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Abstract Recently some novel strategies have been proposed for training of Single
Layer Feedforward Networks, that set randomly the weights from input to hidden
layer, while weights from hidden to output layer are analytically determined by
Moore-Penrose generalised inverse, to minimise the mean square error on training
set. Such non-iterative strategies are appealing since they allow fast learning, but
many choices have to be made using such approach, mainly concerning the initial-
ization of input weights and the procedure for determining output weights. One
aim of this study is to investigate the performance variability with weight choice
and number of hidden neurons. We explore the use of various random projections
for convenient setting of the input weights. Then we evidence that the method
application may require some care to achieve good results, mainly concerning the
procedure used for matrix pseudoinversion. We show that this key step suffers
from numerical problems related to matrix invertibility, and we propose a heuris-
tic procedure for bringing more robustness to the method. We report results on
a difficult astronomical regression problem of chromaticity diagnosis to illustrate
the various points under study.
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1 Introduction

In the past two decades, single hidden layer feedforward neural networks (SLFNs)
have been one of the most important subject of study and discussion among neural
researchers [1–3]. Their main applications are in the field of supervised learning
tasks, where adjustment of parameters is required in order to approximate a func-
tional relationship between given inputs and outputs. Typically, this relationship
is not known analytically and is defined by the set of examples in the training set,
while performance is evaluated on the deviations between network outputs and
targets in test set.

Over a few decades, methods based on gradient descent have mainly been
used, although defining different learning algorithms; among them there is the large
family of techniques based on backpropagation, widely studied in its variations [4].
The start-up of these techniques assigns random values to the weights connecting
input, hidden and output nodes, these weights are then iteratively adjusted.

Anyway, gradient descent-based learning methods are typically slow, frequently
require small learning steps, and are subject to convergence to local minima. There-
fore, many iterations may be required by such algorithms in order to achieve an
adequate learning performance, and many trials are required for avoiding poor
local minima.

This computational cost of gradient based techniques is even higher for deep
architectures (e.g. deep neural networks with multiple hidden layers), proposed in
the recent years [5] for learning the kind of complicated functions which might
represent high-level abstractions (e.g. in vision [6,7], natural language processing
(NLP) [8,9], and other typical AI-level tasks). Hence, it is subject of debate today
which could be the more effective inizialization for weights in such deep networks;
the most common strategy is that of using unsupervised learning at each stage of
a deep network, as it was recently put forward by Hinton et al. [10] followed by
a second and final phase of fine-tuning of all the parameters of the network using
backpropagation and gradient descent on a global supervised cost function.

The reduction of computational efforts for NN learning is therefore of great
importance when dealing with deep architectures, because of the presence of mul-
tiple hidden layers whose weights have to be adequately trained, and may become
imperative in the case of large datasets, as required for instance in text, image,
speech and handwritten processing. As key aspects addressed by the present paper
we propose therefore some possible alternatives to the standard weight initializa-
tion, on one side, and to iterative methods for solution, on the other.

Some non iterative procedures based on the evaluation of generalized pseu-
doinverse matrices were proposed recently as novel learning algorithms for SLFNs,
among them a method to improve performance of multilayer perceptron by Halawa
[11] and the Extreme Learning Machine (ELM) [12]. In ELM, the input weights
(linking input and hidden layers) and hidden biases are randomly chosen, and the
output weights (linking hidden and output layers) are analytically determined by
the Moore-Penrose (MP) generalized inverse. This theoretically appealing method
has many interesting features among which its non iterative feature, but it needs
some care in the determination of the pseudoinverse of the hidden to output layer
weight matrix, because of the eventual presence of singular or almost singular
matrices.
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The aim of this paper is a deep investigation on a few major issues of pseudo-
inversion-based learning for SLFN models. On one side, we propose a new ap-
proach through the application of a preprocessing to the input data by randomly
projecting them in appropriately chosen spaces, to simplify the following step of
the neural analysis. The theoretical rationale for this approach can be found in
many recent studies, showing random projections as a powerful method for dimen-
sionality treatment [13–15], so that they appear to be a potentially useful tool for
weight initialization by early extraction of relevant features in the input data.

Besides, we investigate a few ways for determining output weights and the
associated numerical problems. The most commonly used method involves direct
matrix inversion, or evaluation of the pseudoinverse matrix, by means of Singu-
lar Value Decomposition (SVD), but this technique needs to be deeply analyzed,
because of eventual numerical problems arising when dealing with nearly singular
matrices.

We first recall the main ideas on SLFN learning and on ELM in section 2, and
we describe fundamentals results on random projection in section 3. Next we detail
in section 4 our proposition for the two main issues in ELM-like learning, namely
how to initialize hidden weights, and how to compute output weights. Finally in
section 5 we report results on a difficult astronomical problem of chromaticity
diagnosis, related to the relevance of various weights initialization strategies and
of pseudoinverse evaluation.

2 How to train weights by pseudoinversion

In this section we first recall basic notations regarding SLFN then we explain the
motivation and principle of ELM.

2.1 Single Layer Feedforward Neural Networks

A standard SLFN with P inputs, M hidden neurons, Q output neurons, non-linear
activation function φ on the hidden layer and linear activation function otherwise,
computes an output vector o = (o1, ..., oQ) from an input vector x = (x1, ..., xP )
according to:

ok = bOk +

M∑
i=1

wk,iφ(ci · x+ bHi ) k = 1, · · · , Q (1)

where ci,j denote weights from input to hidden neurons, wk,i denote weights
from hidden to output neurons, bOi and bHi denote biases for Output and Hidden
neurons. The typical architecture of a SLFN is shown in Fig.1.

Considering a dataset of N distinct training samples of (input, output) pairs
(xj , tj), where xj ∈ �P and tj ∈ �Q, learning a SLFN aims at producing the
desired output tj when xj is presented as input. Training aims at determining
weights w, c, and biases b such that:

∀k = 1, · · · , Q, ∀j = 1, · · · , N, tkj = bOk +

M∑
i=1

wkiφ(ci · xj + bi) (2)
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Fig. 1 A Single Layer Feedforward Neural Network

The above N equations can be written compactly in matrix form as

T = Hw, (3)

where:

w =

∣∣∣∣∣∣∣
wT

1

...

wT
M

∣∣∣∣∣∣∣
M×Q

, T =

∣∣∣∣∣∣∣
tT1
...

tTN

∣∣∣∣∣∣∣
N×Q

,

H =

∣∣∣∣∣∣∣
φ (c1 · x1 + b1) · · · φ (cM · x1 + bM)

...
. . .

...
φ (c1 · xN + b1) · · · φ (cM · xN + bM )

∣∣∣∣∣∣∣
N×M

(4)

H is the hidden layer output matrix of the neural network; the i-th column ofH
is the i-th hidden node output with respect to inputs x1,x2, · · ·xN . Traditionally
in order to train a SLFN, a least square solution is searched, determining c, b, w
such that the following cost functional is minimized:

ED =

N∑
j=1

Q∑
k=1

(
tkj −

M∑
i=1

wkiφ(ci · xj + bi)

)2

= ||Hw−T||2. (5)

As stated above, gradient-based learning algorithms, that require to adjust
input weights and hidden layer biases, are generally used to search the minimum
of ||Hw−T||2.

2.2 The Extreme Learning Machine algorithm

Huang and Babri [16] evidenced that a SLFN performing function approximation
with a large class of non-linear activation functions on a finite training set can
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exactly learn N distinct patterns using N hidden nodes. Huang et al. [12] also
proved that, if M ≤ N hidden nodes are used, the discrepancy between actual
outputs and targets can be reduced, with probability one, below a value ε positive
and arbitrarily small.

They also demonstrated that, contrarily to what happens in traditional training
algorithms, input weights and hidden layer biases of a SLFN do not need to be
adjusted, but they can be randomly assigned. After the input weights and the
hidden layer biases are chosen randomly, SLFNs can be simply considered as a
linear system, and the output weights (linking the hidden layer to the output
layer) can be analytically determined through simple generalized inverse operation
on the hidden layer output matrix, if the activation functions of hidden neurons
are infinitely differentiable.

These ideas gave rise to the ELM algorithm, whose main idea, as rigorously
proved in [12], builds on a random choice of input weights and hidden layer biases
of a SLFN, under the only assumption that the activation functions are infinitely
differentiable. Hence the hidden layer output matrix H in (4) can actually remain
unchanged, retaining the initial values associated to the assigned random values
for input weights ci and hidden layer biases bi. The SLFN training reduces then
to an easy step, i.e. finding the solution w that minimizes the cost functional (5).

In most cases of interest, the number of hidden nodes is much lower than the
number of distinct training samples, i.e. M << N , so that H is a non-square
matrix; in this case, as is demonstrated in [17], we search for the smallest norm
least-squares solution w∗ of the linear system:

w∗ = H+T, (6)

where H+ is the Moore-Penrose generalized inverse (or pseudoinverse) of ma-
trix H.

The solution w∗ has some important properties:

– It is one of the least-squares solutions of the general linear system (3), hence
it reaches the smallest training error.

– It has the smallest norm among all least-squares solutions
– It is unique.

The ELM algorithm is appealing since it can be easily implemented, it runs
extremely fast because it works in a single pass, and not only it tends to reach
the smallest training error, but also it provides the smallest norm solution. The
last point is quite relevant, since, according to Bartlett’s theory [18] on the gen-
eralization performance of feedforward neural networks, the smaller is the norm
of weights, the better generalization performance is usually achieved by the net-
work; therefore, this learning algorithm is expected to reach good generalization
performance.

3 Main ideas concerning random projections

Random projections are used to project the original d-dimensional data into a
k-dimensional subspace, using a random k × d matrix R whose columns have
unit norm. Using matrix notation, if Xd×N is the original set of N d-dimensional
observations,
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XRP
k×N = Rk×dXd×N (7)

is the projection of the data onto the new k-dimensional subspace. Random
projection is very simple from a computational standpoint: the process of forming
the random matrix R and projecting the data matrix X into k dimensions has
complexity of order O(dkN); moreover, if the data matrix X is sparse with about
g nonzero entries per column, the complexity is of order O(gkN).

Random Projections are usually employed for dimensionality reduction. To
this end, the key idea of random mapping arises from the Johnson-Lindenstrauss
lemma [19]: if a set of points in a vector space is projected onto a randomly selected
subspace of suitable dimension, then the original distances between the points are
approximately preserved in the new space. For a simple proof of this result, see
[20].

In our work we rather use Random Projections for dimensionality expansion.
In such a setting, a linear mapping such as (7) can cause significant distortions in
the data set if R is not orthogonal. However, and unfortunately, orthogonalizing
R is computationally expensive. Instead, we can rely on a result presented by
Hecht-Nielsen [21]: in a high-dimensional space, there exists a much larger number
of almost orthogonal than strictly orthogonal directions. Therefore, vectors having
random directions might be sufficiently close to orthogonality; equivalently, RTR
would approximate an identity matrix.

Few random projections have been proposed. The elements rij of R are often
gaussian distributed, but this is by no means a constraint of the method. For
instance, Achlioptas [22] has recently shown that the gaussian distribution can be
replaced by a much simpler distribution, such as:

rij =
√
3 ·
⎧⎨
⎩

+1 with probability 1/6
0 with probability 2/3
−1 with probability 1/6

(8)

or

rij =

{
+1 with probability 1/2
−1 with probability 1/2

(9)

Actually, a large variety of zero mean, unit variance distributions of elements
rij result in a mapping that still satisfies the Johnson-Lindenstrauss lemma.

Achlioptas result means further computational savings in database applica-
tions, as the computations can be performed using integer arithmetic. Bingham
and Mannila [23], in their experiments, showed that Achlioptas’ theoretical result
has practical significance, using both gaussian distributed random matrices and
matrices like (8). The latter are named sparse in that context; for simplicity, in the
following we retain the same term, although usually matrices are defined sparse
when they have a much larger fraction of zero elements.

4 Discussion

In this section we wish to analyze in more details interesting and often critical
aspects for learning SLFN with a ELM-like procedure. Following the ELM principle
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we aim at simplifying the learning by fixing input to hidden weights through
random projection.

A first difficulty arises because random projections are mainly used for linearly
separable tasks although many real world problems are not linearly separable.
Neural networks feature among the tools available to deal with the latter class
of problems, so we propose to join these techniques using a random projection
to initialize the input weights, while the subsequent processing by hidden nodes
nonlinear activation function accounts for the non-linearity of the problem.

As shown in [24] the use of sigmoidal functions, especially in deep neural net-
works, has recently been subject to debate because they seem to be more easily
driven towards saturation because of their non-zero mean value; hyperbolic tan-
gent seems to be less sensible to this problem, therefore we utilize this one. In the
perspective of mitigating saturation issues, we also adopt a normalisation factor
1/

√
M , where M is the number of hidden nodes. This reduces the typical size of

the input values, thus exploiting the almost linear central part of the activation
function, that for the hyperbolic tangent is centred on zero. The presence of this
factor, when exploring the performance as a function of an increasing number of
nodes, contributes to decrease neuron outputs.

So in our work the sampling intervals of all used distributions vary during
training as a function of the number of hidden neurons, while the ELM technique
usually maintains them fixed.

Hereafter we address the main critical issue which concerns learning of hidden
to output layers’ weights by pseudoinversion.

4.1 Pseudoinverse computation

Probably the main difficulty, when using an ELM strategy, concerns the computa-
tion of hidden to output layers’ weights by pseudoinversion, because the evaluation
of the Moore-Penrose psudoinverse matrix requires some caution, since singular
and almost singular matrices may be found.

Several methods are indeed available, e.g. in [25], to evaluate the Moore-
Penrose pseudoinverse matrix: in particular, if H has maximum rank the orthog-
onal projection method can be used when HTH is nonsingular, so that

H+ = (HTH)−1HT (10)

but it is known that this method is affected by severe limitations when the
matrixHTH is almost singular, i.e. its determinant is almost zero. In this case, the
computation of the inverse is highly unstable, and consequently the product H+H
is potentially much different from the unit matrix. A possible solution consists in
the addition of a regularization term to the cost functional (5)

E = ED + λEW (11)

where λ is the regularization coefficient that controls the relative strength of the
data-dependent error ED and the regularization term EW . For L2 regularization
the term EW usually takes the form

EW =
1

2
wTw (12)
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so that the cost functional (5) becomes:

E = ED + λEW =
1

2

N∑
j=1

Q∑
k=1

⎛
⎝(tkj −

M∑
i=1

wkiφ(ci · xj + bi)

)2

+
λ

2

M∑
i=1

|wki|2
⎞
⎠ .

(13)
With this approach, the solution (6) becomes:

w∗ = (HTH+ λI)−1HT . (14)

A different approach consists in evaluating the singular value decomposition
(SVD) of H:

H = USVT (15)

where U ∈ �N×N ,V ∈ �M×M are unitary matrices and S ∈ �N×M has
elements σij = 0 for i �= j and σii = σi for i = j, with σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0,
p = min {N,M} (see for instance [26]). This method is preferable because it
avoids the matrix inversion step required in (10) and (14). Moreover, because no
regularization term is needed, it is possible to achieve a more effective minimization
of the data dependent error.

Using this strategy, the pseudoinverse matrix H+ is defined as (see [27] for
more details):

H+ = VΣ+UT (16)

where Σ+ ∈ �M×N has elements σ+
ij = 0 for i �= j and σ+

ii = 1/σi for i = j; the
elements σi are the singular values of the decomposition.

If σ1 ≥ σ2 ≥ · · · ≥ σk > σk+1 = · · · = σp = 0, the rank of matrix H is k and
the inverses of the p− k zero elements are replaced by zeros.

Despite its computation advantage compared to direct matrix inversion, this
method may exhibit some problem since almost singular matrices may have very
small singular values σi, whose numerical inversion may cause instability in the
algorithm. We will therefore propose a careful monitoring of such singular values,
by directly replacing their inverses by zeros. As we will see in subsection 5.2, this
cut-off threshold acts as a regularisation that stabilises the algorithm nevertheless
producing a further approximation of the matrix of output weights.

5 Experimental results on chromaticity diagnosis

We report here a number of experimental results on a complex supervised re-
gression learning problem in the astronomical field. We first describe the problem
and detail the datasets used. Then we investigate the influence of the choice of a
random projection and of the procedure used for determining the optimal set of
weights in an ELM-like approach. We further provide insights on numerical as-
pects that may lead to poor performance and report experimental evidence that
our procedure for computing the pseudoinverse does overcome these problems and
indeed bring robustness to the method. Lastly we show that the random nature
of the method is not a severe drawback. Although the method is sensitive to the
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sampled random projection, we show that only a few tries of a random projection
are necessary to be sure to get a good projection.

5.1 The astronomical problem

Astrometry, i.e. the precise determination of stellar positions, distance and motion,
is largely based on imaging instrumentation fed by telescopes operating in the
visible range. The measured image profile of a star however depends on its spectral
type, i.e. the emitted light distribution as a function of frequency, so that its
measured position appears affected by an error called chromaticity. Chromaticity
was identified for the first time [28], in the data analysis of the space mission
Hipparcos of the European Space Agency (ESA).

The chromaticity issue becomes even more important for the current ESA
mission Gaia [29] for global astrometry, aiming at much higher precision. The de-
tection and correction of chromaticity in different conditions has been addressed in
recent years [30,31]; to this purpose, a single-hidden layer feedforward neural net-
work (SLFN), trained by a classical BP algorithm, was used to solve this diagnosis
task.

Each image is first reduced to a one-dimensional signal s(x) along the single
measurement direction of Gaia, by integration on the orthogonal direction, also to
reduce the data volume and telemetry rate.

With respect to our previous studies, we also adopt as input to the neural
network processing a more convenient set of statistical moments Mk for image
encoding:

Mk =
∑
n

(xn − xCOG)
k · s (xn) · sA (xn) , (17)

where s (xn) is the above mentioned signal, sA (xn) is the signal from an ideal
instrument, and xCOG is the signal barycenter:

xCOG =

∑
n xn · s (xn)∑

n s (xn)
. (18)

Chromaticity, already mentioned, can be more conveniently defined using the
concept of blue (effective temperature T = 30, 000K) and red (T = 3, 000K)
stars, in particular it is the barycenter displacement between them, and it is the
neural network target. Correct diagnostics allows effective correction of this kind
of error, therefore a good approximation by the neural network results in a small
residual chromaticity after neural processing.

The 11 neural network inputs are the red barycenter and the moments of red
and blue stars from Eq. 17 (k = 1, · · · , 5), computed for each instance.

We have a total of 13000 instances, built according to the above prescriptions,
and split in a training set of 10000 instances and a test set with 3000 instances.
The data set was provided by the Astronomical Observatory of Turin of the Italian
National Institute for Astrophysics.
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5.2 Experimental investigation

We investigate neural networks with the architecture shown in Fig.1. They have 11
input neurons corresponding to the 11 statistical moments describing each image,
1 output neuron and a number of hidden neurons varying from 50 to 600; as
already discussed the hidden neuron activation function is the hyperbolic tangent.
All the simulations for the BP and ELM algorithms are carried out in Matlab 7.3
environment.

In the following we first investigate the influence of random initialization on
the final performance in a ELM-like architecture, where only output weights are
learned. Then, we compare the various strategies we detailed before for deter-
mining the output weights. In passing, we put in evidence a numerical problem
encountered when dealing with almost singular value decomposition and propose a
solution to bring some robustness to the method. Finally, we provide some hints on
how a random-based ELM-like learning procedure could significantly outperform
the well established gradient backpropagation learning procedure.

Yet, as a first result we evaluated the performance reached by a standard SLFN
neural network (with hyperbolic tangent as hidden neuron activation function)
fully trained using the backpropagation algorithm. This will the reference for other
results all along the experimental section. We initialized NN weights randomly
according to a uniform distribution, looking for the minimum value of RMSE when
the number of hidden nodes is gradually increased from 10 to 200. Because we used
a sufficiently large dataset for training and no overfitting arose, best results are
gained without any regularization term, and learning consists then in minimizing
the cost functional defined by eq. (5). With such a setting the minimum RMSE
obtained was 3.81, with 90 hidden neurons.

We first investigate the importance of the random projection for setting the
weights from input to hidden layer. We applied a ELM-like strategy, initializing the
input weights by two different kinds of random projection matrices: the elements
rij are respectively i) gaussian distributed, with mean value zero and variance
1/

√
M and ii) sparsely distributed according to eq.(8), but with multiplicative

coefficient 1/
√
M . Note that eq.(8) corresponds to restricting each hidden node to

processing only a subset of the inputs. We compare these results with a more con-
ventional initialization derived from a uniform random distribution in the interval
(−1/

√
M, 1/

√
M). Lastly, in order to make a comparison with the original ELM

method, we also investigate the uniform initialization in the interval (−1, 1) with
sigmoidal activation function (column ELM-like).

In all cases we determine output weights using the algorithm ELM, analyzing
and comparing the different methods of evaluation of the pseudo-inverse matrix
presented in section 2. For each initial setup, the number of hidden nodes has been
gradually increased adding one node each time and average results are computed
over 10 simulation trials for each selected size of SLFN. Finally, the number of
hidden nodes related to the best performance (mean and standard deviation over
the 10 trials) is reported, as well as the optimal performance, i.e. the minimum
value; the corresponding number of hidden neurons is specified in brackets. In all
cases the pseudoinverse is evaluated through singular value decomposition. Results
are reported in Table 1.

It should be noted that different points of view may be adopted in interpreting
the results of Table 1. If we consider that the learning scheme consists of drawing
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Inizialization: Sparse Gaussian Uniform ELM-like

Mean RMSE 2.17 (546) 3.13 (367) 1.77 (573) 8.52 (88)
St. Dev. 0.97 (546) 1.87 (367) 0.73 (573) 2.54 (88)
Min. RMSE 0.80 (342) 0.91 (307) 0.81 (300) 1.51 (448)

Table 1 Comparison of performance on the test set; the pseudoinverse matrix is evaluated
by singular value decomposition.

a single random projection then evaluating the output weights, then mean RMSE
(first line) can be viewed as the average result of the method for a particular kind
of random projection. The lower it is the better the method performs. In such a
case a high variance means a low guarantee on the result gained when performing
one try only.

Alternatively, we may consider that the learning scheme consists of attempting
many random projections, evaluating the output weights for each, and keeping the
best model. We adopt this second point of view: what we are more interested in
is the minimum RMSE (third line) achieved with a specific random projection
over the set of trials. Also, we are interested in the variance of this minimum with
respect to the number of random projection drawn, and we will discuss this latter
point in section 5.3.

Looking at the results in Table 1 we note first that the best performance, in
terms of minimum RMSE, is achieved by both Sparse and Uniform initialization
methods, while there is a significant worsening for the ELM-like method. Besides,
the variance of the results is significantly less for these two methods, meaning a
better behaviour with respect to over-fitting.

Finally we note that the number of hidden units required to reach the best per-
formance is almost independent of the method; both Sparse and Uniform methods
appear to be able to reach best performance and although the Sparse method
requires 342 hidden units, only 2/3 of the weights in a sparse RP are non zero,
yielding a lower number of effective parameters.

Next we investigated the procedure for determining output weights (results in
Table 2). Using the uniform initialization, we compared the performance obtained
by evaluating the pseudoinverse matrix by Singular Value Decomposition with the
two cases of orthogonal projection methods described by eq.(10) (non regularized
column) and eq.(14) (regularized column). It is immediate to see that singular
value decomposition significantly outperforms the other two methods, it provides
much better RMSE values than either simple or regularized Moore-Penrose pseu-
doinversion.

The SVD method is more accurate, also if it requires a larger number of hidden
units to reach its optimal performance, while the two other methods appear to be
unable to take advantage of a larger hidden layer.

Fig.2 and Fig.3 give more insights on the evolution of the performance with
the number of hidden units. The figures show the mean RMSE (Fig.2) and the
minimum RMSE (Fig.3) trends vs. number of hidden nodes for the three different
kinds of random projection matrices whose best values are reported in columns 1-3
of Table 1 (note that SVD is used in every case for determining output weights).
It is interesting to note that all trends show a peak for a number of hidden neu-
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Pseudoinv. method: SVD Regularized Non regularized

Mean RMSE 1.77 (573) 7.69 (90) 9.43 (60)
St. Dev. 0.73 (573) 2.28 (90) 3.91 (60)
Min. RMSE 0.81 (300) 4.83 (90) 6.45 (60)

Table 2 Comparison of performance on the test set with uniform random inizialization of
weights.

0 100 200 300 400 500 600
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−
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uniform
gauss
sparse

Fig. 2 Mean performance vs. projection space size

rons approximately equal to 250. For a larger number of hidden units, the RMSE
stabilizes for both uniform and sparse scheme, while it starts increasing with the
gaussian initialization.

This error peak is related to the presence of singular values close to zero in
matrix S, as discussed in section 4. This correlation between the approaching of
singular values to zero and the growth of RMSE is put in evidence by plotting
the ratio of the minimum singular value and the Matlab default threshold (i.e.
the threshold below which singular values are replaced by zeros in matrix Σ+)
as shown in Fig.3, where logarithmic units are used (light blue line). This fact
has potentially dramatic effects on performance, and must therefore be taken into
account when SVD is used to evaluate H+.

One way to treat this problem is to increase the threshold. The effect of such
a cut-off is a sort of regularisation that stabilises the algorithm, introducing a
further approximation of the matrix of output weights. This is the strategy we
used.

We selected as new threshold the mean value of the smallest singular values
obtained over the 10 trials when using a hidden layer with 180 hidden neurons,
because this is approximately the dimension of hidden neuron space when RMSE
starts to increase.
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Fig. 3 Minimum performance vs. projection space size

This simple threshold choice provides a significant improvement in the method
robustness, as can be seen from the relevant reduction of error peaks; this is
obtained at the expense of a slight increase of RMSE values, as shown in Fig.4,
where the optimal RMSE trends are shown for the three initialization cases.

Threshold tuning is therefore an interesting option since the limiting RMSE
performance (which is respectively 1.15, 1.21 and 1.20 for uniform, gaussian and
sparse initializations) remains quite attractive with respect to the classical back-
propagation algorithm.
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Fig. 4 Minimum performance vs. projection space size with threshold tuning
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5.3 Final considerations

The above results show clear advantage of the ELM strategy over standard training
for SLFN.We provide some hints for a better understanding of such a phenomenon.

When stressing the advantage of our method in previous sections, we mentioned
two viewpoints to interpret the results. Our viewpoint considers that actual model
learning includes many drawings of a random projection, determining the corre-
sponding output weights, and keeping the one that yields the best results. This is
the reason why we reported in Fig.3 the best results achieved over several issues
of random projection (followed by output weight computation). Such a training
phase, based on multiple random choices of weights, can be supposed to explore
more extensively the parameter space, with respect to the trajectories followed
by backpropagation algorithm, that develop continuously from a single random
starting point. Yet this approach is reasonable provided that the number of trials,
i.e. the number of times one has to draw a random projection then evaluate the
output weights, remains limited.

We verified the presence in the parameter space of many good solutions that
can be reached also with a relatively small number of initial random choices. We
first performed a set of 1000 different training trials. Then for a given subset size
s, ranging from 10 to 200, we randomly built 100 subsets each containing s trials
among the initial 1000 cases, in order to achieve statistical information. We then
selected in each subset the minimum value of test error, and evaluated mean values
and standard deviations of the distributions of such minimums over the 100 subset
instances. The test results are summarised in Fig.5, showing the best performance
as a function of the number of trials only for the sparse case, because of the curve
similarity for the other initialization schemes.

As expected, the mean value of the error distribution decreases with increasing
number of trials; also, the range of variability decreases quickly, meaning that a
limited number of trials is indeed required to attain good results, i.e. close to the
best case. In our experiments, 100 trials are enough to reach an almost optimal
performance, while 10 experiments already provide very good average results. This
clearly demonstrates the method reliability, since good results are obtained even
with a limited number of trials.

6 Conclusions

In this paper some strategies are investigated for training single layer feedforward
networks using a non iterative learning scheme, where the weights from the input to
the hidden layer are randomly set while the weights from the hidden to the output
layer are determined to minimize a quadratic criterion on a training dataset.

We showed that best RMSE performance was achieved by using uniform and
sparse initializations, whereas gaussian initialization was significantly worse.

We also noted that the performance is not smoothly decreasing for a large
number of hidden units but it shows error peaks. We validated our hypothesis that
this phenomenon is due to the numerical instability and we proposed a technique
to cut-off singular values too close to zero; this results in a more robust learning
scheme while still reaching very good results.
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We also put in evidence that in spite of this, the proposed method based on
SVD provides the best performance while pseudoinversion by orthogonal projec-
tion, either with or without regularization, achieves higher residuals.

Finally we showed that, on a difficult astronomical regression problem, our
proposals significantly improve performance with respect to a SLFN trained with
classical backpropagation.
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