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Abstract

The problem of user privacy enforcement in online social networks (OSN) cannot be ignored
and, in recent years, Facebook and other providers have improved considerably their privacy
protection tools. However, in OSN’s the most powerful data protection “weapons” are the
users themselves. The behavior of an individual acting in an OSN highly depends on her level
of privacy attitude: an aware user tends not to share her private information, or the private
information of her friends, while an unaware user could not recognize some information as
private, and could share it without care to her contacts. In this paper, we experimentally study
the role of the attitude on privacy of an individual and her friends on information propagation
in social networks. We model information diffusion by means of an extension of the Susceptible-
Infectious-Recovered (SIR) epidemic model that takes into account the privacy attitude of users.
We employ this diffusion model in stochastic simulations on a synthetic social network, designed
for miming the characteristics of the Facebook social graph.
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1 Introduction

The problem of user privacy in the so-called “Big Data Era” cannot be ignored and many com-
panies are realizing the necessity to consider it at every stage of their business. In practice, they
have been turning to the principle of Privacy by Design [6] by integrating privacy requirements
into their business model. Online social network (OSN) providers are embracing this model
as well. In recent years, Facebook has improved considerably the privacy protection tools pro-
vided within its Web and mobile products, and periodically suggests its users to review their
privacy settings using a simplified but still flexible interface. However, differently from other
Web, mobile and IoT services where data protection mostly involves access control rules, data
anonymization techniques and other centralized or decentralized precautions that are invisible
to the users, in OSN’s the most powerful data protection “weapons” are the users themselves.
In fact, social media (e.g., Facebook, Instagram, Twitter) are essentially human-generated logs

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science
10.1016/j.procs.2017.05.030


http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.05.030&domain=pdf

Livio Bioglio et al. / Procedia Computer Science 108C (2017) 28-37

that can be used to reconstruct life events and private facts of those users that carelessly dis-
close their personal information. As shown by the research project myPersonality [13] carried
out at the University of Cambridge, by leveraging Facebook user’s activity (such as “Likes” to
posts or fan pages) it is possible to “guess” some very private traits of the user’s personality.
To alleviate this issue, social media usually provide advanced tools for controlling the privacy
settings of the user’s profile [22], but it has been shown that yet a large part of Facebook con-
tent is shared with the default privacy settings and exposed to more users than expected [15].
Moreover, even though OSN users can specify which of their contacts are allowed to see their
notifications, they do not have any control on how these contacts will use their information:
friends could spread the rumor through other social networks, blogs, websites, medias or simply
with face-to-face communication.

The behavior of an individual in these situations highly depends on her level of privacy
awareness: an aware user tends not to share her private information, or the private information
of her friends, while an unaware user could not recognize some information as private, and
could share it without care to her contacts, even to untrusted ones, putting her privacy or the
privacy of her friends at risk. Users’ privacy awareness then turns into the so-called “privacy
attitude”, i.e., the users’ willingness to disclose their own personal data to other users, that can
be measured by leveraging the way users customize their privacy settings in social networking
platforms [14, 21].

A new question may arise now: how safe is the privacy of a social network user who is
mostly surrounded by friends with a good privacy attitude? The question is not trivial, since
the way most people set their privacy settings is based on the notion of closeness: close friends
are usually allowed to see all user’s updates, while acquaintances can only see “public” or less
sensitive updates'. The common assumption is that closed friends are trusted ones and thus
will not disclose friends’ posts to other friends. In this paper, we model the effects of privacy
attitude on information propagation in social networks with the aim of studying what happens
to information diffused to friends with different levels of privacy awareness. We employ a
model, proposed by us in [5] and inspired by the classic Susceptible-Infectious-Recovered (SIR)
epidemic model [11], for representing privacy attitude of individuals by means of parametric
values. By tuning the values of parameters, we model the attitude on privacy of single users,
from more to less aware on privacy. Our objective is to investigate the role of privacy attitudes
of the initial spreader, of her neighbors and of the whole population of the social network on
the diffusion of information into a Facebook-like social network. We analyze, by means of
stochastic simulations, the spreading of information in a Facebook-like network starting from a
unique initial spreader. We assign to each user of the network a privacy class, representing its
attitude on privacy: in order to study the role of privacy awareness of the whole population,
we simulate information spreading on different assignment distributions of privacy classes of
the nodes, from safer (where the majority of users has a high awareness on privacy) to unsafer
ones (where the majority of users has a low level of attention on privacy issues). With the goal
of studying the role of the neighborhood of a user in information diffusion, we set all the nodes
directly linked with the initial spreader to the same privacy class, repeating the assignment for
all privacy classes. Finally, we repeat the simulations choosing a node in every privacy class as
initial diffuser to analyze the role of the privacy attitude of the initial spreader.

1Facebook, for instance, allows its users to distinguish between friends, close friends and acquaintances
during any posting action.
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1.1 Related work

In epidemiology, the Susceptible-Infectious-Recovered (SIR) epidemic model [11] is employed
for modeling infectious diseases that confer lifelong (or long-term) immunity, such as measles,
rubella or chickenpox. In this model a susceptible (S) node can become infected, because of
the presence of infectious (I) nodes, and an infectious node can naturally recover (R) after
few time, gaining immunity to the disease. The SIR model has been applied to information
spreading since early years, even if these applications slightly differ from the common model
[7, 16, 10]: in fact, in this case, if an infectious node contacts another infectious one, it (or both
of them, depending on the implementation) loses interest in the rumor and becomes recovered.
An extension of this model also allows spontaneous recovery, justified as forgetting mechanism:
in this case, the model behaves more similarly to the classical SIR model, as observed in [17].

A large part of research works on privacy issues in online social networks focuses on the
anonymization of networked data [23], while our work can be positioned in another branch of
research that focuses on modeling, measuring and preventing privacy leakage in online social
networks. In this regard, one of the most prominent work is [14] where Liu and Terzi propose
a framework to compute a privacy score measuring the users’ potential risk caused by their
participation in the network. An extension to this score taking into account the centrality of
users in the social graph has been presented in [18]. However, it has been shown that these
approaches are based on the wrong assumption that all user’s friends are equally close [19].
Instead, Fang and LeFevre [9] describe a social networking privacy wizard based on active
learning to help users customize their privacy settings. [4] presents a tool to detect unintended
information loss in online social networks by quantifying the privacy risk attributed to friend
relationships in Facebook. In [20] the authors measure the inference probability of sensitive
attributes from friendship links, while the authors of [2] define a measure of how much it might
be risky to have interactions with them, in terms of disclosure of private information.

Differently from those studies, in our work we focus on rumor spreading in presence of a sort
of “immunization parameter” that models the privacy attitude of users, i.e., their willingness
to disclose their own personal data to other users directly or indirectly.

1.2 Contribution

We adopt the SIR model for modeling the spread of information in a social network: suscep-
tible (S) individuals do not know the information item, then are susceptible to be informed;
infectious (I) individuals know and spread the information item, while recovered (R) individuals
already know the information item but do not spread it anymore. In the considered extension,
each individual belongs to a privacy attitude class that tunes the parameters of the model. By
means of stochastic simulations, we study the role of privacy on information diffusion in a syn-
thetic network reproducing the characteristics of the real Facebook social graph, with different
distributions of privacy attitude of their nodes. We then try to answer the following research
question: is the safe privacy attitude of friends a sufficient condition to avoid the diffusion of
private information in the network?

The practical outcomes of our study involves the way user privacy protection is handled by
social media providers. If the common assumed model turned out to be false, at least under
certain conditions, it should be reconsidered.

The remainder of the paper is organized as follows: the privacy-aware propagation model is
presented in Section 2; Section 3 provides the report of our experimental research; finally, we
draw some conclusions in Section 4.
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Figure 1: Transmission model. Each index of compartments S and I represents a privacy class

2 A privacy-aware model for information spreading

We consider a social graph G composed by a set of n nodes {v1,...,v,} representing the users
of G. We represent the social network as a directed graph G(V, E), where V is a set of n nodes
and F is a set of directed edges E = {(v;,v;)}. Given a pair of nodes v;,v; € U, (v;,v;) € E
iif there exists a link from v; to v; (e.g., users v; is in the friend list/circle of v; or v; follows
v;). We define the neighborhood of a node v; € V' as the set of nodes vy directly connected to
the node v;, i.e., N(v;) = {vg € V | (v;,vx) € E}. We can see the neighborhood as the list
of friends or followers of user v;. Finally, we consider a set P of privacy classes, representing
the propensity of a user of the class to disclose her own or other’s information, directly or
indirectly. In practical terms, in online social networks (such as Facebook, Twitter, Instagram
or Google+) the privacy class may be unveiled by the way users configure their privacy settings,
or the way they post or share/comment other users’ posts. Each user of G belongs to a privacy
class p € P.

2.1 Information spreading model

In the SIR model, at any time step an individual v; may belong to susceptible (S), infectious (I)
or recovered (R) compartment. A susceptible (S) individual may be infected by an infectious
(I) individual in contact with her with a probability A, called infection probability, becoming
infectious (I) herself. An infectious (I) individual v; may spontaneously recover from infection
with probability u, called recovery probability, entering the recovered (R) compartment. An
infectious individual (I) may infect each user in her neighborhood belonging to the susceptible
(S) compartment. We denote with c(v;,t) € {S,I, R} the compartment of user v; at time ¢.

The SIR model is usually applied for modeling infectious diseases that confer lifelong (or
long-term) immunity, but it can be also used for modeling the diffusion of information in a
population: susceptible individuals are those who not already know the information item, and
then they are susceptible to be informed; infectious individuals are the ones who know it and
actively spread it; finally, recovered individuals already know the information item but do not
spread it anymore. We can see the recovery process as an aging mechanism that lets the
individual loose interest on information after few time steps, stopping its diffusion.

Here we employ an extension, proposed by us in [5], of the SIR model for considering the
explicit or implicit privacy polices of an individual during the spread of information on a social
network. A set of privacy classes P = {pg,p1,...,pn} is assigned to the susceptible (S) and
infectious (I) compartments, representing the privacy class of an individual belonging to the
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Figure 2: Degree distribution of the Facebook-like synthetic network

compartment, and consequently her behavior on information spreading, from less aware (pg)
to more aware (py). This behavior is reached by assigning different values to the parameters
A and p of each privacy class: every privacy class p € P is linked to a different pair of values
Ap and . A graphic representation of our extension of classic SIR model is given in Figure 1.
We also introduce a novel parameter 8, € [0, 1] in the SIR transmission model, symbolizing the
interest in information of the users in privacy class p.

The evolution of information diffusion follows the Reed-Frost chain-binomial model [1]: it
consists in a stochastic approach, where time is measured in discrete units and infection occurs
because of direct contacts. The evolution probabilities are obtained as follows. Let p(v;) =p €
P be the privacy class of an individual v;. If it belongs to the susceptible compartment, it may
be infected at time ¢ + 1 with probability:

Pins(vi,t+1) =6, - (1 — H (1-— /\p,)m(vj,t)) (1)
p'eP

where nr(v;,t) = [{v; € N(v;) | ¢(vj,t) =1 A p(v;) = p'}| is the number of individuals in
infectious (I) compartment and privacy class p’ at time ¢ among the neighbors of individual v;.
Otherwise, if the individual v; of privacy class p belongs to the infectious (I) compartment at
time ¢, it may recover with probability 1, at time ¢ + 1.

3 Experiments and results

In this section we provide the results of our experiments performed over a Facebook-like syn-
thetic network. We firstly present the contact network, then the details of our experimentation
and the results. Finally, we provide an explorative analysis of the parameter space.

3.1 Contact network

Information spreads on a contact network, in which nodes represent individuals, and edges
between nodes represent contacts between two individuals. In our experiments we employ a
Facebook-like network generated using LDBC-SNB Data Generator? which produces graphs
that mimic the characteristics of real Facebook networks [8]: in particular, we generate a
network with 80,000 nodes, but here we consider only the greatest connected component of
such network, composed by approximately 75,000 nodes and 2,700,000 edges. The degree
distributions of this network is given in Figure 2. The graph is undirected.

2https://github.com/ldbc/ldbc_snb_datagen
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Table 1: Values of the parameters for the three privacy classes
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Figure 3: Class distribution in the three kinds of class assignments

3.2 Experimental settings

Our experiments are conducted as follows. We perform 100 stochastic simulations of information
spreading on a completely susceptible population, except for one infectious node. We select three
privacy classes, numbered from 0 to 2, representing users from unaware (class 0) to more aware
on privacy (class 2), in order to provide a few grades of awareness. Table 1 reports the values
assigned to parameters of the spreading model for each privacy class. Users in class 0 have a
high probability of being interested in information and spreading it, and the opposite for users
in class 2; class 1 represents average users, then its parameters have been tuned accordingly.
We randomly assign to each node of network in Section 3.1 a privacy class. In order to study
the role of the global privacy attitude of the whole network, we repeat the set of simulations
for 3 different class distributions of privacy classes of the nodes: a safer assignment, where the
majority of nodes are in the most aware class (the number 2); a medium assignment, where
the majority of nodes are in the middle privacy class (1); an unsafer assignment, where the
majority of nodes are in the less aware class 0. The number of nodes in each privacy class of
these three class distributions are graphically summarized in Figure 3. For studying the role of
the neighborhood, we assign the same privacy class p € P to all the nodes in the neighborhood
of the initial infectious node, repeating the set of simulations for each privacy class in p € P.
Finally, in order to study the role of the privacy class of the initial spreader, we choose the
initial infectious individual among all the nodes of privacy class p’ € P. More precisely, with
the aim of reducing biased results we collect and aggregate the data from 10 different nodes
for each privacy class, having degree close to the average value of the network. We repeat this
set of simulations for each privacy class in p’ € P. Summarizing, for each class distribution in
Section 3.1, for each pair of privacy classes in p,p’ € P, for 10 times we randomly choose a node
of the network in privacy class p’, having degree close to the average value of the network, we
change the privacy class of all the nodes in its neighbors list to p, we perform 100 simulations
and then we aggregate the results.
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Figure 4: a) Median of prevalence of informed individuals (ratio) in each set of simulations.

b) Median of incidence of informed individuals (ratio) in each set of simulations. c¢) Probability
that information does not reach more than 1% of the population.

3.3 Results

For each set of simulations we observe the proportion of informed individuals at each time step
(prevalence), that is the number of nodes in infectious (I) or recovered (R) compartments, and
the proportion of new infection cases at each time step (incidence), that is the number of nodes
changing their compartment from susceptible (S) to infectious (I).

In order to compare the results of several simulations, we collect some key features of
the prevalence and the incidence curves. For prevalence curves, we gather the proportion of
informed individuals at the end of simulations, when the number of infectious individuals is
equal to zero (then nobody can spread information anymore), and the step when simulation
ends: such data convey the duration of the spread and its diffusion among the population.
For incidence curves, we collect two types of information related to the peak of new cases of
informed individuals: i) the step where this peak is reached and ii) the proportion of population
involved. Such result offers a snapshot on the speed of information diffusion.

The features extracted from our simulations are graphically summarized in Figure 4(a) for
prevalence curves and in Figure 4(b) for incidence curves. For each point of these graphs,
the marker color identifies the privacy class of the initial spreader, its shape identifies the
privacy class of the neighbors of initial spreader node, while its background color identifies the
distribution of privacy classes of the nodes in the whole network. Each point shows the median
value resulted from 100 simulations performed on 10 initial spreaders.

As we have already noticed in [5], the attitude on privacy in the whole network is responsible
of the proportion of population informed, both at the end of diffusion and at the peak of new
cases. Where the majority of nodes is unaware, information immediately spreads over almost
the entire population, while where the network is full of aware individuals, information reaches a
smaller part of the population. It also greatly affects the duration of the information spreading
process: in a network where users are more attentive on privacy, the diffusion of information
is few times longer than in other cases. Interestingly, even in this case information reaches a
huge portion of the population, around 75%. The speed of diffusion is more evident in the
curves of incidences, depicting the proportion of new cases of informed individuals in each time
step (Figure 4(b)): under the least safe distribution, information immediately reaches around
half of population, while for safer distributions this peak is lower. However, the step where
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this peak is reached does not depend on the attitude on privacy of the population: its value is
approximately the same in every case.

The duration of spread is a key feature for evaluating the impact of an information item
on a population. If the diffusion is slow, and takes more time for reaching a huge portion
of population, there is more probability to block it before its natural death. For example in
case of diffusion of hoaxes or false news, authorities of the social network have more time for
applying containment policies for contrasting its proliferation, like the isolation of spreaders or
the diffusion of official news revealing the hoax. Moreover, in our experiment we propagate only
one information item at a time, but in real scenarios there are several news diffusing at the same
time, competing for the attention of users: an information item loses of interest quite quickly.
If it is not able to reach rapidly a huge portion of population, it is possible that information
naturally stops being spread in favor of other news. We recall that the privacy attitude of a user
influences the way she sets her privacy settings that, in turn, has an impact on the visibility of
any (both public and private) of her sharing actions.

The most noticeable result for information diffusion is the role of the attitude towards
privacy of the initial spreader and its neighbors: a safer attitude of the node and its neighbors
decreases the portion of informed population, and extends the duration of information diffusion,
but its impact is not as influential as the behavior of the whole network. This is likely due to
the high average degree of the nodes, equal to 71: for an aware user, even if the probability of
diffusing information to a friend is low, the number of friends is so high that a small number
of friends can become spreaders themselves. This consideration is applicable to the informed
friends too, and as soon as information reaches a node out of the neighborhood, its diffusion
depends only on the attitude on privacy of the whole network. For this reason we decide to
analyze the portion of simulations where information has reached only a small portion of the
population, lower than 1%, before dying: our results are reported in Figure 4(c). In this case
we notice that the attitude of the network is irrelevant, and only the privacy classes of the
spreader and its neighborhood is crucial. Interestingly, a safe attitude of the spreader or of the
neighbors is not sufficient on its own to block information diffusion. An information item on a
safer user with unsafer friends, and vice versa, can easily overtake the circle of friends.

3.4 Exploration of parameters space

In our experiments we have fixed the parameters of the diffusion model described in Section 2
to arbitrary albeit reasonable values. In order to generalize our findings, we explore the space
of parameters for two extreme privacy classes (the least and the most aware): for reducing the
depth of parameter search space, we fix u, and we use the same value for 8 and \. In details, we
let By and A\ vary between 0.05 and 0.3 (with 0.05 step), while 85 and A2 range between 0.7 and
0.95 (with 0.05 step). In Figure 5 we show, for each class distribution, the portion of informed
users at the end of simulations (the value on y axis in Figure4(a)) for each couple of values
assigned to the two privacy classes. The color of each tile denotes the median value of several
simulations: we aggregate the results of all the assignments of privacy classes for neighborhoods
and initial spreaders in the same class distribution on population. We notice that the value
chosen for the more aware class (class 0) is the most important for determining the final portion
of population informed, especially when the attitude on privacy of the network is safer. In this
case less aware users are probably surrounded by more aware friends, who are not interested in
the information item, and do not let it diffuse over the network, even if less aware individuals
are spreading it to their friends with high probability. In fact this effect is less noticeable in
the unsafer distribution, where less aware users can diffuse information, encountering a weaker
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Figure 5: Portion of population informed at the end of information diffusion for each couple
of values assigned to § and A of privacy classes 0 and 2 in the three privacy class distributions.

resistance. This is due to the fact that their friends belong to their same less aware class with
high probability. However, the behavior observed in Section 3.3 is confirmed: the portion of
informed population, if we fix the parameters 8 and A of the privacy classes, greatly depends
on the attitude towards privacy of the whole population.

4 Conclusions

In this paper we have presented an information propagation model, inspired by the classical
SIR epidemic model, that takes into consideration the privacy awareness of the user. Through
stochastic simulations we have employed this model for studying the role of privacy in the
diffusion of information in a Facebook-like network, and in particular its influence at level of
the single initial spreader, her circle of friends, and the entire population.

Our results show how privacy attitude can affect the diffusion of information on social
networks. On one hand, the behavior of the entire population can reduce or increase, in case of
more or less aware users respectively, the portion of population which receives the information
item, and its speed of diffusion. On the other hand, the attitude on privacy of the initial spreader
and her friends has a marginal impact on this behavior, but they play a more important role for
preventing information spreading. An interesting result is that a safer attitude of friends of an
unaware user is not sufficient to block the diffusion of information. In future, we plan to extend
our work by studying the role of privacy awareness of the K-th order neighbors of an individual,
that is all individuals which can be reached in exactly K hops, and not only to friends. We
also plan to extend such analysis to a set of node’s features, such as its degree, its closeness
centrality, and its clustering coefficient. The final objective is to employ all these characterizing
features to predict the risk, for a particular individual, that her private information spreads on
the network, looking only at her local features.

Our study shows the importance of considering the privacy attitude of users in modeling
the spreading of rumors, with direct and indirect implications on all applications that involve
the dynamics of information spreading, such as influence maximization [12] and community
detection [3], as well as on privacy enforcement models and techniques for online social networks.
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