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Abstract 

Peptide nucleic acids (PNAs) are among the most interesting and versatile artificial structural mimics of 

nucleic acids and exhibit peculiar and important properties (i.e. high chemical stability, and a high 

resistance to cellular enzymes and nucleases). Despite their unnatural structure, they are able to recognize 

and bind DNA and RNA in a very high, specific and selective manner. One of the most popular, easy and 

reliable method to measure the stability of PNA-DNA hybrid systems is the melting temperature but the 

thermodynamic data are obtained using a big quantity of materials failing to provide information on the 

kinetics of the interaction. 

In the present work, the PNA decamer 6, with the TCACTAGATG sequence of nucleobases, and the 

corresponding fluorescent PNA-FITU (fluorescein isothiourea) decamer 8 were synthesized with standard 

manual Boc-based chemistry. The interaction of the PNA-FITU with parallel and antiparallel DNA has been 

studied by stopped-flow fluorescence, which is proposed as an alternative technique to obtain the kinetic 

parameters of the binding. 

The great advantage of using the stopped-flow technique is the possibility of studying the kinetics of the PNA-

DNA duplex formation in a physiological environment. In particular, fluorescence stopped-flow technique has 

been exploited to compare the affinity of two PNA-DNA duplexes since it can discriminate between parallel 

and antiparallel DNA binding. 

1. Introduction 

Peptide nucleic acid (PNA) is one of the most studied and interesting DNA mimic with great potential 

for biomedical applications, both in diagnostics and therapy.[1] The chemical structure of PNA is 

quite different with respect to that of natural nucleic acids in that its backbone is composed of N-(2-



 

aminoethyl)glycine repeating units forming a pseudopeptide chain on which the four nucleobases 

(adenine or A, cytosine or C, guanine or G and or thymine T) are inserted as pendants (Figure 1). The 

neutral character of PNA molecules and the distance between two adjacent nucl

that found in DNA and RNA) confer them stronger and more selective binding affinity for 

complementary nucleic acid (DNA and RNA) strands than natural nucleic acids.

Figure 1. 
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the kinetics of the interaction. Surface Plasmon Resonance (SPR)[8] and SPR-enhanced fluorescence 

spectroscopy[9] have been used to investigate also the kinetics of DNA-DNA and PNA-DNA 

interactions but every technique shows some advantages along with some drawbacks and a detailed 

description of the phenomenon is thus limited. 

The stopped-flow absorbance spectroscopy and fluorescence intensity method[10,11] offers a 

powerful tool for a detailed kinetic analysis of interactions since it can monitor reactions continuously 

in real time and in a real physiological medium.[12,13] It has been used in the past to obtain a detailed 

understanding of locked nucleic acid (LNA)[14] and PNA[15] as a trapping strand in helicase-

catalyzed unwinding of oligonucleotide substrates. But fluorescence stopped-flow spectroscopy has 

never been used for a detailed PNA interaction study with parallel and antiparallel DNA with the aim 

of measuring the different affinities of the formed duplexes. Moreover, Gangamani et al. have 

previously demonstrated that intrinsic fluorescent PNA analogues can be used to monitor PNA self-

melting and PNA-DNA duplex transitions without affecting or perturbing their structures.[16] The 

objective of this work is to study PNA-DNA interaction from a kinetic point of view with a non-

consuming and fast spectroscopic method. With this technique, with respect to steady-state 

spectroscopy, in a single experiment, the data that can be collected are many: a complete kinetic 

profile can be obtained as well as a thermodynamic description of the interaction. 

In the present work, the PNA decamer 6, with the TCACTAGATG sequence of nucleobases, and the 

corresponding fluorescent PNA-FITU (fluorescein isothiourea) decamer 8 were synthesized with 

standard manual Boc-based chemistry. The interaction of both decamers 6 and 8 with the 

complementary parallel and antiparallel DNA was followed by steady-state and stopped-flow 

fluorescence intensity. The kinetics of the PNA-DNA duplex formation has been studied. In 

particular, fluorescence stopped-flow technique has been exploited to compare the affinity of two 

PNA-DNA duplexes: using parallel and antiparallel DNA, such data would be very important for the 

evaluation and improvement of antisense reagents and of diagnostic probes based on PNA. 

2. Experimental Section 

2.1. Materials 

The thymine monomer aeg-(T)PNA-COOH was synthesized according to the literature.[17] The other three 

monomers containing the nucleobases C, G and A were purchased from ASM Research Chemicals and were 

used as such without further purification. 11-Mercaptoundecanoic acid (MUA), 11-bromoundecanethiol, 

N,N,N’,N’-tetramethyl-O-(N-succinimidyl)uronium tetrafluoroborate (TSTU), 1-[1-

[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate (HATU), 

fluorescein isothiocyanate isomer I (FITC), N(α)-Boc-N(ε)-Fmoc-L-lysine, trifluoroacetic acid (TFA), 

trifluoromethanesulfonic acid (TFMSA) and m-cresol were purchased from Aldrich. N-methyl-2-pyrrolidone 
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(NMP), N,N-diisopropylethylamine (DIPEA) and thioanisole were purchased from Fluorochem. Polystyrene 

bead carrying 4-methylbenzhydrylamine hydrochloride salt groups (MBHA resin, 0.63 mmol/g) was 

purchased from VWR International. 

Parallel DNA (5’-3’ sequence: CATCTAGTGA) and antiparallel DNA (5’-3’ sequence: AGTGATCTAC) 

were purchased from Eurofins Genomics, Germany. 

2.2. Experimental techniques 

UV-Vis measurements for the evaluation of the PNA-FITU concentration and the FITC labelled and 

unlabelled PNA-DNA interaction studies were recorded using a Varian cary 300 Bio UV-Visible 

Spectrophotometer. 

Steady state fluorescence measurements were recorded using a Fluorolog 2 from Jobyn Ivon. As a preliminary 

analysis for the stopped-flow binding experiments, steady-state fluorescence spectra were recorded in the 

range of 495–650 nm upon excitation at 480 nm, at 25 °C, in order to investigate the binding of PNA-FITU to 

DNA. 

Fluorescence kinetics measurements were recorded using an Applied Photophysics SX20 stopped-flow 

spectrometer fitted with a 515 nm cut-off filter between the cell and fluorescence detector and equipped with a 

thermostat bath. The excitation wavelength was 480 nm and slits widths of the excitation monochromator 

were 1.0 mm. Data acquisition, visualisation and analysis were provided by Pro-Data software from Applied 

Photophysics Ltd. 

2.3. Synthesis 

The PNA decamer 6, with the TCACTAGATG sequence of nucleobases, and the corresponding fluorescent 

PNA-FITU decamer 8 were synthesized with standard manual Boc-based chemistry using MBHA resin 

loaded with the N(α)-Boc-N(ε)-Fmoc-L-lysine in order to obtain functionalized resin 3 with loading 0.2 

mmol/g. (Scheme 1). 

  



 

2.3.1. Synthesis of PNA decamer 6 

Scheme 1. Synthesis of PNA-FITU 8 and PNA 
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MBHA resin 5, with the free amine group on lysine (100 mg), was directly reacted with fluorescein 

isothiocyanate [FITC]. In particular, a solution of DIPEA (34 µL, 0.2 mmol, 8 eq) and FITC (38.60 mg, 0.099 

mmol, 4 eq) in DMF was added to the resin and shaken at room temperature for 12 h. Then the resin was 

washed twice with DMF, DCM, and finally with TFA, and then stirred for 1 h with a mixture of 

TFA/TFMSA/thioanisole/m-cresol 6:2:1:1. The reaction mixture was filtered, and the resin washed with TFA. 

The filtrate was concentrated, and Et2O was added to precipitate PNA as a yellow solid. Centrifugation of the 

slurry gave a solid, which was washed with Et2O and dried to afford the crude decamer 8 (26 mg). Purification 

of the crude PNA by RP-HPLC (tR = 12.9 min) afforded the PNA-FITU 8 (7 mg) as a yellow solid. MALDI-

TOF MS: found m/z: 3246.2 [M]+, calculated for C135H160N61O36S
+
: 3245.22. 

2.4. Stopped Flow experiments 

Due to the low solubility of both PNA and PNA-FITU, mother solutions (≈ 6 µM) were prepared by 

dissolving a certain amount of PNA and PNA-FITU powder in 0.1 M phosphate buffer pH 7. Then, the 

concentration was checked by UV-Vis spectroscopy both by means of the PNA (62348 M
-1

cm
-1

) and FITC 

(103500 M
-1

cm
-1

) molar extinction coefficients. Dilutions and working solutions were performed in 0.1 M 

phosphate buffer pH 7. 

DNA mother solutions (100 µM) were prepared in MilliQ water while the dilutions were performed in 0.1 M 

phosphate buffer pH 7. 

In stopped-flow experiments, PNA-FITU concentration (0.12 µM in 0.1 M phosphate buffer pH 7) was kept 

constant and several shots of different antiparallel DNA concentrations were performed over the range 0.8-15 

µM in 0.1 M phosphate buffer. The concentrations used for parallel DNA were in the range 0.8-8 µM. The 

reported concentrations are all cell concentrations, i.e. the real concentration in the cuvette. Each experiment 

for each kind of DNA (whole concentration set) was repeated six times, each time using new mother solutions 

of PNA-FITU and DNA. For each dilution, at least five scans were acquired and averaged. Each experimental 

point is therefore an average of at least 30 shots. Raw data were analyzed and plotted to a single exponential 

function by using Pro-Data Viewer 4.0.17 and, from this data treatment, the observed rate constants (kobs) 

were obtained. 

2.5. Displacement experiments 

The displacement experiment was performed according to Eccleston et al.[10] A solution containing a mixture 

of 1 µM FITC biolabelled PNA with 1 µM DNA was rapidly mixed with a large excess (50 µM) of unlabelled 

PNA. The displacement was repeated several times and the koff obtained is an average value of these 

experiments. 

2.6. Steady-state experiment 
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The steady-state experiment was performed by keeping PNA-FITU concentration constant (0.2 µM) and 

titrating an increasing concentration of antiparallel DNA in the concentration range 1.6-16 µM in order to 

reach saturation. The fluorescence intensity maxima of the spectra were obtained by exciting at 480 nm and 

collecting the spectra in the 480-650 nm range. 

3. Results 

PNA decamer 6 and fluorescein isothiocyanate (FITC) labelled PNA decamer 8 (PNA-FITU) were 

synthesised with a standard manual Boc-based chemistry (Scheme 1). N(α)-Boc-N(ε)-Fmoc-L-lysine 

loaded MBHA resin (loading 0.2 mmol/g) was used to build the TCACTAGATG PNA decamer 

sequence. The (ε) amino group of the lysine was used as anchoring point for the FITC. Therefore, in 

decamer 6 the (ε) amino group of the lysine residue is present as a free amino moiety, while in 

decamer 8 it is conjugated with the FITC, becoming PNA-FITU (Fluorescein isothiourea). 

The interaction of both decamers 6 and 8 with the complementary parallel and antiparallel DNA was 

followed by steady-state and stopped-flow fluorescence intensity. 

Preliminary UV-Vis and steady-state fluorescence experiments were performed in order to check the complex 

formation. The steady-state experiment was performed by keeping PNA-FITU concentration constant (0.2 

µM) and titrating an increasing concentration of antiparallel DNA in the concentration range 1.6-16 µM in 

order to reach saturation (Figure 2a). The fluorescence intensity maxima of the spectra were plotted against 

DNA concentration and the data were fitted to a rectangular hyperbola (Figure 2b) to get the thermodynamic 

binding constants.[18,19] 

a b 

  

Figure 2. (a) Titration curves of the PNA-FITU vs antiparallel DNA interaction followed by steady-state fluorescence and (b) plot of 

the fluorescence intensity maxima (black squares) against DNA concentration and non linear fitting to hyperbole (red curve) to get the 

thermodynamic binding constants. 

Once it was evaluated that the fluorescent biolabeling did not interfere in the binding, a kinetic 

binding experiment was made by stopped-flow fluorescence. The binding was investigated under 

pseudo-first order condition[20] ([DNA] >> [PNA-FITU]) by monitoring the fluorescence changes 
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after the formation of the complex. We need to work under this condition because only in this range 

of concentration the kinetic parameters can be calculated (i.e. equation 1 is valid). The two 

interactions (PNA-FITU versus both parallel and antiparallel DNA) were studied by keeping PNA-

FITU concentration fixed at 0.12 µM and changing the DNA concentration over the range 0.8-8 µM. 

Figure 3 shows that on mixing 0.12 µM PNA-FITU with 4 µM DNA (cell concentration) there is a 

decrease of the signal which reaches a plateau after few ms. Raw data were analyzed and plotted to a 

single exponential function providing the so called observed rate constant (kobs). Figure 4 shows the 

dependence of the kobs of DNA (both parallel and antiparallel) binding to PNA. The different behavior 

when comparing parallel and antiparallel DNA is evident: in the case of antiparallel DNA binding to 

PNA-FITU, the kobs evaluation is reproducible and the dependence with concentration is pronounced. 

Moreover, the repeatability is very good with a standard deviation for each concentration point being 

extremely small. A completely different scenario is recorded for parallel DNA where the fitting of the 

single curves to get kobs is more difficult and the fitting to get any insight on the association and 

dissociation constants of the overall interaction results nearly impossible (Figure 4b). The Watson-

Crick duplex formation (anti-parallel duplex formation) is the preferred formation for the PNA 

bindings than the parallel duplex structure,[4] and we can suppose a “loosely-bound state”[21] for 

PNA-FITU with parallel DNA. On the other hand, the preference for the antiparallel binding 

orientation seems to be a general feature of mixed sequence PNA-DNA duplexes. Kinetic binding 

studies, for example employing capillary gel electrophoresis, have shown that PNA-DNA duplex 

formation is very fast (<30 s) for antiparallel hybrids, whereas considerably slower kinetics were 

observed for parallel complexes.[22] In any case, we can observe that kobs dependence from [DNA] is, 

in term of slope of the line, comparable for both parallel and antiparallel DNA. The fact that the 

antiparallel DNA interaction is stronger and more reproducible is also in agreement with the Tm 

measurements.[23]  

a b 

  
Figure 3. The stopped-flow fluorescence intensity record of the binding of 0.2 µM PNA-FITU to (a) 4 µM antiparallel DNA 

and (b) 4 µM parallel DNA. The reported concentrations are real cell concentrations. 
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a b 

  
Figure 4. kobs dependence for antiparallel DNA (a) and parallel DNA (b). Note that the same magnitude is used for a better 

comparison. 

For the PNA-FITU/antiparallel DNA interaction, the values of the kinetic parameters (kon and koff) can 

be calculated from the slopes and intercepts of the linear plots of kobs versus increasing concentration 

of DNA (see equation 1)[10]. 

���� = �����	
� + ��

  (1) 

The slope of the straight line is the kon (second-order rate constant or rate constant of association 

process; units, M
-1

 s
-1

) and the intercept on the ordinate is the koff (first-order rate constant or rate 

constant of dissociation process; units, s
-1

). For the PNA-FITU interacting with antiparallel DNA, the 

second-order rate constant kon is 2.27·10
6
 ± 1.12·10

5
 M

-1
s

-1
. As it can be seen, the intercept on the 

ordinate has a very small value (2.62 ± 0.56 s
-1

). This means that the interaction is nearly completely 

shifted toward the formation of the complex. This interaction was also studied at higher 

concentrations of antiparallel DNA (up to 15 µM) to further monitor the interaction and data are 

shown in Figure 5 obtaining almost the same kinetic constants. 

 

Figure 5. kobs dependence for antiparallel DNA in the 0.8-15 µM range. 
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Since the dissociation rate constant value seems to be small, the koff obtained from the intercept cannot 

be reliable. To gain more information and to measure koff value accurately, a displacement experiment 

was executed as proposed previously for a protein-protein interaction.[12] Briefly, in the displacement 

experiment (Scheme 2), a solution containing fluorescent PNA-FITU (PNA-fL) and DNA is mixed 

together. The concentration of PNA-FITU is chosen to get a saturation of DNA, then a high 

concentration of unlabeled PNA (PNA-nfL) is added so that PNA-FITU dissociates from DNA and 

cannot re-associate. In this way the rate constant of the observed process is determined only by the k-1 

in Scheme 1 which is what we measure directly by the displacement of PNA-FITU from its complex 

with DNA using an excess of unlabeled PNA. Experimentally, the increasing fluorescence intensity 

was monitored during the process and the corresponding record was fitted to give directly an average 

rate constant koff value of 32.2 s
-1

 (Figure 6). 

 

Scheme 2. Scheme of the displacement experiment. 

 

Figure 6. Displacement experiment: 50 µM of unlabelled PNA (PNA-nfL) is used to displace DNA (1 µM) to PNA-FITU 

(PNA-fL, 1 µM). 

This koff value together with that obtained for the kon allowed us to calculate the thermodynamic 

dissociation constant Kd (i.e. koff/kon) value of 14.2 µM for PNA-FITU/antiparallel DNA interaction, 

being in the same order of magnitude compared to the Kd obtained by steady-state fluorescence in the 

same buffer (2.5 µM) (Figure 2). 

A further study on the temperature dependence of the binding constants was undertaken. The same 

interaction experiments were repeated at 50 °C for both DNAs. The dependence of kobs on parallel and 

antiparallel DNA concentration was again investigated in the range 0.8-8 µM and is reported in Figure 
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7. As is evident, in the case of parallel DNA, there is no temperature dependence of the interaction. 

On the contrary, the behavior of PNA/antiparallel DNA interaction is different when working at 25 or 

50 °C. In this case, it is possible to express numerically the strength of the two interactions, as 

reported in Table 1. As expected, the binding constant increases by increasing the working 

temperature. 

a b 

  

Figure 7. Temperature dependence of kobs for (a) antiparallel DNA and (b) parallel DNA. 

Table 1. Thermodynamic and kinetic binding constants for PNA-FITU vs antiparallel DNA interaction at different temperatures. 

Temperature 

(°C) 
K

a
 (∙10

4

) M K
d
 (∙10

-6

) M

-1

 K
on

 (∙10

6

) M

-1

s

-1

 K
off

 s

-1

 

25 7.05 14.18 2.27 32.2 

50 17.69 5.65 4.67 26.4 

 

Conclusions 

The PNA decamer 6 and the corresponding fluorescent PNA-FITU decamer 8 were synthesized with 

standard manual Boc-based chemistry. The interaction of both decamers with the complementary 

parallel and antiparallel DNA was followed by steady-state and stopped-flow fluorescence intensity. 

In particular, fluorescence stopped-flow technique has been exploited to compare the affinity of two 

PNA-DNA duplexes: using parallel and antiparallel DNA, such data would be very important for the 

evaluation and improvement of antisense reagents and of diagnostic probes based on PNA. 

Stopped-flow fluorescence showed the poor binding of PNA with its parallel DNA but was very 

useful for the determination of the binding constants for the PNA-antiparallel DNA interaction. The 

kinetic and thermodynamic constants obtained by stopped-flow fluorescence were in complete 

agreement with those obtained by steady-state measurements. 

To conclude and to answer to the question present in the title, the stopped-flow has proved to be a 

reliable, non-consuming, in terms of time and sample, and fast method to discriminate the different 
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behavior between the parallel and antiparallel DNA. In the case of the interaction between PNA and 

antiparallel DNA, stopped-flow fluorescence has revealed its power, with respect to the melting 

temperature, in the possibility of working in a physiological environment with a real mimic of the 

interaction. 
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