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Abstract 

Purpose of review 

Breast cancer heterogeneity constitutes a significant investigational and therapeutic challenge. Here we 

review recent findings on breast cancer heterogeneity, focusing on its extent across the distinct molecular 

subtypes, the degree of spatial and temporal intra-tumor heterogeneity, and possible approaches to dissect 

and counteract it. 

 

Recent findings 

Recent massively parallel sequencing studies have solidified the notion that estrogen receptor (ER)-positive 

and ER-negative breast cancers have divergent genetic landscapes. Numerous studies have addressed the 

origins of heterogeneity and the challenges it poses for patient management; however, its dynamic evolution 

in the light of novel targeted therapies is yet to be fully understood. 

 

Summary 



Tumor heterogeneity poses diagnostic and therapeutic challenges. Implementation of novel methodologies, 

such as single cell sequencing and analysis of cell-free DNA, might afford us the means to comprehend intra-

tumor heterogeneity with greater precision, and to overcome the diagnostic and therapeutic challenges 

posed by it. 
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Introduction 

Massively parallel sequencing (MPS) studies have deepened our understanding of the genetic landscape of 

human cancers and have offered the opportunity of matching specific therapeutic agents with the genetic 

alterations a given tumor harbors [1], allowing us to offer rational personalized therapies to cancer patients 

[2]. Nevertheless, precision medicine still faces important challenges, such as the ones posed by the 

substantial heterogeneity between and within tumors [3, 4, 5]. A burgeoning body of evidence has 

accumulated throughout recent years supporting the vast heterogeneity of breast cancer, evident at the 

morphologic, genomic, and transcriptomic levels, which translates into dissimilar clinical behaviors and 

responses to therapy [6, 7, 8]. 

 

Notwithstanding current state-of-the-art technologies, our understanding of tumor heterogeneity, its causes, 

and clinical implications is still preliminary. Inter-tumor heterogeneity, which refers to differences between 

tumors from different individuals, poses formidable challenges for the delivery of precision medicine, given 

that in breast cancer highly recurrent targetable genetic alterations are scarce (Fig. 1a). Moreover, the 

dynamic and evolving coexistence of different clones within a tumor, with dissimilar genetic alterations and 

drug sensitivities (i.e., intra-tumor heterogeneity), as well as the emergence of resistant cancer cell 

populations, also pose diagnostic and therapeutic challenges, adding complexity to the management of 

breast cancer patients [9] (Fig. 1b). Albeit the therapeutic hurdles raised by tumor heterogeneity are 

numerous, novel clinical trial designs and therapeutic opportunities are emerging, based on the concepts 

stemming from the analysis of heterogeneity [10]. 

In this review, the phenomena of inter- and intra-tumor heterogeneity in breast cancer are discussed, with a 

special emphasis on their origins, implications in tumorigenesis, the diagnostic and therapeutic challenges 

they pose, and the potential strategies to circumvent them (Fig. 1c). 

 

Tumor Heterogeneity and Tumorigenesis 

Origins of Heterogeneity 

It has been posited that tumorigenesis follows Darwinian evolutionary dynamics, in which the interplay 

between mutation generation and clonal selection shapes the genome of a tumor. Different cancer subclones 

coexist in a cooperative or competitive manner [11, 12], and while most somatic mutations have little impact 

in cell fitness, driver mutations result in an evolutionary advantage, allowing the cells harboring them, as well 

as their progeny, to prosper, illustrating branched clonal evolution [13]. Importantly, early truncal mutations 

may disappear throughout tumor progression, and conversely, subclonal mutations may be present at low 



frequencies in different regions of a tumor, and therefore their detection in distinct tumor areas should not 

define them as truncal [14, 15]. 

 

In contrast to the traditional dogma that regards tumorigenesis as a gradual process [16], catastrophic 

phenomena, such as chromothripsis, chromoplexy, and kataegis, can lead to substantial modifications of the 

evolutionary course of a tumor. Menghi et al. [17] analyzed the tandem duplicator phenotype (TDP), a 

chromotype characterized by the presence of a high proportion of head to tail duplications of DNA segments, 

across a variety of tumors, and uncovered its enrichment in triple-negative breast cancer (TNBC). Notably, 

TDP was found to confer sensitivity to cisplatin in triple-negative (TN) cell lines and patient-derived xenografts 

(PDX) [17]. Loci of kataegis, a common phenomenon in breast cancer associated with chromosomal 

rearrangements and localized hypermutation [18], were found to be concentrated in genomic areas 

containing genes and functional regulatory elements, and to be more frequent in chromosomes 8, 17, and 

22, while rare in chromosomes 2, 9, and 16 [19]. In line with these findings, a study in mouse models 

suggested that breast malignant transformation can be induced in an expeditious manner, requiring the 

introduction of a sole mutation targeting KRAS [20]. 

 

A study of the copy number evolution in TNBC opposed a gradual copy number alterations (CNAs) acquisition 

model, and instead suggested that CNAs occur in brief bursts early in the life of a tumor, after which they 

remain stable throughout clonal expansion [21]. Importantly, this punctuated evolution model implies that 

assessment of CNAs at an early stage could forecast the aggressiveness of a tumor, and therapy could be 

tailored accordingly. Along the same lines, a recent study of 904 tumors across 14 tumor types showed that 

323 of them evolved in a neutral fashion, implying that clonal selection occurs early in the life of a tumor, 

rather than in late subclonal populations, whereas non-neutral tumors display continuous clonal selection, 

with heterogeneity being the result of passenger mutations [22]. 

 

Mutational Signatures 

The mutational processes that sculpt the genomes of tumors leave an imprint on it, recognized as mutational 

signatures, which can be regarded as surrogates of the DNA damage and altered repair processes that 

engendered them [23]. In most cases, breast tumors display a combination of mutational signatures [24]. A 

study across 30 different types of cancer unveiled 21 mutational signatures with distinct underlying 

mechanisms. Some signatures are related to endogenous mutational processes (signature 1 A/B), whereas 

others are the result of the exposure to exogenous mutagenic agents, such as UV light (signature 7), tobacco 

(signature 4), and anticancer therapies (signature 11). Aberrant DNA repair processes, such as defective DNA 



mismatch repair (signature 6), or altered homologous recombination (signature 3), as well as somatic 

immunoglobulin gene hypermutation (signature 9), leave mutational scars in the genome. Abnormal 

functioning of DNA-modifying enzymes or error-prone polymerases, such as AID/APOBEC cytidine 

deaminases, also results in mutational signatures (2 and 13). Nonetheless, the mechanism behind many 

signatures remains unknown [25]. 

 

Whole-genome sequencing of a cohort of 560 breast cancers led to the identification of 12 base substitution 

signatures and 6 rearrangement signatures. The latter were found to be a result of tandem duplications or 

deletions, and to be related to defective DNA repair through homologous recombination [24]. Of note, a 

recent transcriptomic analysis of 266 breast tumors undertaken to understand how substitution signatures 

translate at the transcriptomic level showed a positive correlation between the number of substitutions and 

the expression of cell cycle related genes, regardless of the specific mutational signature. Importantly, this 

study showed an association of signatures 3 and 13 with a gene expression tumor infiltrating lymphocytes 

signature. This feature correlated also with a high extent of lymphocytic infiltration and better prognosis [26]. 

 

Inter-Tumor Heterogeneity and Therapeutic Implications 

Tumor Heterogeneity Within Molecular Subtypes 

In the past decade, several studies [27, 28, 29] have led to the molecular classification of breast cancer into 

the so-called intrinsic subtypes (i.e., luminal A, luminal B, HER2-enriched, and basal-like). Since then, 

additional molecular subclasses have been described, such as the claudin-low [30] and the molecular 

apocrine subtype [31], all with distinct clinico-pathologic features, responses to therapy, and outcomes [32]. 

Importantly, striking heterogeneity can be observed within each one of these subtypes [33], and their 

stability on the basis of research versions of the assays for their identification is questionable [34, 35, 36]. 

 

Seminal studies by Lehmann et al. [37] showed marked inter-tumor heterogeneity within TNBC and 

recognized seven subtypes: basal-like 1 (BL1), basal-like 2 (BL2), mesenchymal (M), mesenchymal stem-like 

(MSL), immunomodulatory (IM), luminal androgen receptor (LAR), and an unstable group. The clinical 

relevance of this taxonomy has been confirmed in independent analyses of retrospective cohorts of patients 

treated with neoadjuvant chemotherapy [38, 39]; those studies have revealed that BL1 tumors display the 

highest pathologic complete response (pCR) rates following neoadjuvant chemotherapy, whereas BL2 and 

LAR less frequently evolved to pCR. A more recent study by the same group has demonstrated that the 

likeliest most parsimonious number of TNBC transcriptomic subtypes is four, given that the transcriptomic 



features of immunomodulatory and mesenchymal stem-like subtypes likely derive from inflammatory and 

mesenchymal cells, respectively, rather than from tumor cells [39]. Based on RNA profiling, Burstein et al. 

[40] defined four TNBC subtypes with distinct potential actionable targets. Tumors of the luminal androgen 

receptor (LAR) subtype could be therapeutically targeted with androgen receptor antagonists or MUC 

vaccines; the mesenchymal (MES) subgroup may benefit from IGF or PDGFR inhibitors; immune therapies 

might prove effective for basal-like immune-suppressed (BLIS) tumors, whereas basal-like immune-activated 

(BLIA) tumors could respond to Ipilimumab. Taken together, these results demonstrate that TNBCs comprise 

a remarkably heterogeneous group of tumors, that there might be at least three distinct subtypes (basal-like, 

mesenchymal and LAR), and that immune response likely plays a pivotal role in the biology of the disease. 

 

HER2-positive tumors, as defined by conventional immunohistochemistry and fluorescence in situ 

hybridization (FISH) [41], display marked molecular heterogeneity, encompassing all intrinsic molecular 

subtypes [42], and have genetic landscapes which vary according to estrogen receptor (ER) status and 

intrinsic subtype [43]. The molecular heterogeneity of HER2-positive disease is paralleled by its clinical 

behavior and response to therapy, as a considerable proportion of patients with HER2-positive tumors 

develop primary or secondary resistance to anti-HER2 therapies [44]. Efforts have been made to identify 

biomarkers that could predict response to anti-HER2 therapies. Recently, Pogue-Geile et al. [45] classified 

HER2-positive breast tumors using PAM50 through the nCounter platform and observed clinical benefit upon 

treatment with trastuzumab across all intrinsic subtypes. In contrast, Perez et al. [46] applied the PAM50 

Prosigna algorithm to stratify HER2-positive tumors across different intrinsic subtypes and observed that 

patients with non-basal tumors benefitted from treatment with trastuzumab in terms of recurrence-free 

survival, whereas patients with basal-like tumors did not. The different methods to define intrinsic subtypes 

used in these studies [45, 46] could have had an impact on the classification of individual tumors; however, 

these studies suggest that stratification of HER2-positive disease could potentially be used to fine-tune 

therapy in this subgroup [47]. 

 

In addition, based on the integration of gene expression and genome-wide CNA data, the Molecular 

Taxonomy of Breast Cancer International Consortium (METABRIC) devised a classification of breast cancer 

into ten integrative clusters (IntClusts) [48, 49], with prognostic implications. Subsequently, Pereira et al. [50] 

showed that CBFB mutations were more common in IntClust3 and IntClust8, whereas GATA3 mutations had 

higher frequencies in IntClust1 and IntClust8. IntClust7 showed frequent alterations in genes of the MAP 

kinase cascade, IntClust3 in genes related to tissue organization, IntClust1 in AKT pathway-related genes, and 

IntClusts 9 and 10 in DNA damage response genes; in addition, IntClust10 displayed frequent alterations in 

genes linked to cell cycle regulation and ubiquination [50]. As further evidence for the clinical relevance of 



this classification, the analysis of 7544 breast cancers showed that IntClust10 tumors displayed the highest 

rates (37%) of pCR, whereas none of the tumors belonging to IntClust2 subtype reached pCR [48]. 

Interestingly, analysis of the cancer cell fractions of mutations in driver genes varied across the different 

IntClusts. IntClusts 3, 7, and 8, which are associated with better clinical outcomes, have a lower frequency of 

clonal mutations in driver genes, compared to IntClusts 2 and 10, which carry a worse prognosis [50]. 

 

The Mutational Landscape of Breast Cancer 

The Cancer Genome Atlas (TCGA) project [51] revealed a limited number of highly recurrently mutated genes 

in breast cancer. Indeed, solely TP53, PIK3CA, and GATA3 were found to be consistently mutated in more 

than 10% of unselected breast cancers, with the remaining genes being affected in less than 7.7% of cases, 

and a high number of them being altered in less than 1% of cases [51]. Nonetheless, a recent analysis of over 

2000 breast cancers revealed additional genes mutated in >10% of cases, including MUC16, AHNAK2, SYNE, 

and KMT2C [50], and additional significantly mutated genes, such as transcription regulators, including TBX3, 

CBFB, and RUNX1, and chromatin function-related genes, such as KMT2C, ARID1A, NCOR1, CTCF, KDM6A, 

PRBM1, and TBL1XR1 [50]. Mutations also vary according to the histologic subtype. For instance, pathogenic 

loss-of-function mutations affecting the CDH1 gene have been confirmed to be one of the defining features 

of lobular carcinomas, and mutations affecting PTEN, TBX3, and FOXA1 have also been shown to be 

significantly more frequent in invasive lobular carcinomas than in invasive ductal carcinomas of no special 

type [52]. 

 

Co-occurrence and mutual exclusivity of somatic mutations have helped define the potential significance of 

specific somatic genetic alterations. In primary breast cancer, mutations affecting genes within the same 

signaling pathway are, in some instances, mutually exclusive, such as mutations targeting PIK3CA and those 

affecting AKT1, PIK3R1, and FOXO3, illustrating epistatic interactions within the AKT signaling cascade [53]. 

In contrast, PTEN inactivating mutations co-occur with PIK3CA and PIK3R1 mutations, and CDH1 is frequently 

co-mutated with PIK3CA, TBX3, and RUNX1 in lobular carcinomas [50, 52]. Whether these patterns of mutual 

exclusivity and co-occurrence are maintained in advanced breast cancers following systemic therapy remains 

to be investigated. 

 

Mutational Heterogeneity Across Different Molecular Subtypes and in Relation to Estrogen Receptor 

Status 



Heterogeneity is evident in the pattern and type of mutations of the different breast cancer intrinsic 

subtypes; however, there is no single hotspot mutation or highly recurrently mutated gene that defines the 

individual “intrinsic” subtypes. Basal-like tumors are enriched for nonsense and frameshift TP53 mutations, 

whereas luminal A and luminal B cancers more frequently harbor TP53 missense mutations [51]. Similarly, 

the TCGA study has shown that GATA3 intron 4 hotspot deletions were found solely in luminal A tumors, 

whereas seven of nine frameshift mutations in exon 5 were found in luminal B breast cancers [51]. 

 

MPS studies have reinforced the notion that ER-positive and ER-negative breast cancers represent two 

molecularly distinct entities. Mutations in ER-positive tumors affect mainly PIK3CA (40.1%), MAP3K1 (11.0%), 

MAP2K4 (5.6%), GATA3 (13.8%), MLL3 (7.6%), CDH1 (8.5%), and AKT1 (3.1%), whereas TP53 (84.5%) leads 

the list of recurrently mutated genes in ER-negative breast cancer [51, 54]. The study of Pereira et al. [50] 

uncovered driver tumor suppressor genes not previously found to be altered in the TCGA dataset; ER-positive 

tumors showed mutations affecting FOXO3, CTNNA1, FOXP1, MEN1, and CHEK2, whereas CDKN2A, KDM6A, 

and MLLT4 were altered in both ER-positive and ER-negative tumors. ER-positive and ER-negative tumors 

harbored ERBB2 mutations at comparable rates; however, mutations at codon 755 were more frequent in 

ER-positive disease. Similarly, ER-positive tumors had PIK3CA mutations affecting the helical domain, 

whereas in ER-negative breast cancers, PIK3CA was mutated predominantly in the kinase domain [50]. 

 

Mutations in driver genes show association with breast cancer-specific survival. MAP3K1 and GATA3 

mutations were found to be related to better survival in patients with ER-positive tumors. Conversely, 

mutations affecting SMAD4 and USP9X were associated with shorter survival [50]. These findings are in line 

with data showing that decreased SMAD4 expression and altered TGF-beta signaling portend a poor 

prognosis for breast cancer patients [55]. 

 

Taken together, these studies show how the dissection of breast cancer into different subgroups is of 

paramount importance to overcome the challenges posed by the marked heterogeneity of this entity, and 

can allow us to better comprehend and make use of the prognostic value of certain genetic alterations. 

 

Intra-Tumor Heterogeneity and Therapeutic Implications 



The vast intra-tumor genetic heterogeneity of breast cancer, which is clear at the histologic level, has been 

illustrated by multiple lines of evidence at the molecular level [23, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66] 

and poses important challenges in the management of breast cancer patients. 

 

Histologic and genetic differences can exist between geographically separated areas within a tumor, between 

a primary tumor and a metastatic outgrowth, or even between two or more different metastatic foci (spatial 

heterogeneity) [66] (Fig. 1b). Moreover, as tumors evolve over time, their genomic landscapes undergo 

modifications (temporal heterogeneity; Fig. 1b). These changes are particularly evident in three instances 

during the life of a tumor: (i) progression of in situ to invasive disease; (ii) temporal evolution of a primary 

breast cancer; and (iii) development of metastasis [32]. Key to the understanding of the therapeutic 

implications of spatial and temporal intra-tumor heterogeneity is the awareness that only a minority of the 

mutations is essential for cancer development and progression, whereas most of them lack any significant 

biological impact or might theoretically even have negative effects on tumor fitness [67, 68]. 

 

Spatial Heterogeneity 

Yates et al. [69] performed a whole-genome and targeted sequencing study of different regions of 50 breast 

cancers, with an in-depth analysis of 8 different regions of 12 breast tumors. Most (8/12) of these displayed 

spatial heterogeneity in terms of somatic mutations, whereas two cases showed intra-tumor heterogeneity 

in terms of copy number, and two cases showed minor variations. Importantly, not only “passenger” 

alterations were found to be subclonal, given that a third of the cases had subclonal mutations targeting 

driver genes, such as TP53, PIK3CA, and BRCA2. In addition, this group also observed temporal heterogeneity 

possibly triggered by therapy in 5 of 18 cases, as residual tumor following neoadjuvant chemotherapy 

harbored subclones that were not present in the pre-treatment specimen. 

 

The observation that driver genetic alterations can also be heterogeneously distributed within a given breast 

cancer is corroborated by the bioinformatics inferences made by Shah et al. [60], where TP53 mutations were 

found to be subclonal in a small but substantial subset of TNBCs, and by a study led by our team that has 

provided direct evidence that intra-tumor genetic heterogeneity may affect even HER2 gene amplification 

itself in breast cancers classified as HER2-positive using the ASCO/CAP guidelines [41]. In those HER2-positive 

but heterogeneous cases, the components lacking HER2 gene amplification were found to harbor alternative 

driver genetic alterations, including activating HER2 somatic kinase domain mutations (i.e., a clear example 

of a convergent phenotype [53]), BRF2 and DSN1 amplifications [70]. 



 

It should be noted that some biological phenomena appear to be less prone to intra-tumor spatial 

heterogeneity than somatic mutations. A recent study has demonstrated that distinct assays for the 

assessment of homologous recombination DNA repair deficiency in breast cancer show limited spatial 

heterogeneity [71]. 

 

Temporal Heterogeneity and Therapeutic Selective Pressure 

Multiple studies have been carried out to understand the temporal evolution of tumors. Ding et al. [72] 

performed the genomic analysis of a primary basal-like breast cancer, and its corresponding brain metastatic 

outgrowth and PDX, and uncovered a SNED1 missense mutation, a silent FLNC mutation, and a MECR deletion 

occurring de novo in the metastatic focus. Interestingly, the PDX displayed all the mutations of the primary 

tumor and a mutation enrichment pattern similar to the brain metastasis illustrating how metastases may 

stem from a minority of cancer cells of the primary tumor [72]. 

 

Therapy leads to selective pressure that can further sculpt a tumor genome (Fig. 1b). Murtaza et al. [73] 

analyzed the clonal evolution of a HER2-positive/ER-positive metastatic breast cancer in a patient who 

received targeted therapy, via the study of multiple biopsies of the primary tumor and metastatic foci, as 

well as circulating tumor DNA in plasma (ctDNA) collected throughout 3 years. They observed that truncal 

mutations displayed the highest levels in plasma, followed by branch and private mutations. Most 

importantly, they found that changes in the circulating levels of subclonal private somatic mutations 

correlated with the divergent responses to treatment observed in the various metastatic foci, as revealed by 

imaging. As another example, in an autopsy study, Juric et al. [74] analyzed 14 metastatic foci of a patient 

with breast cancer with an activating PIK3CA mutation, who developed resistance to BYL719, a PI (3)Kα 

inhibitor. While all metastatic foci showed loss of one copy of PTEN, foci that were refractory to treatment 

had additional but different PTEN mutations, resulting in a complete PTEN loss of function, illustrating an 

instance of a convergent phenotype [53] driving therapeutic resistance. 

 

The neoadjuvant setting also offers the opportunity to study temporal heterogeneity and therapeutic 

selective pressure. In a study of patients with HER2-positive breast cancer who had received neoadjuvant 

chemotherapy and subsequent adjuvant trastuzumab, Janiszewska et al. [75] tracked changes in intratumoral 

heterogeneity by the concurrent analysis of somatic mutations and CNAs in single cells of breast cancers and 

observed modifications in the frequency and geography of cancer cell subpopulations, leading to the 



selection of cancer cells harboring PIK3CA mutations, a known genomic determinant of resistance to anti-

HER2 targeted therapy [76]. 

 

Studies addressing the temporal heterogeneity between primary breast cancers and their metastases have 

been limited so far. Most of the studies focused solely on “hotspot” mutations or key cancer genes and 

revealed limited but important differences between primary breast cancers and their metastatic deposits 

[77]. For instance, the study of 79 paired breast primary and metastatic cancers showed that metastatic foci 

harbored mutations affecting KRAS (15%), PTPN11 (8%), and SMAD4 (8%), which were absent in the matching 

primary tumors [77], and an analysis of 15 cases of metastatic breast cancer to the brain revealed TP53 

mutations at higher frequency in the metastatic outgrowths (58.5%) than in the primary tumors (38.9%) [78]. 

Importantly, out of the differences observed between primary and metastatic breast cancers, one that is 

immediately actionable is the presence of somatic ESR1 mutations in relapses of patients with ER-positive 

breast cancer treated with aromatase inhibitors or subjected to estrogen deprivation [79, 80, 81, 82]. While 

mutations affecting the ligand binding domain of ESR1 are found in <1% of primary breast cancers, these 

mutations are observed in up to 54% of relapses in patients treated with anti-estrogens and estrogen 

deprivation [81]. 

 

Additional important aspects of intra-tumor heterogeneity are to be considered, such as the fact that a given 

mutation can change from passenger to driver under selective pressure [53]. Moreover, it has recently been 

suggested that subclones of inferior selective advantage can promote tumor growth by triggering changes in 

the microenvironment, and that the elimination of these subclones may result in tumor collapse [83]. 

 

Novel Sequencing Approaches to Overcome Tumor Heterogeneity 

Traditional cancer genome sequencing studies, performed on DNA extracted from the tumor bulk [66, 84], 

provide results of average mutant allele fractions and average allelic copy number, hindering the detection 

of minor subclones, which may potentially be accountable for therapeutic resistance [85, 86]. Since the 

implementation of MPS in single cells [57], an array of methodologies have been developed with the attempt 

to offset the technical difficulties associated with single cell sequencing [87, 88, 89]. 

 

The application of single cell sequencing approaches for the study of breast cancer might represent a way to 

dissect the heterogeneity of this disease. For instance, the study of an ER-positive tumor and a TNBC through 

the integration of single cell whole-genome and exome sequencing with copy number analysis in single nuclei 



showed that aneuploid rearrangements are early events in the life of a tumor, whereas point mutations occur 

gradually contributing to heterogeneity [90]. As another example of the potential of this methodology, a 

highly multiplexed single-nucleus sequencing method was used to study the temporal evolution of CNAs in 

TNBC [21], a tumor with high levels of aneuploidy [91], and identified no intermediate copy number profiles, 

but rather evolution of genomes from diploid to aneuploid, in support of a punctuated copy number 

evolution and clonal stasis model in TNBC [21]. Nonetheless, the clinical relevance of single cell sequencing 

is still unclear, as sequencing data derived from a limited number of single cells per cancer might not provide 

direct information on the remaining tumor cell population [66]. 

 

In the context of spatial heterogeneity, the use of in situ methodologies for assessment of gene CNAs and 

protein expression of genes targeted by genetic hits would allow for detailed topographical genotyping and 

inference of clonal structure. Novel high definition in situ techniques have been introduced, both at the DNA 

and RNA level [92, 93, 94], where genetic aberrations found in the bulk of the tumor or in single cells can be 

traced back to the tumor topology [66]. For instance, specific-to-allele PCR-FISH [75], a novel method based 

on the combination of in situ PCR [95] and FISH, constitutes an appealing integrative approach which can be 

used in formalin-fixed paraffin-embedded samples, allowing for simultaneous detection of point mutations 

and CNAs at the single-cell level. 

 

Generous tissue sampling through the biopsy of multiple tumor sites is another strategy to overcome the 

challenges posed by intra-tumor heterogeneity. In the neoadjuvant setting, multiple biopsies are preferred, 

as they provide more information about the tumor and facilitate treatment planning [96, 97, 98] (Fig. 1c), 

and could resolve discordances between the mutational repertoires of primary tumors and corresponding 

metastatic outgrowths [72, 99]. 

 

Other means to study the mutational landscape of tumors overcoming sampling bias have been developed, 

such as the assessment of circulating tumor cells, circulating cell-free plasma DNA (cfDNA), and circulating 

cell-free cerebrospinal fluid DNA [100], which are indicators of disease burden and may serve as surrogates 

for spatial heterogeneity as well as markers for temporal heterogeneity [66] (Fig. 1c). In a proof-of-principle 

study, temporal heterogeneity of breast tumors was traced assessing specific PIK3CA and TP53 in cfDNA from 

breast cancer patients [101]. This analysis suggested that monitoring of cfDNA is a viable, sensitive, and real-

time surrogate for tumor burden [101]. 

 



Interestingly, ESR1 mutations have been detected in cfDNA of patients with metastatic disease after 

progression on endocrine therapies [102]. Recently, Chandarlapaty et al. [103] conducted the analysis of the 

most prevalent ESR1 mutations in cfDNA of patients with ER-positive metastatic breast cancer treated with 

aromatase inhibitors included in the BOLERO-2 trial, and showed that the presence of either Y537S and 

D538G ESR1 mutations predict shorter survival. 

 

Finally, Garcia-Murillas et al. [104] have monitored cfDNA to estimate the minimal residual disease (MRD) in 

early breast cancer patients following completion of neoadjuvant therapy, and were able to predict 

metastatic relapse on the basis of increases in the mutant allele fractions in plasma, a surrogate of the total 

amount of cell-free tumor DNA within the total amount of cell-free plasma DNA. In fact, this assessment 

provided a shorter median lead time for the detection of metastatic disease of 7.9 (range 0.03–13.6) months, 

compared to the methods currently employed in standard of care. Targeted capture MPS of cfDNA using an 

extended gene panel revealed additional somatic mutations, not detected in the primary tumor but present 

in the metastatic lesions, providing evidence to demonstrate that MPS of cfDNA may provide an accurate 

assessment of the repertoire of somatic genetic alterations found in MRD, and predict the genetic profile of 

the metastatic relapse with more accuracy than through sequencing of the primary tumor [104]. Adjuvant 

therapeutic interventions could be therefore tailored to the genetic events present in the MRD. 

 

Therapeutic Strategies to Overcome Tumor Heterogeneity 

Crosstalk between signaling pathways, as well as their redundancy, limits the success of targeted 

monotherapies [105]. Seminal studies by Goldie and Coldman [106, 107] proposed the use of combinatorial 

anticancer therapies to overcome therapeutic resistance. Nowadays, the limitations of this approach are 

being recognized, as cancer cells are able to circumvent therapeutic efforts by various mechanisms. For 

instance, clonal interference [108], which refers to the coexistence of different mutations as tumor drivers, 

restrains the expansion of different tumor clones, but at the same time increases the number of targets 

needed to be aimed at for successful tumor eradication [32]. 

 

Another feature of tumors that limits treatment success is their plasticity, which allows them to adapt their 

signaling circuitries under therapeutic selective pressure. Duncan et al. [109] assessed changes in the kinome 

in TNBC cells and genetically engineered mice after MEK inhibition and found that this treatment led to ERK 

suppression, followed by c-Myc degradation and subsequent activation of different receptor tyrosine 

kinases. Most importantly, prevention of proteosomal c-Myc degradation inhibited kinome reprogramming. 



These data illustrate how anticancer monotherapy with single kinase inhibitors may be ineffective and 

showed how the analysis of a kinome-resistance signature might be worth exploring as a means to guide 

therapy [109]. 

 

Traditionally, therapeutic efforts focused solely on targeting mutations present in the modal tumor 

population; however, the importance of targeting subclonal mutations is being increasingly recognized. 

Importantly, the cancer subclone that may ultimately become dominant and lethal might be displayed at low 

frequency at the time of diagnosis [79, 80, 81, 82] (Fig. 1b). These data imply that targeting rare subclones is 

of paramount importance for tumor eradication and prevention of metastasis. 

 

Conclusions 

Inter- and intra-tumor heterogeneity poses enormous challenges to both the diagnosis and treatment of this 

disease. Novel technologies, such as single cell sequencing and analysis of ctDNA, and bioinformatics tools 

for the analyses of the sequencing results will undoubtedly provide greater opportunities to dissect the 

evolving genomic landscape of tumors with increasing accuracy. Likewise, an array of therapeutic strategies 

is being implemented to counteract the obstacles raised by tumor heterogeneity. Despite this wealth of 

knowledge, the clinical implications of this phenomenon are only now beginning to be clarified and open 

questions remain on how to overcome the hurdles of breast cancer heterogeneity and the means to take 

advantage of it for therapeutic success. 
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FIGURES 

Fig. 1 

Tumor heterogeneity and methods to tackle it. a Inter-tumor heterogeneity refers to genetic and/or 

phenotypic differences between tumors of distinct individuals. Precision medicine has the potential to 

overcome inter-tumor heterogeneity and improve response to therapy. b Intra-tumor heterogeneity, which 

refers to differences between different areas of the same tumor, or between the primary tumor and 

metastatic focus of the same individual, can be classified as spatial and temporal. Therapeutic intervention 

based on the genomic analysis of a sample representative of the modal population can lead to clonal 

selection and to changes in the clonal composition of tumors. c Clinical assessment of intra-tumor 

heterogeneity. A single biopsy might not detect the subclonal population that may lead to metastatic disease, 

whereas strategies such as multiregional biopsies or cell-free DNA analysis might be able to detect clonal and 

subclonal populations and allow successful combinatorial therapeutic intervention. Furthermore, 

assessment of cell-free DNA has the potential for detection of subclinical recurrence 

 

 


