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ON THE RADIUS OF SPATIAL ANALYTICITY FOR
SEMILINEAR SYMMETRIC HYPERBOLIC SYSTEMS

MARCO CAPPIELLO, PIERO D’ANCONA AND FABIO NICOLA

Abstract. We study the problem of propagation of analytic regularity for semi-
linear symmetric hyperbolic systems. We adopt a global perspective and we prove
that if the initial datum extends to a holomorphic function in a strip of radius
(=width) ε0, the same happens for the solution u(t, ·) for a certain radius ε(t),
as long as the solution exists. Our focus is on precise lower bounds on the spatial
radius of analyticity ε(t) as t grows.

We also get similar results for the Schrödinger equation with a real-analytic
electromagnetic potential.

1. Introduction

The main concern in this paper is the propagation of the analytic regularity for
systems of semilinear evolution equations. Local propagation of the analyticity for
nonlinear partial differential equations has been studied in several papers, see for
instance [1, 3, 4, 18, 19], starting from classical results of existence and uniqueness.
In our paper we focus our attention on systems of semilinear equations with coef-
ficients defined for (t, x) ∈ R+ × Rd, hence globally defined in the space variables.
Motivation for this type of study comes from the global analytic theory of non-
linear evolution PDE started with the paper by Kato and Masuda [28] and based
on the proof of the existence of global analytic solutions in the space variables
for the related Cauchy problem. After [28], many authors proved results of this
type for several models as the (generalized) Korteweg-de Vries equation, the Euler
equations, the Benjamin-Ono equation, the nonlinear Schrödinger equation, see for
instance [5, 8, 20, 21, 22, 23, 24, 25, 26]. A parallel study in an elliptic setting
devoted in particular to the analyticity of travelling waves has been developed in
[6, 10, 11, 13, 14]. Besides the existence and uniqueness of an analytic solution, also
the estimate of the radius of analyticity represents an interesting issue. Although
there exist results in the literature treating particular models, cf. [7, 9, 29], we are
not aware of similar results for general semilinear hyperbolic systems on Rd.
In the present paper we consider systems with initial data analytic on Rd and
admitting a holomorphic extension in a strip of the form {x + iy : |y| < ε0} for
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some ε0 > 0. We assume moreover the existence of a smooth (C∞) solution of
the Cauchy problem. Under these conditions, we prove that the solution is in-
deed analytic for every t in a strip of the form {x + iy ∈ Cd : |y| < ε(t)} and we
give a precise estimate of lower bounds for ε(t) as t grows. The class of systems
to which our results apply includes semilinear symmetric hyperbolic systems but
also strictly hyperbolic systems, see Remark 5.4, and other types of equations like
the Schrödinger equation with electromagnetic potential (cf. [17]). For the sake
of simplicity, in this Introduction we shall consider the special case of differential
operators; we refer to Theorem 2.1 below for a more general statement involving
pseudodifferential operators.

Consider a system of the form

Lu = N [u]

in R+ × Rd 3 (t, x), u = (u1, . . . un), with

(1.1) L = ∂t + iA0(i∇x) +
d∑
j=1

Aj(t, x)∂j +B(t, x),

where A0(i∇x) is any formally self-adjoint Fourier multiplier (i.e. the symbol A0(ξ)
is a smooth Hermitian n × n matrix), and Aj(t, x) are n × n Hermitian matrices

with entries in C(R+;C∞b (Rd)), analytic with respect to x, satisfying

(1.2) sup
(t,x)∈R+×Rd

‖∂αxAj(t, x)‖ ≤ C |α|+1α!, α ∈ Nd

for some constant C > 0 (here C∞b (Rd) denotes the space of all C∞ functions on
Rd bounded with all their derivatives). We assume moreover that B(t, x) is a n×n
matrix with entries in C(R+;C∞b (Rd)), satisfying

(1.3) sup
(t,x)∈R+×Rd

‖∂αxB(t, x)‖ ≤ C |α|+1α!, α ∈ Nd.

The components of the non-linearity N [u] are assumed to be polynomials of degree
p ∈ N, p ≥ 2, in the components of u with analytic coefficients, namely:

(1.4) N [u]k =
∑

γ∈Nn: 2≤|γ|≤p

gk,γ(t, x)uγ, k = 1, . . . , n,

with gk,γ(t, x) continuous, satisfying

(1.5) ‖∂αx gk,γ‖L∞(R+×Rd) ≤M |α|+1α!, α ∈ Nd

for some constant M > 0.
When A0 = 0 in (1.1) we get what is known as a symmetric hyperbolic system

with bounded coefficients. However, it is important to allow the skew-adjoint
term iA0(i∇x) too, in view of the applications to Schrödinger equation below.
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Incidentally, we observe that the form of this term is admittedly very special,
but the reader will note from the proof that allowing more general skew-adjoint
operators entails challenging issues.

We study the above system in the space of uniformly analytic functions, defined
as follows.

Let A be the space of functions f satisfying the estimates

‖∂αf‖L∞ ≤ C |α|+1α!, α ∈ Nd,

for some constant C > 0. Every function f ∈ A extends to a holomorphic function
f(x + iy) in the strip {x + iy ∈ Cd : |y| < C−1} and we say that it has radius of
analiticity ≥ C−1. For technical reasons it is convenient to work with an equivalent
definition, where the L∞ norm is replaced by the norm ‖ · ‖s in the Sobolev space
Hs(Rd) for some s > d/2, fixed once and for all.

By Sobolev embedding theorem it is easy to prove that A = ∪ε>0A(ε), where
A(ε) is given by the smooth functions f ∈ L2(Rd) such that supN E

ε
N [f ] <∞, with

Eε
N [f ] :=

∑
|α|=N

ε|α|−1

α!
‖∂αf‖s, N ≥ 1.

We have then the following result.

Theorem 1.1. There exists a positive number ε0 > 0, depending only on the
equation, such that for all 0 < ε0 ≤ ε0 the following result holds true.

Let 0 ∈ I ⊂ [0,+∞) be a time interval. Let u0 ∈ A(ε0), and assume that there
exists s0 ≥ 0 such that the Cauchy problem{

Lu = N [u] (t, x) ∈ I × Rd,

u(0, x) = u0(x)

admits a solution u ∈ C1(I,Hs′(Rd)) ∩ C0(I,Hs′+1(Rd)) for every s′ ≥ s0. Then
u(t, ·) ∈ A(ε(t)), for every t ∈ I, with

(1.6) ε(t) = ε0 exp
(
− A

∫ t

0

(1 + ‖u(σ)‖p−1
L∞ ) dσ

)
,

for some constant A > 0 depending only on ‖u0‖s + supN≥1E
ε0
N [u0]. When the

equation is linear (p = 1), the constant A depends only on the equation and it is
independent of u0.

It will follow from the proof that we can take A ' (‖u0‖s + supN≥1E
ε0
N [u0])

p−1.
The threshold ε0 corresponds, broadly speaking, to the radius of analyticity of

the coefficients Aj, B and gk,γ in the equation (see (1.2), (1.3) and (1.5)). Hence
A(ε0) is in some sense the larger space preserved by the equation.

Roughly speaking the phenomenon of shrinking of the radius of spatial analyticity
is due to the combination of two effects: for linear equations the solution may
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already compress more and more as t grows; this produces a growth of the spatial
derivatives and causes the exponential decay in (1.6). In the presence of a non-
linearity this growth may be amplified (if the initial datum is not too small), and
this causes the presence of the integral term in (1.6). We refer to Section 5 for
two model examples which illustrate these facts. Some variants are also discussed
there, together with speculations on other lower bounds for ε(t), as well as the
issue of the dependence of the constants on the initial datum.

As anticipated, the above result applies also to the Schrödinger equation with
real analytic electromagnetic potential. Namely, we have the following result.

Corollary 1.2. Let A(t, x) = (a1(t, x), . . . , ad(t, x)) and V (t, x) be the magnetic
and the electric potential, respectively, with aj(t, x) and V (t, x) in C(R+;C∞b (Rd)),
with aj(t, x) real-valued, and satisfying

‖∂αxaj‖L∞(R+×Rd) ≤ C |α|+1α!, α ∈ Nd, ‖∂αxV ‖L∞(R+×Rd) ≤ C |α|+1α!, α ∈ Nd.

Consider the magnetic Laplacian

∆A =
d∑
j=1

(∂j + iaj)
2 = ∆ + 2iA · ∇+ idivA−

d∑
j=1

a2
j

and the equation

(1.7) Lu = ∂tu− i∆Au− iV (t, x)u = N [u],

where the non-linearity N [u] has the same form as in (1.4) and (1.5) (without the
subscript k, because we are now considering a scalar case).

Then the result of Theorem 1.1 holds true for the equation (1.7).

In fact, it is sufficient to apply Theorem 1.1 with A0(i∇x) = −∆, Aj(t, x) =
2aj(t, x) (which are assumed real-valued, hence Hermitian as 1 × 1 matrices) and

B = divA+ i
∑d

j=1 a
2
j + iV in (1.1).

The core of the proof of Theorem 1.1 and of the more general Theorem 2.1 below
consists in proving a suitable analytic energy estimate for the solution of the Cauchy
problem. In future works we plan to prove similar results for more general nonlinear
terms, possibly treating the case of quasi-linear or fully nonlinear systems, and also
to improve the above lower bound for the radius of analyticity for special classes of
equations (e.g. with constant coefficients). We also recall that in some recent papers
[14, 15, 16] we proved holomorphic extensions of the solutions of elliptic equations
in conical subsets of Cd of the form {x+iy ∈ Cd : |y| < ε(1+|x|)}, ε > 0, improving
some of the results of [10, 11, 13] on the analyticity in a strip for travelling waves
and stationary Schrödinger equations. An interesting issue would be to investigate
the same problem for the corresponding evolution equations and to estimate the
decay of the width of the sector as the time variable grows.
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2. Statement and proof of the main result

Let us now consider a more general system of the form

Lu = N [u]

in R+ × Rd 3 (t, x), u = (u1, . . . , un), with

(2.1) L = ∂t + iA0(Dx) + A(t, x,Dx),

where A0(Dx) is any formally self-adjoint Fourier multiplier (i.e. the symbol A0(ξ) is
a smooth Hermitian n×n matrix), and A(t, x,Dx) is a system of pseudodifferential
operators, i.e.

A(t, x,Dx)u = (2π)−d
∫

Rd
eixξA(t, x, ξ)û(ξ) dξ

whose symbol A(t, x, ξ) is a n× n matrix satisfying the following conditions:

〈ξ〉|β|−1∂αx∂
β
ξA(t, x, ξ) has entries in C(R+;C0

b (Rd × Rd)) ∀α, β ∈ Nd

with bounds

(2.2) ‖∂αx∂
β
ξA(t, x, ξ)‖ ≤ CβC

|α|+1α!〈ξ〉1−|β|, α, β ∈ Nd

and moreover

(2.3) sup
t∈R+;x,ξ∈Rd

‖A(t, x, ξ) + A(t, x, ξ)∗‖ <∞.

It is immediate to see that the simpler case considered in the Introduction, namely
the operator L in (1.1), (1.2), (1.3) is in fact a special case.

The non-linearity N [u] is the same considered in the Introduction, therefore is
given by (1.4), with coefficients gk,γ(t, x) satisfying (1.5).

Theorem 2.1. Let L be given by (2.1), (2.2), (2.3) and N [u] as in (1.4), (1.5).
Then the same result as in Theorem 1.1 holds true.

Theorem 2.1 will follow if we prove that E
ε(t)
N [u(t)], N ≥ 1, is bounded, with ε(t)

as in (1.6). Namely, we will prove by induction that for some constant C0 > 0 we
have

(2.4) E
ε(t)
N [u(t)] ≤ Φ(t) := C0 exp

(
C0

∫ t

0

(1 + ‖u(σ)‖p−1
L∞ ) dσ

)
,

for every N ≥ 1, if ε0 ≤ ε0, with ε0 small enough, and the constant A in (1.6) is
large enough.

Under the hypothesis of Theorem 2.1 we have the following classical energy
estimates

(2.5) ‖v(t)‖s ≤ CeCt‖v(0)‖s + CeCt
∫ t

0

e−Cσ‖Lv(σ)‖s dσ
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for every function v ∈ C1(I,Hs) ∩ C0(I,Hs+1) and t ∈ I, where I ⊂ [0,+∞) is
a time interval containing 0, and the constant C > 0 depends on L and s, see
[30, Proposition 6.1]. Usually this estimate is proved without the term iA0(i∇x) in
(1.1), but since it does not depend on x and is skew-adjoint, it does not affect the
classical proof (in particular the fact that it commutes with spatial derivatives is
useful to extend the L2-energy estimates to the Hs version); e.g. the proof of [32,
Proposition 2.1.2] can be repeated almost verbatim for our operator L in (2.1).

Now, we apply the above estimate to v = ∂αu, where u solves Lu = N [u],
u(0) = u0. We get

‖∂αu(t)‖s ≤ CeCt
(
‖∂αu0‖s +

∫ t

0

e−Cσ(‖[L, ∂α]u(σ)‖s + ‖∂αN [u(σ)]‖s) dσ
)
.

We multiply by ε(t)|α|−1/α!, |α| = N ≥ 1, and we obtain, since ε(t) ≤ ε(0) = ε0,

(2.6)

e−CtE
ε(t)
N [u(t)] ≤ CEε0

N [u0] + C

∫ t

0

ε(t)N−1

ε(σ)N−1
e−Cσ

∑
|α|=N

ε(σ)|α|−1

α!
‖[L, ∂α]u(σ)‖s dσ

+ C

∫ t

0

ε(t)N−1

ε(σ)N−1
e−CσE

ε(σ)
N [N [u(σ)]] dσ.

Now, we can choose the constant C0 in (2.4) such that

(2.7) C0 > C max{4 sup
N
Eε0
N [u0], 2}

where C is the constant arising in (2.5). Observe that by the condition (2.7) we have
C < C0 and C supN E

ε0
N [u0] < C0/4 so that the first term in the right-hand side of

(2.6) is then dominated by 1
4
e−CtΦ(t). We will then prove that (2.4) holds for every

N ≥ 1 possibly for a bigger constant C0 (independent of N). More precisely, we
will prove directly the case N = 1 whereas for N > 1 we shall argue by induction
supposing that (2.4) holds for subscripts < N . Under this hypothesis we will verify
in the next sections the following estimates on the two integrals involved in the
right-hand side of (2.6).

Proposition 2.2. There exist constants C ′ > 0 and ε0 > 0, depending only on
the equation, such that, for every ε0 ≤ ε0 and every A ≥ 1 in (1.6), and for every
sufficiently large constant C0 in (2.4) we have

(2.8)

∫ t

0

ε(t)N−1

ε(σ)N−1
e−Cσ

∑
|α|=N

ε(σ)|α|−1

α!
‖[L, ∂α]u(σ)‖s dσ

≤
∫ t

0

ε(t)N−1

ε(σ)N−1
C ′Ne−CσE

ε(σ)
N [u(σ)] dσ +

1

4
e−CtΦ(t)
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where Φ(t) is defined in (2.4).

Proposition 2.3. There exist constants C ′ > 0 and ε0 > 0, depending only on the
equation, such that, for every ε0 ≤ ε0 and for every sufficiently large constants A
in (1.6) and C0 in (2.4), we have

(2.9)

∫ t

0

ε(t)N−1

ε(σ)N−1
e−CσE

ε(σ)
N [N [u(σ)]] dσ

≤
∫ t

0

ε(t)N−1

ε(σ)N−1
C ′‖u(σ)‖p−1

L∞ e
−CσE

ε(σ)
N [u(σ)] dσ +

1

4
e−CtΦ(t)

where Φ(t) is defined in (2.4).

Assume that Propositions 2.2 and 2.3 hold true and set ΨN(t) = e−CtE
ε(t)
N [u(t)].

We can continue the computation in (2.6) as

(2.10) ΨN(t) ≤ 3

4
e−CtΦ(t) + ε(t)N−1

∫ t

0

ΨN(σ)

ε(σ)N−1
C ′(N + ‖u(σ)‖p−1

L∞ ) dσ.

We now use the following form of Gronwall inquality, which can be deduced easily
from the classical one (see e.g. [32, Lemma 2.1.3]).

Lemma 2.4. Let 0 ≤ g, ψ, a ∈ L∞loc([0, T ]), with a > 0, and 0 ≤ h ∈ L1
loc([0, T ]),

and

ψ(t) ≤ g(t) + a(t)

∫ t

0

h(σ)
ψ(σ)

a(σ)
dσ.

Then, with H(t) :=
∫ t

0
h(σ) dσ,

ψ(t) ≤ g(t) + a(t)eH(t)

∫ t

0

e−H(σ)h(σ)
g(σ)

a(σ)
dσ.

We apply Lemma 2.4 to (2.10) with ψ(t) = ΨN(t), g(t) = 3
4
e−CtΦ(t), h(σ) =

C ′(N + ‖u(σ)‖p−1
L∞ ), a(t) = ε(t)N−1.

From (2.10) we therefore get

ΨN(t) ≤ 3

4
e−CtΦ(t) + Φ̃N(t)

with

Φ̃N(t) =
3

4
ε(t)N−1eC

′Nt+C′
∫ t
0 ‖u(σ)‖p−1

L∞

∫ t

0

e−C
′Nσ−C′

∫ σ
0 ‖u(τ)‖

p−1
L∞ dτC ′(N+‖u(σ)‖p−1

L∞ )

× e−CσΦ(σ)

ε(σ)N−1
dσ.
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We want to prove that

(2.11) Φ̃N(t) ≤ 1

4
e−CtΦ(t),

if the constants A in (1.6) and C0 in (2.4) are large enough, so that we get ΨN(t) ≤
e−CtΦ(t) and the proof of (2.4) is concluded.

To this end we use the explicit expression of ε(t) in (1.6); we have

Φ̃N(t) =
3

4
C0C

′Ne(−A(N−1)+C′N)t+(C′−A(N−1))
∫ t
0 ‖u(σ)‖p−1

L∞ dσ

×
∫ t

0

e(−C
′N+A(N−1)−C+C0)σ+(−C′+C0+A(N−1))

∫ σ
0 ‖u(τ)‖

p−1
L∞ dτdσ

+
3

4
C0C

′e(−A(N−1)+C′N)t+(C′−A(N−1))
∫ t
0 ‖u(σ)‖p−1

L∞ dσ

×
∫ t

0

e(−C
′N+A(N−1)−C+C0)σ+(−C′+C0+A(N−1))

∫ σ
0 ‖u(τ)‖

p−1
L∞ dτ‖u(σ)‖p−1

L∞ dσ.

In the first integral we estimate

e(−C
′+C0+A(N−1))

∫ σ
0 ‖u(τ)‖

p−1
L∞ dτ ≤ e(−C

′+C0+A(N−1))
∫ t
0 ‖u(τ)‖

p−1
L∞ dτ ,

which holds if C0 > C ′, whereas in the second integral we use

e(−C
′N+A(N−1)−C+C0)σ ≤ e(−C

′N+A(N−1)−C+C0)t,

which holds if C0 > C ′ + C, A > 2C ′. We get

Φ̃N(t) ≤ 3

4

[ C ′N

−C ′N + A(N − 1)− C + C0

+
C ′

−C ′ + C0 + A(N − 1)

]
e−CtΦ(t)

We conclude by observing that for N = 1 the expression in parenthesis is < 1/3
if C0 is large enough, while the same holds for every N ≥ 2, if A is large enough.
This shows that (2.11) holds true and concludes the proof. �

3. Proof of Proposition 2.2

We have, for k = 1, . . . , n,

([L, ∂α]u)k = −
n∑
h=1

∑
06=γ≤α

(
α

γ

)
(∂γA)(t, x,Dx)k,h∂

α−γuh,

In view of (2.2) the symbols ∂γxA(t, x, ξ)k,h belong to the Hörmander’s classes S1
1,0

and therefore the corresponding operators are bounded Hs+1 → Hs with operator
norm dominated by a seminorm of their symbol in that symbol class, cf. ([27,
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Chapter XVIII]). Hence, using ‖f‖s +
∑d

j=1 ‖∂jf‖s as an equivalent norm in Hs+1

we get

ε|α|−1

α!
‖[L, ∂α]u‖s ≤ C1

d∑
j=1

∑
06=γ≤α

(C1ε)
|γ|−1|α− γ + ej|ε|α−γ|

‖∂α−γ+eju‖s
(α− γ + ej)!

+ C1

∑
0 6=γ≤α
|γ|≤|α|−1

(C1ε)
|γ|ε|α−γ|−1‖∂α−γu‖s

(α− γ)!
+ (C1ε)

|α|‖u‖s

where ej denotes the j-th element of the canonical basis of Rd. Hence we get∑
|α|=N

ε|α|−1

α!
‖[L, ∂α]u‖s ≤ C2

∑
1≤|α̃|≤N

∑
|γ|=N−|α̃|+1

(C2ε)
N−|α̃||α̃|‖∂

α̃u‖s
α̃!

+ (C2ε)
N‖u‖s.

Since the number of multi-indices γ of length N − |α̃|+ 1 is dominated by 2N−|α̃|+d

we obtain∑
|α|=N

ε|α|−1

α!
‖[L, ∂α]u‖s dσ ≤ C ′

N∑
j=1

(C ′ε)N−jjEε
j [u] + (C2ε)

N‖u‖s.

The above constants C1, C2, C
′ depend on the operator L but are independent of

ε,N . Hence we got∑
|α|=N

ε(σ)|α|−1

α!
‖[L, ∂α]u(σ)‖s ≤ C ′NE

ε(σ)
N [u(σ)]

+ C ′
N−1∑
j=1

(C ′ε(σ))N−jjE
ε(σ)
j [u(σ)] + (C2ε(σ))N‖u(σ)‖s.

Substituting in the left hand side of (2.8) we see that it is sufficient to prove that

(3.1)

∫ t

0

ε(t)N−1

ε(σ)N−1
e−Cσ(C2ε(σ))N‖u(σ)‖s dσ ≤

1

8
e−CtΦ(t) for N ≥ 1,

and
(3.2)∫ t

0

ε(t)N−1

ε(σ)N−1
e−CσC ′

N−1∑
j=1

(C ′ε(σ))N−jjE
ε(σ)
j [u(σ)] dσ ≤ 1

8
e−CtΦ(t) for N ≥ 2,

if ε(0) = ε0 ≤ ε0 with ε0 small enough, and the constant C0 in (2.4) is large enough.
Let us prove estimate (3.1). We apply the energy estimate (2.5) with v = u.

Since Lu = N [u] has the form in (1.4), (1.5), with the aid of the Schauder’s
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estimates ‖fg‖s . ‖f‖s‖g‖L∞ one obtains

e−Cσ‖u(σ)‖s ≤ C‖u0‖s + C3

∫ σ

0

(1 + ‖u(τ)‖p−1
L∞ )e−Cτ‖u(τ)‖s dτ

for a suitable constant C3 > 0. By an application of Lemma 2.4 with a(t) ≡ 1,
ψ(t) = e−Ct‖u(t)‖s, g(t) = C‖u0‖s and h(t) = C3(1 + ‖u‖p−1

L∞ ), we get

(3.3) e−Cσ‖u(σ)‖s ≤ C‖u0‖seC3

∫ σ
0 (1+‖u(τ)‖p−1

L∞ ) dτ ,

which gives, using ε(t)N−1/ε(σ)N−1 ≤ 1 and ε(σ) ≤ ε0e
−Aσ,∫ t

0

ε(t)N−1

ε(σ)N−1
e−Cσ(C2ε(σ))N‖u(σ)‖s dσ

≤ C‖u0‖seC3

∫ t
0 (1+‖u(σ)‖p−1

L∞ ) dσ

∫ t

0

(C2ε0)
Ne−ANσ dσ

≤ C(C2ε0)
N

AN
‖u0‖seC3

∫ t
0 (1+‖u(σ)‖p−1

L∞ ) dσ ≤ 1

8
e−CtΦ(t)

if the constant C0 in (2.4) satisfies C0 ≥ C + C3 and C0 ≥ C‖u0‖s (hence these
constraints on C0 have to be added to those in (2.7)), A ≥ 1 and ε0 ≤ ε0 := 1/(8C2).
This proves (3.1).

Let us now prove (3.2) for N ≥ 2. We can use then the inductive hypothesis
(2.4) for subscripts j < N and the estimates ε(t)N−1/ε(σ)N−1 ≤ e−A(t−σ)(N−1), as
well as ε(t) ≤ ε0e

−At. Then the left-hand side of (3.2) is

≤ C ′C0e
C0

∫ t
0 ‖u(σ)‖p−1

L∞ dσ

N−1∑
j=1

(C ′ε0)
N−j

∫ t

0

je(A(j−1)+C0−C)σ−At(N−1) dσ

≤ e−CtΦ(t)
N−1∑
j=1

(C ′ε0)
N−j C ′j

A(j − 1) + C0 − C
.

The above sum is < 1/8 for all ε0 ≤ ε0 if ε0 is small enough, depending on C and
C ′ (unifomely with respect to C0 > 2C, cf. (2.7), and A ≥ 1). �

4. Proof of Proposition 2.3

To simplify the notation and without loss of generality we shall prove Proposition
2.3 in the scalar case n = 1, and for a nonlinear term N [u] = g(t, x)up, where
p ∈ N, p ≥ 2 and g(t, x) is a smooth function defined on R+×R and satisfying the
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estimate (1.5). Let us first consider the case N = 1. We have

Eε
1[N [u]] = E1[N [u]] =

d∑
j=1

‖∂xj(g(t, x)up)‖s

≤ C1

d∑
j=1

‖∂xjg‖L∞(R+×R) · ‖u‖ps + C1‖g‖L∞(R+×R) · ‖u‖
p−1
L∞ · E1[u]

≤ C ′(‖u‖ps + ‖u‖p−1
L∞ · E1[u]).

To prove (2.9) for N = 1 we are then reduced to prove that

C ′
∫ t

0

e−Cσ‖u(σ)‖ps dσ ≤
1

4
e−CtΦ(t).

Using the estimate (3.3) and assuming C0 > p(C3 + C) we obtain that

∫ t

0

e−Cσ‖u(σ)‖ps dσ ≤ (C‖u0‖s)p
∫ t

0

e(C(p−1)+C3p)σeC3p
∫ σ
0 ‖u(τ)‖

p−1
L∞ dτ

≤ (C‖u0‖s)pe(C0−C)t

∫ t

0

e−(C0−Cp−C3p)σeC3p
∫ σ
0 ‖u(τ)‖

p−1
L∞ dτ dσ

≤ (C‖u0‖s)p

C0

e−CtΦ(t)

∫ t

0

e−(C0−Cp−C3p)σ dσ

=
(C‖u0‖s)p

C0(C0 − Cp− C3p)
e−CtΦ(t)(1− e−(C0−Cp−C3p)t)

≤ (C‖u0‖s)p

C0(C0 − Cp− C3p)
e−CtΦ(t).

Then one can choose C0 large enough to have (C‖u0‖s)p
C0(C0−Cp−pC3)

≤ 1
4
. The proposition

is then proved in the case N = 1.
For N ≥ 2, using Leibniz formula we have

‖∂αxN [u]‖s ≤ ‖g(t, ·)up−1∂αxu‖s+
∑

γ+α1+...+αp=α

|αj |<|α|∀j

α!

γ!α1! . . . αp!
‖∂γxg(t, ·)∂α1

x u · . . . ·∂αpx u‖s.
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Then by Schauder’s lemma and using the condition (1.5) we obtain

Eε
N [N [u]] =

∑
|α|=N

ε|α|−1

α!
‖∂αxN [u]‖s ≤ C‖g‖L∞(R+×R) · ‖u‖

p−1
L∞ · E

ε
N [u]

+ C
∑
|α|=N

ε|α|−1

α!

∑
γ+α1+...+αp=α

|αj |<|α|∀j

α!

γ!α1! . . . αp!
‖∂γxg(t, ·)‖L∞(R+×R) · ‖∂α1

x u‖s · . . . · ‖∂αpx u‖s

≤ CM‖u‖p−1
L∞ · E

ε
N [u] + C ′εp−1

∑
|α|=N

∑
α1+...+αp=α

|αj |<|α|∀j

(Mε)|γ|
p∏
j=1

ε|αj |−1‖∂αjx u‖s
αj!

≤ C ′‖u‖p−1
L∞ · E

ε
N [u] + C ′ε

(
sup

1≤j≤N−1
Eε
j [u]

)p
,

where we used the fact that p− 1 ≥ 1 and we assume ε ≤ min{1,M−1}, M being
the constant appearing in (1.5). Then we obtain∫ t

0

ε(t)N−1

ε(σ)N−1
e−CσE

ε(σ)
N [N [u(σ)]] dσ

≤ C ′
∫ t

0

ε(t)N−1

ε(σ)N−1
‖u(σ)‖p−1

L∞ e
−CσE

ε(σ)
N [u(σ)] dσ

+ C ′
∫ t

0

ε(t)N−1

ε(σ)N−1
ε(σ)e−Cσ

(
sup

1≤j≤N−1
E
ε(σ)
j [u(σ)]

)p
dσ

if ε ≤ ε0 := min{1,M−1}.
To conclude the proof, it is then sufficient to prove that

(4.1)

∫ t

0

ε(t)N−1

ε(σ)N−1
ε(σ)e−Cσ

(
sup

1≤j≤N−1
E
ε(σ)
j [u(σ)]

)p
dσ ≤ 1

4
e−CtΦ(t).

First of all we observe that since the function ε(t) is decreasing, we have ε(t)N−1

ε(σ)N−1 ≤ 1

for 0 ≤ σ ≤ t. Moreover, writing

e−Cσ
(

sup
1≤j≤N−1

E
ε(σ)
j [u(σ)]

)p
= e(p−1)Cσ

(
sup

1≤j≤N−1
e−CσE

ε(σ)
j [u(σ)]

)p
and using the inductive assumption (2.4), we obtain that(

sup
1≤j≤N−1

E
ε(σ)
j [u(σ)]

)p
≤ Cp

0e
Cp

∫ t
0 ‖u(σ)‖p−1

L∞ dσ.
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Hence, using the explicit expression of ε(t) in (1.6) and choosing A > C0(p− 1) ≥
C(p− 1), we get∫ t

0

ε(t)N−1

ε(σ)N−1
ε(σ)e−Cσ

(
sup

1≤j≤N−1
E
ε(σ)
j [u(σ)]

)p
dσ

≤ Cp
0ε0

∫ t

0

e((p−1)C−A)σ−(A−C0p)
∫ σ
0 ‖u(τ)‖

p−1
L∞ dτ dσ

≤ Cp
0ε0e

C0

∫ t
0 ‖u(σ)‖p−1

L∞ dσ ·
∫ t

0

e−(A−(p−1)C)σ dσ

=
Cp

0ε0

A− (p− 1)C
(1− e−(A−(p−1)C)t)eC0

∫ t
0 ‖u(σ)‖p−1

L∞ dσ

≤ Cp
0ε0

A− (p− 1)C
e−CtΦ(t) ≤ 1

4
e−CtΦ(t)

choosing A sufficiently large. This concludes the proof. �

5. Examples and remarks

The following two examples make clear the expression for ε(t) given in (1.6).

Example 5.1. Consider first the linear Cauchy problem (hence p = 1) in R+ ×R
given by {

∂tu− x∂xu = 0

u(0, x) = u0(x) = (1 + x2)−1.

The initial datum extends to a holomorphic function u0(x+ iy) in the strip |y| < 1,
whereas the solution, given by u(t, x) = (1+x2e2t)−1, extends, for every fixed t, to a
holomorphic function in the strip |y| < e−t. Hence the linear part of the equation is
already responsible of the exponential decay in (1.6). For equations with constant
coefficients (even non-linear) one instead expects algebraic decay for the radius of
analyticity (cf. e.g. [9]). We plan to present a systematic study of this special case
in a future work.

Example 5.2. Fix now p ≥ 2, p ∈ N, and consider instead the non-linear Cauchy
problem {

∂tu = 1
p−1

up

u(0, x) = u0(x) = (1 + x2)−1.

The maximal solution is defined in [0, 1)× R and reads

u(t, x) = ((1 + x2)p−1 − t)−1/(p−1).
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The initial datum is the same as before. Now the solution extends to a holomorphic
function in the strip |y| <

√
1− t1/(p−1) ∼ (p− 1)−1/2

√
1− t as t→ 1. This agrees

with the formula (1.6) with A = 1/2; in fact, for 0 ≤ t < 1,

exp
(
− 1

2

∫ t

0

‖u(σ)‖p−1
L∞ dσ)

)
= exp

(
− 1

2

∫ t

0

(1− σ)−1 dσ
)

=
√

1− t.

Remark 5.3. A careful inspection of the proof shows that the conclusions of
Theorems 1.1 and 2.1 hold with a radius of analyticity

ε(t) =
1

B
exp

(
− A

∫ t

0

(1 + ‖u(σ)‖p−1
L∞ ) dσ

)
for a constant A > 0 depending only on the equation, and a constant B depending
on the initial datum; to be precise B ' (‖u0‖s + supN≥1E

ε0
N [u0])

p−1.

Remark 5.4. We observe that the condition (2.3) is used in the proof of Theorem
2.1 only to prove the energy estimate (2.5). Hence Theorem 2.1 still holds for every
system admitting a smooth solution satisfying an estimate of the form (2.5). In
particular, we can apply our result to a strictly hyperbolic system of the form

L′u = N [u]

N [u] is of the form (1.4), (1.5) and

L′ = ∂t + A(t, x,Dx)

for some n×n matrix A(t, x, ξ) satisfying the condition (2.2) and admitting distinct
purely imaginary eigenvalues iλj(t, x, ξ), j = 1, . . . , n, with

λ1(t, x, ξ) < λ2(t, x, ξ) < . . . < λn(t, x, ξ), (t, x, ξ) ∈ R+ × Rd × Rd.

It is well known that under these assumptions for s sufficiently large the Cauchy
problem {

L′u = N [u]

u(0, x) = u0

admits a solution u ∈ C1(I,Hs) ∩ C0(I,Hs+1) defined for (t, x) ∈ I ×Rd for some
time interval I and the energy estimate (2.5) holds true. Hence the arguments in
the proof of Theorem 2.1 can be applied to prove the analyticity of the solution
and the estimate of the radius of analyticity.
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