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Chaperone Contracts for
Higher-Order Sessions

HERNÁN MELGRATTI, Universidad de Buenos Aires, FCEyN and CONICET-UBA, ICC

LUCA PADOVANI, Università di Torino

Contracts have proved to be an effective mechanism that helps developers in identifying those modules of a

program that violate the contracts of the functions and objects they use. In recent years, sessions have been

established as a key mechanism for realizing inter-module communications in concurrent programs. Just like

values flow into or out of a function or object, messages are sent on, and received from, a session endpoint.

Unlike conventional functions and objects, however, the kind, direction, and properties of messages exchanged

in a session may vary over time, as the session progresses. This feature of sessions calls for contracts that

evolve along with the session they describe.

In this work, we extend to sessions the notion of chaperone contract (roughly, a contract that applies to

a mutable object) and investigate the ramifications of contract monitoring in a higher-order language that

features sessions. We give a characterization of a correct module, one that honors the contracts of the sessions

it uses, and prove a blame theorem. Guided by the calculus, we describe a lightweight implementation of

monitored sessions as an OCamlmodule with which programmers can benefit from static session type checking

and dynamic contract monitoring using an off-the-shelf version of OCaml.

CCS Concepts: • Theory of computation → Program specifications; Pre- and post-conditions; Type
structures; • Software and its engineering → Constraints; Concurrent programming structures;

Additional Key Words and Phrases: Chaperone contracts, sessions, blame soundness, OCaml
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1 INTRODUCTION
The design-by-contract approach to software development [Meyer 1992] promotes the usage

of executable specifications called contracts to describe the mutual obligations that regulate the

interaction between different modules. Contracts are embedded in code and checked at runtime to

help developers identify faulty modules. Findler and Felleisen [2002] have shown that this approach

is applicable also to languages with higher-order functions, despite the fact that checking whether

a function satisfies a given contract is undecidable. The key idea is to defer the evaluation of

the contract until the function is actually applied to its argument. At this point, the contract is

disassembled and used to perform or delay checks on the supplied argument and the returned result.

Specifying contracts for mutable objects poses additional problems, though, because checking

whether an object satisfies a given contract at a particular point in time does not guarantee that

the contract will be also satisfied later on, if the object is modified. To address these situations,

Strickland et al. [2012] introduced chaperone contracts, an interposition mechanism whereby the

object is protected by a proxy that exposes the same interface as the object and that takes actions

to perform or delay checks on the values flowing into or out of the object.
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In this paper we introduce chaperone contracts for binary sessions, which are private communica-

tion channels between pairs of processes. Just like mutable objects have operations for inserting and

retrieving values, sessions have operations for sending and receiving messages. Unlike conventional

objects, though, the order in which these operations can be performed is disciplined by a protocol

specification called session type. Also, the type of exchanged messages may change over time. For

these reasons, sessions are more closely related to non-uniform objects [Gay et al. 2010; Ravara

and Vasconcelos 2000], whose interface changes according to their state. Chaperone contracts for

sessions can be used to complement session types with precise specifications concerning the content

of messages and their relationship with the actual behavior of session participants. Compared to

the functional contracts of Findler and Felleisen [2002] and chaperone contracts of Strickland et al.

[2012], the distinguishing feature of chaperone contracts for sessions is that they evolve as the

monitored session progresses: not only the contracts of messages exchanged in the session may

vary over time, but also the contract of the remainder of a session may depend upon messages that

have been exchanged earlier on in the same or a different session.

More in detail, here are the main contributions of this work:

• We define a core functional language called λCoS featuring runtime contract monitoring for

higher-order sessions in the style of Findler and Felleisen [2002] and Strickland et al. [2012].

Contracts are dynamically updated along with the session they monitor. We introduce a

novel semantics for contract monitoring, called big-step monitoring, that is instrumental to

the subsequent formal analysis of our monitoring system. The setting allows us to pinpoint

unexplored aspects of contract monitoring in a language with linear resources.

• We give an operational characterization of locally correct modules, namely modules that honor

the contracts of the sessions they use. We argue that this notion can help programmers write

correct code. We also prove a blame soundness result stating that correct modules cannot be

blamed even in the presence of buggy or malicious parties.

• Guided by λCoS, we implement chaperone contracts for sessions on top of an existing OCaml
library for binary sessions [Padovani 2017]. The implementation also supports runtime

contract monitoring in the presence of higher-order sessions and its key aspects are portable

to other programming languages as well.

Although contracts for sessions and corresponding monitoring techniques have been actively

investigated (cf. Section 7), our proposal is the first one that follows the approach of Findler and

Felleisen [2002], which has well-known assets: contracts are first-class entities written in the same

language programmers are already accustomed to, they can be computed, passed as arguments,

and returned as results, they can be used gradually within large systems and can describe whole

protocols or just parts thereof. Also, monitoring is performed inline and requires no external tools

or dedicated middleware.

Structure of the paper. The next section gives an overview of the key ingredients of session

contracts and their usage. Although the section is informal, the given examples are “real” in the

sense that they run using our implementation. The formal model of λCoS is given in Section 3

and its typing discipline in Section 4. To keep the formalization technically manageable, we

make some simplifying assumptions on the operational semantics and the type system which are

relaxed in the implementation. Section 5 addresses local correctness and blame soundness. The

implementation is detailed in Section 6, whereas Section 7 discusses connections with related

work in more detail. Section 8 summarizes our work and hints at some extensions and future

developments. Supplementary technical material and proofs of the results presented in Sections 3–6

can be found in the companion technical report [Melgratti and Padovani 2017].
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Fig. 1. Stream processing networks with first-order (left) and second-order (right) sessions.

2 A PROGRAMMER’S VIEWPOINT OF CONTRACTS FOR SESSIONS
In this section we provide a programmer’s viewpoint of contracts for sessions using the process

networks depicted in Figure 1 as running examples. In these networks, the aim of module User is

to obtain an elementw resulting from two elements v1,v2 produced by Source and combined by

Operator. For the sake of illustration, we assume that all the elements are integer numbers and

thatw = v1 modv2.
According to the network on the left-hand side of Figure 1, User establishes two sessions x

and y with Source and Operator respectively, it forwards every element vi received from x on

y, and receives the transformed element w from y. Session types allow us to formalize these

protocols specifying the type, direction and order of messages exchanged within sessions. In

this case, the session endpoints x and y owned by User are typed as x : ?int.?int.end and

y : !int.!int.?int.end. In words, User uses x to receive two integer numbers and y to send

two numbers and then to receive another one. What session types do not describe are additional

requirements and guarantees concerning the content of exchanged messages. In this scenario, for

example, it could be sensible to specify that the second number sent from User to Operator should
be different from zero and that the number sent from Operator to User is non negative. Such

specifications – hereafter called contracts – could be used to monitor, at runtime, the interaction

between User and Operator so as to detect contract violations and, hopefully, to guide programmers

to the source of the problem.

The approach of Findler and Felleisen [2002] to contract monitoring rests on three key ingredients:

(1) a set of combinators for writing contracts; (2) a mechanism for associating contracts with the

entities being monitored; (3) a labeling of the modules involved that narrows the source of the

problem in case a contract violation is detected. In our setting, the definition

let operator_chan = register operator_body operator_c "Operator"

registers a new service channel operator_chan that can be used to initiate sessions with Operator.
Registration links together three pieces of information: the body of the process that handles each

session initiated with Operator (operator_body, omitted here), the contract that Operator claims

to satisfy (operator_c), and a symbolic label that identifies Operator (the string "Operator").
The contract operator_c is defined as

let operator_c =

send_c any_c @@ send_c (flat_c (, 0)) @@ receive_c (flat_c (≥ 0)) @@ end_c

and its structure reflects that of the protocol !int.!int.?int.end of the session it describes. Let

us focus first on the four sub-contracts separated by @@ and built with the send_c, receive_c, and
end_c combinators. As their name suggest, each of these indicates either an output or an input

or the termination of the session. Both send_c and receive_c have an argument which is itself a

contract describing the exchanged message: depending on whether the operation is an input or

an output, the contract specifies a requirement or a guarantee for the message. So, the contract



flat_c (, 0) is satisfied by any non-zero integer, flat_c (≥ 0) is satisfied by any non-negative

integer, and any_c is satisfied by any value. Note that the contract is written from the viewpoint

of a client of Operator, such as User. The combinator @@ plays the same role as the dot ‘.’ in
session types and composes contracts sequentially: it indicates that the contract associated with

the endpoint, and the specified constraints on the exchanged messages, vary after each interaction:

Operator first accepts an arbitrary integer number, it then expects a non-zero number from the

client, and it finally sends back a non-negative number. As it turns out, @@ is nothing but function

application. Therefore, operator_c can be alternatively defined as

send_c any_c (send_c (flat_c (, 0)) (receive_c (flat_c (≥ 0)) end_c))

We will keep using @@ in this section for the sake of readability. In the rest of the paper we will

drop @@ and use parentheses to disambiguate the structure of contracts when necessary.

The definitions

let source_c = receive_c any_c @@ receive_c any_c @@ end_c

let source_chan = register source_body source_c "Source"

register a service channel for Source in an analogous way. In this case, source_c does not specify

any additional constraints with respect to the session type ?int.?int.end. With Source and

Operator in place, we are ready to implement User:

1 let user () =

2 let x = connect source_chan "User" in (* connect with Source *)

3 let y = connect operator_chan "User" in (* connect with Operator *)

4 let v1, x = receive x in (* receive v1 from Source *)

5 let v2, x = receive x in (* receive v2 from Source *)

6 let y = send v1 y in (* send v1 to Operator *)

7 let y = send v2 y in (* send v2 to Operator *)

8 let w, y = receive y in (* receive result *)

9 print_int w; close x; close y (* close sessions *)

After initiating the two sessions x and y (lines 2–3), User implements the behavior informally

described above making use of the operations send and receive for session communications. The

series of rebindings of the session endpoints x and y is a common trait of most implementations of

sessions for functional languages and allows for the type of x and y to be appropriately updated

after each operation. The connect primitive specifies the shared channel on which the sessions are

initiated and a label that identifies the requesting party. This label, together with those specified

at the time of service registration, is used by the runtime monitoring mechanism to pinpoint the

source of a contract violation. Here, "User" identifies the module responsible for the messages sent

on x and y, whereas "Source" and "Operator", associated with source_chan and operator_chan
at the time of their registration, identify the modules that are responsible for the messages received

from x and y, respectively. So if v2 turns out to be 0, the runtime monitoring of the y session

endpoint flags User for breaching the contract with Operator. If, on the other hand, Operator
sends a negative remainder back to User, then it is Operator that violates its own contract.

In this first example, the module responsible for a contract violation is easily identified with the

sender of the message that triggers the violation. This is not always the case, though. Consider for

instance the network on the right-hand side of Figure 1, which aims to achieve the same computation

as before, except that User now delegates the session endpoint x to Operator so that Operator
receives the elementsv1,v2 directly from Source, rather than having them forwarded through User.
In this case, the session type associated with y is !(?int.?int.end).?int.end, indicating that



User first sends Operator a session endpoint of type ?int.?int.end (that is precisely the type of

x) and then behaves according to ?int.end to receive the result from Operator. Correspondingly,
the contract exposed by Operator could be the following

let operator_deleg_c =

send_c (receive_c any_c @@ receive_c (flat_c (, 0)) @@ end_c) @@

receive_c (flat_c (≥ 0)) @@ end_c

specifying that the first message received by Operator is a session endpoint from which the second

receive element is supposed to be different from zero. That is, operator_deleg_c is a second-order
contract for a second-order session.

The implementation of User becomes

1 let user_deleg () =

2 let x = connect source_chan "User" in

3 let y = connect operator_deleg_chan "User" in

4 let y = send x y in

5 let res, y = receive y in

6 print_int res; close y

which establishes the two sessions as before (lines 2–3), delegates x on y (line 4), and then receives

the result from Operator (line 5) before closing the session (line 6). As before, the arrival of a zero

v2 element to Operator should trigger a contract violation, but establishing which process is to

blame is not as easy as in the previous example. On the one hand, the offending element is sent

by Source so, if we were to follow the simple rule for blame assignment used before, we would

conclude that Source is to blame. On the other hand, Source has never violated the source_c
contract it was registered with. The problem lies once again within User: by delegating x on y,
User is claiming that the contract source_c associated with x entails the contract

receive_c any_c @@ receive_c (flat_c (, 0)) @@ end_c

but this is not true, because not every message satisfying any_c also satisfies flat_c (, 0). In
summary, the actual offending operation is the delegation performed by User, but establishing this

fact would require a decision procedure for contract entailment, which is instead an undecidable

relation (contracts may contain arbitrarily complex predicates expressed using a Turing complete

language). Therefore, the delegation is provisionally accepted as valid and triggers a suitable

rearrangement of contracts and labels for the involved endpoints such that, in the event of a

contract violation, User and not Source is blamed.

In the rest of the paper we extend and formalize the ideas sketched in this section. In particular,

we will consider a superset of the contract combinators used in this section that allow us to specify

dependent, possibly branching contracts whose structure depends on the content of previously

exchanged messages. The formalization will culminate with a blame soundness result stating that a

process cannot be blamed by the monitor if it always respects the contracts of the endpoints it uses.

3 SYNTAX AND SEMANTICS OF λCoS

3.1 Syntax
We use infinite sets of variables x ,y, z and service/session channels a,b, c . We use polarities ι ∈ {+, -}
to distinguish the two endpoints of a session channel and write ι for the dual polarity of ι, where
+ = - and - = +. An endpoint is a pair aι made of a session channel a and a polarity ι and we say

that aι is the peer of aι . A name u is either a variable or a channel or an endpoint.



Table 1. Syntax of λCoS (terms that occur only at runtime and not in user code are shaded ).

Process P ,Q ::= ⟨e⟩p | a ⇐
c

p v | P ∥ Q | (νa)P

Expression e ::= v | x | e1e2 | let x,y = e1 in e2 | case e of e1 | e2
| [e1]

e2,p,q | v ◁p e | blame p
Value v,w, c,d ::= λx.e | ε

| c v1 · · ·vn (0 ≤ n ≤ #c)
Endpoint ε ::= aι | [ε]c,p,q

Constant c ::= () | true | false | inl | inr | pair | dual
| connect | close | send | receive | branch | left | right
| flat_c | end_c | branch_c | choice_c
| send_c | send_d | receive_c | receive_d

The syntax of λCoS comprises processes and expressions (Table 1). Expressionsmodel the sequential

part of programs and processes model parallel threads that invoke services and communicate

through sessions. A process is either a thread ⟨e⟩p made of a body e and a label p, a service a ⇐c

p v
that waits for invocations on the service channel a and spawns new threads with body v , the
parallel composition P ∥ Q of two processes P and Q , or a session (νa)P with scope P . Each service

advertises a contract c that describes the intended interaction from the client’s viewpoint. For

simplicity, we assume that services cannot be created dynamically in λCoS. As we have seen in

Section 2, the implementation is more liberal and allows new services to be dynamically created

and registered. A module is a set of threads and services with the same label. We use labels p, q to

identify modules and to assign blame.

Expressions include the standard constructs of the λ-calculus, pair splitting let x,y = e1 in e2,
and pattern matching case e of e1 | e2. Additionally, we have three constructs that support runtime

monitoring [Findler and Felleisen 2002; Wadler and Findler 2009]. A monitored expression [e1]
e2,p,q

wraps e1 with a contract e2 and the labels p and q identify the modules responsible for the values

respectively flowing out of and into e1. Such modules may be blamed if the flowing values do not

satisfy the constraints specified by the contract e2. In λCoS, the intuition behind these flows of

values is best illustrated by thinking of e1 as a session endpoint. Then, p is the module responsible

for the messages received from the endpoint, whereas q is the module responsible for the messages

sent on the endpoint. Sometimes we use σ and ϱ to denote pairs of labels such as p,q, and we write

¬σ for the symmetric pair obtained by swapping the components in σ . We say that p is the positive

label and q the negative label in the pair p,q. Monitors may accumulate on top of each other yielding

stacks of the form [ · · · [e]c1,σ1 · · · ]cn,σn that we abbreviate as [e]c,σ . Values flowing out of e are
checked against all the contracts c1, . . . , cn starting from c1, whereas values flowing into e are
checked against all the contracts cn , . . . , c1 starting from cn . It is sometimes necessary to reverse

the order of monitors while swapping the elements of the pairs σi . In these cases we write [e]c,¬σ

for [ · · · [e]cn,¬σn · · · ]c1,¬σ1 . A busy monitor v ◁p e indicates an ongoing check being performed

on value v . If e evaluates to true then the check is passed and the busy monitor reduces to v . If e
evaluates to false then the busy monitor reduces to blame p signaling a contract violation of p.
So, a busy monitor v ◁p e is akin to a conditional if e then v else blame p.

We use v ,w , c and d to range over values, which comprise abstractions, (monitored) endpoints,

and (applied) constants. We reserve c and d for values that represent contracts, which are described

below. Constants comprise some standard data constructors (unit, booleans, pairs, sums) and a



Table 2. Reduction of expressions (contextual rule omitted).

[R1] (λx.e)v → e{v/x }
[R2] let x,y = (v,w) in e → e{v,w/x ,y}
[R3] case inl v of e1 | e2 → e1v
[R4] case inr v of e1 | e2 → e2v
[R5] [v]flat_c w,p,q → v ◁p wv
[R6] v ◁p true→ v
[R7] v ◁p false→ blame p

[R8] dual end_c→ end_c
[R9] dual !c;d→ ?c;dual d

[R10] dual ?c;d→ !c;dual d

[R11] dual !c.w → ?c.λx.dual (wx)
[R12] dual ?c.w → !c.λx.dual (wx)
[R13] dual !c.d:e→ ?c.dual d:dual e

[R14] dual ?c.d:e→ !c.dual d:dual e

standard set of session primitives for connecting to services (connect), sending and receiving

messages (send and receive), selecting a choice (left and right) and offering a choice (branch).
Constants of the form ∗_c and ∗_d are contract constructors. A flat contract flat_cw is satisfied

by every value v such that wv evaluates to true. We say that w is the predicate of the contract

flat_cw .

The contract end_c describes an endpoint that can only be closed. The non-dependent contracts

send_c c d and receive_c c d (sugared as !c;d and ?c;d) have a prefix c and a continuation d and

describe endpoints used for respectively sending and receiving a message that satisfies c and then

used according to d. These contracts are qualified as “non dependent” because the continuation

contract d does not depend on the exchanged message. The dependent contracts send_d cw and

receive_d cw (sugared as !c.w and ?c.w) describe endpoints used for respectively sending and

receiving a message v that satisfies c and then used according to wv . That is, w is a function

that produces the continuation contract when applied to the exchanged message. In principle, a

non-dependent contract such as !c;d could be treated as a degenerate dependent contract !c.λ_.d,
where the function that computes the continuation contract is constant. However, the two contract

forms require different typing policies and therefore must be kept distinct, at least in the formal

model. In the implementation, which is based on a weaker type system, the two forms can be unified

so that non-dependent contracts are indeed degenerate cases of dependent ones. The contracts

choice_c c d e and branch_c c d e (sugared as !c.d:e and ?c.d:e) describe endpoints used for

respectively selecting and offering a choice. The choice is effectively represented and transmitted as

a boolean valuev that satisfies c. The continuation contracts d and e describe the endpoint after the

choice, depending on whether v is true or false. Compared to dependent contracts, choices also

allow the session types of the continuations, and not just the contracts, to depend on the exchanged

message. There is a key difference between flat and session contracts. Flat contracts are meant to

be checked right away, turning a monitor into a busy monitor. Session contracts chaperone the

endpoints they wrap and are checked only if and when the endpoints are used for input/output

operations. Also, session contracts are dynamically updated as the endpoint they wrap is used.

The primitive dual computes the dual of a contract c, which specifies the same constraints as c

except for the direction of messages, which is reversed. We will see how it is used later on.

An applied constant c v1 · · ·vn is a value only if 0 ≤ n ≤ #c where #c denotes the arity of c, that
is the maximum number of arguments to which c can be applied before possibly becoming a redex.

In λCoS, branch_c and choice_c have arity 3, pair, send_c, receive_c, send_d and receive_d
have arity 2, inl, inr, send and flat_c have arity 1, and all the other constants have arity 0.

We identify processes and expressions modulo α-renaming of bound names, considering that

(νa)P binds a, a+, and a- in P , and we assume that bound names are all distinct. We say that P is a

user process if it does not use any runtime syntax as by Table 1.



Table 3. Reduction of processes (contextual rules omitted).

[R15]



⟨ℰ [connect a]⟩p
a ⇐c

q v


→ (νb)



⟨ℰ [[b+]c,q,p]⟩p
⟨v [b-]dual c,p,q⟩q



∥ a ⇐c

q v b fresh

[R16] (νa)



⟨ℰ [close [a+]end_c,σ ]⟩p

⟨ℰ ′[close [a-]end_c,ϱ ]⟩q



→ ⟨ℰ [()]⟩p ∥ ⟨ℰ ′[()]⟩q

[R17]




⟨ℰ [send v [aι]!c;d,σ ]⟩p

⟨ℰ ′[receive [aι]?e;f,ϱ ]⟩q



→



⟨ℰ [[aι]d,σ ]⟩p
⟨ℰ ′[([[v]c,¬σ ]e,ϱ,[aι]f,ϱ)]⟩q




[R18]




⟨ℰ [send v [aι]!c.w1,σ
]⟩p

⟨ℰ ′[receive [aι]?d.w2,ϱ
]⟩q



→



⟨ℰ [[aι]w1v,σ

]⟩p

⟨ℰ ′[([[v]c,¬σ ]d,ϱ,[aι]w2v,ϱ)]⟩q




[R19]




⟨ℰ [left [aι]!c.d:e,σ ]⟩p

⟨ℰ ′[branch [aι]?f.g:h,ϱ ]⟩q



→



⟨ℰ [[aι]d,σ ]⟩p
⟨ℰ ′[(λ_.inl [aι]g,ϱ) [[true]c,¬σ ]f,ϱ ]⟩q




[R20]




⟨ℰ [right [aι]!c.d:e,σ ]⟩p

⟨ℰ ′[branch [aι]?f.g:h,ϱ ]⟩q



→



⟨ℰ [[aι]e,σ ]⟩p
⟨ℰ ′[(λ_.inr [aι]h,ϱ) [[false]c,¬σ ]f,ϱ ]⟩q




3.2 Semantics
Expressions reduce according to a call-by-value strategy, for which we define evaluation contexts

thus:

ℰ ::= [ ] | ℰ e | vℰ | [ℰ ]e,σ | [v]ℰ ,σ | v ◁p ℰ | let x,y = ℰ in e | case ℰ of e1 | e2

The reduction rules for expressions are given in Table 2. Rules [R1–R4] are standard. According to

rule [R5], a monitor with a flat contract flat_cw wrapping a value v turns into a busy monitor that

checks whether v satisfies the contract by evaluatingwv . When the evaluation ofwv terminates,

the busy monitor reduces to v if the check succeeds (see rule [R6]) or blames p otherwise (see

rule [R7]). Note that [R5] duplicates v in the reduct. Since endpoints are linear resources, the definition

of flat contracts on endpoints (and on linear resources in general) will be forbidden by the type

system.

Rules [R8–R14] compute the dual of a contract by reversing the orientation of interactions. For

instance, given the contract c

def

= !(flat_c (≥ 0));?(flat_c (≤ 3));end_c we have

dual c→→→ ?(flat_c (≥ 0));!(flat_c (≤ 3));end_c

Processes reduce according to the rules in Table 3, where we stack parallel threads instead of

separating them by ∥ whenever there is not enough space. Rule [R15] models the initiation of a

session through the service channel a. In the reduct, the endpoint b+ of the new session is returned

to the client and the endpoint b- is passed to the body v of the service in a new thread. The

endpoints b+ and b- are respectively monitored by the contracts c and dual c. The labels in the

two monitors reflect the direction of the messages exchanged over the endpoints: in the client, p
is negative since p is responsible for the messages sent to the service and q is positive since q is

responsible for the messages received by the client; in the spawned thread the responsibilities are

reversed. Rule [R16] models the closing of a session.

Rule [R17] models a communication from thread p to thread q on session a, when the endpoints

of a are monitored by non-dependent contracts. The rule appears more complicated than it really

is. If we erase all the monitors, the rule boils down to

⟨ℰ [send v aι]⟩p ∥ ⟨ℰ
′
[receive aι]⟩q → ⟨ℰ [aι]⟩p ∥ ⟨ℰ

′
[(v,aι)]⟩q



where we see that the message v just moves from the sender to the receiver. All the additional

machinery in [R17] handles contracts. In particular, aι in the sender is monitored by a contract of the

form !ci;di and a
ι
in the receiver is monitored by a contract of the form ?ej;fj . In the reduct, these

contracts must be updated to di and fj to reflect the fact that the communication has occurred.

Also, the messagev is wrapped by all the contracts ci and ej it is meant to satisfy. Sincev is flowing

into aι , the contracts ci are stacked inside out so that the checks on v are performed in the right

order. Also, the blame labels are swapped to reflect the correct responsibilities in case contract

violations are detected.

Rule [R18] is similar to [R17], except that the two endpoints before the communication are monitored

by dependent contracts !ci.w1i and ?dj.w2j and the continuation contracts are obtained by

applying w1i and w2j to the message. Note that v occurs several times in the reduct. As we have

discussed for [R5], this could be problematic if v contains linear values such as session endpoints.

Hence, the typing of send_d and receive_d will prevent the definition of contracts that depend on

linear values. For simplicity, rules [R17] and [R18] are formulated in such a way that communications

occur only when the contracts in the monitors stacked around the involved endpoints are all

dependent or all non dependent. This restriction has been introduced solely to avoid considering

all the possible combinations of dependent and non-dependent contracts and is relaxed in the

implementation, where such distinction is blurred (Section 6.1).

Rules [R19] and [R20] model communications whereby both the session type and the contract

of the endpoints in the reduct (may) depend upon the exchanged message, which is implicitly

assumed to be true in [R19] and false in [R20]. As in [R17] and [R18] the message is checked against a

suitable stack of contracts. Then, the receiver injects the continuation endpoint using either inl or

inr correspondingly. Observe that not all of the contracts appearing in the redex also appear in

the reduct. In prospect of devising a substructural typing discipline for λCoS, this suggests that
contracts should not contain linear resources such as session endpoints.

We stress two facts concerning the reduction rules [R17–R20]. First, we observe that the whole

stacks of monitors wrapping the endpoints on which the communication takes place are rearranged

in a single reduction step. This is what we mean by “big-step” monitoring semantics, as opposed

to the “small-step” monitoring semantics where each monitor is rearranged independently of the

others [Findler and Felleisen 2002; Wadler and Findler 2009]. The big-step semantics allows us to

rely on some key properties of monitor configurations (Proposition 5.4) when proving the blame

soundness results (Section 5). Second, we observe that part of the contracts on the sender side

migrate to the receiving side after the communication. For delegations – that is the communication

of session endpoints – the migration results in the delegated endpoint being wrapped by further

chaperone contracts in addition to those it already has. This is necessary to keep track of the

responsibilities of the sender even after the communication has occurred (Example 5.3). For other

messages not containing endpoints the migration essentially means that message contracts are

always checked on the receiver side, after the communication has occurred. In the implementation

(Section 6) we consider the alternative “small-step” monitoring semantics where flat contracts for

messages are checked on the sender side, before communication takes place.

We omit the obvious rules that lift reduction of expression to processes and that close reductions

by (process) contexts and structural congruence. In the following we write→∗ for the reflexive, tran-

sitive closure of the→ relations for expressions and processes. We also introduce some convenient

notation for the evaluation of expressions and predicates:

Definition 3.1 (evaluation). We write e ⇓ v if e →∗ v and we write v ∈ w ifwv ⇓ true.

Example 3.2 (function contracts). In this example we show an encoding of function contracts

in the style of Findler and Felleisen [2002] as session contracts. Suppose that f is a function and



c 7→ d its contract, where c and d are respectively the contracts for the domain and codomain of

f . We may represent the function f as a service and the contract c 7→ d as the session contract

!c;?d;end_c, thus:

af ⇐
!c;?d;end_c
p λx.let y,x = receive x in let x = send (f y) x in close x

The contract !c;?d;end_c gives a natural description of the intended usage protocol for f : the
client must send f an argument that satisfies c and will receive back from f a value that satisfies d.

Accordingly, an application (f v) can be modeled as follows:

let x = connect af in let x = send v x in let y,x = receive x in close x; · · ·y · · ·

Thanks to delegations, the encoding shown here accounts also for higher-order functions and

its generalization to dependent functions is straightforward. However, the encoding is purely

conceptual and not meant to suggest a practical implementation. Its purpose is to show that

the blame soundness results presented in Section 5 are comprehensive enough to also account

for the functional part of the calculus, which we have deliberately neglected to keep the formal

development as simple and focused on sessions as possible. ■

4 TYPE SYSTEM
We define a session type system for λCoS loosely inspired to that of Gay and Vasconcelos [2010].

Following Tov and Pucella [2011], we use kinds to distinguish unlimited types, those denoting

values that can be discarded and duplicated, from linear types, those denoting values (such as

endpoints) that must be used exactly once. The syntax of kinds, types, and session types is given

below:

Kind κ ::= 1 | ω
Type t , s ::= unit | t × s | t + s | t →κ s | [t] | #T | T

Session Type T , S ::= end | ?t.T | !t.T | T & S | T ⊕ S

Types, ranged over by t , s , include base types and standard type constructors. Arrows→κ
have

a kind annotation κ that indicates whether a function can be applied an arbitrary number of times

(κ = ω) or must be applied exactly once (κ = 1). This latter constraint is necessary if the function

contains one or more linear values in its closure. We will abbreviate→ω
with→. The contract type

[t] describes contracts for values of type t and the shared channel type #T describes channels for

initiating sessions with session type T . Session types have the standard constructors for denoting

depleted session endpoints (end), input/output operations (?t.T and !t.T ), branches (T & S) and
choices (T ⊕ S).

We now define a relation that assigns kinds to each type. Every type t has kind 1, since using a

value of type t exactly once is always safe regardless of t . By contrast, only those types denoting

values that can be safely duplicated or discarded have kind ω. Formally:

Definition 4.1 (kinding). We say that t has kind κ if t :: κ is derivable by:

unit :: ω [t] :: ω #T :: ω t →κ s :: κ
t :: κ s :: κ

t ⊙ s :: κ
⊙ ∈ {×,+}

t :: ω

t :: 1

Note that contract types and shared channel types have kind ω, whereas the kind of a sum or

product depends on that of its components. In particular, a sum/product has kind ω only if both its

components do as well. We say that t is unlimited if t :: ω and that t is linear otherwise, namely if

t :: κ implies κ = 1. For example, ?int.end and int →1 bool and int + ?int.end are all linear,
but ?int.end→ bool is not.

We introduce type environments to keep track of the type of free names in expressions and

processes. A type environment Γ is a finite map from names to types written u1 : t1, . . . ,un : tn . We



Table 4. Type schemes of λCoS constants.

() : unit
true : bool
false : bool
inl : t → t + s
inr : s → t + s

connect : #T → T
close : end→ unit
left : T ⊕ S → T
right : T ⊕ S → S

branch : T & S → T + S
dual : [T]→ [T]

pair : t → s →κ t × s t :: κ
send : t → !t.T →κ T t :: κ

receive : ?t.T → t ×T
flat_c : (t → bool) → [t] t :: ω
end_c : [end]

send_c : [t]→ [T]→ [!t.T]
receive_c : [t]→ [T]→ [?t.T]

send_d : [t]→ (t → [T]) → [!t.T] t :: ω
receive_d : [t]→ (t → [T]) → [?t.T] t :: ω
choice_c : [bool]→ [T]→ [S]→ [T ⊕ S]
branch_c : [bool]→ [T]→ [S]→ [T & S]

write ∅ for the empty type environment, dom(Γ ) for the domain of Γ , namely the set of names for

which there is an association in Γ , and Γ , Γ ′ for the union of Γ and Γ ′ when dom(Γ ) ∩ dom(Γ ′) = ∅.
We extend the notion of kinding to type environments and write Γ :: κ if Γ (u) :: κ for every

u ∈ dom(Γ ).
As usual, we need a way of splitting and combining type environments that is more flexible than

disjoint union and, at the same time, prevents the duplication of linear resources. We therefore

define a (partial) combination operator + analogous to the one given by Kobayashi et al. [1999]:

Definition 4.2 (environment combination). We write + for the partial operation on type environ-

ments such that:

Γ + Γ ′
def

= Γ , Γ ′ if dom(Γ ) ∩ dom(Γ ′) = ∅

(Γ ,u : t ) + (Γ ′,u : t )
def

= (Γ + Γ ′),u : t if t :: ω

Note that Γ + Γ ′ is undefined if there are associations u : t ∈ Γ and u : t ′ ∈ Γ ′ for the same name

u such that either t and t ′ are different or at least one of them is linear. This prevents multiple uses

of a linear resource. Note also that Γ + Γ is always defined and equal to Γ itself when Γ :: ω.
To ensure communication safety, threads are required to perform complementary actions on

the peer endpoints of the same session. This is enforced by assigning dual session types to peer

endpoints. Roughly, the dual of a session type is obtained by swapping inputs with outputs and

choices with branches. Formally:

Definition 4.3 (session type duality). The dual of T is the session type T defined as:

end = end ?t.T = !t.T !t.T = ?t.T T & S = T ⊕ S T ⊕ S = T & S

Note that duality is an involution, that is T = T .
Table 4 shows the type schemes of λCoS constants as associations of the form c : t . In general,

each constant may have infinitely many types. The types of data constructors are standard, the only

quirk being the second arrow in the type of pair which has the same kind as the first element of

the pair. This accounts for the possibility that such element has a linear type, in which case exactly

one pair must be created to avoid duplicating the element. For example, the partial application

pair aι is a function which must be applied exactly once in order to preserve the linearity of aι .
The types of the communication primitives are essentially those given by Gay and Vasconcelos

[2010] and the types of the contract constructors follow from their semantics. Note that flat_c



Table 5. Typing rules.

Typing rules for expressions Γ ⊢ e : t

[t-const]

Γ :: ω c : t

Γ ⊢ c : t

[t-name]

Γ :: ω

Γ ,u : t ⊢ u : t

[t-blame]

Γ ⊢ blame p : t

[t-busy-monitor]

Γ1 ⊢ e : bool Γ2 ⊢ v : t

Γ1 + Γ2 ⊢ v ◁
p e : t

[t-fun]

Γ ,x : t ⊢ e : s Γ :: κ

Γ ⊢ λx.e : t →κ s

[t-app]

Γ1 ⊢ e1 : t →
κ s Γ2 ⊢ e2 : t

Γ1 + Γ2 ⊢ e1e2 : s

[t-monitor]

Γ1 ⊢ e1 : t Γ2 ⊢ e2 : [t]

Γ1 + Γ2 ⊢ [e1]
e2,p,q

: t

[t-split]

Γ1 ⊢ e1 : t1 × t2 Γ2,x : t1,y : t2 ⊢ e2 : t

Γ1 + Γ2 ⊢ let x,y = e1 in e2 : t

[t-case]

Γ1 ⊢ e : t1 + t2 Γ2 ⊢ ei : ti →
κi t (i=1,2)

Γ1 + Γ2 ⊢ case e of e1 | e2 : t

Typing rules for processes Γ ⊢ P

[t-thread]

Γ ⊢ e : unit

Γ ⊢ ⟨e⟩p

[t-par]

Γi ⊢ Pi
(i=1,2)

Γ1 + Γ2 ⊢ P1 ∥ P2

[t-session]

Γ ,a+ : T ,a- : T ⊢ P

Γ ⊢ (νa)P

[t-service]

∅ ⊢ c : [T] Γ ⊢ v : T → unit

Γ + a : #T ⊢ a ⇐c

p v

and the dependent contracts receive_d and send_d require the tested value/message to have an

unlimited type, since it may be duplicated.

The typing rules for λCoS (Table 5) are fairly standard, so we only comment on a few notable

features. In rules [t-const] and [t-name] the condition Γ :: ω makes sure that the unused part of type

environments does not contain linear resources. Rule [t-fun] requires the arrow type of a function to

have the same kind as the environment in which the function is typed. If there is a linear type in the

environment, meaning that the function has a linear value in its closure, then the function can only

be applied once. Rule [t-app] makes use of the + operator for type environments to keep track of the

usage of linear resources occurring in the function and its argument. Rules [t-split] and [t-case] are

standard. Note once again the use of + for combining type environments. A monitored expression

[e1]
e2,p,q

is well typed provided that e2 is a contract for values of the same type as that of e1. A
busy monitor is well typed provided that the condition being checked has type bool. Rule [t-blame]

states that a blame has any type and is always well typed regardless of the environment. We do not

treat blame recovery in the formal model.

Concerning processes, [t-thread] and [t-par] are as expected. Rule [t-session] introduces a session as

a pair of peer endpoints with dual session types. Finally, [t-service] requires a well-typed service to

advertise a contract of the appropriate type and to have a body that accepts one endpoint at each

invocation. The body must be unlimited to allow for an arbitrary number of session initiations.

We state subject reduction as a basic sanity check for the type system. Other standard properties

– e.g. communication safety and session fidelity – also hold, but are irrelevant in this paper.

Theorem 4.4. If Γ :: ω and Γ ⊢ P and P → Q , then Γ ⊢ Q .



5 BLAME SOUNDNESS
In this section we present the soundness of the monitoring mechanism in λCoS, namely the property

that in a well-typed program P in which a module p “behaves well”, p cannot be blamed. We

proceed according to the following roadmap. First, we introduce the notion of contract entailment

to specify when a contract is “more demanding than” another (Section 5.1). Entailment is a natural

generalization of subtyping of session types [Gay and Hole 2005]. Using entailment, we formalize

the notion of locally correct module p as a module that always honors the contracts of the endpoints

it uses. Locality refers to the fact that the correctness of p solely depends on the actions performed

by, and on information known to, the module p itself (Section 5.2). Finally, we characterize the

soundness of a module p as a set of invariant properties of the (busy) monitors in which the label p
occurs. A direct consequence of soundness is that a well-typed, locally correct module p cannot be

blamed (Section 5.3).

5.1 Contract Entailment
Contract entailment is a relation ⩽ such that, when c ⩽ d holds, each value that satisfies c can be

used where a value that satisfies d is expected. When c and d are flat contracts, ⩽ boils down to

the set-theoretic inclusion between the values that satisfy the respective predicates. For example,

flat_c (≥ 3) ⩽ flat_c (≥ 0)

since every number greater than or equal to 3 is also greater than or equal to 0. To define entailment

when c and d are session contracts, it helps to recall the analogy of contracts as specifications for

the messages that can be sent on and received from a session endpoint. In this case, c ⩽ d holds if

two conditions are satisfied:

(1) Every message that can be received from an endpoint satisfying c can also be received from

an endpoint satisfying d.

(2) Every message that can be sent on an endpoint satisfying d can also be sent on an endpoint

satisfying c.

Note that c and d occur in different orders according to the direction of exchanged messages.

With these intuitions, we formalize entailment below:

Definition 5.1 (contract entailment). We say that e1 entails e2, written e1 ⩽ e2, if one of following
conditions holds:

(1) e1 ⇓ flat_cw1 and e2 ⇓ flat_cw2 and v ∈ w1 implies v ∈ w2;

(2) e1 ⇓ end_c and e2 ⇓ end_c;
(3) e1 ⇓ !c1;d1 and e2 ⇓ !c2;d2 and c2 ⩽ c1 and d1 ⩽ d2;

(4) e1 ⇓ ?c1;d1 and e2 ⇓ ?c2;d2 and c1 ⩽ c2 and d1 ⩽ d2;

(5) e1 ⇓ !flat_c v1.w1 and e2 ⇓ !flat_c v2.w2 and v ∈ v2 implies v ∈ v1 andw1v ⩽ w2v ;
(6) e1 ⇓ ?flat_c v1.w1 and e2 ⇓ ?flat_c v2.w2 and v ∈ v1 implies v ∈ v2 andw1v ⩽ w2v ;
(7) e1 ⇓ !c1.d1:e1 and e2 ⇓ !c2.d2:e2 and c2 ⩽ c1 and d1 ⩽ d2 and e1 ⩽ e2;

(8) e1 ⇓ ?c1.d1:e1 and e2 ⇓ ?c2.d2:e2 and c1 ⩽ c2 and d1 ⩽ d2 and e1 ⩽ e2.

Condition 1 formalizes the set-theoretic inclusion relation between sets of values that satisfy

given predicates, whereas condition 2 relates the contract end_c with itself. Conditions 3–4 deal

with non-dependent contracts. Entailment is covariant on input prefixes, contravariant on output

prefixes, and always covariant on continuation contracts. For example, we have

!flat_c (≥ 0);end_c ⩽ !flat_c (≥ 3);end_c



because the contract on the left-hand side imposes weaker requirements on the messages that can

be sent on the endpoint. On the other hand we have

?flat_c (≥ 3);end_c ⩽ ?flat_c (≥ 0);end_c

for the contract on the left-hand side provides stronger guarantees on the messages that can be

received from the endpoint.

Conditions 5–6 deal with dependent contracts. The prefix contracts must be flat, since these are

the only contracts that can specify constraints on unlimited values. Dependent contracts essentially

behave as non-dependent ones, with contravariant outputs and covariant inputs, except that the

continuation contracts may depend upon the exchanged message v . For example, we have

!flat_c (≥ 0).λx.?flat_c (≤ x);end_c ⩽ !flat_c (≥ 3).λ_.?flat_c λ_.true;end_c

where hereafter we write _ for irrelevant names and sub-terms.

Conditions 7–8 deal with choices and branches. Recalling that a choice is akin to an output and

a branch is akin to an input, the definition of entailment essentially follows the same contravari-

ant/covariant pattern we have already seen in the other cases.

Overall, contract entailment is analogous to the subtyping relation for session types [Gay and

Hole 2005]. This analogy provides us with the same substitution principle that drives subtyping:

when c ⩽ d, it is safe to use an endpoint with contract c wherever an endpoint with contract d is

expected. We will make use of this analogy when defining locally correct modules (Definition 5.2).

There are two traits of entailment that set it apart from subtyping. The first one is that entailment is

a relation between terms and therefore is undecidable in general. In our setting this is not an issue

because the decision as to whether one contract entails another one is not meant to be computed,

but is left to the programmer (Section 5.2). The second difference is that entailment is not reflexive

in general: according to Definition 5.1, it must be possible to evaluate contracts solely using the

reduction relation for expressions, whereas it is possible to write (well-typed) contracts that make

use of communication primitives and that reduce only when they occur within a suitable process. In

this sense, by embracing Definition 5.1 we take the viewpoint that contracts should be pure [Meyer

1992] and their evaluation should not involve side effects. This condition cannot be enforced solely

by our type system. From now on, we will make the assumption that c ⩽ c holds whenever c is

advertised by a service a ⇐c

p v . It is easy to see that entailment is transitive.

5.2 Locally Correct Modules
A locally correct module honors the contracts of all the endpoints it uses. Since contracts may

depend upon the messages exchanged on such endpoints, we resort to an operational definition of

correctness that takes into account all the possible reductions of a process in which label p occurs.

The “local” qualification is meant to stress the fact that correctness of a module p only depends on

actions performed by, and information known to, the module p itself.

To identify the actions performed by a module p, we introduce p-contexts 𝒫p as terms generated

by the grammar

𝒫p ::= ⟨ℰ ⟩p | (𝒫p ∥ P ) | (P ∥𝒫p ) | (νa)𝒫p

where ℰ is a plain evaluation context. As usual, we write 𝒫p[e] for the process obtained by filling

the hole in 𝒫p with e . Locally correct modules are defined below.

Definition 5.2 (local correctness). Let 𝒞 be the largest relation between blame labels and processes

such that p 𝒞 P implies:

(1) P =𝒫p[send v [_]!flat_c w;_,_,_
] implies v ∈ w , and

(2) P =𝒫p[send v [_]!flat_c w._,_,_
] implies v ∈ w , and



(3) P =𝒫p[send [_]c,_,_ [_]!d;_,_,_] implies c ⩽ d, and

(4) P =𝒫p[left [_]!flat_c w._:_,_,_
] implies true ∈ w , and

(5) P =𝒫p[right [_]
!flat_c w._:_,_,_

] implies false ∈ w , and

(6) P → Q implies p 𝒞 Q .

We say that module p is (locally) correct in P if p 𝒞 P holds.

Condition 1 requires a message v sent over an endpoint monitored by a non-dependent contract

!flat_cw;_ to satisfy the predicatew . Condition 2 is similar, except that the contract is a dependent

one. Condition 3 concerns delegations whereby an endpoint with contract c is sent as a message

that is supposed to satisfy contract d. According to the substitution principle, this is safe if c entails

d. Conditions 4–5 concern choices. In these cases, the selected label (either true or false) is
required to satisfy the predicate specified by the choice contract. Finally, condition 6 requires the

previous conditions to hold for every possible reduction of P .

Example 5.3. To illustrate the notion of locally correct module, consider the services

a⇐c

q λx1.let y1 = connect b in let x2 = send y1 x1 in close x2

b ⇐d

r λy1.let z,y2 = receive y1 in print z−1;close y2

with labels q and r and the contracts

c

def

= ?e;end_c

c

def

= !e;end_c

d

def

= !f;end_c

d

def

= ?f;end_c
e

def

= !any_c;end_c f

def

= flat_c (, 0)

noting that c and d are the contracts advertised by q and r , respectively. Also note that dual c ⇓ c

and dual d ⇓ d. Service r receives a non-zero number z and prints its inverse. Service q initiates a

session with r and then delegates the corresponding endpoint y1 to its client. Consider also the

p-labeled client

⟨let x1 = connect a in
let y1,x2 = receive x1 in
let y2 = send 0 y1 in close x2;close y2⟩p

which connects to service q, receives a session endpoint y1 from it, and then sends 0 on y1. Observe
that p connects to a service whose contract is ?(!any_c;end_c);end_c. Hence, p believes that the

contract of y1 is !any_c;end_c and that it is allowed to send 0 on y1.
Working out the reductions of the client in parallel with the two services we obtain the following

assignments for the variables occurring in modules p, q, and r :

p



x1 = [c+]c,q,p

y1 = [[[d+]d,r,q]e,q,p]e,q,p

x2 = [c+]end_c,q,p

y2 = [[[d+]end_c,r,q]end_c,q,p]end_c,q,p

q



x1 = [c-]c,p,q

y1 = [d+]d,r,q

x2 = [c-]end_c,p,q

r



y1 = [d-]d,q,r

z ≈ [[[[0]any_c,p,q]any_c,p,q]f,q,r]f,q,r

y2 ≈ [d-]end_c,q,r

An assignment x = v denotes the fact that the program reduces to a state in which the substitution

{v/x } is actually performed in the respective thread. The assignment z ≈ e in thread r does not
materialize into an actual substitution because 0 does not satisfy f and the evaluation of e eventually
blames q. A similar observation holds for y2.



According to Definition 5.2, in order to identify the locally correct modules we have to consider

all the output operations performed by these threads. We deduce that r is trivially locally correct,

since r does not perform any output operation. Concerning p, we see that it eventually performs

one output operation send 0 [[[d+]d,r,q]e,q,p]e,q,p where e = !any_c;end_c. Since 0 ∈ any_c, we
deduce that p is also locally correct. Notice that, in order to decide whether p honors the contract

of d+, we only look at the topmost monitor wrapping d+ which, as we will see, reflects the local
knowledge of p concerning this endpoint. Concerning q, we observe that it eventually performs the

delegation send [d+]d,r,q [c-]c,p,q where c = !(!any_c;end_c);end_c. In particular, the message

being sent is an endpoint with contract d = !flat_c (, 0);end_c whereas q is supposed to send

an endpoint with contract !any_c;end_c. Observe that !flat_c (, 0);end_c ̸⩽ !any_c;end_c
because any_c ̸⩽ flat_c (, 0) and entailment is contravariant with respect to outputs. That is, q
violates item 3 of Definition 5.2 and therefore it is not locally correct. ■

Given that the conditions in Definition 5.2 are stated by actually running the process P in which

label p occurs, one could wonder whether their enforcement demands unreasonable skills (such

as divination or omniscience) to the programmer writing the code of p. The “local” qualification
in Definition 5.2 is meant to indicate that this is not the case, namely that the definition provides

effective guidance for writing correct code. We make two observations in this respect. First, all

the conditions of Definition 5.2 only concern actions that are actually performed by module p,
not by other modules. We concede that p may receive code from other modules (functions can be

sent as messages) and, if this happens, Definition 5.2 assumes such code to behave well too. This

assumption could be relaxed using a finer mechanism for associating blame labels with code [Findler

and Felleisen 2002], but we leave this refinement for future work. The second observation is that

the contracts flat_c w , c, and d mentioned in conditions 1–5 are always found in the topmost

monitors wrapping messages and endpoints. Inspection of the rules in Table 3 reveals that these

contracts are always (continuations of) those advertised by a service previously invoked by p. We

can formalize this claim by showing that the negative label of every topmost monitor occurring in

module p is p itself. Given that labels do not migrate between monitors, this means that the contract

of the topmost monitor wrapping an endpoint in module p faithfully reflects the knowledge of p
about that endpoint.

Proposition 5.4. If P is a user process such that P →∗ 𝒫p[c v1 · · ·vn [_]_,_,q] where c ∈
{send, left, right}, then q = p.

In conclusion, the programmers of module p have all the information to consciously write locally

correct code if they know the contracts of the services invoked by p. This is the weakest requirement

we could reasonably ask.

Example 5.5. Consider again the processes of Example 5.3. The programmer of module p stat-

ically knows that the module is establishing a session with the service a whose contract is

c = ?(!any_c;end_c);end_c. According to this contract, the programmer assumes that the

endpoint y1 received from a can be used for sending any message, as specified by the contract

any_c, even though we know, by looking at the assignments determined in Example 5.3, that the

innermost monitor wrapping y1 specifies a stricter constraint. From the same assignments we

also see that c will indeed be the contract found in the topmost monitor wrapping y1. This means

that the assumptions made by the programmer concerning y1 correspond to the conditions that

determine the local correctness of the module p.
The programmer of module q statically knows that the module is establishing a session y1 with

the service b whose contract is d = !(flat_c (, 0));end_c. The same programmer is also aware

that module q is itself a service advertizing the contract c, which requires the service to send on x1



an endpoint with contract e = !any_c;end_c. The mistake made by the programmer is detectable

by comparing d (the contract of the endpoint y1 that the service actually sends on x1) and e (the

contract of the endpoint that the service is supposed to send on x1) and noticing that d ̸⩽ e. ■

5.3 Local Correctness Implies Blame Soundness
A locally correct module p cannot be blamed. The key insight for proving this result is that local

correctness of p in a process P grants a number of global properties on the (busy) monitors referring

to p in P . Crucially, these properties hold anywhere in P (not just within module p) and are invariant
under arbitrary reductions of P .

Henceforth, we write P ⊃ e (or equivalently e ⊂ P ) if the sub-expression e occurs in P .

Definition 5.6 (module soundness). We say that module p is sound in P if:

(1) P ⊃ [v]flat_c w,p,_
implies v ∈ w ;

(2) P ⊃ v ◁p e implies e ⇓ true;
(3) P ⊃ [v ◁_ e]flat_c w,p,_

and e ⇓ true imply v ∈ w ;

(4) P ⊃ [[_]c,_,q]d,r,_ and p ∈ {q, r } imply c ⩽ d.

Conditions 1–3 state that all valuesv wrapped by a (busy) monitor where p is deemed responsible

satisfy the contract/condition in the monitor. Condition 4 concerns stacked monitors where p is

either the positive or negative label depending on whether p occurs in the outermost or innermost

monitor. These configurations roughly correspond to casts [Wadler and Findler 2009], whereby a

value that is supposed to satisfy some contract c is used in a place where a value that satisfies d is

expected. Regardless of whether p is the provider (p = r ) or consumer (p = q) of such value, the

entailment c ⩽ d protects p in the sense that, if p risks of being blamed, another module will be

blamed beforehand.

The key lemma states that soundness of p is preserved by reductions of P , provided that p is

locally correct in P .

Lemma 5.7 (soundness preservation). If Γ ⊢ P where Γ :: ω and p is locally correct and sound in

P and P → Q , then p is sound also in Q .

Blame soundness is an easy corollary of Lemma 5.7. Note that p is trivially sound in every user

process, since the clauses of Definition 5.6 solely concern the runtime syntax.

Theorem 5.8 (blame soundness). If Γ ⊢ P where P is a user process and p is locally correct in P ,
then P →∗ Q implies blame p ̸⊂ Q .

It is worth comparing Theorem 5.8 with similar results in the literature. The concepts most

closely related to blame soundness are blame correctness [Dimoulas et al. 2011, 2012] and blame

safety [Wadler 2015; Wadler and Findler 2009].

Blame correctness is a general property of a contract system guaranteeing that, whenever a

modulep may be blamed for a contract violation, it is because a value owned by (i.e. generating from)

p is being checked against a flat contract whichp was supposed to honor. In the literature, this notion
has arisen following the observation that alternative monitoring strategies may yield different

blame assignments [Blume and McAllester 2006]. In contrast, blame soundness is a property of a

particular module p and is formulated as the logical transposition of blame correctness: it states

that, if p is never responsible for a contract violation, then p will never be blamed. This difference

between blame correctness and blame soundness is reflected also in the techniques used for proving

the two results. Blame correctness is proved by tracking the ownership of values and the obligations

of modules with respect to contracts. In particular, there is no concept akin to that of “correct”

module. The proof of blame soundness rests on a characterization of those modules that do not



violate contracts and is closer in style to a type safety result, where Lemma 5.7 plays the role of

subject reduction.

The blame calculus [Wadler 2015; Wadler and Findler 2009] is a model of programs comprising

both more-typed and less-typed modules. The interaction between modules adopting different

typing disciplines is governed by type casts that are checked at runtime and may trigger blames.

Blame safety is the property guaranteeing that, in case a blame is triggered, it always concerns

a less-typed module. A locally correct module can be seen as a software component providing

stronger guarantees about its behavior than those granted by the type system alone. In this sense,

blame soundness resembles blame safety in that it guarantees that blames always concern modules

that provide weaker guarantees about their correctness. Unlike well typing, local correctness is

formulated operationally and not through a set of typing rules.

6 OCAML IMPLEMENTATION
In Sections 3–5 we have presented the model of λCoS and studied its metatheory. With this formal

background, we now present a practical implementation of λCoS communication primitives and

sessionmonitoring in OCaml. There are a few differences between themodel and the implementation.

Some concern the operational semantics and are suggested by practical considerations (Section 6.1).

Others concern OCaml’s type system, whose support for parametric polymorphism and recursive

types allows us to devise a more expressive API to our library of monitored sessions (Section 6.2).

We conclude the section with a final example that illustrates all these features at work (Section 6.3).

6.1 Alternative Monitoring Semantics
According to the reduction rule [R15], when a session is initiated with a service a ⇐c

p v , the client
endpoint is monitored by the contract c advertised by the service and the service endpoint is

monitored by the dual contract computed by dual c. We dub this semantics, where each peer of a

session has its own monitor, double-sided monitoring in contrast to single-sided monitoring where

only one peer is wrapped. Having monitors on both peers assures the presence of at least one

chaperone contract for each endpoint in the system. To see the reason why this is technically

convenient, consider item 3 of Definition 5.2, which concerns delegations: the guarantee that

there is a monitor wrapping both the message and the endpoint on which the message is sent is a

direct consequence of double-sided monitoring (cf. rule [R15]) and allows us to easily refer to the

contracts c and d of the involved endpoints. Without this guarantee we would have four versions

of item 3, depending on whether each endpoint is monitored or not. Even worse, we would have

to compute the dual contract of each lone endpoint from that wrapping its peer, which could be

located anywhere in the system. With the guarantee that each endpoint is monitored, Definition 5.2

remains reasonably compact and need not refer to parts of the system other than module p.
In practice, double-sided monitoring induces a useless overhead because each message exchanged

through the peer endpoints of a session is checked against the same contract twice, once for each

peer. This is a consequence of the fact that dual only inverts the direction of the exchanged

messages without affecting their contracts (rules [R8–R14]). The overhead caused by double-sided

monitoring is clearly illustrated by Example 5.3, where several values end up being wrapped by

adjacent monitors having the same contract and the same labels. We can eliminate this overhead

by adopting single-sided monitoring, where session initialization attaches just one monitor to the

client endpoint. From an operational standpoint, this amounts to replacing rule [R15] with

[R21] ⟨ℰ [connect a]⟩p ∥ a ⇐
c

q v 7→ (νb) (⟨ℰ [[b+]c,q,p]⟩p ∥ ⟨v b-⟩q ) ∥ a ⇐
c

q v



that leaves b- unmonitored. While it is obvious that by removing one monitor we reduce the points

in the program that can generate blame, it is not entirely obvious that no new blame is introduced.

The next result guarantees that this is indeed the case:

Proposition 6.1. Let 7→ be the relation defined by the rules in Tables 2 and 3 except that [R15] is

replaced by [R21]. If P is a user process and P 7→∗⊃ blame p, then P →∗⊃ blame p.

In fact we conjecture that the converse of Proposition 6.1 also holds, namely that single-sided

and double-sided monitoring yield the same blames. Proving this fact turns out not to be trivial as

the exact relationship between processes resulting from the two monitoring semantics is hard to

formalize. As it stands, Proposition 6.1 is enough to conclude that single-sided monitoring does not

affect the blame soundness result (Theorem 5.8).

We now turn the attention to the rules [R17–R20], which are defined in such a way that a single

reduction step rearranges a whole stack of monitors. This formulation of the operational semantics

– which we dub big-step monitoring – is convenient to prove various auxiliary results, including

Proposition 5.4 and Lemma 5.7, which are key ingredients of blame soundness (Theorem 5.8).

The issue with big-step monitoring is that the contracts concerning a communicated message

migrate along with the message from the sender to the receiver. Given that contracts are ordinary

expressions, this migration is, in effect, a form of code mobility which may pose problems, especially

in a distributed system. In addition, the message is not checked against the contracts on the

sender side until the communication has completed. This means that contract violations might go

undetected if, for instance, a deadlock or livelock prevents the communication from occurring.

For these reasons, it makes sense to consider a small-step monitoring semantics that deals with

monitors one at a time and that is closer in style to the semantics given by Findler and Felleisen

[2002]. We illustrate small-step monitoring for a communication across endpoints monitored by

non-dependent contracts. Communication goes through two distinct phases. During the first phase,

the monitors on the endpoints are disassembled and distributed on the message and around the

whole applications involving send and receive. Formally:

[R22] send v [ε]!c;d,σ ⇝ [send [v]c,¬σ ε]d,σ

[R23] receive [ε]?c;d,σ ⇝ let x,y = receive ε in ([x]c,σ ,[y]d,σ )

Once all the contracts have been stripped off and suitably rearranged/checked, the actual com-

munication may take place:

[R24] ⟨ℰ [send v aι]⟩p ∥ ⟨ℰ
′
[receive aι]⟩q ⇝ ⟨ℰ [aι]⟩p ∥ ⟨ℰ

′
[(v,aι)]⟩q

With small-step monitoring, contract migration only happens during the communication of

endpoints (delegations). Arguably, the contexts in which this form of communication is allowed

also allow for the migration of contracts. In addition, rule [R22] makes sure that messages different

from endpoints are checked against contracts before the send can reduce further because [v]c,¬σ

is not a value when c is a flat contract. This means that these checks are performed even if the

communication does not occur and their cost is charged to the sender. We illustrate these differences

between big-step and small-step monitoring in the following example.

Example 6.2. Let P be the parallel composition

⟨let x = send 0 [a+]!flat_c (, 0);end_c,q,p in
let y = send 1 [b+]!any_c;end_c,q,p in
close x;close y⟩p










⟨let _,y = receive [b-]?any_c;end_c,p,q in
let _,x = receive [a-]?flat_c (, 0);end_c,p,q in
close x;close y⟩q

where p is sending two messages (0 and 1) and q is waiting for them. Notice that p is sending

a message on a+ first and then on b+, whereas q is waiting for a message from b- first and then



a-. Because of the different order of communications (and of the synchronous communication

model used in λCoS), the process P is stuck according to the big-step monitoring semantics. That is,

P X→. Notice also that p is violating the contract of a+, which requires the message to be a number

different from 0. Because of the deadlock, this violation is not detected by the big-step monitoring

semantics. On the contrary, under small-step monitoring the p thread reduces thus

⟨let x = send 0 [a+]!flat_c (, 0);end_c,q,p in · · · ⟩p
⇝ ⟨let x = [send [0]flat_c (, 0),p,q a+]end_c,q,p in · · · ⟩p by [R22]

→ ⟨let x = [send (0 ◁p (,) 0 0) a+]end_c,q,p in · · · ⟩p by [R5]

→ ⟨let x = [send (0 ◁p false) a+]end_c,q,p in · · · ⟩p semantics of ,
→ ⟨let x = [send (blame p) a+]end_c,q,p in · · · ⟩p by [R7]

yielding a blame for p even if the communication does not occur. ■

It is possible to prove a (limited) form of equivalence between big-step and small-step monitoring

by considering those configurations where a communication is about to occur:

Proposition 6.3. Let⇝ be the relation defined by the rules in Tables 2 and 3 except that rule [R17]

is replaced by [R22–R24]. If

P
def

= ⟨ℰ [send v [aι]!c;d,σ ]⟩p ∥ ⟨ℰ ′[receive[aι]
?e;f,ϱ

]⟩q

Q1

def

= ⟨ℰ [[aι]d,σ ]⟩p ∥ ⟨ℰ ′[(v,[aι]
f,ϱ)]⟩q

Q2

def

= ⟨ℰ [[aι]d,σ ]⟩p ∥ ⟨ℰ ′[([[v]
c,¬σ ]e,ϱ,[aι]f,ϱ)]⟩q

then either

(1) P ⇝∗ Q and P →∗ Q for some Q ∈ {Q1,Q2}, or

(2) P ⇝∗⊃ blame r and Q →∗⊃ blame r for some r .

In words, regardless of the monitoring semantics and starting from a configuration involving a

sender and a receiver, either the reduction converges to the same stateQi in which the message has

been successfully delivered to the destination, or the same module r is blamed by both semantics.

There are two possible resulting states Q1 and Q2 depending on whether v is a ground value

or a (monitored) endpoint. In the first case, the monitors around v turn into busy monitors and

eventually disappear. In the second case, they accumulate around v . Analogous results can be

proven for all the other configurations involving communication primitives.

We also note that the small-step semantics provides for greater flexibility in that it allows the

reduction of configurationswhere stackedmonitors have amixture of dependent and non-dependent

contracts because each monitor is handled individually.

Despite these differences between big-step and small-step monitoring, the given criterion of

local correctness and the blame soundness result are also relevant for our implementation. After

all, what small-step monitoring does is to introduce a number of intermediate steps in which the

relationships between adjacent monitors are (temporarily) lost and where the actual knowledge of

the programmer with respect to the contract of the used endpoints is not as easy to characterize as

in Proposition 5.4. In case communications are guaranteed to occur, Proposition 6.3 shows that

both monitoring semantics either yield the same blame or eventually converge to the same reduct.

A difference remains in that the thread from which the blame originates may not be the same: in

the big-step monitoring semantics it is always the receiver of a message that possibly detects a

violation (cf. thread r in Example 5.3), whereas in the small-step monitoring semantics checks are

in general performed on both sides of the session and the sender may yield blames too (cf. thread p
in Example 6.2).



6.2 Monitoring Sessions in OCaml

In this section we illustrate the key aspects of an OCaml module that implements λCoS commu-

nication primitives. Instead of building the primitives from scratch, we obtain them as wrappers

of the corresponding primitives provided by FuSe, an OCaml library of binary sessions [Padovani

2017]. This way we do not have to delve into low-level details concerning the encoding of session

types or the implementation of the session primitives and instead we can focus on the aspects

strictly related to contract monitoring. The fact that we can build λCoS primitives on top of FuSe is

a sign that our monitoring technique is modular and should be portable to other session libraries

for possibly different programming languages.

Even though FuSe has its own OCaml representation of session types, we keep using the metavari-

ables T and S to improve readability. In particular, we write T st for the OCaml type that denotes a

lone (i.e., unmonitored) FuSe endpoint with session type T . Similarly, we write T mt for the OCaml
type that denotes a possibly monitored endpoint. OCaml’s support for parametric polymorphism in

conjunction to FuSe’s representation of session types makes it possible to also represent session

type variables standing for unknown session types. Hereafter we use A, B to range over session

type variables and A st, A mt for their corresponding representations in FuSe and our λCoS imple-

mentation. The FuSe representation of session types makes it easy to switch from a session type to

its dual [Padovani 2017]. We will write A st to refer to the dual of A st.
Concerning the session communication primitives, we use the prefix FuSe to disambiguate them

from those we are going to implement. As an example,

FuSe.send : α → !α.A st→ A st

is the signature of the send primitive provided by FuSe, which we will use for providing a suitable

wrapper

send : α → !α.A mt→ A mt

Following Hinze et al. [2006], we represent the contract forms introduced in Section 3 using the

constructors of a generalized algebraic data type (GADT):

1 type [_] =

2 | Flat : (α → bool)→ [α]

3 | End : [end]

4 | Receive : [α] * (α → [A mt])→ [?α.A mt]

5 | Send : [α] * (α → [A mt])→ [!α.A mt]

6 | Branch : [bool] * [A mt] * [B mt]→ [A & B mt]

7 | Choice : [bool] * [A mt] * [B mt]→ [A ⊕ B mt]

According to the OCaml syntax for GADTs, the type parameter of the data type is left unspecified

(see _ on line 1) and each constructor is explicitly annotated with its type (lines 2–7). These contract

constructors are in close correspondence with those of Table 1 and are kept private in our OCaml
module for λCoSwhich instead exports one (curried) function for each of them. For example, flat_c
is defined thus

let flat_c w = Flat w

In OCaml the function flat_c is polymorphic and has type (α → bool)→ [α], hence it can be

used to define flat contracts on values of any type. The typical example is any_c : [α] used in

several occasions and defined below:

let any_c = Flat (fun _→ true)



Unlike λCoS, OCaml’s type system is not substructural and there is no distinction between linear

and unlimited types. Consequently, we cannot statically ensure that flat contracts are used only for

unlimited values. As we will see shortly, violations on the usage of flat contracts will be detected

dynamically using a runtime check.

The remaining costructors are in correspondence with the contract forms for session endpoints.

In particular, End describes an endpoint that can only be closed. We have:

let end_c = End

Send is the constructor for a dependent output contract, which is built up from a contract [α] for
the communicated value and a function (α → [A mt]) that generates the continuation contract.

The corresponding combinator send_d is defined thus:

let send_d k1 k2 = Send (k1, k2)

The lack of distinction between linear and unlimited types in OCaml allows us to define non-

dependent contract combinators as particular instances of the corresponding dependent version.

Thus, we have

let send_c k1 k2 = send_d k1 (fun _→ k2)

The primitives receive_c, receive_d, choice_c, and branch_c are defined similarly. As pointed

out by a reviewer, it is also sensible to provide specializations of choice_c and branch_c that

mandate the selection of a particular branch. For instance

let left_choice_c k = choice_c (flat_c id) k any_c

let right_choice_c k = choice_c (flat_c not) any_c k

can be used to specify that the user of an endpoint is required to select the left (respectively, right)

branch of a choice. Indeed, the (flat_c id) contract is satisfied by the true label whereas the

(flat_c not) contract is satisfied by the false label.
It is now time to provide the concrete representation of a λCoS endpoints as possibly monitored

FuSe endpoints. In general we have to take into account the possibility that an endpoint is wrapped

by an arbitrary number of monitors, each carrying a chaperone contract. For this reason, we use a

recursive data type:

type A mt =

| Channel of linearity_tag_type * A st

| Monitor of [A mt] * string * string * A mt

Note that this definition and the GADT for contracts are mutually dependent and must be

introduced jointly in OCaml. Here we have kept them separate for the sake of a more gradual

presentation. The Channel constructor represents a lone endpoint (cf. Table 1) and consists of a

FuSe endpoint and a linearity tag, which will be used for the runtime detection of linearity violations

on flat contracts. The definition of linearity_tag_type is uninteresting. We only remark that

it is a singleton type whose unique inhabitant is kept private to the module and can only occur

in a Channel constructor. The Monitor constructor represents a monitored endpoint, consisting

of a contract (of type [A mt]), two blame labels (of type string), and an underlying, possibly

monitored endpoint of type A mt.
We now illustrate in detail the implementation of send, the other communication primitives are

analogous. Recall that send has two arguments, a message v and an endpoint ep on which v must

be transmitted, and returns the same endpoint (cf. Table 3). Keeping this in mind, we have:



1 let rec send v =

2 function

3 | Channel (lin, ep)→ Channel (lin, FuSe.send v ep)

4 | Monitor (Send (k, w), pos, neg, ep)→

5 wrap (w v) pos neg (send (wrap k neg pos v) ep)

6 | Monitor (Flat _, _, _, _)→ assert false (* IMPOSSIBLE *)

The case when ep is a lone endpoint (line 3) corresponds to the reduction rule [R24] and consists

in invoking the corresponding FuSe primitive and turning the resulting FuSe endpoint into a λCoS
endpoint through the Channel constructor. The case when ep is a monitored endpoint (lines 4–5)

corresponds to the reduction rule [R22]. In this case, the contract is disassembled into a contract k
for the message being transmitted and a function w that is applied to the message to compute the

continuation contract. The auxiliary function wrap (described shortly) takes care of checking that

contracts are satisfied or attaches chaperone contracts to session endpoints. Note the swapping

of blame labels in the inner application of wrap and the recursive application of send, which
takes care of others chaperone contracts in ep and eventually performs the communication. The

last case in the definition of send (line 6) never applies and is only meant to prevent complaints

about a non-exhaustive pattern matching. The point is that when send is applied to a monitored

endpoint Monitor (k, _, _, ep) the type of send ensures that k has type [!α.A mt] and the

only constructors whose type is unifiable with this one are Send and Flat, which applies to any

value but is never attached as a chaperone contract by wrap.
The last key ingredient of the implementation is indeed wrap, whose purpose is to check whether

a value satisfies a given contract and to blame the guilty party if this is not the case. The structure

of wrap, shown below, is analogous to that of the homonymous function defined by Findler and

Felleisen [2002], the main difference being that, in our case, wrap deals with contracts concerning

session endpoints.

1 let wrap : type a. a ct→ string→ string→ a→ a = fun k pos neg v→

2 match k with

3 | Flat w → if unlimited v && w v then v else raise (Blame pos)

4 | End as k → Monitor (k, pos, neg, v)

5 | Receive _ as k→ Monitor (k, pos, neg, v)

6 | Send _ as k → Monitor (k, pos, neg, v)

7 | Branch _ as k → Monitor (k, pos, neg, v)

8 | Choice _ as k → Monitor (k, pos, neg, v)

An application wrap k pos neg v inspects the structure of the contract k (line 2). When k is
a flat contract the message is verified to be unlimited and to satisfy the predicate w (line 3). If

both conditions are satisfied, the value v is returned. On the contrary, the sender is blamed for a

contract violation. The unlimited auxiliary function is implemented by checking that (the runtime

representation of) v does not contain any occurrence of linear_tag. Overall, this case in the

definition of wrap corresponds to the rules [R5–R7] in Table 2. In the remaining cases (lines 4–8), wrap
cannot check immediately whether the endpoint satisfies the contract k. Therefore, the endpoint is
wrapped by a monitor with the contract k and the blame labels pos and neg. Two remarks about

the typing of wrap are in order. First, it is necessary to provide a type annotation to wrap (line 1) to

inform OCaml that the type parameter α is locally abstract (the explicit quantification type α means

this). This way, OCaml can refine this type parameter depending on pattern matching [Garrigue

and Normand 2011]. Second, the lines 5–9 cannot be collapsed into a single case, even if they all



bind just one variable k and the right hand side of each pattern matching rule is behaviorally the

same, for the type of k is different in each case.

6.3 Extended Example: List Forwarding
In this sectionwe present a final example that illustrates all the features of the OCaml implementation

of λCoS, including dependent contracts. We also take advantage of OCaml’s support for parametric

polymorphism and recursive types, which we have omitted in the formal model of λCoS for the
sake of simplicity.

The following function

1 let forwarder_body x =

2 let rec aux y =

3 function

4 | [] → close (right y)

5 | v :: l→ aux (send v (left y)) l in

6 let l, x = receive x in (* receive the elements to be forwarded *)

7 let y, x = receive x in (* receive the destination endpoint *)

8 close x; aux y l

models the body of a forwarding service that delivers a list of elements to a given recipient, one

element at a time. The service interacts with the client using the endpoint x, from which it receives

a list l of elements (line 6) and another endpoint y on which the elements of the list should be

forwarded (line 7). The main loop of the service (lines 2–5) iterates over the list: when the list is

empty (line 4), the service selects the “right” branch of the protocol and closes the endpoint; when

the list contains at least one element v, the service selects the “left” branch of the protocol, it sends

v on y, and then iterates over the tail of the list (line 5).

OCaml infers for forwarder_body the signature

val forwarder_body : ?(α list).?(rec A.(!α.A) ⊕ end).end mt→ unit

where rec A.(!α.A) ⊕ end stands for the equi-recursive session type T that satisfies the equation

T = (!α.T) ⊕ end.1 As the type suggests, forwarder_body performs an arbitrary number of

outputs on the delegated endpoint y, and by parametricity we also deduce that the elements being

sent in these outputs must come from the list l. However, we do not know whether the number of

forwarded elements actually matches the length of the list. The service can advertise this guarantee

by means of the following contract:

1 let forwarder_c =

2 let rec fwd n =

3 if n > 0 then (* more list elements *)

4 left_choice_c (send_c any_c (fwd (n - 1)))

5 else (* no more list elements *)

6 right_choice_c end_c

7 in send_d any_c (fun l→ send_c (fwd (List.length l)) end_c)

The contract starts with the specification of the output of a list l for which no particular

constraints are given (cf. the any_c on line 7). However, the continuation contract depends on the

length of l. More precisely, the continuation describes an endpoint that must be used for sending

1
The type inferred by OCaml is in fact an encoded form of the type shown here. FuSe comes along with a utility that pretty

prints encoded OCaml types into the more readable syntax that we have used.



another endpoint with contract fwd (List.length l) before being closed. The expression fwd n
(lines 2–6) yields a contract for an endpoint that must be used for sending exactly n messages.

This is achieved using the left_choice_c and right_choice_c contracts. If n > 0 the forwarder

must select the left branch and then send one message followed by n - 1 more (line 4). If n is 0 the

forwarder must select the right branch and then terminate the interaction (line 6).

We conclude with two remarks. First, the contract forwarder_c allows forwarder_body to

change the forwarded messages as long as their number is the same as the length of l. Parametricity

only guarantees that the forwarded elements come from l. A stronger version of the contract could

be written by making fwd a function that operates over the list of remaining messages and adding a

condition over sent messages that checks whether the forwarded message is on the list of messages

to be delivered. Second, the forwarder_c contract ties the behavior of a process on one session

(y) to data (l) exchanged over a different session (x). Therefore, besides providing a means for

specifying precise constraints over messages exchanged in one session, contracts for higher-order

sessions enable the specification of inter-session dependencies.

7 RELATEDWORK
Blame Correctness. Blame assignment with higher-order and dependent contracts is subtle be-

cause contract verification is deferred until the monitored object is actually used. In fact, alternative

monitoring strategies called lax, picky and indy have been proposed [Blume and McAllester 2006;

Dimoulas et al. 2011; Greenberg et al. 2012]. Such design choices pose the question of whether a

particular strategy is reasonable, i.e., if it assigns blames correctly. This problem has been addressed

either by showing that principals that can be blamed have responsibility in a contract violation [Di-

moulas et al. 2011, 2012] or by providing a characterization of components that satisfy a given

contract [Blume and McAllester 2006; Dimoulas and Felleisen 2011; Findler and Blume 2006]. Given

a semantics for contracts, contract satisfaction addresses the problem of showing that a contract

system is sound and complete with respect to that semantics, i.e. that each blame assigned by the

system corresponds to a contract violation and each contract violation is detected by the system.

Our blame soundness result partially addresses this problem by showing that the contract system

does not report blames when a component does not violate its contracts. The exact relationship

between blame soundness and contract satisfaction remains to be fully understood.

Contracts have been integrated into type systems as refinement types, which are checked

dynamically via cast insertion, like the hybrid types of Knowles and Flanagan [2010]. The relation

between contracts and hybrid types has been studied by Greenberg et al. [2012] and Gronski and

Flanagan [2007]. Wadler and Findler [2009] provide a unifying view with the blame calculus, but

leave dependent contracts for future work. The blame calculus allows for a simple characterization

of correct component when typed and untyped code are mixed. The blame theorem shows that

blames are always assigned to the lesser-typed components.

Although contracts in λCoS do not interact with the type system, our notions of local correct-

ness and blame soundness have been inspired by Wadler and Findler [2009] and Wadler [2015].

Communication over a monitored endpoint is the only point in the execution of a program that

can originate a blame. We interpret communication as an implicit cast in which the message is

coerced to the type specified in the contract wrapping the endpoint. However, contract satisfaction

is verified dynamically in our approach. We leave the problem of static verification of session

contracts, e.g., along the lines of Nguyen et al. [2014], as future work.

Behavioral/Temporal Higher-order Contracts. The interplay between higher-order contracts and

behavioral/temporal aspects of modules, such as restricting the order in which functions can be

invoked, has been previously addressed by Disney et al. [2011] and Scholliers et al. [2015]. In



both approaches, the enforcement of temporal constraints is done dynamically and the contract

language allows for the specification of both allowed and disallowed traces. On the contrary, in

λCoS, the usage of endpoints is regulated by a combination of static and dynamic constraints: static

constraints are enforced by session types, which guarantee that processes use session endpoints

according to their protocol; dynamic constraints, which concern the content of exchanged messages

and may affect the selection and availability of choices and branches (Section 6.3), are checked at

runtime by monitors. None of the previous works on behavioral/temporal contracts [Disney et al.

2011; Scholliers et al. 2015] provides a characterisation of module correctness or a formal statement

about the correctness of blame assignment akin to our blame soundness result (Section 5).

Swords et al. [2015] proposed λCC, a language tailored to the implementation of alternative

approaches to monitoring, and discussed a possible implementation of the temporal contracts of

Disney et al. [2011] on top of λCC. An interesting question for future work is whether the primitives

of λCC allows for a convenient implementation of λCoS to avoid monitor migration in delegations.

Contracts and Affine/Linear Types. Contract monitoring may duplicate values and discard con-

tracts (Tables 2 and 3). These aspects have not been investigated elsewhere and affect the typing of

contract constructors when the type system is substructural. If we allowed contracts to use linear

resources, the monitoring of a non-linear object with a contract using linear resources would affect

the behavior of the object, which would become linear itself. In this sense, our contracts conform

to the definition of “chaperone contracts” given by Strickland et al. [2012], where chaperones are

not allowed to affect the behavior of monitored objects.

Tov and Pucella [2010] use stateful contracts for controlling the usage of affine functions (func-

tions that can be applied at most once) when these flow into a region of the program that uses a

conventional (i.e., non substructural) type system.

Projections and Duality. Contract duality is tightly related to session type duality [Honda 1993;

Honda et al. 1998] and should not be confused with the client and server projections of Findler

and Blume [2006]. The point is that dual contracts describe the same obligations in a session

with respect to complementary directions of the messages being exchanged, whereas projection

separates the obligations for values flowing into and out of a monitored expression.

Contracts for Sessions. Bocchi et al. [2010] and Toninho and Yoshida [2016] extend global types

with assertions to specify constraints on values communicated in a multiparty session. These

approaches are based on a top-down methodology whereby the whole multiparty interaction is

designed at once and then projected on the single participants of the session. We work with binary

sessions only. Our contracts can be applied gradually to arbitrary subsets of interacting modules

and can be used to describe whole protocols or only fragments thereof. The session type is inferred

automatically from the structure of the program. Bocchi et al. [2010] use a decidable assertion

logic and Toninho and Yoshida [2016] use dependent session types along the lines of Toninho

et al. [2011]. These choices make it possible to verify the correctness of participants statically. The

soundness result rests on the assumption that all processes participating in a session are well typed,

requiring no runtime monitoring. This assumption is relaxed in some works [Bocchi et al. 2013;

Chen et al. 2011], where participants may misbehave and a monitor is used to suppress messages

that violate the protocol. Neither higher-order sessions nor blame assignment are considered in

these works.

Monitoring of untrusted processes has been also used [Bartoletti et al. 2013, 2012; Jia et al. 2016]

to make sure that processes follow the intended protocol (session fidelity) and to assign blame

if this is not the case. In these works monitoring does not concern the content of messages and



blame freedom can be guaranteed by typing. In λCoS session fidelity is ensured by typing whereas

contracts specify conditions on the content of exchanged messages.

Thiemann [2014] studies a gradual type system for sessions with explicit coercions for branches

and choices. Again, the dynamic checks concern session fidelity and particularly the branching

structure of protocols.

8 CONCLUDING REMARKS
Building on contracts for higher-order functions pioneered by Findler and Felleisen [2002] and

later extended to mutable objects by Strickland et al. [2012] we have defined and implemented

a monitoring technique for higher-order sessions. Its characterizing aspect is that the contract

wrapping a session endpoint must be dynamically updated at runtime, as the session progresses.

The setting provided us with the opportunity to investigate the ramifications of contract moni-

toring in the presence of linear resources. In particular, we have seen that session endpoints should

not occur in contracts, which is in line with the observation that contracts should be “pure” [Meyer

1992]. Indeed, the operations involved with session endpoints are inherently impure.

We have proved a blame soundness result stating that modules which do not violate contracts are

not blamed. The result rests on the key assumption that messages are either session endpoints or

unlimited values (i.e. data and functions not containing session endpoints). This assumption allows

us to tackle the higher-order case through delegation, which is the idiomatic form of mobility in

sessions. Extending the blame soundness result to a setting where functions may contain session

endpoints is an intriguing future development.

We intend to incorporate our proof-of-concept implementation of chaperone contracts for

sessions into FuSe [Padovani 2017]. In this respect, the GADT presented in Section 6 suffers

from two important limitations. First, the GADT does not allow the specification of contracts for

structured data types (such as pairs) containing session endpoints. This can be overcome either

by adding dedicated constructors corresponding to these data types [Hinze et al. 2006] or by

adding a single, general-purpurse constructor that carries a user-provided, type-specific wrapper

function. The second current limitation is that recursively defined constracts (such as forwarder_c
in Section 6.3) must be finite in general. The finiteness of forwarder_c was guaranteed by the fact

that its structure is isomorphic to that of a (finite) list. However, infinite protocols are commonly

found in practice. In these cases, a contract definition relying on OCaml’s support for recursion
would diverge. This limitation can be lifted by adding a constructor to the GADT that lazily

computes the fixpoint of a recursively defined contract. Once all these ingredients are in place, a

proper evaluation of the overhead induced by our technique for contract monitoring is in order.
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