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To the editor: 

Remote cis-regulatory elements, such as enhancers have multiple roles with consequences of 

increased transcription of their target genes. Disruption of these elements can lead to alterations in 

gene expression, causing both Mendelian and complex diseases. Examples of such altered gene 

regulation, underlying the aetiology of human diseases, are the deletions in the α and β globin cis-

regulatory elements leading to thalassemia. However, the phenotypic change resulting from these 

genetic variations has been always evaluated in cell population-based studies. In such studies 

cells are believed to be, as they are genetically, homogeneous also in respect of the target-gene 

expression. However, cell-population expression studies lack the resolution to reveal heterogeneity 

at single cell level, resulting from the different way a regulatory element may act on the target 

gene. 

Over two decades ago, several groups suggested that enhancers could act in a rheostatic mode 

affecting the rate of transcription of a target gene [1] ;  [2]. This model of “uniform and progressive 

response” of a gene to enhancer activity proposes that enhancers can increase the levels of gene 

expression. Another proposed model for enhancer activity, the “on or off response” model, 

suggests that enhancers can increase the probability a gene will become transcriptionally active 

and stay active. Indeed, the analysis of transcriptional activation by enhancers on a single cell 

basis (by using immunofluorescence or fluorescence-activated cell sorting to determine reporter 

gene activity) has led to the observation that enhancers increase the probability that a gene will be 

transcribed in any particular cell while not affecting the rate of transcription in the cells in which the 

gene is active [1]; [3]; [4] ;  [5]. Recent evidence also supports this “on or off response” model and 

suggests that enhancers can increase the occurrence of transcriptional bursting but not the 

amplitude of transcriptional burst size [6]. 

We previously developed a “humanised mouse” model in which the entire mouse α-globin locus is 

replaced by the human locus, and fully recapitulates the normal developmental pattern of α-globin 

expression. This model has been very valuable to address the role of the major enhancer (MCS-

R2) in the expression of the α-globin gene (reviewed in [7]). In the absence of MCS-R2 (ΔMCS-

R2), low levels of RNA-Polymerase II are detected by chromatin immunoprecipitation (ChIP) at the 

α-globin gene and low levels (~ 1–2% of normal) of α-globin mRNA accumulate in the cells [7]. 

Here, we investigated the α-globin mRNA expression in ΔMCS-R2 vs normal humanised 

erythroblasts to determine whether this expression is derived from few cells (expressing α-globin 

mRNA at high levels) or from all cells (expressing α-globin mRNA at basal levels). As expected, 

human α-globin transcripts were detected in nearly all mouse erythroblasts containing the normal 

human α-globin cluster (Fig. 1A). On the basis that a single normal erythroid cell may contain 

~ 10,000 α and β-globin mRNA molecules [8] we would expect that the ΔMCS-R2 mutant 

(expressing ~ 1–2% α-globin mRNA), should contain about 100–200 copies per cell. However, we 



found a detectable level of fully extended α-globin transcripts in only 47% of β-globin positive 

mutant cells (Fig. 1B) compared to 85% of normal cells. 

The basal level of expression in ΔMCS-R2 mutant at either a population or a single-cell basis could 

reflect the transcription status at a given time. Therefore no detectable mRNA would be just a 

consequence of a delayed basal level of expression. We thus investigated if the accumulation of 

the α-globin chains in enucleated red cells would give a more homogenous pattern than mRNA 

transcription. Immunofluorescence staining of peripheral blood in normal vs ΔMCS-R2 mutant 

humanised mice was performed using an antibody specific for human α-globin chains (Suppl Fig. 

1). In normal humanised mice, the expression is high with a homogenous pattern in all erythroid 

cells (Fig. 2). The use of a humanised system is thus not subjected to a variation of expression as 

previously observed in transgenic models (PEV) and is therefore suitable model. In the absence of 

MCS-R2, a heterogeneous level of α-globin chains is evident in about one third of the cells (ΔMCS-

R2, Fig. 2). The immunofluorescence data were confirmed by flow cytometry analysis, which 

allowed us to measure more accurately a positive population of 28% and the degree of α-globin 

production (Suppl Fig. 2). 

This study describes an example where the same inherited autosomal genetic defect can generate 

two opposite gene-expression phenotypes at the cellular level. We have shown that in the absence 

of a tissue-specific enhancer element, a significant number of red cell progenitors (~ 50%) succeed 

to activate α-globin transcription (binary mode). Transcription is then retained in a smaller 

proportion of cells (~ 30%) throughout differentiation until these cells enucleate into mature red 

cells. This demonstrates that the active transcriptional status is maintained through cell divisions, 

albeit at different level thus also reflecting a rheostatic mode of gene expression. 

Our results have implications also in the interpretation of studies on the epigenetic mechanisms 

modulating gene expression. We have previously shown that the balance of active and repressive 

epigenetic marks may reflect different degrees of silencing and transcription within a population of 

cells rather than a bivalent (H3K4me3 and H3K27me3) chromatin domain [7]. Here, we have 

shown evidence of the co-presence of two transcriptionally unique, and genetically identical, 

populations of the same cell identity. Therefore, in transcriptionally mixed cell populations, any 

epigenetic analysis could lead to misinterpretation of data. Recently, there have been 

breakthroughs in the analysis of bivalent marks using combinatorial indexed ChIP (co-

iChIP) [9][10] and single molecule modification imaging combined with sequencing [11]. However, 

these studies still don't address whether or not the starting material is homogenous at the 

expression level of a single gene. If evidence of a mixed population, with regards to the expression 

of a single gene (in this case, α-globin), is observed such ChIP experiments would first require a 

separation of these two populations. Although we made several gene-targeting attempts, the 



generation of a humanised α-globin reporter mouse model has proved particularly challenging due 

to the inherent repetitive nature of the α-globin cluster. 

In conclusion, this study describes a striking example where the same inherited autosomal 

mutation can generate two opposite transcriptional phenotypes within the same cellular type, a 

phenomenon that has to be taken in account when performing epigenetic studies. 
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Figure legend 

 

Fig. 1.  

Single cell PCR analysis in humanised erythroid cells. An example of α globin expression analysis 

carried out in 90 mouse single erythroblasts (Ter119 +). Each lane (numbered 1 to 20 and 1 to 24) 

corresponds to the same single cell. The expression of human α-gobin (hα) has been compared to 

mouse β-globin (mβ) in mouse normal (A) and in ΔMCS-R2 (B) humanised erythroblasts. The red 

asterisks represent no detectable expression of hα compared to mβ. The black asterisks represent 

no detectable expression for both mβ and hα and were not considered as informative. 

M = molecular weight marker (2-Log NEB). NTC = no template control. 10 × cells = PCR analysis 

performed on 10 cells, as a control. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

 

Fig. 2.  

Immunofluorescence of red cells using a specific antibody against human α-globin chains. (Top) 

Illustrations representing the two scenarios (rheostatic and binary modes) by which gene 

expression can be modulated down to 1–2% in the absence of an enhancer. (Bottom) 

Immunostaining with anti-human α-globin antibody (1:100) (Santa Cruz D-16 sc-31,110) of mouse 

normal humanised red cells, mouse and human red cells at 100:1 ratio (showing species specificity 

of the antibody but also as an example of how an exclusive enhancer-binary mode activity should 

appear in ΔMCS-R2), and mouse humanised red cells without the enhancer (ΔMCS-R2). 

Secondary antibody was used at 1:200 dilution (Alexa Fluor 488 Invitrogen A11055). Images were 

captured using a Nikon eclipse E600 microscope with a Nikon digital camera DXM1200C using 

NIS elements BR2.30 SP4 imaging software (all from Nikon UK, Kingston-upon-Thames, United 

Kingdom). 

 

Supplemental Fig. 1.  

Specificity of the antibody against human α-globin chains. Anti-human α-globin antibody was used 

(Santa Cruz D-16 sc-31110). Note a four bands ladder that recapitulates globin tetramer formation 

is observed under denaturating conditions. 

 

Supplemental Fig. 2.  



Measurement of human α-globin protein expression in mouse and humanised (normal and ΔMCS-

R2) erythroblasts by flow cytometry. On the left, histogram plots. On the right, plots from flow 

cytometry analysis obtained with a goat IgG anti-human α-chains (Santa Cruz D-16 sc-31110) and 

Alexa Fluor 488 (Invitrogen A11055) conjugated anti-goat IgG. 
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Suppl Fig. 1 

 

 

  



Suppl. Fig. 2 

 

	
  

	
  


