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Quantum electron-vibrational dynamics in molecular systems at finite temperature is described using
an approach based on the thermo field dynamics theory. This formulation treats temperature effects in
the Hilbert space without introducing the Liouville space. A comparison with the theoretically equiv-
alent density matrix formulation shows the key numerical advantages of the present approach. The
solution of thermo field dynamics equations with a novel technique for the propagation of tensor trains
(matrix product states) is discussed. Numerical applications to model spin-boson systems show that the
present approach is a promising tool for the description of quantum dynamics of complex molecular
systems at finite temperature. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4971211]

I. INTRODUCTION

Accurate simulations of time-dependent photophysical
and photochemical processes using realistic molecular poten-
tial energy surfaces are a fundamental problem of modern
theoretical chemistry.1,2 To properly tackle finite temperature
effects in such simulations, several methods have been devel-
oped which can be divided into two main classes: (i) direct
propagation of the density matrix of the system and (ii) prop-
agation of the wave function sampled over several initial
conditions followed by an appropriate statistical average.

The hierarchical equations of motion (HEOM)3 and the
quasi-adiabatic path integral (QUAPI)4 are among the most
successful numerically exact methods for density matrix prop-
agation. However, the HEOM and QUAPI methods become
numerically prohibitive at low temperature.5 Furthermore, the
HEOM application is limited to systems in which the bath
spectral density may be represented in the Drude-Lorentz
form, though several extensions have been proposed to over-
come this problem.5–11 A large number of approximate meth-
ods based on density matrix formalism are also available,
but their range of validity can be very limited and system
dependent.12–21 Wave function propagation methods based
on a basis set representation, such as the multiconfigura-
tion time-dependent Hartree (MCTDH) method and its mul-
tilayer extension, (ML-MCTDH), Gaussian based MCTDH,
and other basis set methods,22–28 are powerful tools at very
low temperature,29,30 but become unhandy in high tempera-
ture cases, as they require a statistical sampling of the initial
conditions, which introduces both theoretical and computa-
tional problems.31–35 On the other hand, basis set methods
are very versatile, and capable of handling a large variety
of Hamiltonian operators.36–40 A methodology that combines
an accurate description of chemical processes at ambient
temperature with the flexibility of a basis set representation

a)raffaele.borrelli@unito.it

would be an important tool in the arsenal of quantum molecular
dynamics.

The aim of this paper is twofold. First, we present a theo-
retical method for the simulation of time-dependent properties
of electron-vibrational systems with many degrees of freedom
at finite temperature based on Thermo Field Dynamics (TFD).
Second, we show how to take advantage of recently developed
techniques based on tensor networks to solve the resulting
dynamical problem.41

TFD was introduced in the 1970’s to provide a finite tem-
perature representation of quantum mechanics.42 While it had
a deep impact on many problems of theoretical physics,43–48 it
did not receive much attention in molecular quantum dynam-
ics: the first applications were reported very recently.49,50 In the
present work, we generalize the TFD approach to treat quan-
tum dynamics with multiple coupled electronic and vibrational
degrees of freedom. We derive a new type of TFD electron-
vibrational Schrödinger equation which includes the effects of
temperature. Since in TFD the total number of degrees of free-
dom is double of that of the original system, special attention
has to be paid to the numerical solution of the resulting dynam-
ical problem. The methodology must have favorable scaling
properties with respect to the number of nuclear degrees of
freedom. We show how recently developed techniques based
on the Tensor Train (TT) decomposition, also known as Matrix
Product State (MPS) representation, can provide a robust and
efficient numerical framework for the solution of the TFD
Schrödinger equation.41,51

The paper is organized as follows. The TFD methodology
for the simulation of dynamics of quantum electron-vibrational
systems is developed in Section II. Section III elaborates
on the use of TTs for the solution of time-dependent TFD
Schrödinger equations. Section IV shows illustrative simula-
tions and comparisons with the exact HEOM and Stochastic
Hamiltonian (SH) calculations of Ref. 5 for two representative
spin-boson models. Section V is the conclusion. Appendix A
contains the mathematical proof of the main working equa-
tions. Appendix B gives the derivation of the main results of
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Section II, employing the standard Liouville-von Neumann
equation for the density matrix.

II. THERMO FIELD DYNAMICS FORMULATION
OF ELECTRON-VIBRATIONAL DYNAMICS
A. Brief introduction to TFD and underlying equations

TFD has been reviewed and analyzed several
times.42,44,52–54 Here we will briefly recall its physical and
mathematical basis. As was first discussed by Umezawa,42

and later formally demonstrated by Suzuki,55,56 the time evo-
lution of a system with a given Hamiltonian operator H at finite
temperature can be described by a Schrödinger equation with
a modified Hamiltonian Ĥ given by

Ĥ = H − H̃. (1)

H̃ is called the tildian and represents a fictitious Hamiltonian
operator that can be derived from the original operator H using
a well defined mathematical procedure (see below).42,56,57 In
the following, operators with a tilde are considered as acting
on the tilde states belonging to the fictitious tilde Hilbert space.
The number of degrees of freedom in the new augmented sys-
tem (real and fictitious) is double that of the original physical
system. Ĥ acts on states given by the direct product of the
physical and fictitious states denoted by ��kk̃

〉
= ��k

〉��k̃
〉
, where

��k
〉

(��k̃
〉
) are arbitrary basis vectors of the physical (fictitious)

space.
Following Suzuki,55 we define the vector

��I
〉
=

∑
k

��kk̃
〉

(2)

(boldface symbols emphasize that we deal with both physical
and tilde states) and the state

��ψ(t)
〉
= ρ(t)1/2��I

〉
, (3)

where ρ(t) is the density matrix of the original system. The
time evolution of the state ��ψ(t)

〉
is determined by the TFD

Schrödinger equation

i
∂

∂t
��ψ(t)

〉
= Ĥ ��ψ(t)

〉
(4)

(~ = 1), and the expectation value of any operator A acting in
the physical Hilbert space {��k

〉
} can be obtained as

〈A(t)〉 =
〈
ψ(t)��A��ψ(t)

〉
≡ Tr{ρ(t)A}. (5)

The key difference with the standard Hilbert space formulation
of quantum mechanics is that the TFD wave function ��ψ(t)

〉
is

temperature dependent. The evaluation of 〈A(t)〉 via the TFD
wave function ��ψ(t)

〉
and through the corresponding density

matrix ρ(t) is equivalent. As we show below, the solution of
Equations (4) and (5) is more efficient than the solution of the
Liouville equation, both from a computational and theoretical
point of view.

B. Introducing vibrational temperature

Assuming that the system under investigation is at thermal
equilibrium at a given temperature T, its initial state in TFD
theory is obtained from Eq. (3),

��ψ(0)
〉
= ρ(0)1/2��I

〉
= Z−1/2e−βH/2��I

〉
, (6)

where Z is the overall partition function, and β = (kBT )−1

(kB is the Boltzmann constant). The exact evaluation of the
operator e−βH/2 is beyond the scope of the paper, though tech-
niques based on imaginary time propagation (which are valid
for generic Hamiltonians) exist and have been successfully
applied to complex systems.36,58–60

In this work we consider the dynamical properties of
molecular systems where usually the energies of the electronic
degrees of freedom are much higher than the vibrational ener-
gies. In this case the effect of a finite temperature is to create
a thermal population of excited vibrational states, while only
the ground electronic state of the entire system, ��g

〉
, is tangibly

populated at thermal equilibrium. Within the validity of this
condition we can safely employ the approximation

ρ(0) = Z−1e−βH ≈ |g〉 〈g|ρvib. (7)

Here ρvib is the equilibrium Boltzmann distribution of the
vibrational degrees of freedom, which, in the present work, are
described using harmonic approximation. Although approx-
imation (7) may need refinements for certain systems (cf.
Ref. 59) it is at the core of molecular photophysics, photochem-
istry, spectroscopy, as well as most of the electron and energy
transfer theories, and is adopted in the present work.31–35 It
works perfectly for molecular species at ambient temperature,
since typically the electronic energy differences are of the order
of a few eV, while β−1 = 0.026 eV at T = 300 K.

In time-dependent molecular processes the system is pre-
pared in a non-stationary state ��e

〉
, typically after interaction

with an external (time-dependent) field. This process is gov-
erned by a transition operator X†, which, in the most gen-
eral case, is an electron-vibrational operator that couples the
electronic ground state ��g

〉
, with high-lying electronic states,

|e〉 = X† |g〉. (8)

The realization of this state is almost always implicit, and
henceforth we will assume the system to be initially in a generic
non-stationary electronic state ��e

〉
.

For a thermal ensemble of harmonic oscillator states

ρvib = Z−1
◦ e−βH◦ , (9)

where
H◦ =

∑
k

ωka†kak , (10)

a†k (ak) are the creation (annihilation) Bose operators ([ak , a†k′]
= δkk′), and Z◦ is the partition function. Hence the initial TFD
wavefunction is defined as

��ψ(0)
〉
= ��e

〉��ẽ
〉
ρ1/2

vib
��I
〉
= ��e

〉
Z−1/2
◦ e−βH◦/2��I

〉
, (11)

where ��e
〉
= ��e

〉��ẽ
〉
, and ��I

〉
refers only to the vibrational

subsystem. The state Z−1/2
◦ e−βH◦/2��I

〉
is often referred to as

thermal vacuum and is denoted with the symbol ��0(β)
〉
. It can

equivalently be rewritten as61

Z−1/2
◦ e−βH◦/2��I

〉
= ��0(β)

〉
= e−iG��0

〉
, (12)

where ��0
〉
≡ ��00̃

〉
is the vibrational ground state of the aug-

mented system (physical and tilde states), and the operator G
is given by

G = −i
∑

k

θk(ak ãk − a†k ã†k) (13)

with
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θk = arctanh(e−βωk/2). (14)

The unitary transformation defined by Equations (12) and (13)
is called the Bogoliubov thermal transformation. It introduces
thermal noise into the physical system by coupling it to the fic-
titious tilde system through the temperature-dependent mixing
parameters θk .42

Instead of solving the Schrödinger equation (4) with the
initial condition (11) we prefer to apply the inverse thermal
transformation to the Hamiltonian Ĥ and solve the transformed
Schrödinger equation.62 This is accomplished by defining a
new state

��ϕ(t)
〉
= eiG��ψ(t)

〉
, (15)

whose time evolution is determined by the equation

i
∂

∂t
��ϕ(t)

〉
= Ĥθ

��ϕ(t)
〉 ��ϕ(0)

〉
= ��e

〉��0
〉
, (16)

where
Ĥθ = eiGĤe−iG. (17)

The expectation value of an observable A can now be rewritten
as

〈A(t)〉 =
〈
ϕ(t)��Aθ ��ϕ(t)

〉
with Aθ = eiGAe−iG. (18)

Equations (16) and (18), which are completely equivalent to
Equations (4) and (5), are the starting point of our methodol-
ogy. In order to obtain a numerical solution of the Schrödinger
Equation (16) the Hamiltonian Ĥθ must have an analytical rep-
resentation or a form which is suitable for numerical treatment.
This can be accomplished by expanding H and H̃ in series
in creation-annihilation operators (or position and momentum
operators) and using the fundamental relations42,62,63

eiGake−iG = ak cosh(θk) + ã†k sinh(θk), (19)

eiGãke−iG = ãk cosh(θk) + a†k sinh(θk). (20)

The transformed Hamiltonian Ĥθ depends on temperature
through the parameters θk .

C. Electron-vibrational Hamiltonian

The above methodology is absolutely general and inde-
pendent of the form of the Hamiltonian. In the remainder of the
paper, we focus on a special type of the Hamiltonian operator
describing a set of coupled electronic states interacting with a
phonon bath,

H =
∑

n

εnc†ncn −
∑
n,m

Jnmc†ncm

+
∑

k

ωka†kak −
∑
kn

gkn
√

2
c†ncn(a†k + ak). (21)

Here c†n (cn) creates (annihilates) electronic excitation at the
electronic state n with the energy εn, Jnm are electronic cou-
plings,ωk are the frequencies of the bath harmonic oscillators,
and the parameters gnk determine the strength of the electron-
phonon coupling. The Hamiltonian (21) has a large number of
applications, ranging from the generic description of molec-
ular aggregates64–66 to the analysis of molecular processes in
the linear vibronic-coupling theory.67

The tilde Hamiltonian is written as42

H̃ =
∑

n

εnc̃†nc̃n −
∑
n,m

Jnmc̃†nc̃m +
∑

k

ωk ã†k ãk

−
∑
kn

gkn
√

2
c̃†nc̃n(ã†k + ãk). (22)

H̃ is produced from H by the substitution of all the physical
operators with the tilde operators. The values of the parameters
ωk , εn, Jnm, gnk are the same in the two Hamiltonians.

Following the TFD prescriptions, we introduce the Hamil-
tonian Ĥ according to Eq. (1) and solve the TFD Schrödinger
equation (4) with the initial condition

��ψ(0)
〉
= ��e

〉��ẽ
〉
ρ1/2

vib
��I
〉
≡ ��e

〉��0(β)
〉
. (23)

Here the equilibrium vibrational distribution is defined accord-
ing to Eq. (9), ��I

〉
is specified via Eq. (2), and ��e

〉
is the initial

electronic wave function.
In a basis-set representation, the TFD wave function ��ψ(t)

〉
is an array of the dimension (Nel × Nvib)2, where Nel (Nvib)
is the number of electronic (vibrational) basis functions and
the square is due to the doubling of the degrees of freedom.
The density matrix describing the current physical system
has exactly the same dimensions. Hence, a straightforward
application of TFD does not bring any computational gain.
However, Eq. (23) introduces vibrational, but not electronic
temperature. We therefore expect that the tilde part of the
electronic Hamiltonian can be dropped (cf. Ref. 62). This state-
ment is rigorously proven in Appendix A, which shows that
the Schrödinger equation

i
∂

∂t
��ψ(t)

〉
= H ��ψ(t)

〉
, (24)

where H is defined below, with the initial condition

��ψ(0)
〉
= ��e

〉
ρ1/2

vib
��I
〉
≡ ��e

〉��0(β)
〉

(25)

yields the same expectation value 〈A(t)〉 as the Schrödinger
equation (4) governed by the full TFD Hamiltonian Ĥ. We
notice that the ��ẽ

〉
term has been dropped in Eq. (25) because

H contains no tilde electronic variables. The new Hamiltonian
operator H is defined as

H = H − H̃vib, (26)

where H is the physical Hamiltonian operator given by
Eq. (21), and H̃vib is any operator acting in the tilde vibra-
tional space (see Appendix A). The choice of H̃vib is dictated
exclusively by computational convenience and does not affect
the expectation value 〈A(t)〉.

In what follows we choose

H̃vib =
∑

k

ωk ã†k ãk . (27)

Applying the Bogoliubov transformation to the Schrödinger
equation (24), we obtain our working equation

i
∂

∂t
��ϕ(t)

〉
= Hθ

��ϕ(t)
〉
, ��ϕ(0)

〉
= ��e

〉��0
〉

(28)

with the Hamiltonian

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  2.230.104.120 On: Thu, 08 Dec

2016 16:43:37



224101-4 R. Borrelli and M. F. Gelin J. Chem. Phys. 145, 224101 (2016)

Hθ = eiGHe−iG

=
∑

n

εnc†ncn +
∑
n,m

Jnmc†ncm

+
∑

k

ωk

(
a†kak − ã†k ãk

)
−

∑
kn

gkn
√

2

{(
ak + a†k

)
cosh(θk)

+
(
ãk + ã†k

)
sinh(θk)

}
c†ncn. (29)

For deriving the above expression we used the invariance
property42

eiG(a†nan − ã†nãn)e−iG = a†nan − ã†nãn. (30)

The operator Hθ of Eq. (29) consists of two parts: a mod-
ified physical Hamiltonian in which the linear coupling terms
are multiplied by cosh(θk) factors, and the vibrational tilde
Hamiltonian. The excitation of the tilde vibrations is caused
by the linear terms ∼sinh(θk). Since H̃vib enters Eq. (29) with
a negative sign, vibrational excitations in the tilde space cor-
respond to a flow of energy from the physical system to the
fictitious tilde system. It is this type of coupling that accounts
for thermal noise.

Summarizing, the evaluation of 〈A(t)〉 can be reduced to
the solution of the simplified TFD Schrödinger equation (28)
with the Hamiltonian Hθ specified by Eq. (29). In a basis-set
representation, the wave function ��ϕ(t)

〉
is an array of dimen-

sion Nel × N2
vib. This yields a considerable reduction of the

dimension in comparison with the standard TFD wave function
and/or density matrix, notably for systems with multiple elec-
tronic states. ��ϕ(t)

〉
offers, therefore, a more compact way of

storage of information on the system dynamics than the density
matrix ρ(t). At T → 0 the mixing parameters θk become zero,
sinh(θk)→ 0, the coupling to the tilde space disappears, and the
standard Schrödinger equation is recovered as expected. For
high-frequency modes, θk� 1, sinh(θk) ≈ 0, and cosh(θk) ≈ 1
even at room temperature. As a rule of thumb, high-frequency
modes need not be incorporated into the tilde Hamiltonian.
This leads to additional reduction of the active space and com-
putational savings. On the other hand, this trick does not work
with the standard Liouville-von Neumann equation for the
density matrix.

D. Generalizations and extensions

The methodology developed in Section II C is not limited
to the particular form of the Hamiltonian of Eq. (21). Below
we sketch its possible generalizations and extensions.

(i) More complex forms of electron-electron, electron-
phonon or phonon-phonon interactions may be con-
sidered. In fact, electronic couplings Jnm and electron-
phonon couplings gnk are allowed to depend on the
vibrational degrees of freedom. If Jnm and gnk are poly-
nomials of the vibrational operators a†k and ak , then
the application of the Bogoliubov transformation of
Eq. (19) is quite straightforward, and the transformed
Hamiltonian Hθ will be a polynomial of the same order
in a†k , ak , ã†k , and ãk . A common case is the presence
of a bilinear coupling between high and low frequency
vibrational modes. The transformed Hamiltonian Hθ

possesses the same bilinear structure. Furthermore, the

tilde contributions to the high-frequency mode can be
dropped (see Section II C).

(ii) All the parameters of the Hamiltonian of Eq. (21) may
be time-dependent due to possible driving by external
fields. In this case, all the equations of Section II C
remain unchanged, but the proofs of Appendices A
and B will require formal refinements, resulting in the
replacements of the Hamiltonian propagators by the
corresponding evolution operators in terms of time-
ordered exponentials.

(iii) The physical Hamiltonian of Eq. (21) can be extended
to

H → H + HF(t),

where
HF(t) = E(t)X† + E∗(t)X. (31)

describes interaction of the system with external fields
E(t) and X is a transition operator defined as

X =
1∑

n1=0

1∑
n2=0

...
1∑

np=0

Sn1,n2,...,np (c†1)
n1

(c†2)
n2

...(c†3)
np

,

(32)
where, in general, the quantities Sn1,n2,...,np depend on
the vibrational variables. After the Bogoliubov transfor-
mation (29), X → Xθ . For this extended Hamiltonian,
all derivations in Section II C remain unchanged.
In the simplest case of dipole transitions, we have65

X =
∑

n

cnµn, (33)

where cn are the electronic annihilation operators and
µn are the matrix elements of the transition dipole
moments. Hence the developed methodology can be
used for the simulation of any photo-initiated process
as well as of optical signals, both by perturbative65,68

and non-perturbative69,70 methods.
(iv) The TFD Schrödinger equations can be approximately

solved by various time-dependent variational meth-
ods. In particular, it looks promising to solve TFD
Schrödinger equations via the Davydov ansatz.27,71

Very recently, temperature effects have been incorpo-
rated into the Davydov ansatz description by using the
Glauber-Sudarshan representation of the coherent
states.72

(v) The present methodology can be generalized towards
dissipative nonequilibrium systems coupled to several
heat baths. In this context, the work by Dzhioev and
Kosov (see Refs. 47 and 48) may become a useful start-
ing point.

III. TENSOR-TRAIN QUANTUM DYNAMICS

The solution of the time-dependent TFD Schrödinger
equation (28) requires efficient numerical methods. Since the
coupling with the tilde space doubles the number of nuclear
degrees of freedom, and since a thermal environment can
be realistically mimicked only using hundreds or thousands
of degrees of freedom, it is essential to use a methodol-
ogy suitable to treat a large number of dynamical variables.
Several techniques have been developed which can, at least
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in principle, overcome what has been termed the curse of
dimensionality.38,73 Very recently, a new type of represen-
tation of wave functions known as Tensor Train (TT) for-
mat (or Matrix Product States, MPS, in the physics litera-
ture) has turned out to be a promising approximation in high
dimensional problems.51,73–78 In the present work, we apply
the recently developed numerical techniques to efficiently
solve multidimensional quantum dynamical problems using
the TT format.76,79 Below we sketch the basic principles of
the TT decomposition, and show how it can be applied to effi-
ciently solve the TFD Schrödinger equation (28). The reader
is referred to the original papers51,73,77 for a detailed analysis
of the TT decomposition.

Let us consider a generic expression of a state of a d
dimensional quantum system in the form

��Ψ
〉
=

∑
i1,i2,...,id

C(i1, . . . , id)��i1
〉
⊗ ��i2

〉
··· ��id

〉
, (34)

where ��ik
〉

labels the basis states of the kth dynamical variable,
and the elements C(i1, . . . , id) are complex numbers labeled
by d indices. If we truncate the summation of each index ik ,
the elements C(i1, . . . , id) represent a tensor of rank d. The
evaluation of the summation (34) requires the computation
(and storage) of the nd term, where n is the average size of
the one-dimensional basis set, which becomes prohibitive for
large d. Using the TT format, the tensor C is approximated as

C(i1, . . . , id) ≈ G1(i1)G2(i2) ··· Gd(id), (35)

where Gk(ik) is a rk−1 × rk complex matrix. In the explicit
index notation

C(i1, . . . , id) =
∑

α0α1 ···αd

G1(α0, i1, α1)

×G2(α1, i2, α2) ··· Gd(αd−1, id , αd). (36)

The matrices Gk are three dimensional arrays, called cores of
the TT decomposition. The ranks rk are called compression
ranks. Using the TT decomposition (35) it is possible, at least
in principle, to overcome most of the difficulties caused by
the dimensions of the problem. Indeed, the wave function is

FIG. 1. Population P(t) of the initial electronic state at
T = 300 K as a function of time, for different values
of α=λ/(2ωc); (a) λ= 5 cm−1; (b) λ= 20 cm−1 (both
with the tunneling amplitude J = 40 cm−1); (c) λ = 20;
(d) λ = 80 (both with J = 100 cm−1). Full lines: TFD-
TT calculations. Blue dots: numerically exact HEOM
calculations of Ref. 5.

entirely defined by d arrays of dimensions rk−1 × nk × rk , thus
the required storage dimension is of the order dnr2.

In a time-dependent theory the cores Gk(ik) are time
dependent complex matrices whose equations of motion can
be found by applying the time-dependent variational principle
(TDVP) to the parametrized form of the wave function

��Ψ(G(t))
〉
=

∑
i1 ···id

G1(i1, t)

×G2(i2, t) ··· Gd(id , t)��i1
〉
⊗ ��i2

〉
··· ��id

〉
. (37)

The resulting equations of motion can be written in the form

d
dt

��Ψ(G(t))
〉
= −iP̂T(G(t))H ��Ψ(G(t))

〉
, (38)

and provide an approximate solution of the original equa-
tion on the manifold of TT tensors of fixed rank, MTT . In
Equation (38), P̂T(G(t)) is the orthogonal projection into the
tangent space of MTT at ��Ψ(G(t))

〉
. We refer the reader to

Refs. 76 and 79, where the explicit differential equations
are derived and their approximation properties are analyzed,
and to Ref. 80 for a discussion of time-dependent TT/MPS
approximations in the theoretical physics literature.

Several techniques exist to compute the time evolution
of TT/MPS.76,81–83 Here we adopt a methodology recently
developed by Lubich, Oseledets, and Vandereycken, which
combines an explicit expression for the projector P̂T(G(t)) and
an extremely efficient second order split projector integrator
specifically tailored to the TT format.76 The computations pre-
sented in this paper have been performed using a code based
on the software library developed by Oseledets and coworkers.

IV. NUMERICAL EXAMPLES

In order to show the validity of the theoretical framework
and the accuracy of the numerical methodology, we will con-
sider its application to two different model systems in which
two electronic states are coupled to low frequency vibrations.
In the following we will refer to the current methodology with
the acronym TFD-TT.
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FIG. 2. Population P(t) of the initial electronic state at
T = 30 K as a function of time, for different values of
α=λ/(2ωc); (a) λ= 5cm−1; (b) λ= 20 cm−1 (both with
the tunneling amplitude J = 40 cm−1); (c) λ = 20 cm−1;
(d) λ = 80 cm−1 (both with J = 100 cm−1).

A. Spin-boson model

We first consider a prototypical spin-boson model in
which two electronic states are coupled to low frequency vibra-
tional modes. The thermal bath is described by the Ohmic
spectral density

J(ω) =
π

2
αωe−ω/ωc . (39)

The cut-off frequency is fixed atωc = 53 cm−1 throughout the
paper. The solution of Equation (28) using a basis set represen-
tation requires the discretization of the spectral density over a
finite set of frequencies. We have adopted a non uniform dis-
cretization procedure84 that ensures a fast convergence with
respect to the number of sampling points. In our calculations
the spectral density is discretized with 200 degrees of freedom
in the range (0,5ωc].

Figure 1 shows the population P(t) of the initial electronic
state at 300 K for the set of parameters reported in the cap-
tion. The TFD-TT results correspond to the full lines, while
the blue dots correspond to the numerically exact populations
computed in Ref. 5 via SH and HEOM methodologies (HEOM
is a standard reference for benchmarking high-temperature
simulations). Clearly, the TFD-TT and SH populations are in
excellent agreement and virtually indistinguishable. The com-
parison unequivocally demonstrates the validity of the TFD-
TT approach for this type of quantum dynamical problems.

FIG. 3. Population P(t) of the ini-
tial electronic state as a function
of time for different values of the
TT compression ranks simulated for
α = (20 cm−1)/(2ωc) and J = 40 cm−1.
(a) T = 300 K; (b) T = 30 K.

Figure 2 shows P(t) at 30 K. The more pronounced oscil-
lations are a typical effect of the temperature decrease, due to a
reduction of the number of coupled vibronic states contributing
to the system dynamics.

The convergence properties of the numerical methodol-
ogy are illustrated by Figure 3 which shows the population as
a function of time for different values of the TT compression
ranks. At a very low temperature T = 30 K the convergence
is achieved with very low compression ranks, while at higher
temperature a much higher rank is required. Since the required
TT storage scales quadratically with the TT rank, this amounts
to an increased computational cost of the calculation.

B. Reaction mode spin-boson

One of the key advantages of using a basis set approach
is the possibility to describe a large variety of potential energy
surfaces beyond linear electron-phonon couplings. This is
important for the description of chemical reactions in which
the surfaces can be highly anharmonic. Here we show how
the TFD-TT technique can be applied to treat bilinear cou-
plings between electrons and phonons. We consider a system
of two electronic states coupled to a single harmonic oscilla-
tor mode with the frequency Ω which is in turn coupled to a
set of harmonic oscillators having Ohmic spectral density. The
corresponding Hamiltonian, often referred to as reaction mode
spin-boson,85 can be written as
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FIG. 4. The time evolution of the electronic population
P(t), for different values ofα = λ/(2ωc) and for a tunnel-
ing amplitude J = 40 cm−1; (a) λ = 20 cm−1, T = 30 K;
(b) λ = 20 cm−1, T = 300 K; (c) λ = 80 cm−1, T = 30 K;
(d) λ = 80 cm−1, T = 300 K.

H = εσz − Jσx +ΩA†A +
∑

k

ωka†kak + g(A† + A)σz

+ (A† + A)
∑

k

λk(a†k + ak)σz, (40)

where A, ak (A†, a†k) denote the annihilation (creation) opera-
tors for the reaction and bath oscillators, respectively, and the
coupling coefficients λk satisfy the relation

J(ω) =
∑

k

λ2
kδ(ω − ωk) =

π

2
αωe−ω/ωc . (41)

The value of the parameter g determines the strength of the
coupling between the high frequency mode and the electronic
subsystem. In this model the phonons “drain” energy from the
reaction coordinate and not directly from the spin system.

In Figure 4 the electronic population P(t) at 30 K and
300 K is shown for two different values of the Kondo parameter
α (see the caption of Figure 4 for the Hamiltonian parameters).

At 30 K and small α, the boson bath is not very effective in
dissipating energy from the reaction coordinate. In this regime
coherent oscillations of the electronic population persist at
long times. When temperature increases to 300 K the damping
is more evident but the oscillations remain underdamped. For
larger α, the population at 30 K exhibits underdamped oscilla-
tions, while for 300 K the bath quenches the beatings at around
600 fs. The trend is natural, since the Kondo parameter con-
trols the coupling of the reaction mode to the harmonic bath.
The high-frequency modulation of the population dynamics is
due to coherent vibrations of the reaction mode with a period
2π/Ω ≈ 22 fs.

Note that the population evolutions depicted in Figure 4
are fully converged and therefore numerically exact within the
TT approximation.

V. CONCLUSIONS

We have developed a new approach, TFD-TT, to accu-
rate finite-temperature quantum dynamical simulations of sys-
tems with multiple electronic and nuclear degrees of free-
dom. The approach is based on thermo field dynamics (TFD)

theory and tensor train (TT) decomposition. TFD describes
temperature effects by the coupling of the system to a fic-
titious bosonic bath, so that the number of nuclear degrees
of freedom is doubled. We have derived the corresponding
time-dependent TFD Schrödinger equation and solved it by
using a TT/MPS representation of the vibronic wave func-
tion. The use of TT decomposition enables us to handle the
large number of variables: the storage of rank d tensors in
TT/MPS format scales linearly with d. The results of our
numerical simulations of model spin-boson systems clearly
show that the methodology is very accurate and robust. It can
be applied to problems with many degrees of freedom at any
temperature. The present approach is based on a basis set rep-
resentation of the wave function and can be applied to realistic
chemical dynamics problems using computed potential energy
surfaces.

In a basis-set representation, the time-dependent TFD
wave function is an array of the dimension Nel × N2

vib, where
Nel (Nvib) is the number of electronic (vibrational) basis func-
tions. The density matrix describing the same problem has
the dimension of N2

el × N2
vib. The TFD wave function offers,

therefore, a more compact way of information storage in com-
parison with the density matrix, notably for systems with
multiple electronic states. Furthermore, high-frequency modes
need not be coupled to the fictitious bosonic bath. This leads
to additional reduction of the active space and computational
savings.

In wave function methodologies, finite temperature effects
are taken into account by averaging the quantity of interest over
different initial conditions. Therefore, the distribution of initial
conditions must be sampled via Monte Carlo methods, and for
each initial state a separate dynamical problem must be solved.
Both these aspects limit the applications of such methods to
large systems at room temperature. Here we have shown that
using TFD theory it is possible to describe finite temperature
effects without the need to solve a large number of indepen-
dent dynamical problems with different initial conditions. The
increased computational cost, due to the doubled number of
nuclear degrees of freedom, can be kept under control by using
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a TT/MPS representation of the wave function, which is very
accurate for the cases discussed in this paper.

The application of the TFD-TT representation to other
types of potential energy surfaces requires a straightforward
extension of the methodology, however, its reliability will
depend on the degree of accuracy of the TT decomposition.
This aspect is under investigation and will be the subject of
future work.
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APPENDIX A: CONSTRUCTION OF SIMPLIFIED
TFD HAMILTONIAN

Consider the TFD Schrödinger equation with the physical
Hamiltonian (21) and the tilde Hamiltonian (22). The expec-
tation value of any operator A acting in the physical space can
be explicitly evaluated as

〈A(t)〉 =
〈
ψ(t)��A��ψ(t)

〉
= 〈ẽ|〈e|〈0(β)|ei(H−H̃)tAe−i(H−H̃)t |0(β)〉|e〉|ẽ〉. (A1)

Here |0(β)〉 is defined via Eq. (12) and ��e
〉

is a certain initial
electronic wave function specified per Eq. (8).

Evidently,

[H, H̃] = 0, [H̃, A] = 0, (A2)

since the operators act on different variables, and in different
spaces. Hence

〈A(t)〉 = 〈e|〈0(β)|eiHtAe−iHt |0(β)〉|e〉

= 〈e|〈0(β)|ei(H−H̃vib)tAe−i(H−H̃vib)t |0(β)〉|e〉,

where H̃vib is any operator depending on the tilde variables
ã†k , ãk . Choosing H̃vib as in Eq. (27) yields the TFD Hamil-
tonian of the present work. The commutation relations (A2)
remain valid after any unitary transformation performed on
the operators. Hence, they remain valid after the Bogoliubov
transformation, giving

〈A(t)〉 = 〈e|〈0|eiGei(H−H̃vib)tAe−i(H−H̃vib)te−iG |0〉|e〉

= 〈e|〈0|eiHθ Aθe−iHθ t |0〉|e〉. (A3)

From Equation (A3) it is clear that the evolution of the state
��e
〉��0

〉
generated by the operator Hθ determines the expectation

value of any physical observable A.

APPENDIX B: DERIVATION OF EQ. (24)
WITHIN THE DENSITY MATRIX FORMALISM

Consider the Liouville-von Neumann equation

∂t ρ(t) = −i[H, ρ(t)] (B1)

with the Hamiltonian H of Eq. (21). The initial condition for
this equation reads

ρ(0) = |e〉〈e|ρvib. (B2)

Here |e〉 is a certain initial electronic wave function defined by
Eq. (8), and ρvib is the equilibrium vibrational distribution of
Eq. (9). We wish to calculate the observable

〈A(t)〉 = Trac{Aρ(t)}, (B3)

where A is a certain operator depending on electronic and
nuclear degrees of freedom and the trace is taken with respect
to electronic (c refers to operators c†n, cn) and nuclear (a refers
to operators a†k , ak) degrees of freedom.

Now we introduce the fictitious (tilde) Bose operators
ã†k , ãk and write

ρvib = Trã{|0(β)〉〈0(β)|}, (B4)

where |0(β)〉 is defined via Eq. (12). The equivalence of
Eqs. (9) and (B4) can be proven by a simple straightforward
calculation.

Now consider Eq. (B1) with the initial condition

ρ(0) = |e〉〈e| |0(β)〉〈0(β)|. (B5)

The expectation value 〈A(t)〉 is then given via

〈A(t)〉 = Tracã{Aρ(t)}. (B6)

Eqs. (B6) and (B3) yield the same 〈A(t)〉. It does not matter
whether the trace Trã{. . .} is taken with respect to the initial
condition (B4) or with respect to the entire density matrix
ρ(t) (Eq. (B6)), because H and A are independent of the tilde
operators ã†k , ãk .

Furthermore, we can consider the Liouville-von Neumann
equation

∂t ρ(t) = −i[H − H̃vib, ρ(t)], (B7)

where H̃vib is any operator depending on the tilde operators
ã†k , ãk . Eqs. (B1) and (B7) with the initial condition (B5) yield
identical 〈A(t)〉, since [H̃vib, H] = 0, [H̃vib, A] = 0, and the
evolution due to H̃vib disappears upon taking the trace.

The initial condition (B5) corresponds to a pure state.
Hence we can solve Eq. (B7) by writing

ρ(t) = |ψ(t)〉〈ψ(t)|, (B8)

where

∂t |ψ(t)〉 = −i(H − H̃vib)|ψ(t)〉, |ψ(0)〉 = |e〉|0(β)〉. (B9)

Eq. (B9) is identical to Eq. (24).
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