≤ 600, where lunchE and lunchS represent the end and

the start of the lunch.250

We exploit the STP framework to allow users to make small deviations from

the ideal goal of sticking to their energy requirements and to know in advance

what are the consequences of such deviations on the rest of the diet. Thus,

we admit a tolerance in adhering to the diet constraints. Such a tolerance

generates loose constraints over the shortest periods (i.e., days and meals) and255

strict constraints over the longest periods (i.e., weeks), thus allowing episodes of

transgression in the short term that however do not prevent a user from reaching

the diet goal. Let σw, σd and σm be the tolerances for the week, the days and

the meals respectively, then σw ≤ σd ≤ σm. For example, the recommended

energy requirement of 2450 kcal/day, considered over a week and considering a260

tolerance σw, results in a constraint such as 2450·7·(1−σw) ≤ weekE−weekS ≤

2450 · 7 · (1 + σw) and for the single days we allow the users to have a tolerance

σd, thus resulting in the constraints 2450 · (1 − σd) ≤ SundayE − SundayS ≤

2450 · (1 + σd), . . . , 2450 · (1− σd) ≤ SaturdayE − SaturdayS ≤ 2450 · (1 + σd)
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ThursSun Mon Tues Weds Fri Sat

0
[2205,2695]

0
[2205,2695]

0
[2205,2695]

0
[2205,2695]

0
[2205,2695]

0
[2205,2695]

[2450·7,	2450·7]

[2205,2695]

Figure 1: Example of STP representing the diet of a week (with σw = 0 and σd = 10%). For

space constraints the constraints for the meals are not represented and the constraint [0, 0] is

represented as 0.

(see Fig. 1).265

The choice of the values for σ is influenced by two classes of factors, i.e., gen-

eral requirements of the framework and specific domain factors. Two general re-

quirements arise from considerations about the usefulness of the framework and

are valid for all problems in the cake&carrot class. The first general requirement

is that not all the tolerance values can be zero. Indeed, zero tolerance would not270

allow transgressions and the framework would not be useful. The second general

requirement is that tolerances over the longer periods need to be stricter than

tolerances over the shorter periods, e.g., σw < σd < σm. Indeed, if a shorter

period has a tolerance smaller than a longer period, the longer period will be

dominated by such smaller tolerance (e.g., a tolerance of 10% for each meal re-275

sults in a tolerance of at most 10% for the whole week) and its usefulness would

be undermined. Specific domain factors derive from the domain knowledge and

can provide further elements to properly set up the values of σ. These factors

can be obtained from evidences in the literature and from human expertise. In

the diet domain, for example, it is possible to take into account the tolerable280

upper intake level for a macronutrient [7], which is the maximum value that an

adult can assume without adverse effects. In 17 studies summarised by Bingham

[9], mean within-individual coefficient variation for various nutrients in adults

were, when measured daily, Energy 23%, Carbohydrate 23%, Protein 27% and,
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when measured weekly, Energy 11%, Carbohydrate 11%, Protein 13%. Human285

expertise can further refine the tolerance values to adjust them on the basis of

specific patients’ requirements and dietitians’ personal empirical experience.

For single meals we consider that the energy assumption for the day is split

among the meals; for example, assigning 20% for breakfast, 40% for lunch and

40% for dinner and admitting a tolerance of σm, we obtain the STP constraints290

2450 ·20% ·(1−σm) ≤ Sunday breakfastE−Sunday breakfastS ≤ 2450 ·20% ·

(1+σm), 2450 ·40% ·(1−σm) ≤ Sunday lunchE−Sunday lunchS ≤ 2450 ·40% ·

(1 +σm), . . ., 2450 · 40% · (1−σm) ≤ Saturday dinnerE −Saturday dinnerS ≤

2450 · 40% · (1 + σm).

In order to build a sound STP, it is also necessary to add STP constraints295

such the ones that impose that a day ends when the subsequent day starts, that

a week starts when the first day of the week starts, that a week ends when the

last day of the week ends and the analogous constraints for the meals.

A compatible meal is a meal that is consistent with all the STP constraints

in DietSTP. By propagating the constraints of DietSTP we obtain its minimal300

network, DietMN (Algorithm A.1 in Appendix A), from which it is possible to

derive all the possible compatible meals. Since a diet is represented as an STP,

for checking the consistency of a diet is sufficient to check the consistency of

the STP with the Floyd-Warshall’s algorithm, which also returns the minimal

network. The following property trivially derives from the correctness of Floyd-305

Warshall’s algorithm for STP.

Property 3.1. Algorithm A.1 is correct.

We can state the following property, which trivially follows from the prop-

erties of STP.

Property 3.2. The solutions of the STP DietSTP – and of the minimal net-310

work DietMN – adhere to the dietary recommendations.

In particular, since all solutions of DietSTP must satisfy all the STP con-

straints, the introduced local deviations do not deter from adhering to the di-

etary requirements.
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3.2. STP reasoning over a diet and eaten food315

In the previous section we only took into account the “ideal” and “abstract”

diet, without considering the fact that users, by eating food, limit the range of

choices available to them in their subsequent meals. Thus, in order to usefully

employ our system and exploit the facilities described below, it is necessary to

“integrate” the dietary recommendations with the information about the eaten320

meals. In this section we consider the simplest case where we assume that there

is complete knowledge over the eaten food and that, obviously, the food that

will be eaten in the future meals is unknown.

The values of the macronutrients of the food actually eaten can be integrated

with the values of the macronutrients provided by the diet (see Algorithm A.3)325

by provisionally substituting the STP constraint related to the considered meal

with the actual value of the eaten food. Thus, we obtain a new STP that we

call integratedDietSTP . Such an STP contains “past constraints”, which cor-

respond to the meals taken, and “future constraints”, which correspond to the

meals that have to be eaten. The constraint propagation on integratedDietSTP330

results in a new minimal network integratedDietMN .

For example, let us suppose that on Sunday, Monday and Tuesday the

user had an actual intake of 2690 kcal for each day, and on Wednesday an

intake which has been imprecisely measured to be between 2350 and 2400

kcal. This corresponds to adding to the STP the new constraints 2690 ≤335

SundayE − SundayS ≤ 2690, . . . , 2690 ≤ TuesdayE − TuesdayS ≤ 2690.

Then, propagating the constraints of the new STP, we discover (see Fig. 2) that

(i) the STP is consistent and thus the intake is compatible with the diet, (ii) on

each remaining day of the week the user must assume a minimum of 2205 kcal

and a maximum of 2405 kcal and (iii) overall, in the remaining four days of the340

week, the user must assume 2270 · 4 kcal.

For reasons similar to those exposed in the previous section it is possible to

state that:

Property 3.3. Algorithm A.3 is correct.
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[2270·4,	2270·4]

ThursSun Mon Tues Weds Fri Sat

0
[2690,2690]

0
[2690,2690]

0
[2690,2690]

0
[2205,2465]

0
[2205,2465]

0
[2205,2465] [2205,2465]

ThursSun Mon Tues Weds Fri Sat

0
[2690,2690]

0
[2690,2690]

0
[2690,2690]

0
[2205,2695]

0
[2205,2695]

0
[2205,2695] [2205,2695]

[2450·7,	2450·7]
Before propagation

After propagation

Figure 2: Example of STP for a diet over a week where the user has eaten 2690 kcal on Sunday,

Monday and Tuesday. The top part represents the STP before the constraint propagation (it

corresponds to the bottom STP of Figure 1 with the new constraints for Sunday, Monday and

Tuesday) and the bottom part represents the minimal network obtained by the constraint

propagation. and the bottom part represents the minimal network obtained by the constraint

propagation. The constraints on eaten food are represented with an orange double line. For

the sake of clarity only the main constraints are represented.

3.3. Supporting imprecision/indeterminacy in the eaten food345

In this section we extend the work of the previous section in order to support

also some imprecision/indeterminacy in the eaten food. Indeed, often it is not

possible to precisely know the size of the portions or the composition of the

dishes [10]. The actual amount of food in a portion could vary and, furthermore,

a user may not eat a whole portion. Supporting such a feature poses new350

problems and requires an extension of the basic STP framework outlined in the

previous section.

At first, we could conjecture that this extension can be addressed in a simple

way: in the process described in Section 3.2 we simply substitute the precise

value of the eaten food (i.e., EnergyIntake) with an interval [EnergyIntakemin,355
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EnergyIntakemax] that represents the imprecision/indeterminacy: the actual

real value of the energy intake – which is unknown – is included in the interval

[EnergyIntakemin, EnergyIntakemax]. Such a choice would be homogeneously

represented by an STP constraint, thus it would fit seamlessly in the STP frame-

work.360

Unfortunately, this simple approach cannot be adopted because it disregards

an important aspect that did not emerge in the previous sections. Indeed,

as discussed in Section 2, an STP is consistent if there exists an assignment

of a value to each point of the STP such that all the STP constraints are

satisfied. Thus, an STP constraint assumes that the user can freely choose a365

value consistent with the constraint. However, the indeterminate constraints

are of a different nature. In fact, the user is not free to choose a specific value

for the energy intake of the meal: the value has been already fixed (indeed the

meal has been already eaten) but its actual value is unknown. If we want to be

sure to adhere to the dietary constraints, we need to make sure that they are370

satisfied whatever is the actual value of the indeterminate constraints, and not

only for a suitable choice of such value. Thus, in this case a diet is consistent

if, whatever is the value assumed in the indeterminate constraints, the STP is

consistent.

For example, let us suppose, continuing the previous example, that, after the375

assumption of 2690 kcal on Sunday, Monday and Tuesday, on Wednesday the

user had an intake which has been imprecisely measured to be between 2300 and

2600 kcal. This corresponds to adding to the previous STP the indeterminate

constraint 2300 ≤ WednesdayE − WednesdayS ≤ 2600 (see Fig. 3). Then,

propagating the constraints of the new STP by using the standard constraint380

propagation, we would discover (see Fig. 3) that (i) the STP is consistent and

thus the intake is compatible with the diet, (ii) on each remaining day of the

week the user has to assume a minimum of 2205 kcal and a maximum of 2370 kcal

and (iii) overall, in the remaining three days of the week, the user has to assume

between 2205 · 3 and 2260 · 3 kcal. However, the indeterminate constraint has385

been changed by the constraint propagation and, specifically, it cannot assume
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[2205·3, 2260·3]

ThursSun Mon Tues Weds Fri Sat

0
[2690,2690]

0
[2690,2690]

0
[2690,2690]

0
[2300,2465]

0
[2205,2370]

0
[2205,2370] [2205,2370]

[2270·4,	2270·4]

ThursSun Mon Tues Weds Fri Sat

0
[2690,2690]

0
[2690,2690]

0
[2690,2690]

0
[2300,2600]

0
[2205,2465]

0
[2205,2465] [2205,2465]

Before propagation

After propagation

Figure 3: Example of minimal network for a diet over a week where the user has eaten 2690

kcal on Sunday, Monday and Tuesday and between 2300 and 2600 on Wednesday. The top

part represents the STP before the constraint propagation (it corresponds to the bottom STP

of Figure 2 with a new constraint for Wednesday) and the bottom part represents the minimal

network obtained by the constraint propagation. Indeterminate constraints are represented

with an orange double line. For the sake of clarity only the main constraints are represented.

anymore values between 2465 kcal and 2600 kcal. If the actual unknown intake

on Wednesday is of 2600 kcal, the STP will be inconsistent and the user will

not be able to adhere to the diet. Thus, the simple application of the STP

constraint propagation in case of indeterminate constraints can give misleading390

results.

Since, for the reasons discussed above, for checking the consistency of an

STP with indeterminate constraints it is not possible to simply apply the Floyd-

Warshall’s algorithm, we have to extend the Floyd-Warshall’s algorithm to sup-

port also indeterminate constraints. Algorithm 1 accepts an STP DietSTP and395

a list of indeterminate constraints. Each indeterminate constraint specifies the

meal, the day of the meal, and the minimum and maximum values for the energy

intake. Algorithm 1 returns the minimal network if the diet is consistent with
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the food expressed with indeterminate constraints. On the other hand, if the

diet is not consistent, Algorithm 1 distinguishes two separate cases. If the STP400

is not consistent in the sense that it is not possible to have compatible meals

even by restricting the indeterminate constraints, it returns Inconsistent. If

the STP is consistent for some suitable choice of the indeterminate constraints

but not for all the choices, then it returns Warning so that the user can be

informed that it is possible that the intakes are not consistent with the diet.405

Algorithm 1 can be split in four parts. In the first part (lines 3–6) it does

not differ significantly from Algorithm A.3 reported in Appendix A, i.e., the

constraints regarding the food are added to the diet STP and the constraints

are propagated. In the second part (line 8) we check whether the propagation

has changed the indeterminate constraints getting rid of some value (this implies410

that there is no solution of the STP which contemplates such values) and in this

case we return a warning. In the third and fourth parts (lines 10–13 and 15–18)

we test whether the STP is consistent when the indeterminate constraints take

their minimum and maximum values. Finally, the minimal network computed

in line 5 is returned.415

We can state the following property:

Property 3.4. Algorithm 1 is correct.

Proof (sketch). Let us assume that the STP is consistent, i.e., there is at least

an assignment of a value to each point such that all the constraints are satisfied

(the other case is ruled out in line 6 of the algorithm). After the propagation, the420

check in line 8 assures that no value in the indeterminate constraints has been

ruled out by some constraint: indeed, a value is in a constraint in the minimal

network if and only if it is admitted in a solution of the STP. It remains to

check that a solution exists for every combination of such values. This is done

by testing the two extreme cases (lines 10–13 and 15–18), i.e., the ones where425

each indeterminate constraint has the minimal or the maximal values. An STP

constraint that is satisfied in these two worst cases is satisfied also in the other

cases.
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Algorithm 1 Computing the minimal network of a diet with respect to the
meals taken (with indeterminacy)

1: function MinimalNetworkOfADietWithFoodAndImpreci-
sion(DietSTP , 〈Day1,MealType1, EnergyIntake1,min, EnergyIntake1,max〉,
. . ., 〈Dayn,MealTypen, EnergyIntaken,min, EnergyIntaken,max〉)

2:

3: let integratedDietSTP be a provisional copy of DietSTP
4: add to integratedDietSTP the indeterminate constraints
5: integratedDietMN ← FloydWarshall(integratedDietSTP )
6: if integratedDietMN has a negative cycle then return Inconsistent

7:

8: if in integratedDietMN an indeterminate constraint has been changed
by the propagation then return Warning

9:

10: let MinMN be a provisional copy of integratedDietMN
11: add to MinMN the indeterminate constraints set to their minimal val-

ues (i.e., ∀i = 1 . . . n EnergyIntakei,min ≤ E − S ≤ EnergyIntakei,min)
12: MinMN ← FloydWarshall(MinMN)
13: if MinMN has a negative cycle then return Warning

14:

15: let MaxMN be a provisional copy of integratedDietMN
16: add to MaxMN the indeterminate constraints set to their maximal

values (i.e., ∀i = 1 . . . n EnergyIntakei,max ≤ E−S ≤ EnergyIntakei,max)
17: MaxMN ← FloydWarshall(MaxMN)
18: if MaxMN has a negative cycle then return Warning

19:

20: return integratedDietMN

18



Finally, it is worth noting that constraints on the future can, in some special

cases, be treated as expressing a different semantics. Suppose that it will be430

Christmas in few days and that the users know in advance that they will overeat

for the Christmas lunch. They could set in advance a higher (estimated) caloric

intake for the Christmas lunch so that they could exploit the STP also in the

preceding days for compensating the expected transgression. In this case, this

future constraint has to be treated as an indeterminate constraint in the Algo-435

rithm 1. In other words, a future constraint can be used in the framework to

express possible intervals as well as indeterminacy in caloric values.

3.4. Reasoning facilities

In this section we show how we exploit the minimal network obtained by the

algorithms described above to offer some reasoning facilities. In particular, we440

wish to support users into taking advantage of the information regarding the

actual meals they consume.

Our system, by exploiting the STP framework, offers several facilities:

1. Consistency check of a diet;

2. Compatibility check of a single meal;445

3. Compatibility check of several meals;

4. List of the dietary constraints;

5. What-if analysis;

6. Choice of the best meal;

7. Evaluation of a meal.450

Consistency check of a diet. Such a facility is directly provided by Algo-

rithms A.1, A.3 and 1. Indeed, the Floyd-Warshall’s algorithm determines the

consistency of an STP by detecting a negative cycle in the minimal network.

Moreover, Algorithm 1 extends such a mechanism by also detecting inconsisten-

cies related to the indeterminate constraints.455

Compatibility check of a single meal. Such a facility is provided by

Algorithm A.2 in Appendix A by exploiting the decomposability of the minimal
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network. Indeed, since each constraint of the minimal network contains values

that take part at least to a solution and the minimal network has the same solu-

tions of the original STP, if a meal is not included in its related STP constraint460

in the minimal network, then it is not consistent with the STP and with the

diet.

Property 3.5. Algorithm A.2 is correct.

Compatibility check of several meals. Such a facility cannot be pro-

vided simply by repeating Algorithm A.2 once for each meal because in this465

way we would make sure that the meals are individually consistent with the

diet but we would not be sure that they are conjunctively consistent with the

diet. In other words, we would possibly conclude that the each meal is present

in a solution of the STP but not necessarily they would be present in the same

solution. For these reasons we have to proceed as in Algorithm 2.470

Algorithm 2 Compatibility check of several meals with respect to a diet

1: function CompatibilityCheckOfSeveralMeals(MinimalNetwork,
〈Day1,MealType1, EnergyIntake1〉, . . ., 〈Dayn,MealTypen, EnergyIntaken〉)

2: for each (MealTypei, Dayi) do
3: let a ≤ E − S ≤ b the STP constraint in MinimalNetwork over the

starting and ending points of MealTypei in Dayi
4: if a ≤ EnergyIntakei ≤ b then
5: add provisionally to MinimalNetwork the constraint
EnergyIntakei ≤ E − S ≤ EnergyIntakei

6: else
7: return False
8: MinimalNetwork′ ← FloydWarshall(MinimalNetwork)
9: if MinimalNetwork′ has a negative cycle then

10: return False
11: else
12: return True

For determining whether several meals are consistent with the diet at the

same time, first we check whether the single meals are inconsistent. In this case,

obviously neither the meals collectively can be consistent. Then, if all meals are

separately consistent, we provisionally add them to the minimal network and
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propagate the constraints. If the resulting STP is consistent, we can be sure475

that there exists a solution of DietSTP that includes all the values for the

provided meals; if it is not consistent, the meals are separately consistent but

not conjunctively consistent. We can state that:

Property 3.6. Algorithm 2 is correct.

This property directly derives from the correctness of Floyd-Warshall’s algo-480

rithm for STP.

List of the dietary constraints. In such a facility provided by Algo-

rithm A.5 in Appendix A we simply traverse the minimal network and, for each

day and for each meal of the day we report, possibly graphically, the minimum

and maximum admitted value of the related STP constraint.485

What-if analysis. With such a facility provided by Algorithm A.4 in Ap-

pendix A we enable users to become aware of the consequences on their diets

of eating specific meals, thus allowing them to use such information to make

informed decisions about their current or future meals.

In the algorithm we assume that all the energy intakes are compatible with490

the diet. The algorithm adds the STP constraints stating the amount of the

energy intake of each meal to a provisional copy of DietMN , then it propagates

the constraints to determine the new minimal network and, exploiting the pre-

vious facility, it shows to the user the STP constraints related to the rest of the

meals of the week.495

Evaluation of a meal. Such a facility, provided by Algorithm A.7 in Ap-

pendix A, allows to symbolically evaluate a meal. While Algorithm A.2 can

be employed to check the consistency of a meal and Algorithm A.6 can be em-

ployed to automatically choose the “best” meal, such a facility can be used to

provide the users with a high-level and more intuitive evaluation of a proposed500

meal with a richer answer than a simple consistent/not consistent one. This

facility is intended to transform a numerical result, such as the one obtained

through STP, into a symbolic form. Such a form can be possibly coupled with
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Figure 4: Classification of a consistent value of a meal’s energy supply given the minimum

and maximum value of an STP constraint in a minimal network.

a graphical result or a natural language output. Algorithm A.7 classifies the

energy intake of a proposed meal in one of the following five cases: permanently505

inconsistent (I.1), occasionally inconsistent (I.2), consistent and not balanced

(C.1), consistent and well-balanced (C.2) and consistent and perfectly balanced

(C.3).

In the cases C.1, C.2 and C.3 the value of the energy supply is consistent with

the user’s diet as represented in the STP. As in Algorithm A.2, it is possible to510

detect that a meal is consistent by exploiting the minimal network of the STP.

A not balanced meal, even if consistent, will require to be compensated. We

assume that the mean value is the “ideal” value according to the diet’s goals

and we use the difference |a+b
2 − EnergyIntake| as a simple distance for the

macronutrient. To discriminate between the cases C.1, C.2 and C.3, we use two515

parametric user-adjustable values, t1 and t2, which set two thresholds relative

to the mean value of the related STP constraints (see Fig. 4). In other words,

we use the distance from the ideal value to classify the energy intake of the meal

as not balanced (C.1), well balanced (C.2) or perfectly balanced (C.3) .

In the cases I.1 and I.2 the energy supply of the meal is inconsistent with520
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the diet. In the case I.1 the energy supply is inconsistent with regard to the

user’s diet as represented in the initial STP. This case is detected by considering

whether the nutritional value of the meal violates an STP constraint. In the

case I.2 the meal per se does not violate the STP constraint, but – considering

the past meals the user has eaten – it would preclude to be consistent with the525

diet. Thus, it is inconsistent now, but in the future, e.g., next week, it could

become possible to choose it. This case is detected by determining whether the

energy supply, despite it satisfies the constraints in the initial STP, which does

not consider the food intakes, is inconsistent with the STP constraint in the

minimal network that takes into account also the previous food intakes.530

Choice of the best meal. Such a facility, provided by Algorithm A.6

in Appendix A, can be employed when users must choose among a set of meals

the best meal with regard to their diets.

Up to this point we defined the reasoning facilities considering only one STP

at a time, and we had been able to disregard the fact that food actually has,

at the same time, different quantities of the different macronutrients. Thus,

when we deal, as in this reasoning facility, with the choice of a meal among

a possibly limited set of available meals, we are not free to choose any hypo-

thetically possible meal, but we have to choose the best one actually available

by “integrating” the information provided by the three STPs corresponding

to the macronutrients. To quantify the adequacy of an actual specific meal

with respect to a diet, we need to define a multidimensional measure that

balances the caloric distance for each STP. We define the Euclidean distance

d(ProposedMeal,MinNetMeal) between a ProposedMeal and an “ideal” one

represented by MinNetMeal, where the values of MinNetMeal are obtained

by identifying in the three minimal networks the constraints corresponding to

the proposed meal. We compute such distance by considering the means of the
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constraint values in the three minimal networks. More formally:

d(ProposedMeal,MinNetMeal) =

=

√√√√ ∑
i∈{Car,Pro,Lip}

(ProposedMeali −
MinNetMeali,min +MinNetMeali,max

2
)2

(1)

where ProposedMeali is the caloric value for carbohydrates, proteins and lipids

of a meal and MinNetMeali,min and MinNetMeali,max are the minimum and535

maximum caloric values of the corresponding constraints of the minimal net-

works of each macronutrient.

While in the food domain the STPs represent homogeneous values (i.e., kcal)

and they can be combined as in formula (1), in general cake&carrot problems can

have heterogeneous dimensions (for instance, steps taken and hours of sleep).540

In this more general case, to combine the different STPs each dimension should

be adjusted by considering a proper weight.

Algorithm A.6 in Appendix A uses the distance in formula (1) to identify

the meal, among the ones available, closest to the ideal value.

Note that such an algorithm makes choices that are locally optimal but545

are not guaranteed to be globally optimal, in the sense that at the end of the

week the meals chosen by using Algorithm A.6 might not be the ones that

minimize the distance with the diet. However, a globally optimal choice would

require to know in advance the meals in the subsequent days. In Section 4 we

experimentally evaluate the validity of the algorithm in a real-world scenario.550

4. Results

In this section we describe a simulation designed to validate the approach,

i.e., to verify the feasibility of the STP reasoning by comparing its performance

with meaningful baselines in a realistic scenario. We use a computer simula-

tion to primarily show that STP reasoning is robust with respect to dietary555

transgressions.
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Here our main goal is to answer to the following research questions related

to the STP reasoning:

• Can the STP Diet Reasoner effectively provide solutions for a healthy diet

relying on a real database of dishes and real menus?560

• Is the STP model adequate to reason about energy requirements and en-

ergy supply? What is the relation among diet constraints, users’ energy

requirements and meal composition in satisfying the user’s diets?

• How much do the episodes of dietary transgression influence the achieve-

ment of the target behavior? How effective is our system in recovering565

from such episodes?

In order to answer to these questions we designed a simulation in a hospital

context. We considered the situation where patients have to stay one week in

the hospital and have to decide the dishes of each meal considering the hospital

menu. Our system suggests the dishes composing a meal and the users can570

accept or reject such a suggestion thus composing a meal of their own choice.

The hospital provides a real but controlled scenario for three reasons:

• The patients can only eat the hospital food, which is served for breakfast,

lunch and supper.

• The patients can compose their meals choosing among a variable number575

of combinations of dishes. However, breakfasts, lunches and suppers follow

three precise schemata, i.e., they are composed by a fixed number of dishes,

belonging to specific categories (e.g., pasta, meat course).

• The energy supply of each dish is precisely known. Thus, in the simulation

we do not account for indeterminacy in the calorie amount of a meal.580

We have an ongoing collaboration with the Hospital “Città della Salute, Mo-

linette” (Molinette henceforth) in Turin, which is the third largest hospital in

Italy. For the simulation we used the menu that was served at Molinette in
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June 2016. The hospital has a regular menu and 12 special menus addressing

specific needs such as vegetarian, gluten-free, low-proteins, etc. In this experi-585

ment we considered the regular menu. The recipe database is composed by 246

different recipes along with their nutritional values. Since each dish is served in

standard-size servings, we know in advance the nutritional value of each menu.

As a working hypothesis, we assume that the patients eat their whole serving

or do not eat the dish at all; in other words, we neglect the possible leftovers.590

However the impact of this simplification is limited by the fact that a meal is

composed by different dishes and the user is free to reject any single dish.

In the Molinette regular menu, a meal has traditional Italian courses. Lunch

and supper have a first course, usually pasta or soup (the hospital allows a pa-

tient to choose among seven or eight first courses, different each day of the week),595

a second course, usually meat, fish or cheese (a patient can choose among six

dishes), a side dish (with four different dishes), fruit or dessert (five different

dishes) and bread. A breakfast is composed by tea or coffee, milk, “fette bis-

cottate” (a sort of rusk) or bread, butter, jam or honey. Thus, considering that

a patient can also turn down a dish, there are 1680 different meals for lunch600

and 3780 different meals for dinner and 108 different meals for breakfast. Con-

sidering the different menus in the different days, a breakfast supplies between

377 kcal and 463 kcal, a lunch between 600 kcal and 1571 kcal, and a supper

between 599 kcal and 1255 kcal.

In the simulation we considered six representative patients: three men and605

three women. Two men and two women are close to their normal weights,

one man is obese and one woman is underweight. The six patients have dif-

ferent ages, heights and levels of activities. Upon a patient’s weight, gender

and age, using Schofield equation [11], it is possible to estimate a patient’s

basal metabolic rate as reported in Table 1. For the levels of activities we have610

taken into account that the patients are in a hospital and we have adjusted

the standard levels of activities as in [12]; thus, the levels of activities range

from 1.175 (i.e., bedrest) to 1.275 (i.e., mobilising occasionally on ward). Using

Schofield equation we determined the users’ daily energy requirements. Fur-
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Age (years) Basal metabolic rate (kcal/day)

Men

18− 29 ((0.063 · weight) + 2.896) · 238.8459

30− 59 ((0.048 · weight) + 3.653) · 238.8459

> 60 ((0.049 · weight) + 2.459) · 238.8459

Women

18− 29 ((0.062 · weight) + 2.036) · 238.8459

30− 59 ((0.034 · weight) + 3.538) · 238.8459

> 60 ((0.038 · weight) + 2.755) · 238.8459

Table 1: Schofield equation for estimating the basal metabolic rate [11].

User
Weight

(kg)

Height

(cm)

Age

(years)
Gender

Level of

activity

Body mass

index (kg/m2)

Transgression

inclination

Energy

requirement

(kcal/day)

P1 73 175 40 M 1.175 23.8 (normal weight) overnutrition 2009

P2 58 165 20 F 1.200 21.3 (normal weight) alternating 1614

P3 70 175 30 M 1.275 22.9 (normal weight) alternating 2136

P4 55 160 30 F 1.175 21.5 (normal weight) undernutrition 1518

P5 92 175 30 M 1.200 30.1 (obese) overnutrition 2313

P6 43 160 18 F 1.275 16.8 (underweight) undernutrition 1432

Table 2: Patients in the simulation.

thermore, we reported the patients’ inclination in dietary transgression, i.e.,615

whether the patients, when they do not follow the system’s suggestions, tend

towards overnutrition, undernutrition or have no specific inclination. Patients’

data are reported in Table 2.

At the beginning of the week, for each patient we computed the patient’s

energy requirement over a period of one week by using the Schofield equation620

[11] (see Section 3.1). As described in Section 3.1, we initially built three distinct

STPs corresponding to the energy requirements and to the dietary prescriptions

for the meals in the week for the three macronutrients: carbohydrates, proteins

and lipids. In the initial values of the constraints, we admit three distinct

tolerance values in the deviation from the ideal values, i.e., σw, σd and σm (see625

Section 3.1). In accordance with [9], we used a value of σw = 10% and σd = 30%

for the tolerance values over a week and over a day since it they are reasonable
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values that a dietitian can assume when assigning a diet to a patient. As a

consequence, we used the value of σm = 50% for a meal. Thus, patients can

make big deviations – however within the narrow limits imposed by the hospital630

menus – in the single meals, but they must follow their diets only with slight

deviations over the week.

Once the patient actually eats her meal, the STPs are modified to take into

account such a piece of information. Then, by means of constraint propagation,

the system infers how the future meals are affected by such a fact.635

To model the patient behavior and to validate the application of the STP

approach, we introduce two policies: STPDiet and LocallyOptimalDiet. In

the policy STPDiet, based on the STP reasoner, the system suggests to the

patient, among the compatible meals in the hospital menu, the one that “better

satisfies” the STP constraints, i.e., the system suggests the meal with the min-640

imum distance d from the mean between the minimum and maximum values

of the meal’s STP constraints (see the distance definition (1) in Section 3.4).

Note that the compatibility of a meal means that the meal’s macronutrients

are consistent with the three STPs corresponding to the macronutrients. In

the policy LocallyOptimalDiet, used as a baseline, the system suggests to the645

user the meal that “better satisfies” the diet requirements, i.e., the meal that

has the closest energy supply to the ideal one that was decided for that meal

at the start of the week. It should be noted that, if in the policy STPDiet

the STP constraints were not propagated, policy LocallyOptimalDiet would be

equivalent to policy STPDiet.650

To evaluate how our system reacts to episodes of dietary transgression, we

introduce a transgression rate. The transgression rate is the probability that,

when users decide the composition of their meals, they do not follow the indi-

cations of the system and instead they eat other dishes in the hospital menu.

In this case such a meal composition is chosen randomly (a) only among the655

compatible meals more caloric than the ideal one if the user has an inclination

to overnutrition, (b) only among the compatible meals less caloric than the ideal

one if the user has an inclination to undernutrition and (c) among all compatible
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meals if the user has no specific inclination in her dietary transgressions. The

transgression rate varies from 0%, i.e., the user always eats the indicated meal,660

to 50%, i.e., the user disobeys half the times. Transgressions can be performed

independently of each other; in other words, the patients are free to transgress

many times, even when their diets have been adjusted for compensating previous

transgressions.

Since the transgression rate involves some random choices, we repeated the665

simulation 1000 times by changing the pseudorandom seed in each execution

and we computed the averaged results and the 95% confidence interval.

In Table 3 we report the experimental results. In columns 1 and 2 we report

the patient and the policy. In column 3 we report three levels of transgression

rate (the results for transgression rates 10%, 30% and 40% are similar). At the

end of each simulation, we evaluated the policies computing the distance (in

kilocalories) between the user’s weekly energy requirement, which is considered

the ideal value provided by the diet, and the weekly calorie count. Formally, we

define this distance as:

d eval =

∣∣∣∣∣∣(
∑

M∈Meals

∑
i∈{Car,Pro,Lip}

energyIntake(Mi))−DailyEnergyReq · 7

∣∣∣∣∣∣
(2)

In column 4 we report the average distance (2) from the ideal value and its

95% confidence interval. In column 5 we report, for the policy STPDiet, the dif-

ference with the results obtained by the policy LocallyOptimalDiet considering670

the same transgression rate.

A number of interesting points arise from data:

• In all runs the STPDiet policy reaches the end of the week without incon-

sistencies. This shows that our approach is actually applicable to realistic

menus taken from real-world scenarios.675

• The STPDiet policy outperforms in a statistically significant way the

LocallyOptimalDiet policy for all patients and the difference between

STPDiet and LocallyOptimalDiet policies grows up proportionally with
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Patient Policy
Transgression

rate

Distance from
ideal value (95%

confidence interval)
∆

P1

LocallyOptimalDiet
0% 139 (139-139)
20% 278 (270-285)
50% 444 (434-454)

STPDiet
0% 117 (117-117) -22
20% 253 (245-260) -25
50% 412 (403-421) -32

P2

LocallyOptimalDiet
0% 188 (188-188)
20% 312 (303-321)
50% 503 (489-518)

STPDiet
0% 91 (91-91) -97
20% 223 (215-231) -89
50% 421 (408-434) -82

P3

LocallyOptimalDiet
0% 313 (313-313)
20% 527 (517-537)
50% 817 (801-833)

STPDiet
0% 360 (360-360) +47
20% 527 (517-537) 0
50% 782 (768-797) -35

P4

LocallyOptimalDiet
0% 222 (222-222)
20% 412 (400-424)
50% 735 (714-756)

STPDiet
0% 169 (169-169) -53
20% 316 (305-326) -96
50% 478 (463-493) -257

P5

LocallyOptimalDiet
0% 320 (320-320)
20% 471 (460-481)
50% 672 (657-687)

STPDiet
0% 227 (227-227) -93
20% 392 (381-403) -78
50% 627 (611-643) -45

P6

LocallyOptimalDiet
0% 224 (224-224)
20% 485 (471-500)
50% 932 (910-954)

STPDiet
0% 175 (175-175) -49
20% 401 (389-414) -84
50% 597 (581-613) -335

Table 3: Numerical results of the simulation with LocallyOptimalDiet and STPDiet policies.
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Figure 5: Comparing the results of the simulation with LocallyOptimalDiet and STPDiet

policies (smaller is better).

the transgression rate for all the patients. The only exception is patient

P3 with transgression rate 0.680

In Fig. 5 we graphically compare the distances from the ideal values of the

LocallyOptimalDiet and STPDiet policies. We can summarize the results

depicted by noting that STP reasoning is always better than the other policy

in the management of a diet with transgressions.

It is worth noting that, during the simulation, the choice of the meal is685

optimal with respect the measure (1), which, however, is not granted to reach

the optimal final solution defined with respect measure (2). Indeed, a globally

optimal decision should be informed about the future, i.e., it should take into ac-

count also the future meals. Moreover, note that we have used three distinct and

independent STPs to represent the three macronutrients, but, when composing690

a meal, it is not possible to choose independently the three macronutrients. De-
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spite these two critical issues, the reasoner evaluation in terms of the distance

between the actual weekly calories consumption and its theoretical optimal value

confirms that the STP-based reasoner overcomes the baseline guiding the user

towards choices close to the optimal ones.695

At this point we can answer to the research questions posed at the beginning

of this section. We showed that the STP Reasoner provides good solutions for

managing a healthy diet in a real context since the STP adequately models the

energy requirements and the food eaten. Moreover, we showed that the STP

model improves significantly the achievement of the diet goals in the case of700

dietary transgressions.

Limitations of the simulation experiment

In the simulation we relied on a number of working hypotheses that imply

some limitations; the main limitations are related to the use of a hospital setting:

in particular, (1) the adoption of a controlled menu, (2) the use of prototypical705

patients, and (3) the neglecting of the leftovers.

With respect to the adoption of a controlled menu, on the one hand it should

be noted that the convenience for adjusting patients’ menus according to their

diets could emerge also in the hospital setting. Indeed, hospital menus are

usually not customized for the specific needs of the single patients (with the710

exception of the special menus required by some specific examinations). On

the other hand, in our simulation we had to stick to the hospital menu also

for compensating possible imbalances, whereas, outside of the hospital, a much

wider variety of food is available (e.g., users could choose a protein bar to boost

their protein assumption). In this sense the hospital context is not a completely715

favorable environment for the simulation and we expect that in a everyday

setting our system would be most useful.

With respect to the use of six prototypical patients, we note that these

patients are not real human beings participating to a specific clinical experiment,

but we have modeled their profiles by adopting distinct but realistic values for720

their physical properties. As a future work we plan to perform a real-world
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validation with human patients.

Finally, we neglected the impact of the possible leftovers. We think that

this simplification does not invalidate the results of the simulation; actually,

our claim is that, if the leftovers are taken into account, the difference between725

the STPDiet policy and the LocallyOptimalDiet policy should become larger.

In fact, on the one hand, the LocallyOptimalDiet policy does not dynamically

adapt the patient’s diet decided at the start of the week and, on the other hand,

the STPDiet policy exploits the constraint propagation mechanism described

so far. As a future work it could be interesting to integrate our system with730

methods that estimate the leftover amount such as [13].

5. Discussion and conclusions

In this paper we presented a reasoning system based on STP. In order to

account for the dynamic nature of the diet-user interaction, we proposed a

new theoretical framework which exploits and extends the STP framework. In735

particular, in Section 3 and in Appendix A we have defined nine different al-

gorithms: while Algorithm A.1 is a direct consequence of the mathematical

properties of STP, the remaining algorithms have been designed to extend the

STP representation power. In fact, we considered, in addition to standard STP

constraints, also indeterminate constraints. Moreover, we formalized a num-740

ber of facilities exploiting the minimal network computed by the framework.

In, particular, such facilities allow to: (1) check the consistency of a diet, (2)

check the compatibility of a single meal with respect to a diet, (3) check the

compatibility of several meals with respect to a diet, (4) selectively list the di-

etary constraints of a diet, (5) reason on the consequences of the choice of a745

specific food for the rest of the diet, (6) choose the best meal among a set of

possibilities, (7) provide a symbolic evaluation of a proposed meal. In Section 4

we have presented a simulation based on realistic user profiles and real hospital

data. The evaluation of the reasoner is based on the distance between the actual

weekly calories consumption and its theoretical optimal value. The results of750
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the simulation confirm that our STP-based reasoner, which supports compen-

sation of the transgressions, overcomes the baseline, which does not account for

transgressions, and gives results close to the optimal ones.

Some early work dealt with the task of planning a diet by modeling the task

as a linear programming problem and by solving it with Operational Research755

techniques as the simplex method (see the survey in [14] or, more recently,

[15]). However, these approaches do not support the users in choosing a meal

and in investigating the consequences of their choices, but they only plan an

entire diet. In [10] Buisson devised a system employing fuzzy arithmetic and

heuristic search for assessing the compatibility of a single meal to a norm and for760

suggesting to the users some actions such as removing or adding food to balance

their meals. [10] supports fuzzy arithmetic to represent imprecision/uncertainty

in quantity and composition of food, however it does not tackle the problem of

globally balancing the meals. Other related works include both academic studies

and commercial projects. Among academic studies related to our project we765

cite [16, 17, 18, 19], and among the smartphone apps related to nutrition we

cite DailyBurn, Lose It!, MyNetDiary, A low GI Diet, WeightWatchers. With

regard to all these works, our reasoning framework, when applied to the dietary

domain, presents a big element of novelty: the use of automatic reasoning as

a tool for verifying the compatibility of a specific meal with a specific diet, for770

suggesting a compatible meal, for determining the consequences of the choice of

a specific dish and for recovering from episodes of dietary transgression.

Some ideas contained in this paper have been previously presented in [20],

where we depicted a general architecture for the diet management. This paper is

longer and significantly different; in particular, in contrast to [20], in this paper775

we propose the general class of cake&carrot problems, we model diet and food

in terms of the three macronutrients whereas [20] uses only the total amount

of energy intake, we propose a number of algorithms to enhance STP with a

dynamic perspective, we discuss the correctness of the reasoning facilities, we

support indeterminacy/imprecision in food intake, we provide an experimental780

quantitative evaluation by using a simulation based on real data. Moreover, in
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contrast to [20], here we do not present the general architecture for diet man-

agement but focus on the reasoning system and we do not discuss the natural

language generation module.

The reasoning framework presented in this paper can be commercially at-785

tractive for different applications in the quantified self domain. For instance,

given the large diffusion of wearable tracking gadgets, the framework seems ap-

pealing for step counting and sleep time management. In the specific case of

the diet domain we believe that there are at least in two contexts for applica-

tion. The first context is the medical one, where users (e.g., patients affected by790

essential obesity) are strongly motivated to strictly follow a diet and need tools

that help them. The second context is the one involving, e.g., healthy fast food

or restaurant chains, where the effort of deploying the system can be rewarded

by an increase in customer retention.

In the next future, we plan to experiment the system with a focus group795

in a clinical context with patients affected by essential obesity. In this way we

can give a definitive validation of the reasoning framework that at this time has

been tested only in a simulated environment. In this clinical setting we expect

that our system can also support human dietitians in the supervision of their

patients.800
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Appendix A.

Algorithm A.1 Computing the minimal network of a diet

1: function MinimalNetworkOfADiet(DietSTP )
2: DietMN ← FloydWarshall(DietSTP )
3: if DietMN has a negative cycle then
4: return Inconsistent
5: else
6: return DietMN

Algorithm A.2 Compatibility check of a single meal with respect to a diet

1: function CompatibilityCheckOfASingleMeal(MinimalNetwork,
〈Day,MealType,EnergyIntake〉)

2: let a ≤ E − S ≤ b the STP constraint in MinimalNetwork over the
starting and ending points of MealType in Day

3: if a ≤ EnergyIntake ≤ b then
4: return True
5: else
6: return False
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Algorithm A.3 Computing the minimal network of a diet with respect to the
meals taken

1: function MinimalNetworkOfADietWith-
Food(DietSTP , 〈Day1,MealType1, EnergyIntake1〉, . . .,
〈Dayn,MealTypen, EnergyIntaken〉)

2: let integratedDietSTP be a provisional copy of DietSTP
3: for each (MealTypei, Dayi) do
4: let a ≤ E − S ≤ b the STP constraint in DietSTP over the starting

and ending points of MealTypei in Dayi
5: substitute in integratedDietSTP the STP constraint over
MealTypei in Dayi with the constraint max(a,EnergyIntakei) ≤ E−S ≤
min(b, EnergyIntakei)

6: integratedDietMN ← FloydWarshall(integratedDietSTP )
7: if integratedDietMN has a negative cycle then
8: return Inconsistent
9: else

10: return integratedDietMN

Algorithm A.4 Simulation of several meals with respect to a diet

1: functionWhatIf(MinimalNetwork, 〈Day1,MealType1, EnergyIntake1〉,
. . ., 〈Dayn,MealTypen, EnergyIntaken〉)

2: let MinimalNetwork′ be a provisional copy of MinimalNetwork
3: for each (MealTypei, Dayi) do
4: let S and E be the starting and ending points of MealTypei in Dayi
5: substitute in MinimalNetwork′ the STP constraint between S and
E with the constraint EnergyIntakei ≤ E − S ≤ EnergyIntakei

6: MinimalNetwork′ ← FloydWarshall(MinimalNetwork′)
7: List the dietary constraints in MinimalNetwork′

Algorithm A.5 List the dietary constraints represented in the minimal network

1: function ListDietaryConstraints(MinimalNetwork)
2: for each day Dayi do
3: for each meal MealTypej do
4: let a ≤ E − S ≤ b the STP constraint in MinimalNetwork over

the starting and ending points of MealTypej in Dayi
5: represent a ≤ E − S ≤ b
6: let a ≤ E − S ≤ b the STP constraint in MinimalNetwork over the

starting and ending points of Dayi
7: represent a ≤ E − S ≤ b
8: let a ≤ E − S ≤ b the STP constraint in MinimalNetwork over the

starting point of the first day and the ending point of the last day
9: represent a ≤ E − S ≤ b
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Algorithm A.6 Choose the best meal with respect to a diet

1: function ChooseBestMeal(MinimalNetwork, 〈Day,MealType〉,
{EnergyIntake1, . . . , EnergyIntaken})

2: let a ≤ E − S ≤ b the STP constraint in MinimalNetwork over the
starting and ending points of MealType in Day

3: for each EnergyIntakei do
4: Compute the distance between a ≤ E − S ≤ b and EnergyIntakei

return the closest EnergyIntakei

Algorithm A.7 Evaluate a meal with respect to a diet

1: function EvaluateMeal(DietSTP , MinimalNetwork,
〈Day,MealType,EnergyIntake〉)

2: let a ≤ E − S ≤ b the STP constraint in MinimalNetwork over the
starting and ending points of MealType in Day

3: Compute the distance between a ≤ E − S ≤ b and EnergyIntake
4: if distance is between 0 and t1 then return “C3. Perfectly balanced”
5: else if distance is between t1 and t2 then return “C2. Well balanced”
6: else if distance is greater than t2 and EnergyIntake is between a and
b then return “C1. Not balanced”

7: else
8: let a′ ≤ E−S ≤ b′ the STP constraint in DietSTP over the starting

and ending points of MealType in Day
9: if EnergyIntake is not between a and b but it is between a′ and b′

then return “I2. Occasionally inconsistent”
10: else
11: return “I1. Permanently inconsistent”
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