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MICROLOCAL ANALYSIS OF QUASIANALYTIC
GELFAND-SHILOV TYPE ULTRADISTRIBUTIONS

MARCO CAPPIELLO AND RENÉ SCHULZ

Abstract. We introduce a global wave front set suitable for the
analysis of tempered ultradistributions of quasianalytic Gelfand-
Shilov type. We study the transformation properties of the wave
front set and use them to give microlocal existence results for pull-
backs and products. We further study quasianalytic microlocality
for classes of localization and ultradifferential operators, and prove
microellipticity for differential operators with polynomial coeffi-
cients.

0. Introduction

In this paper, we establish a global wave front set suitable for the
analysis of tempered ultradistributions of Gelfand-Shilov type. The
problem of finding such a wave front set has a longstanding history,
since several of the methods used to generalize the classical Hörman-
der wave front set fail in the quasi-analytic setting. In the following,
we present a brief overview of the problem.
Starting from [19], the analysis of singularities of Schwartz distribu-
tions has been based on the study of their wave front set which has
been applied successfully to the analysis of propagation of singularities
in the theory of partial differential equations. We recall that a distribu-
tion u ∈ D′(Rd) is said to be microlocal at a point (x0, ξ0) ∈ Rd×(Rd\0)

if there exists a cut-off function φ supported around x0 such that φ̂u is
rapidly decaying in a conic neighborhood of ξ0. The wave front set is
then defined as the set of points (x, ξ) ∈ Rd × (Rd \ 0) where u is not
microlocal. This notion has been soon extended to the analysis of other
types of singularities such as analytic singularities, see e.g. [19, 34], or
local Gevrey s-singularities, cf. [31] and the references therein. For
s > 1 these spaces provide a natural scale of spaces between the real
analytic and smooth functions. For s < 1, however, the local versions
of these spaces are problematic to define due to the lack of compactly
supported functions therein. One is thus led to consider also global
phenomena. The Gelfand-Shilov spaces Sθ, defined in [15] combining
Gevrey smoothness with analytic decay, are then the natural functional
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2 M. CAPPIELLO AND R. SCHULZ

setting, being the counterpart to the Schwartz space S of rapidly de-
caying functions in the smooth setting.

Many authors started to study global singularities of tempered dis-
tributions in S ′(Rd) and introduced several different notions of wave
front sets providing information not only on the local regularity of the
distributions but also on their behavior at infinity. Among them we
recall the scattering wave front set WFsc, see [24], also known as S-
wave front set WFS , see [12, 13], and the quadratic scattering wave
front set WFqsc, see [39], which appear as the natural tools to study
the propagation of singularities on manifolds with conical ends. Also
the analytic counterpart of these wave front sets has been defined in
[29, 30].

Another notion of global wave front set for tempered distributions
has been introduced in [20]. In this context a distribution u ∈ S ′(Rd)
is microlocal at a point (x0, ξ0) ∈ T ∗(Rd) \ {(0, 0)} if there exists a
Shubin type symbol a(x, ξ) such that aw(x,D)u ∈ S(Rd) and a is non-
characteristic at (x0, ξ0), (cf. also [32] for a different characterization of
this set in terms of the Gabor transform). More recently, an equivalent
notion of wave front set, called homogeneous wave front set, has been
defined in [26] in the language of semi-classical analysis. The equiv-
alence between the two wave front sets has been indeed proved only
very recently in [33]. The homogeneous wave front set, as well as its
Gevrey and analytic versions, see [22, 23, 25], has been mainly applied
to study the microlocal smoothing effect for Schrödinger equations.

As previously mentionend, in this paper we are interested in the case
of tempered ultradistributions of Gelfand-Shilov type. For θ > 1, the
microlocal analysis in these spaces is straight-forward to generalize.
A notion of scattering wave front set has been introduced in [3] by a
translation of the approach used in [13]. Similarly, the extensions of
the homogeneous wave front set in [22, 23, 25], encoding Gevrey and
analytic singularities of tempered distributions, can be easily extended
to the elements of the dual space of Sθ(Rd), θ ≥ 1.

For θ < 1, the scattering wave front set cannot be so easily converted,
as the space Sθ(Rd) lacks compactly supported functions. A first ap-
proach to microlocal analysis in these spaces would be to approximate
cut-off functions as done in the local theory in [19]. However, this
method is technically very involved and yields several different notions
for the case θ < 1, see [28].
In [20] Hörmander proposed a different approach based on the so-called
Fourier-Bros-Iagolnitzer (FBI) transform (also known as Bargmann
transform) but he restricted his analysis to the limit case θ = 1/2.
On the other hand, recently the spaces Sθ(Rd) and their duals, have
been widely considered in the literature for 1/2 ≤ θ < 1, both in the
theory of partial differential equations [1, 2, 20] and in time-frequency
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analysis [10, 17, 35, 36, 37, 38]. In the latter sources, the compatibility
of these spaces with the Bargmann transform has been observed.

For these reasons we consider it promising to state a rigorous mi-
crolocal analysis for quasianalytic tempered ultradistributions. As a
further novelty, due to the relation between the FBI transform and the
short time Fourier transform, we are able to study the properties of
our wave front sets under the action of localization operators. This is
an entirely new feature for this wave front set, as previously microlo-
cal properties of localization operators were only known through their
connection to Weyl pseudodifferential operators.
Our wave front set is modelled similarly to the homogeneous wave
front set in [22, 23, 25, 26], in particular it is defined as a conic set in
R2d \ {(0, 0)}. Here we focus mainly on the general properties of this
wave front set and postpone to a future paper the possible applications
to partial differential equations.

The paper is organized as follows. In Section 1 we recall the def-
inition and some basic facts on the Gelfand-Shilov spaces and their
duals and we prove some mapping properties of the FBI transform on
these spaces. In Section 2 we define the global wave front set for tem-
pered ultradistributions and illustrate its behavior under linear sym-
plectic transformations and standard operations such as pullbacks, ten-
sor products, products and convolution. In Section 3 we study the mi-
crolocality properties of the wave front set with respect to localization
operators and to differential and ultradifferential operators. Finally we
prove a microellipticity result for differential operators with polyno-
mial coefficients in analogy with what has been done in [20] in the case
θ = 1/2.

1. Preliminaries

In the sequel we will use the notation A(x) . B(x) if two maps A
and B from some set X to [0,+∞) fulfill A(x) ≤ CB(x) ∀x ∈ X for
some positive constant C independent of all possible indices involved.

1.1. Gelfand-Shilov functions and ultradistributions. In the fol-
lowing let µ, ν > 0 with µ+ ν ≥ 1.

Definition 1.1. Let C > 0. We denote by Sµν,C(Rd) the Banach space
of all C∞-functions satisfying

(1.1) sup
α,β∈Nd

sup
x∈Rd

C−|α|−|β|(α!)−ν(β!)−µ|xα∂βf(x)| <∞,

equipped with the norm given by the lefthand side.
The space of all Gelfand-Shilov functions of indices µ, ν on Rd is then
defined as

Sµν (Rd) :=
⋃
C>0

Sµν,C(Rd)

equipped with the inductive limit topology.
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There are other equivalent ways of defining the space Sµν (Rd), cf.
[6, 15]. We list some of them in the following lemma.

Lemma 1.2. Let µ > 0, ν > 0, µ+ ν ≥ 1. For f ∈ S(Rd) the following
conditions are equivalent:
i) f ∈ Sµν (Rd).
ii) There exist positive constants C, c such that

|∂αf(x)| . C |α|(α!)µe−c|x|
1/ν

, x ∈ Rd.

iii) There exists ε > 0 such that

|f(x)| . e−ε|x|
1/ν

, x ∈ Rd, and |f̂(ξ)| . e−ε|ξ|
1/µ

, ξ ∈ Rd.

In this paper, we are concerned with the quasianalytic case, i.e.
µ < 1. In these spaces, we have additional properties concerning holo-
morphic extensions:

Proposition 1.3. If f ∈ Sµν (Rd), 0 < µ < 1, ν > 0, then f extends to
an entire analytic function f(x+iy) in Cd, which satisfies the following
estimate:

|f(x+ iy)| . e−ε|x|
1
ν +δ|y|

1
1−µ

, x ∈ Rd, y ∈ Rd,

for some δ, ε > 0.

Definition 1.4. We denote by (Sµν )′(Rd) the topological dual of Sµν (Rd)
(endowed with the weak topology).
More precisely: a linear form u : Sµν (Rd) → C is in (Sµν )′(Rd) if for
every ε > 0 there exists a positive constant Cε such that

(1.2) |u(f)| . Cε sup
α,β∈Nd

ε−|α|−|β|(α!)−ν(β!)−µ sup
x∈Rd
|xα∂βf(x)|

for every f ∈ Sµν (Rd).

1.2. Integral transforms on Gelfand-Shilov spaces.

1.2.1. Fourier transform. Already in [15] it was shown that the Gelfand
-Shilov spaces are invariant under translations and dilations and that
they have the following behaviour under Fourier transforms:

Lemma 1.5. The Fourier transformation maps continuously Sµν (Rd)
into Sνµ(Rd) and (Sµν )′(Rd) into (Sνµ)′(Rd).

To have full metaplectic invariance, in the sequel we shall restrict
ourselves to the case of µ = ν =: θ with 1

2
≤ θ < 1 and we shall write

Sθ(Rd),S ′θ(Rd) to denote the space Sθθ (Rd) and its dual.

There are several other transforms that have good properties with re-
spect to Gelfand-Shilov spaces. One of them is the following Bargmann-
or FBI-transform, stemming from [20]:
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1.2.2. FBI-transform with general phases.

Definition 1.6. Let ϕ be a quadratic form in Cd × Rd, i.e. ϕ(z, y) =
1
2
〈Az, z〉+ 〈Bz, y〉+ 1

2
〈Cy, y〉 with A, B and C complex d× d-matrices

such that A and C are symmetric. Assume further non-degeneracy
conditions, i.e. detB = detϕ′′zy 6= 0, and =C = =ϕ′′yy > 0.

For u ∈ S ′θ(Rd) we denote by

(1.3) Tϕ(u)(z) = cϕ〈uy, eiϕ(z,y)〉,
the FBI transform with phase ϕ of u. Herein,

cϕ := 2−
d
2π−

3d
4 (det=C)−

1
4 | detB|

and the pairing is with respect to the y-variable.

In the sequel we shall denote Φ(z) = max(−=ϕ(z, y)) and by y(z)
the point where such a maximum is attained. We then observe that
y(z) is a linear function of z and that

−=ϕ(z, y)− Φ(z) = −1

2
〈(=C)(y − y(z)), y − y(z)〉.

Remark 1.7. The most interesting case is that of the phase

φ(z, y) := 〈z, y〉+
i

2
|y|2,

for which we have cφ := 2−
d
2π−

3d
4 . In this case, Tφ turns out to coin-

cide with the inverse Fourier-Laplace transform of v(y) = e−
1
2
|y|2u(y).

Moreover, in this case we have Φ(z) = 1
2
|=(z)|2.

We now study the properties of the Bargmann transform of tempered
ultradistributions. Let us first recall a classic result, which will be
useful in the sequel: The Bargmann transform takes L2-functions to
entire functions that are L2 with respect to a Gaussian measure, the
so-called Bargmann-Fock space. A proof in our context can be found
in [20].

Lemma 1.8. Let ϕ be as in Definition 1.6. Then

(1.4)

∫
|Tϕu(z)|2e−2Φ(z)dλ(z) = ‖u‖L2(Rd).

where dλ(z) denotes the Lebesgue measure on Cd. In other words, the
map u → Tϕu is an isometry from L2(Rd) into L2(Cd, dλ(z)e−2Φ(z)) ∩
H(Cd), where H(Cd) denotes the space of entire functions on Cd.

The following statement is an analogous version with respect to
Gelfand-Shilov functions and tempered ultradistributions. Similar state-
ments have been proved in [4, 17, 35, 36] for particular phase functions
ϕ. Here for our purposes we need to consider the general case. In order
to go immediately to the core of the paper, we address the reader to
the Appendix at the end of the paper for the proof.
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Theorem 1.9. Let u ∈ S ′θ(Rd) and let ϕ be a FBI-phase. Then Tϕu is
an entire analytic function which satisfies for any α ∈ Nd the following
condition:

(1.5) ∀ε > 0 ∃Cε > 0 s.t.|∂αz Tϕu(z)| ≤ C |α|+1
ε α!θ eε|z|

1/θ+Φ(z).

Moreover, if u ∈ Sθ(Rd), then

(1.6) ∃ε > 0, C > 0 s.t.|∂αz Tϕu(z)| ≤ C |α|+1α!θ e−ε|z|
1/θ+Φ(z).

Conversely, if there is an analytic function U satisfying the estimate
in (1.5) (respectively (1.6)), then there exists a unique u ∈ S ′θ(Rd) (re-
spectively u ∈ Sθ(Rd)) s.t. U = Tϕu.

Remark 1.10. In the case φ(z, y) = 〈z, y〉+ i
2
|y|2, when u ∈ Sθ(Rd), the

estimate (1.6) takes the form

|Tφu(z)| ≤ Ce−ε|z|
1/θ+ 1

2
|=z|2 , z ∈ Cd,

for some positive constants C, ε, cf. also [4, Proposition 2.5].

We note that in the proof of Theorem 1.9 we use the following iden-
tity, which can be seen as an inversion formula:

Lemma 1.11. Let u ∈ S ′θ(Rd), f ∈ Sθ(Rd). Then

(1.7) 〈u, f〉 = 〈Tϕu, e−2Φ(·)T−ϕf〉 =

∫
Cd
Tϕu(z)T−ϕf(z)e−2Φ(z)dλ(z).

1.3. Short-time Fourier transform. The Bargmann or FBI trans-
form is deeply connected to another transform, the short time Fourier
transform (short: STFT ). For a broad analysis of this connection, we
refer to [16, 35, 36] in the setting of Gelfand-Shilov and modulation
spaces. In the STFT, we allow more general window functions than
Gaussians. Therefore the holomorphicity properties of the transform
are less prominent.

Definition 1.12. Let g ∈ Sθ(Rd) \ {0}, the so-called window function.
Then for u ∈ S ′θ(Rd) the short time Fourier transform Vg(u), is defined
as

Vg(u)(z) =
1

(2π)d/2‖g‖2︸ ︷︷ ︸
=:kg

〈u, g(· − x)e−i〈ξ,·〉〉 with z = (x, ξ).

In particular, Vψ(u) denotes the transform with the standard Gaussian

window ψ(y) := π−d/4e−
y2

2 .

Lemma 1.13 (Properties of the STFT). Let h ∈ Sθ(Rd). Then (see
[35]) Vh is a continuous mapping from Sθ(Rd) to Sθ(R2d) and S ′θ(Rd)
to S ′θ(R2d) satisfying Vh(u) ∈ Sθ(R2d)⇒ u ∈ Sθ(Rd).
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For the standard Gaussian window ψ and the standard phase φ we have
the following identity:
(1.8)

e−Φ(χbφ(x+iξ))Tφ(u)(χbφ(x+ iξ)) = e−
|x|2

2 Tφ(u)(−ξ − ix) = Vψ(u)(x, ξ).

Furthermore we have the following estimate for changing to another
window g ∈ Sθ(Rd) (see [16, Lemma 11.3.3]):

(1.9) |Vgu| . ‖h‖−1
2 (|Vhg| ∗ |Vhu|) .

2. The global wave front set on Gelfand-Shilov spaces

In this section we define the global wave front set for tempered ul-
tradistributions from S ′θ(Rd). We shall define it, for clearness sake, first
with respect to a general FBI phase. First of all let us consider the
linear canonical transformation associated to a phase function ϕ and
defined as follows:

χϕ : (y,−ϕ′y(y, z))→ (z, ϕ′z(y, z)),

and let χbϕ = χϕ ◦π1, where π1 : T ∗Cd → Cd is the standard projection.

It is known from [34] that χbϕ is a bijection of T ∗Rd on Cd.

Definition 2.1. Let (x0, ξ0) ∈ R2d \ {0} = T ∗Rd \ {0} and u ∈ S ′θ(Rd).
We say that (x0, ξ0) /∈WFθgl(u) if there exists an open conic neighbour-

hood Γ of χbϕ(x0, ξ0) and ε > 0 such that

(2.1) |Tϕu(z)| . e−ε|z|
1/θ+Φ(z)

holds for every z ∈ Γ.

As a consequence of Theorem 1.9 we get the following result.

Corollary 2.2. Let u ∈ S ′θ(Rd). Then WFθgl(u) = ∅ iff u ∈ Sθ(Rd).

Proof. If u ∈ Sθ(Rd), then WFθgl(u) = ∅ since (2.1) holds on all Cd.

Viceversa, if WFθgl(u) = ∅, by the invertibility of χbϕ, we have that for

every z ∈ Cd with |z| = 1 there exists a conic neighbourhood of z
where the estimate in (1.6) holds. Since the set {z ∈ Cd : |z| = 1} is
compact, then we can find ε > 0, C > 0 such that

(2.2) |Tϕu(z)| ≤ Ce−ε|z|
1/θ+Φ(z)

for every z ∈ Cd with |z| ≥ 1. For |z| < 1 the estimate is obviously
satisfied. Then (2.2) holds on Cd and this yields u ∈ Sθ(Rd) by Theo-
rem 1.9. �

Arguing as in [20] it is easy to verify that the set WFθgl(u) is inde-

pendent of the choice of ϕ. In particular for φ(y, z) = 〈z, y〉+ i
2
|y|2 we

have χbφ(x, ξ) = −ξ − ix, which gives that a point (x0, ξ0) /∈WFθgl(u) if
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and only if there exist a conic neighbourhood Γ′ of (x0, ξ0) and ε > 0
such that

(2.3)
∣∣∣〈uy, e−i〈y,ξ〉− 1

2
|y−x|2〉

∣∣∣ ≤ Ce−ε(|x|
1/θ+|ξ|1/θ) (x, ξ) ∈ Γ′.

Equivalently, using (1.8), this can be written in terms of the STFT:

(2.4) |Vψ(u)(x, ξ)| ≤ Ce−ε(|x|
1/θ+|ξ|1/θ) (x, ξ) ∈ Γ′.

Lemma 2.3. Let z0 ∈ R2d \ {0}, Γ be an open conic neighbourhood of
z0. Let U ∈ C∞(R2d) satisfy the following conditions

∃ε, C > 0 s.t. |U(x, ξ)| ≤ Ce−ε(|x|
1/θ+|ξ|1/θ) (x, ξ) ∈ Γ,

∀ε,∃Cε > 0 s.t. |U(x, ξ)| ≤ Cεe
ε(|x|1/θ+|ξ|1/θ) (x, ξ) ∈ Γc,

Let G ∈ Sθ(R2d). Then for every open conic neighbourhood Γ′ of z0

such that Γ′ ⊂ Γ we have
(2.5)

∃ε, C > 0 s.t. |(G ∗ U)(x, ξ)| ≤ Ce−ε(|x|
1/θ+|ξ|1/θ) (x, ξ) ∈ Γ′.

Proof. The proof is done by careful splitting of the convolution integral
with respect to Γ. As we already carry out a similar argument in detail
in the later proof of Proposition 2.10, we omit it here. �

The following Lemma states what happens if the Gaussian window
function used in the transform is replaced by another general element
in S1/2(Rd).

Lemma 2.4. Let u ∈ S ′θ(Rd) and let Γ be a closed cone in T ∗Rd such
that Γ ∩WFθgl(u) = ∅. Then for every g ∈ S1/2(Rd) there exist positive
constants M,m such that

|Vg(u)(x, ξ)| ≤Me−m(|x|
1
θ +|ξ|

1
θ ), (x, ξ) ∈ Γ.

Conversely, in the previous characterization (2.4) of the wave front set
we can replace ψ by any non-zero window function g ∈ S1/2(Rd) \ {0}.

Proof. By (1.9) we write

|Vgu| . |Vψg| ∗ |Vψu|.
Applying Lemma 2.3 yields the assertion. �

The following Proposition asserts that for each possible global wave
front set, there exists a distribution with such singularities. The con-
struction used is similar to the original one for the classical wave front
set in [19] and has first been used in a similar statement for the corner
component of the S-wave front set in [14]. For the Gabor wave front
set, i.e. in the tempered setting, it has been carried out in [33]. Here
we adapt it to the Gelfand-Shilov context.

Proposition 2.5. Let Γ ⊂ R2d \ {0} closed, conic. Then there exists
u ∈ S ′θ(Rd) such that WFθgl(u) = Γ.
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Proof. Let (y, η) ∈ R2d \ {0} and k ∈ N be fixed. We define for x ∈ Rd

(2.6) fk(x; y, η) := exp

(
−1

2
|x+ k2y|2 + ik2〈x, η〉

)
∈ S1/2(Rd).

We may calculate the modulus of its transform:

(2.7) |Tφ (fk(·; y, η)) (x+ iξ)| = cφ
πd/2

e−
1
4
|ξ+k2y|2− 1

4
|x+k2η|2+

|ξ|2
2

As the Tφ (fk(·; y, η)) are analytic functions, we can thus conclude that

U(x+ iξ; y, η) :=
∞∑
k=1

Tφ (fk(·; y, η))

is an analytic function satisfying (1.5) everywhere, as the sum is boun-
ded on each compactum.
Now take a sequence (yj, ηj), dense in Γ∩Sd−1 and without repetitions1

and define

U(x+ iξ) :=
∞∑
j=1

2−jU(x+ iξ; yj, ηj),

which again is an analytic function satisfying the estimate in (1.5).
We thus define u as the unique ultradistribution in S ′θ(Rd) such that
Tφu ≡ U .
If z0 /∈ Γ, we have by a standard scaling inequality for disjoint cones in
an open conic neighbourhood L of χbφ(z0):

∀ z ∈ L, w ∈ Γ : |χbφ(z)− w| & |χbφ(z)|+ |w|
Recall that for the standard phase we have χbφ(x+ iξ) = −ξ − ix. We
may thus conclude by (2.7) that on L we have

|U(z)| .
∞∑
j=1

∞∑
k=1

2−j exp

(
−1

4
|χbφ(z)− k2(y, η)|2 + Φ(z)

)

.
∞∑
k=1

exp
(
−c(k4 + |z|2) + Φ(z)

)
,

which proves z0 /∈WFgl(u) and thus WFgl(u) ⊂ Γ.
To prove the opposite inclusion, Γ ⊂WFgl(u), consider a fixed (yj, ηj).
For that we note that for m 6= j∣∣(e−ΦU

)
(k2χbφ(yj, ηj); yj, ηj)

∣∣ k→∞→ cφ
πd/2

,(2.8) ∣∣(e−ΦU
)

(k2χbφ(yj, ηj); ym, ηm)
∣∣ k→∞→ 0.(2.9)

With these identities it is easy to prove that for suitably large k we
have |U(k2χbφ(yj, ηj))| > 1/2, cf. [33], meaning (yj, ηj) ∈ WFθgl(u). As

the (yj, ηj) are dense in Γ, and WFθgl(u) is a closed set, this concludes
the proof. �

1In case of a finite Γ take the finite set of points {(yj , ηj)} = Γ ∩ Sd−1.
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2.1. Transformation properties. In this section we list the behavior
of WFθgl under unitary transformations associated with linear symplec-

tomorphisms of T ∗Rd, cf. [20, Proposition 6.7].

Proposition 2.6. Let u ∈ S ′θ(Rd) and let (x0, ξ0) ∈ R2d \ {0}. Then
the following properties hold:
i) Let Rd = Rdv+dw ,

(v0, w0, ζ0, η0) ∈WFθgl(u)⇔ (ζ0, w0,−v0, η0) ∈WFθgl(Fv→ζu).

ii) Let A be a real, symmetric d× d-matrix. Then

(x0, ξ0) ∈WFθgl(u)⇔ (x0, ξ0 + Ax0) ∈WFθgl

(
eix

tAxu
)
.

iii) Given a linear invertible map A on Rd and denoted by tA its trans-
pose, we have

(x0, ξ0) ∈WFθgl(u)⇔ (A−1x0,
tAξ0) ∈WFθgl(A

∗u),

where A∗u(y) =
√
|detA|u(Ay).

iv) (x0, ξ0) ∈WFθgl(u)⇔ (x0,−ξ0) ∈WFθgl(ū).

To each linear symplectomorphism χ : T ∗Rd → T ∗Rd there exists
an associated unitary transform U : L2(R2d) → L2(R2d), see [20]. As
i) − iii) yield the generators of the symplectic group, we get from
Proposition 2.6 the following Corollary:

Corollary 2.7. Let χ : T ∗Rd → T ∗Rd linear, symplectic, then

(x0, ξ0) ∈WFθgl(u)⇔ χ(x0, ξ0) ∈WFθgl (Uu) ,

where U is the unitary transform associated to χ.

Remark 2.8. The preceding corollary underlines the usefulness of the
notion of WFθgl(u) to describe global propagation of singularities under
Schrödinger equations.

For ultradistributions of the form u(t, ·) = F−1
(
eiξ

2tF(u0)
)
∈ S ′θ(Rd),

u0 ∈ S ′θ(Rd), we have

(x, ξ) ∈WFθgl(u0)⇔ (x+ tξ, ξ) ∈WFθgl(u(t, ·)).
These distributions solve the homogeneous initial value problem for the
Schrödinger equation{

−i∂tu(t, ·) + ∆u(t, ·) = 0

u|t=0 = u0.

The metaplectic invariance of the (Gabor) wave front set was used in
[8] to study more general Schrödinger operators. We note however that
the counter-example of [9, Proposition 4.1] limits the class of interesting
operators in the super-exponential setting. For more on propagation



11

of these singularities under Schrödinger operators in various functional
settings consider [22, 23, 25, 26].

2.2. Behaviour under operations. In the following we will study
the behaviour of WFθgl(u) under operations such as pull-backs, tensor
products, etc. For that, we first introduce a notion of continuity on the
space of distributions with wave front set in a given cone. When speak-
ing about continuity in the sequel, we will mean sequential continuity
with respect to the following notion of convergence.

Definition 2.9. Let Γ be a closed sub-cone of T ∗(Rd) \ 0. We denote
by S ′θ,Γ(Rd) the space

S ′θ,Γ(Rd) := {u ∈ S ′θ(Rd)|WFθgl(u) ⊂ Γ}
endowed with the following notion of convergence:

We say that un
S′θ,Γ→ 0 if

(1) un
S′θ→ 0,

(2) For all z ∈ Γc there exists a conic neighbourhood L of χbϕ(z),
C > 0 and ε > 0 such that for all n ∈ N, z′ ∈ L we have
|Tϕ(un)(z′)| ≤ Cεe

−ε|z′|1/θ+Φ(z′).

Proposition 2.10. Sθ(Rd) is dense in S ′θ,Γ(Rd).

First let us note that an ultradistribution in S ′θ(Rd) satisfies the
estimate in (1.6) for the standard phase φ in a cone Γ 3 χbφ(z), if and
only if the following short time Fourier transform of u, which differs
from the standard one by only a phase,

V u(x, ξ) = 2−
d
2π−

3d
4︸ ︷︷ ︸

=:c

〈u, ei(x−y)·ξ− 1
2
|x−y|2 〉(2.10)

satisfies on Γ

(2.11) |V u(x, ξ)| ≤ Ce−ε(|x|
1/θ+|ξ|1/θ)

For the proof of Proposition 2.10 we need to understand the transform
of a regularizing pseudodifferential operator acting on a distribution u
via the action of another pseudodifferential operator on V u. The above
transform enjoys the following identity:

Lemma 2.11. Let a ∈ Sθ(R2d), u ∈ S ′θ(Rd). Then we have the follow-
ing identity

V (a(y,Dy)u) = ã(x, ξ,Dx, Dξ)V (u) ,

where ã(x, ξ, x∗, ξ∗) = a(x − ξ∗, x∗) and (x∗, ξ∗) denotes the covariable
to (x, ξ).

Proof. The statement can be verified for u ∈ Sθ(Rd) by repeating the
computation in [21, Proposition 3.3.1]. The assertion for general u ∈
S ′θ(Rd) then follows by a density argument. �
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Proof of Proposition 2.10. Let u ∈ S ′θ,Γ(Rd), i.e. WFθgl(u) ⊂ Γ and

choose aε(x, ξ) = e−
ε
2
|x|2e−

ε
2
|ξ|2 . Then a(x, ξ, ε) ∈ Sθ(R2d) for every

ε > 0 and thus also uε := aε(x,Dx)u ∈ Sθ(Rd).

It is easy to verify that aε(x,Dx)u
S′θ−→ u as ε→ 0.

It remains to show, that for all (x0, ξ0) ∈ Γc we can find a δ, Cδ such
that in a conic neighbourhood Γ0 of (x0, ξ0) we have for every ε > 0

(2.12) V uε(x, ξ) ≤ Cδe
−δ(|x|1/θ+|ξ|1/θ).

To do that, we use

|V uε(x, ξ)| = |V (aε(y,Dy)u) (x, ξ)|
= |(ãε(x, ξ,Dx, Dξ)V u)(x, ξ)|

.

∣∣∣∣∫ aε(x− ξ∗, x∗)ei(x−x
′)x∗+i(ξ−ξ′)ξ∗V u(x′, ξ′) dx′dx∗dξ′dξ∗

∣∣∣∣
. ε−d/2

∫
aε−1(x− x′, ξ − ξ′) |V u(x′, ξ′)| dx′dξ′

= ε−d/2 (aε−1 ∗ |V u|)

In order to estimate the convolution, we split the integral in two parts:
As WFθgl(u) ⊂ Γ, we pick an open cone Γ1 3 (x0, ξ0), such that Γ1∩Γ =
∅. We can then pick an intermediate closed cone Γ2 such that Γ1 ⊂ Γ2

and Γ2 ∩ Γ = ∅. We then write, with z = (x, ξ):

Cε−d/2 (aε−1 ∗ |V u|) (z) = Cε−d/2
∫

Γ2

e
−1
2ε
|z−w|2|V u(w)| dw

+ Cε−d/2
∫

Γc2

e
−1
2ε
|z−w|2|V u(w)| dw

= IΓ2(z) + IΓc2
(z).

Let us first study IΓc2
. There we have, for z ∈ Γ1, due to a standard

scaling estimate for disjoint cones |z −w| & |z|+ |w| and therefore for
some constants δi > 0

e
−1
2ε
|z−w|2 ≤ e

−δ1
2ε
|z|2e

−δ1
2ε
|w|2 ,

and consequently

|IΓc2
(z)| . e−δ2|z|

2

.

On Γ2 we can assume, due to compactness of Γ2∩Sd−1, that there exist
a single constant δ3 > 0 such that

V u(w) ≤ e−δ3|w|
1/θ

.

Using this, we conclude that

|IΓ2(z)| . e−δ4|z|
1/θ
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and thus

|V uε(x, ξ)| . ε−d/2 (aε−1 ∗ |V u|) (z) . e−δ2|z|
2

+ e−δ4|z|
1/θ

. e−δ|z|
1/θ

,

which proves the assertion. �

We now study tensor products and pullbacks of ultradistributions
and their resulting wave front set, following [20].

Proposition 2.12 (Behaviour under tensor products). Given u ∈
S ′θ,Γ1

(Rd1), v ∈ S ′θ,Γ2
(Rd2) and let

Γ = ((Γ1 ∪ {0})× (Γ2 ∪ {0})) \ {(0, 0)} ⊂ Rd1+d2 .

Then u⊗ v ∈ S ′θ,Γ(Rd1+d2).

Proof. This is a consequence of Tφ(u⊗ v) = Tφ(u)⊗ Tφ(v). �

Theorem 2.13 (Behaviour under the pullback by a linear map). Let
A be a linear map Rm → Rd. Let Γ be a closed cone such that

(2.13) Γ ∩ {(0, ξ)|tAξ = 0} = ∅.
Then the pull-back A∗ : Sθ(Rd)→ Sθ(Rm) can be uniquely extended to
a continuous map S ′θ,Γ(Rd)→ S ′θ,A∗Γ(Rm), where

A∗Γ = {(x,tAξ)|(Ax, ξ) ∈ Γ}.

Proof. For the purpose of self-containedness, we give a shortened proof
with respect to [20, Proposition 6.15].
Due to Proposition 2.6 it suffices to show this for the maps ι : Rd−1 →
Rd y 7→ (y, 0) and π : Rd+1 → Rd (x, x′) 7→ x. For the second case, we
can define π∗u = u⊗ 1.
We are therefore reduced to the case of ι. Formally, we want to de-
fine 〈u, f ⊗ δ(xd)〉. In view of Lemma 1.11, we therefore make the
following formal calculation, with the notation φ = φd = φd−1 +φ1 and
(z1, . . . , zd−1, zd) = (z′, zd),

(2.14) 〈π∗u, f〉 =

∫
Cd
Tφdu(z)T−φ̄d(f ⊗ δ(xd))(z)e−2Φ(z)dλ(z)

=

∫
Cd
Tφdu(z)T−φ̄d−1

f(z′)T−φ̄1
(δ(xd))(zd)e

−2Φd−1(z′)−2Φ1(zd)dλ(z)

= cφ1

∫
Cd−1×C1

Tφdu(z′, zd)T−φ̄d−1
f(z′)e−2Φd−1(z′)−2Φ1(zd)dλ(z′)dλ(zd).

Again in light of Lemma 1.11 we consider the expression

(2.15) U(z′) = cφ1

∫
C
Tφdu(z′, zd)e

−2Φ1(zd)dλ(zd).

In the situation A = ι the condition (2.13) takes the form

WFθgl(u)∩{(0, ξ)|ξ1 = · · · = ξd−1 = 0} = ∅ ⇒ (0, . . . , 0,±1) /∈WFθgl(u).
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We calculate χbφ(0 + i(0, . . . , 0,±1)) = (0, . . . , 0,∓1) and conclude that
there exist open cones Γ± 3 (0, . . . , 0,±1) such that Tφdu satisfies the
estimate in (1.6) on Γ+ ∪ Γ−. Using (1.5) and Φ1(zd) = 1

2
|=(zd)|2 we

conclude that the integrand of (2.15) is bounded by

e−ε|<(zd)|1/θ− 1
2
|=(zd)|2eδ|z

′|1/θ+Φd−1(z′)

for some ε > 0 and any δ > 0. Therefore the integral (2.15) converges
for any z′, and yields an entire function satisfying

∀ε > 0 ∃Cε > 0 s.t. |U(z′)| ≤ Cεe
ε|z′|1/θ+Φ(z′).

We can therefore define A∗u as the ultradistribution v ∈ S ′θ(Rd−1),
granted by Theorem 1.9, such that Tφd−1

v = U.
The estimate for the resulting wave front set follows by careful splitting
of the integral into regions where the integrand satisfies the stronger
estimates (1.6). The continuity is immediate from dominated conver-
gence of the integrals. �

With this notion of pullback and the tensor product it is now pos-
sible to introduce products, convolutions, restrictions and pairings of
tempered ultradistributions.

Corollary 2.14 (Products and convolutions). Let Γ1, Γ2 ⊂ T ∗Rd\{0},
Γ3 = {(x, ξ + η)|(x, ξ) ∈ Γ1 and (x, η) ∈ Γ2} ∪ Γ1 ∪ Γ2.

Then the product of two ultradistributions u ∈ S ′θ,Γ1

(
Rd
)
, v ∈ S ′θ,Γ2

(
Rd
)

is well-defined under the assumption that 0 /∈ Γ3, i.e.

(0, ξ) ∈ Γ1 ⇒ (0,−ξ) /∈ Γ2.

Under these assumptions, we have the inclusion WFθgl(u · v) ⊂ Γ3

and the product is a continuous mapping S ′θ,Γ1
(Rd) × S ′θ,Γ2

(Rd) →
S ′θ,A∗Γ(Rd),

Similarly, the convolution of two ultradistributions u, v ∈ S ′θ
(
Rd
)

is
well-defined under the assumption that

(ξ, 0) ∈WFθgl(u)⇒ (−ξ, 0) /∈WFθgl(v).

We then have the inclusion

WFθgl(u∗v) ⊂ {(x+y, ξ)|(x, ξ) ∈WFθgl(u)∩{0} : (y, ξ) ∈WFθgl(u)∩{0}}.
Proof. Use Theorem 2.13 and Proposition 2.12 to define the product
of two distributions u and v by (u · v)(x) = δ∗

(
u(x)⊗ v(y)

)
where δ is

the diagonal map x 7→ (x, x).
The statement about convolution follows directly by Fourier transfor-
mation and i) of Proposition 2.6. �

Corollary 2.15 (Pairings of ultradistributions). Under the assumption
that (x, ξ) ∈ WFθgl(u) ⇒ (x,−ξ) /∈ WFgl(v) we can define the pairing
of u and v as the unique continuous extension of the pairing of two test
functions.
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Proof. We define the pairing as the image of F(u·v) under the pull-back
via 0 ↪→ Rd. �

3. Microlocality and microellipticity properties

In this section we prove microlocality and microellipticity properties
for some classes of operators with respect to WFθgl(u).

3.1. Localization operators. Localization operators, or Anti-Wick
quantized operators, have appeared in many contexts, ranging from
Quantum field theory to signal analysis. Quite recently, localization
operators in the setting of various function spaces have been an active
field of research. For a history and survey on the subject, consider
[7] and the references therein. The function spaces considered include
Bargmann-Fock spaces, modulation spaces with exponential weights
[11, 37] and Gelfand-Shilov spaces [36], in particular quasi-analytic ones
[10], using in particular the good transformation behaviour of these
spaces with respect to the short time Fourier transform. It is therefore
only natural to consider their microlocal properties with respect to
our global wave front set. We will do so in this section, proving a
microlocality result.

Definition 3.1. Let a ∈ S ′θ(R2d). The localization operator Aψa with
respect to the standard window ψ with symbol a is weakly defined by
(for u, v ∈ Sθ(Rd)):

〈Aψau, v〉 = 〈a, Vψu · Vψv〉.

We have already noted that (x0, ξ0) /∈ WFθgl(u) if the short-time
Fourier transform Vψu(x, ξ) satisfies (2.5) on an open cone Γ 3 (x0, ξ0).
We now recall the result of [36, Proposition 5.11], stating that if θ 6= 1/2
and a ∈ L∞loc(R2d) satisfies that ∀ε > 0 there exists Cε > 0 such that

(3.1) |a(x, ξ)| ≤ Cεe
ε(|x|1/θ+|ξ|1/θ),

then Aψa is continuous on both Sθ(Rd) and S ′θ(Rd). We can prove the
following microlocal improvement of this statement.

Theorem 3.2. Let θ > 1/2 and Aψa be a localization operator with
symbol a ∈ L∞loc(R2d) satisfying (3.1). Then we have WFθgl(A

ψ
au) ⊂

WFθgl(u).
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Proof. We estimate Vψ(Aψau) in terms of Vψu and a as follows:

VψA
ψ
au(v, η) = VψV

∗
ψ (a · (Vψu))(v, η)

=

∫
e−

1
2
|v−y|2+i〈y,η〉e−

1
2
|x−y|2−i〈ξ,y〉a(x, ξ)Vψu(x, ξ) dxdξdy

=

∫
e−|y−

x+v
2
|2e−

1
4
|x−v|2ei〈y,η−ξ〉a(x, ξ)Vψu(x, ξ) dxdξdy

= 2−d/2
∫
e−

1
4
|η−ξ|2e−

1
4
|x−v|2e

i
2
〈x+v,η−ξ〉a(x, ξ)Vψu(x, ξ) dxdξ

We can conclude that

|VψAψau(x, ξ)| .
(
e−
|·|2
4 ∗ |(a · Vψu)|

)
(x, ξ).

Then the assertion follows by applying Lemma 2.3. �

We note that the method of the proof is not limited to the quasian-
alytic case but it can applied also for θ ≥ 1.

Remark 3.3. We can conclude that if Aψa is an invertible operator then
we have the equality

WFθgl(A
ψ
au) = WFθgl(u).

3.2. Ultradifferential operators. In general, localization operators
can have symbols that are not analytic. Motivated by Theorem 1.9
we can instead consider the following class of operators, where the
coefficients are multipliers and partial derivatives appear.
Denote the space of analytic functions h : Cd → C satisfying

(3.2) ∀ε > 0 ∃Dε > 0 s.t.|h(z)| ≤ Dε e
ε|z|1/θ

by MSθ(Cd).

Theorem 3.4. Let {hα} be a family of elements of MSθ(Cd) such that
the constants Dε,α in (3.2) satisfy

(3.3) Dε,α ≤
D′εε

|α|

α!θ

for any ε and for some constant D′ε > 0. Then we can define the
following operator

Au(z) =
∑
α∈Nd

T ∗ϕhα(z)(∂αz Tϕu)(z)

as a continuous map S ′θ,Γ(Rd)→ S ′θ,Γ(Rd).

In particular it fulfills WFθgl(Au) ⊂WFθgl(u) and maps Sθ into itself.
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We can compute the following relations for the transform Tϕu of
u ∈ Sθ(Rd) with the standard phase:

zTϕu(z) = Tϕ
(
(−iy + i∂y)u

)
(z)

∂zTϕu(z) = Tϕ
(
(i∂y)u

)
(z)

Therefore ultradifferential operators with polynomial coefficients can
be understood as a subclass of the operators just considered, if their
coefficients satisfy (3.3). In particular, differential operators with poly-
nomial coefficients are microlocal. For these, we can also get the reverse
wave front set inclusion in terms of the principal symbol of the operator,
known as microellipticity, following [20].

3.2.1. Microellipticity of differential operators. Let P = p(x,D) be a
differential operator with polynomial coefficients. We can write it as
follows

p(x,D) =
∑

|α|+|β|≤m

cαβx
βDα.

In the sequel we shall denote by pm(x, ξ) the following principal symbol

pm(x, ξ) =
∑

|α|+|β|=m

cαβx
βξα

which is homogeneous of order m in (x, ξ) and define the characteristic
set of P as follows:

Char(P ) = {(x, ξ) ∈ T ∗Rd : pm(x, ξ) = 0}.
We have the following result.

Theorem 3.5. Let u ∈ S ′θ(Rd) and let p(x,D)u = f. Then the follow-
ing inclusions hold:

(3.4) WFθgl(u) ⊂WFθgl(Pu) ∪ Char(P ).

Remark 3.6. We observe that Theorem 3.5 represents a generalization
of Theorem 1.1 in [1] for the case µ = ν = θ. As a matter of fact,
if the operator P is globally elliptic, i.e. Char(P ) = ∅, we obtain
that WFθgl(u) = WFθgl(Pu). In particular, Corollary 2.2 implies that if

Pu ∈ Sθ(Rd), then u ∈ Sθ(Rd).

Proof of Theorem 3.5. We follow the outline of a proof given in [20]
for the case θ = 1/2, which uses the idea from [19] of estimating

|〈u, e−i〈y,ξ〉− 1
2
|x−y|2〉| in terms of |〈Pu,w〉| by constructing an approx-

imate solution for the equation P ∗w = e−i〈y,ξ〉−
1
2
|x−y|2 .

Let (x0, ξ0) /∈ WFθgl(Pu) ∪ Char(P ). By this assumption there exists

a closed conic set Γ ⊂ T ∗(Rd) such that pm(x, ξ) 6= 0 on Γ and there
exist positive constants C, δ such that

(3.5) |〈f, e−i〈y,ξ〉−
1
2
|x−y|2〉| ≤ Ce−δ(|x|

1
θ +|ξ|

1
θ )
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for any (x, ξ) ∈ Γ. We consider, for fixed (x, ξ) ∈ Γ the equation

(3.6) p∗(y,Dy)wx,ξ(y) = e−i〈y,ξ〉−
1
2
|x−y|2 ,

where p∗(y,Dy) denotes the adjoint of P and look for suitable ap-
proximate solutions. For that we turn it into a more standard form
which can then be approximately solved by a Neumann series. Setting
z = y − x, we can re-write the equation (3.6) in the following form

(3.7) p∗(x+ z,Dz − ξ + iz)Wx,ξ(z) = 1,

with
Wx,ξ(z) = ei〈x+z,ξ〉+ 1

2
|z|2wx,ξ(x+ z).

Since pm(y,−η) is the principal symbol of P ∗, then p∗(x+z,−ξ+ iz)−
pm(x+z, ξ−iz) is a polynomial of degree strictly less than m in (x, ξ, z).

Moreover, denoting ρ =
√
|x|2 + |ξ|2, we have that, since pm(x, ξ) 6= 0

on Γ, then there exist positive constants M, c > 0 such that

|p∗(x+ z,−ξ + iz)| ≥ cρm

on the set

Γc,M = {(x, ξ, z) ∈ R3d : (x, ξ) ∈ Γ, ρ > M, |z| < cρ}.
In other words, (1/p∗)(x + z,−ξ + iz) behaves like a symbol of order
−m for (x, ξ, z) ∈ Γc,M . Setting now

(3.8) Gx,ξ(z) = p∗(x+ z,−ξ + iz)Wx,ξ(z),

the equation (3.7) takes the form

(3.9) Gx,ξ(z)−RGx,ξ(z) = 1

for some operator R =
∑
|α|≥0

Rα(x, ξ, z)Dα
z , where Rα is an operator of

order −|α| with analytic coefficients on Γc,M . Moreover, for z = ρζ, we
have that

R =
∑
|α|6=0

Rα(x, ξ, ρζ)ρ−|α|Dα
ζ

with |Rα(x, ξ, ρζ)ρ−|α|| ≤ Cρ−2|α|.
Let us now consider the equation (3.9). To go further with the proof
we need to study the equation (3.9) for z ∈ Cd, that is for y ∈ Cd. A
formal solution for the equation would be given by the Neumann series∑
j≥0

Rj1. For N ∈ N, let GN
x,ξ(z) be the sum of all terms in the series

involving derivatives with respect to z of order less or equal than N .
Then we have

GN
x,ξ(z)−RGN

x,ξ(z) = 1− eNx,ξ(z)

for some functions eNx,ξ(z). Let now, as an approximate solution candi-
date for (3.6),

wNx,ξ(y) = e−i〈y,ξ〉−
1
2
|x−y|2 GN

x,ξ(y − x)

p∗(y,−ξ + i(y − x))
.
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Then we obtain

(3.10) p∗(y,Dy)w
N
x,ξ(y) = e−i〈y,ξ〉−

1
2
|x−y|2(1− eNx,ξ(y − x)

)
.

Arguing as in [19], we obtain the following estimates:

(3.11) |Dβ
zG

x,ξ
N (z)| ≤ CNN |β|, |β| ≤ N < ρ2

(3.12) |Dβ
z e

x,ξ
N (z)| ≤ CNNN+|β|ρ−2N , |β| ≤ N.

For every (x, ξ) ∈ Γ, |z| < cρ and with cρ > 1. Let now χ ∈ C∞0 (Cd)
such that χ(z) = 1 for |z| < c/2 and χ(z) = 0 for |z| > c and consider
the function

hNx,ξ(z) = χ

(
z

ρ

)
e−

1
2
〈z,z〉 GN

x,ξ(z)

p∗(x+ z,−ξ + iz)
.

We observe that

(3.13) |hNx,ξ(z)| ≤ CN+1ρ−m exp

(
−1

2
|<z|2 +

1

2
|=z|2

)
, z ∈ Cd.

Due to the cut-off function involved, hNx,ξ is not holomorphic. We now

construct a function h̃Nx,ξ which shares Gaussian decay such that hNx,ξ−
h̃Nx,ξ is holomorphic.

By (3.11) for |β| = 1 the coefficient functions of ∂̄zh
N
x,ξ satisfy, for

cρ/2 < |z| < cρ:

(3.14)

∣∣∣∣ ∂∂z̄j hNx,ξ(z)

∣∣∣∣ ≤ CN+1ρ−m exp

(
−1

2
|<z|2 +

1

2
|=z|2

)
≤ CN+1ρ−m exp

(
−1

4
|<z|2 +

3

4
|=z|2 − 1

4
|z|2
)

≤ CN+1ρ−m exp

(
−1

4
|<z|2 +

3

4
|=z|2 − c2ρ2

16

)
.

From the last estimate we obtain that

(3.15)
d∑
j=1

∫
Cd

∣∣∣∣ ∂∂z̄j hNx,ξ(z)

∣∣∣∣2 e−κ(z) dλ(z) ≤ 2C ′′C2Nρ−2m+2de−
c2ρ2

8

with κ(z) = −1
2
|<z|2 + 3

4
|=z|2. Therefore the coefficient functions of

∂̄hNx,ξ are elements of L2(Cd, e−κdλ). We observe that κ(z) is plurisub-

harmonic, see [18, Definition 2.6.1]. As ∂̄2 = 0, we can apply Theorem
4.4.2 in [18] to the equation ∂̄v = ∂̄hNx,ξ. It therefore admits a solution

h̃Nx,ξ(z) such that∫
Cd
|h̃Nx,ξ(z)|2e−κ(z)(1 + |z|2)−2 dλ(z) ≤ C ′′

2
C2Nρ2d−2me−

c2ρ2

8 .
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By the Cauchy’s inequalities we then get
(3.16)

|h̃Nx,ξ(z)| ≤ C ′′′CNρd−me−
c2ρ2

16 (1+ |z|)d exp
(
− 1

4
|<z|2 +

3

4
|=z|2

)
, z ∈ Cd.

By construction, the function HN
x,ξ(z) = hNx,ξ(z)−h̃Nx,ξ(z) is holomorphic

on Cd because ∂̄HN
x,ξ(z) = 0. Moreover, the estimates (3.13) and (3.16)

imply that its restriction on the real domain is in S1/2(Rd). Then taking
now z = y − x ∈ Rd, we can write

(3.17) 〈u, e−i〈·,ξ〉−
1
2
|·−x|2〉 = 〈f, e−i〈·,ξ〉HN

x,ξ(· − x)〉

+ 〈u, e−i〈·,ξ〉−
1
2
|·−x|2〉 − 〈f, e−i〈·,ξ〉HN

x,ξ(· − x)〉 =

〈f, e−i〈·,ξ〉HN
x,ξ(·−x)〉+〈u, e−i〈·,ξ〉−

1
2
|·−x|2−p∗(y,Dy)(e

−i〈·,ξ〉HN
x,ξ(·−x))〉.

To conclude the proof we need to estimate properly the two terms
in the right-hand side of (3.17). Concerning the first one we observe
that since HN

x,ξ ∈ S1/2(Rd), then its short time Fourier transform is in

S1/2(R2d). In particular we have

|VψHN
x,ξ(x, ξ)| ≤ C1C

Ne−δ(|x|
2+|ξ|2), (x, ξ) ∈ R2d,

for some constants C1 > 0, 0 < δ < 1 independent of N and where C
is the same constant appearing in the estimates (3.12), (3.11), (3.13),
(3.16). Choosing now N such that

(3.18)
δρ2

Ce
− 1 ≤ N ≤ δρ2

Ce
,

with ρ =
√
|x|2 + |ξ|2, we obtain

|VψHN
x,ξ(x, ξ)| ≤ C ′1e

δρ2

e
−δρ2

= C ′1e
−δ(1−e−1)(|x|2+|ξ|2).

Then by the condition (3.5) and by Lemma 2.4 we get

|〈f, e−i〈·,ξ〉HN
x,ξ(· − x)〉| ≤ |VψHN

x,ξ(x, ξ)| ∗ |〈f, e−i〈·,ξ〉−
1
2
|·−x|2〉|

≤ C2e
−δ2(|x|1/θ+|ξ|1/θ)

for some positive constants C2, δ2 and for (x, ξ) ∈ Γ. Now we want to

prove that the second term in the right-hand side of (3.17) is O(e−δ3ρ
2
)

for some δ3 > 0 uniformly with respect to N . To do this we need to
estimate the function

(3.19) e−i〈y,ξ〉−
1
2
|y−x|2 − p∗(y,Dy)(e

−i〈y,ξ〉HN
x,ξ(y − x))

and its derivatives. For |y − x| < cρ/2 we have e−i〈y,ξ〉hNx,ξ(y − x) =

wNx,ξ(y − x). Then

e−i〈y,ξ〉−
1
2
|y−x|2 − p∗(y,Dy)(e

−i〈y,ξ〉HN
x,ξ(y − x))

= e−i〈y,ξ〉−
1
2
|y−x|2eNx,ξ(y − x) + p∗(y,Dy)e

−i〈y,ξ〉h̃Nx,ξ(y − x).
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Now, by (3.12) and (3.18) we have

|e−i〈y,ξ〉−
1
2
|y−x|2eNx,ξ(y−x)| ≤ |eNx,ξ(y−x)| ≤ CNNNρ−2N ≤ e−N ≤ e1− δρ

2

Ce ,

since 0 < δ < 1, whereas the term p∗(y,Dy)e
−i〈y,ξ〉h̃Nx,ξ(y − x) satisfies

a similar bound by (3.16). For |y − x| ≥ cρ/2, we obviously have

e−i〈y,ξ〉−
1
2
|y−x|2 = O(e−c

2ρ2/8). Moreover, arguing as for (3.14), we obtain
for some γ > 0 that

|HN
x,ξ(y − x)| ≤ C3e

−δ3ρ2

exp
(
− γ|y − x|2

)
,

and a similar estimate holds for p∗(y,Dy)(e
−i〈y,ξ〉HN

x,ξ(y − x)). In con-
clusion, for |y − x| ≥ cρ/2 we obtain

|e−i〈y,ξ〉−
1
2
|y−x|2 − p∗(y,Dy)(e

−i〈y,ξ〉HN
x,ξ(y − x)|

≤ C4e
−δ3ρ2

exp
(
− γ|y − x|2

)
.

The estimate of the derivatives of the function (3.19) can be obtained
by estimating the derivatives of its entire extension by Cauchy’s in-
equalities arguing as in the proof of Lemma 4.1. The details are left to
the reader, cf. [20].

�

4. appendix. the proof of Theorem 1.9

We can reduce the proof to the case when α = 0 thanks to the
following Lemma, a variant of Cauchy’s inequality.

Lemma 4.1. Let g(z) be an entire function and let z0 ∈ Cd \ {0}. Let
open conic subsets of Cd \ {0} containing z0 be denoted by Γ. Then the
following conditions are equivalent:
i) ∃Γ ∀ε > 0 ∃Cε > 0 s.t. |g(z)| ≤ Cεe

ε|z|1/θ+Φ(z) ∀ z ∈ Γ

ii) ∃Γ ∀ε > 0 ∃Cε > 0 s.t. |∂αz g(z)| ≤ C
|α|+1
ε α!θ eε|z|

1/θ+Φ(z) ∀ z ∈
Γ, α ∈ Nd.
Similarly, the following two conditions are equivalent:
a) ∃Γ ∃ε > 0 ∃C > 0 s.t. |g(z)| ≤ Ce−ε|z|

1/θ+Φ(z) ∀ z ∈ Γ

b) ∃Γ ∃ε > 0 ∃C > 0 s.t. |∂αz g(z)| ≤ C |α|+1α!θ e−ε|z|
1/θ+Φ(z) ∀ z ∈

Γ, α ∈ Nd.

Proof. The proof is a variant of a calculation done in [15, Section 5.2].
Let g(z) satisfy i) on an open cone Γ and let z ∈ Γ. Then, by Cauchy’s
formula we can write

∂αz g(z) =
α!

(2πi)d

∫
∂Bδ(z)

g(a)
d∏
i=1

(ai − zi)−1−αi da,

where we denote by Bδ(z) the polydisc of radius δ centered in z. For
fixed δ we can assume |z| large enough so that Bδ(z) ⊂ Γ. As Φ(z) is a
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polynomial in z, z of degree 2 we can estimate it on ∂Bδ(z) by Taylor’s
formula and Young’s inequality for products:

Φ(a) ≤ Φ(z) + C1|z|δ + C2δ
2 ≤ Φ(z) + ε|z|1/θ + cεδ

1/(1−θ),

for any ε > 0. Then, using i) we can estimate as follows

|∂αz g(z)| ≤ α! sup
a∈∂Bδ(z)

|g(a)|

≤ sup
a∈∂Bδ(z)

α! Cε
|δ||α|

eε|a|
1/θ+Φ(a)

≤ α! Cε′

|δ||α|
eε
′|z|1/θ+Φ(z)ec

′
εδ

1/(1−θ)

We now pick δ = δ0 to minimize
α! Cε′
|δ||α| e

c′εδ
1/(1−θ)

:= C(ε, α, δ). We have

δ0 =
(
|α|(1−θ)

c′ε

)1−θ
and using Stirling’s formula we obtain

C(ε, α, δ0) ≤ (C ′′ε )
|α|+1

α!θ,

which proves estimate ii).
The second part of the lemma follows in complete analogy. �

Proof of Theorem 1.9. Following [20], we can assume A = 0 and <C =
0 in the definition of ϕ. By a change of notation this leads to consider
a phase function of the form

ϕ(y, z) = 〈Bz, y〉+
i

2
〈Cy, y〉,

where B is a non degenerate matrix and C is positive definite. Let now
u ∈ S ′θ(Rd). We have that for every ε > 0 there exists Cε > 0 such that

|Tϕu(z)| ≤ Cε sup
α,β∈Nd

ε−|α|−|β|(α!β!)−θ sup
y∈Rd
|yβDα

y e
iϕ(y,z)|.

Now observe that e−
1
2
〈Cy,y〉 ∈ S1/2(Rd) and that

|Dα
y e
− 1

2
〈Cy,y〉| ≤M |α|+1α!1/2e−

1
2
〈Cy,y〉

for some positive constant M . Then we have

|yβDα
y e

iϕ(y,z)| ≤ |y||β|
∑
γ≤α

(
α

γ

)
|(Bz)γei〈Bz,y〉Dα−γ

y e−
1
2
〈Cy,y〉|

≤ C
|α|+1
1

∑
γ≤α

(
α

γ

)
|y||β||z||γ|(α− γ)!1/2eΦ(z)− 1

2
〈C(y−y(z)),y−y(z)〉.
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Since θ ≥ 1/2 and y(z) is a linear function of z we have that for every
ε′ > 0 there exists Cε′ > 0 such that

|z||γ| sup
y∈Rd
|y||β|e−

1
2
〈C(y−y(z)),y−y(z)〉 = |z||γ| sup

y∈Rd
(|y + y(z)|)|β|e−

1
2
〈Cy,y〉

≤ C sup
y∈Rd

(|y|+ |z|)|β|+|γ|e−
1
2
〈Cy,y〉 ≤ C

|β|+|γ|+1
ε′ (β!γ!)θeε

′|z|1/θ .

Then, taking ε > Cε′C, we obtain (1.5).
Let now u ∈ Sθ(Rd). We observe that for every α ∈ Nd:

(Bz)αTϕu(z) = (−1)|α|
∫

Rd
ei〈Bz,y〉Dα

y

(
e−

1
2
〈Cy,y〉u(y)

)
dy.

Then, since detB 6= 0 and θ ≥ 1/2, we have by Leibniz and Faà di
Bruno formulas

|zαTϕu(z)| ≤ C
|α|+1
1 (α!)θeΦ(z)

∫
Rd
e−

1
2
〈C(y−y(z)),y−y(z)〉 dy

for every α ∈ Nd. This gives (1.6).
To prove the second part of the Proposition, we need Lemma 1.8. Let
U(z) be an entire function satisfying (1.6) and let u = T ∗ϕU, where T ∗ϕ
is the L2-adjoint of Tϕ. Then Tϕu = U . Moreover we have

T ∗ϕU(y) = cϕ

∫
Cd
e−iϕ(y,z)−2Φ(z)U(z)dλ(z) ∈ Sθ(Rd).

As a matter of fact, given α, β ∈ Nd and arguing as in the proof of
(1.5), we have:

|yβDα
y T
∗
ϕU(y)| = cϕ

∣∣∣∣yβ ∫
Cd
Dα
y e
−iϕ(y,z)e−2Φ(z)U(z)dλ(z)

∣∣∣∣
≤ C |α|

∑
γ≤α

(
α

γ

)
(α− γ)!1/2

∫
Cd
|y||β||z||γ|

∣∣∣e−iϕ(y,z)e−2Φ(z)U(z)
∣∣∣ dλ(z)

≤ CεC
|α|
∑
γ≤α

α!

γ!(α− γ)!1/2
·

·
∫

Cd
|y||β||z||γ|e−

1
2
〈C(y−y(z)),y−y(z)〉e−ε|z|

1/θ

dλ(z).

Arguing as before we have that

sup
y∈Rd

(|y|+ |z|)|β|+|γ|e−
1
2
〈C(y−y(z)),y−y(z)〉e−ε|z|

1/θ≤CεC |α|+|γ|(β!γ!)θe−
ε
2
|z|1/θ

Then, we obtain that u ∈ Sθ(Rd). Finally, if U ∈ H(Cd) satisfies (1.5),
then

(u, v) =

∫
Cd
U(z)Tϕv(z)e−2Φ(z)dλ(z), v ∈ Sθ(Rd),
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defines an ultradistribution in S ′θ(Rd). Moreover we have Tϕu = U, cf.
[20]. �
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[7] E. Cordero, K. Gröchenig and L. Rodino, Localization Operators and Time-
Frequency Analysis, Harmonic, Wavelet and p-adic analysis, World Scientific
(2007), 83-112.

[8] E. Cordero, F. Nicola and L. Rodino, Propagation of Gabor Wave Front Set
for Schrödinger Equations, preprint, 2013, arXiv:1309.0965.

[9] E. Cordero, F. Nicola and L. Rodino, Exponentially sparse representations
of Fourier integral operators, preprint, 2013, arXiv:1301.1599.
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[11] E. Cordero, S. Pilipović, L. Rodino and N. Teofanov, Localization opera-
tors and exponential weights for modulation spaces. Mediterr. J. Math., 2 4
(2005), 381-394.

[12] H. O. Cordes, The technique of pseudodifferential operators. Cambridge
Univ. Press (1995).



25

[13] S. Coriasco and L. Maniccia, Wave front set at infinity and hyperbolic linear
operators with multiple characteristics, Ann. Global Anal. Geom., 24 (2003),
375–400.

[14] S. Coriasco and R. Schulz, The global wave front set of tempered oscillatory
integrals with inhomogeneous phase functions, J. Fourier Anal. Appl. (2013)
Online First DOI 10.1007/s00041-013-9283-4.

[15] I.M. Gelfand and G.E. Shilov, Generalized functions II, Academic Press,
New York, 1968.
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