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University of Turin 
 
 
 
Abstract Gretl allows to perform a wade variety of GARCH models by the gig package, but it doesn’t 
allow to perform directly Stochastic Volatility models yet. This paper suggest how to implement these 
models by means of the new Gretl’s Kalman Filter. 
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1. Introduction 

According to a very common pattern for the log-returns, ��, the term “volatility” refers to the 
coefficient �� into the modelling (Taylor, 2008): 
 �� = � + ��        �� = ��		�  	�~��(0; 1)          (1) 
 
Then, �� is a scale coefficient which affects the log-return variability, and, under suitable assumption, ��� corresponds to the conditional variance of ��, which is generally non constant (conditional 
heteroscedasticity).  

In Garch modelling	�� is a deterministic function of the past information: 
 �� = �ℎ�        ℎ� = � + ∑ ������� + ∑ ��ℎ�����������     (2) 

 
Actually, model (2) is only the base of a variety of models, which shape conditional heteroscedasticity 
as a deterministic function of the past information. Gretl allows to perform directly a lot of these 
Garch variants by the gig package (Lucchetti, Balietti). Below, it is reported the gig version of the E-
Garch(1,1) model: 

 �� = �ℎ�        ln ℎ� = � + ��|	���| + #�	��� + �� ln ℎ���     (3) 
 
and in the equivalent (less used, but more consistent with the model name) form: 
 �� = exp(ℎ�/2)        ℎ� = � + ��ℎ��� + �� )|	���| − �2 +⁄ - + #�	���    (4) 

 

where � = � + ���2/+; now ℎ� is the log-conditional variance of ��,  
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The E-Garch model is very common because has some suitable features: (i) it does not require 
parametric constraints to assure positive variance; (ii) it makes the volatility very sensible to big 
shocks; (iii) it takes into account asymmetric effects of past innovations.  

2. Stochastic Volatility models and Kalman Filter 

Garch models are widely used in financial analysis although these models are based on a strong 
assumption: the volatility is a deterministic function of the past. That means the volatility at the next 
step (day, hour,…) is exactly determinable on the basis of the present information, that is a bit hard 
to justify with a realistic financial theory. Therefore, some scholars prefer to consider financial 
volatility as a stochastic process and shape it with models similar to the following: 
 �� = exp(ℎ�/2)        ℎ� = � + ��ℎ��� + .� .�~��(0; �/�)   (5) 
 
Model (5) is known as Stochastic Volatility model1 (Harvey, Ruiz, & Shepard, 1994) and can be 
viewed as a stochastic version of the E-Garch model, but we have to note that model (5) is not be able 
to takes into account asymmetric effects of past innovations. A solution could be the following 
Asymmetric Stochastic Volatility (ASV) model: 
 �� = exp(ℎ�/2)        ℎ� = (� + 0����) + ��ℎ��� + .� .�~��(0; �/�)  (6) 
 

Model (6) is quite similar to the model (4), if 0���� ≈ #	���; the error .�, representing the shocks 

into volatility, stands in for �� )|	���| − �2 +⁄ -.  

If � < 1, ℎ� is a Gaussian stationary process, and then: 
 (ℎ�3�/2)|��~� )�� ℎ4�3�|�; �5 6�3�|�-      (7) 

where: ℎ4�3�|� = 78ℎ�3�|��9      (8a) 6�3�|� = :;�8ℎ�3�|��9     (8b) 
 
 

As a result, the volatility �� is a log-normal stochastic process: 
 ��3�|��~<=>� )�� ℎ4�3�|�; �5 6�3�|�-     (9a) 

That means: 
 �?�3�|� = 78��3�|��9 = exp )�� ℎ4�3�|� + �@ 6�3�|�-    (9b) 

 
Unfortunately, ℎ� is not easy to forecast, because it is a latent process, not observable (determinable). 
Therefore ℎ� has to be filtered in some way; the main method to filter and forecast ℎ� consists in using 

                                                 
1 More specifically, model (5) is a Stochastic Volatility model of order 1, SV(1), because ℎ� is an autoregressive process 
of order 1. 
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the Kalman Filter (KF). Therefore, if we set A� = log ���, we have the following structural time series 
model: 
 

DA� = −1.27 + ℎ� + G�																											G�~�(0; 4.93)ℎ� = (� + 0����) + ��ℎ��� + .� 									.�~��K0; �/�L   (10) 

 
where G� = log 	�� + 1.27, being 7(log 	��) = −1.27 and :;�(log 	��) = 4.93; 	0, �, ��, �/� are the 
model parameters. 

In case of heavy tailed standardized errors, 	�, i.e. standardized Student’s t-distributions with v 
degrees of freedom, the values -1.27 and 4.93 in (10) should be replaced by the values: 

 NO = −1.27 − PO )Q�- + ln )Q��� -    (11) 

N� = 4.93 + P� )Q�-     (12) 

 
where PO and P� are the di-gamma and tri-gamma functions respectively  (Chirico, 2017). 

As known, the KF allows to filter and forecast optimally the latent components of structural time 
series models, but, in this case, the application of the KF is sub-optimal since the noise G� is not 
Gaussian. Nevertheless, the KF remains optimal among the linear estimators/predictors (MMSLEs) 
and it works well for the sample sizes typically encountered in financial analysis (Ruiz, 1994). 
 

2. Implementation in Gretl’s Kalman Filter 

In 2016, Gretl’s Kalman Filter was restyled with a new interface and commands: now the KF is 
implemented as a bundle generated by the function “ksetup”. At the moment, Gretl’s Kalman Filter 
doesn’t allow the use of exogenous variables (��) in the state equation directly. In this case we can 
consider �� as a false latent variable. That means transforming the model (10) in the following bi-
dimensional structural time series model: 
 

RS
T
SUA� = −1.27 + ℎ� + G�																											G�~�(0; 4.93)�� = � + ��																																																																												

ℎ� = � + ��ℎ��� + 0���� + .� 									.�~��K0; �/�L�� = V�																																																				V�~��K0; �� L
    (11) 

 
 
 
 

Model (11) is implemented in Gretl by the following commands:  
 
# Preliminary setup 

series r = log-returns  # input log-returns 

scalar mu = mean(r) 

scalar sigma = sd(r) 

scalar alpha = alpha0    # starting value for alpha 
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scalar beta = beta0  # starting value for beta 

scalar gamma = gamma0 # starting value for gamma 

scalar sigmeta = sigmeta0 # starting value for sigmeta 

matrix H = {1, 0; 0, 1} 

matrix F = {beta, gamma; 0, 0} 

matrix Q = {sigmeta^2, 0; 0, sigma^2} 

series y = log( (r-mu)^2 ) 

matrix yr = {y, r} 

 

# Model definition 

bundle SVM = ksetup(yr, H, F, Q) 

SVM.obsxmat = {-1.27, mu} 

SVM.obsvar = {4.93, 0; 0, 0} 

SVM.stconst = {alpha; 0} 

 

Generally the values of model parameters, �, ��, 0, �/, are not know; therefore these parameters 
have to fix initially with suitable starting values2, then the optimal values are found by maximum 
likelihood estimation: 
 

mle ll = ERR ? NA : SVM.llt 

    SVM.statevar[1,1] = sigmeta^2 

    SVM.stconst[1,1] = alpha 

    SVM.statemat[1,1] = beta 

    SVM.statemat[1,2] = gamma 

    ERR = kfilter(&SVM) 

params alpha beta gamma sigmeta 

end mle --hessian 

 

Finally, the volatility is drawn got by the commands: 

 

ksmooth(&SVmod) 

series s_sv=exp( SVM.state[,1]/2 + SVM.stvar[,1]/8 ) 

series eps_sv = (r-mu)/s_sv  # standardized errors 

 

3. A case study: Generali stock 

We considered the Generali stock price from 2009-04-16 to 2011-04-08 (517 observation); we 
calculated the price log-returns, ��, then, we modeled the volatility of �� by an E-Garch(1,1) and an 
ASV(1) (model 6); the E-Garch model was estimated by the Gretl’s gig package; the ASV model by 
the script above. Table 1 and Table2 report the estimation results; Figure 1 reports the volatility series 

                                                 
2 For example, inialpha and inibeta could be the values of the corresponding parameters in the E-Garch model; inisigmeta 
is fixed equal zero. 
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by both methods; Figure 2 reports the Quantile-Quantile plot of the standardized errors by both 
methods. 
 
 
 

 

Table 1: EGARCH(1,1) [Nelson] (Normal) 

Dependent variable: ld_generali 
Sample: 2009-04-17 -- 2011-04-08 (T = 516), VCV method: Robust 

             coefficient   std. error      z      p-value 
  ------------------------------------------------------- 

  omega      -0.606608     0.176318     -3.440   0.0006  *** 

  alpha       0.164792     0.0581530     2.834   0.0046  *** 

  gamma      -0.0885252    0.0329905    -2.683   0.0073  *** 

  beta        0.941855     0.0218515    43.10    0.0000  *** 

 

Log-liklihood:   1380.67 (1311.84, sample 2009-05-30, 2011-04-08)  

 
 

 

Table 2: ASV(1) [Kalman Filter] (Normal) 

Dependent variable: ld_generali 
Sample: 2009-04-16 -- 2011-04-08 (T = 517), ML, SVM.llt 

             coefficient   std. error      z      p-value 
  ------------------------------------------------------- 

  sigmeta     0.0747468    0.165669     0.4512   0.6519    

  alpha      −1.02031      1.01330     −1.007    0.3140    

  beta        0.877496     0.122228     7.179    7.01e-013 *** 

  gamma      −8.44457      4.56377     −1.850    0.0643    * 

 

Log-liklihood:   1376.5 (1315.4, sample 2009-05-30, 2011-04-08)  

 

 

Figure 1: Volatility with E-Garch and ASV models 

 
 

 

 
On the basis of these results, the ASV model doesn’t seem inferior to the E-Garch. Obviously, the 

volatility are different between the models, but present the same dynamics. 
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On the full sample, the E-Garch log-likelihood is higher than ASV likelihood, but the ASV likelihood 
is higher if we ignore the first two weeks. As known, the Kalman Filter generally requires some steps 
to fit well series. 

 

 
 

 

 

 

 
 

 

Figure 2: Quantile-Quantile plot of the standardized errors 

 
 

Conclusions 

The paper illustrates a way to implement stochastic volatility models in Gretl using the Gretl’s 
Kalman Filter on suitable state space models. The implementation of the model is not very difficult, 
but the estimation results depend extremely on the starting values of the parameters and on the starting 
values of the state components. At the moment, I haven’t find a standard solution for this problem, 
but I am confident that this drawback can be limited! 
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