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1. ABSTRACT 

MicroRNAs (miRNAs) are small non-coding RNAs playing an essential role in gene expression regulation. Multiple
studies have demonstrated that miRNAs are dysregulated in cancer initiation and progression, pointing out their potential as
biomarkers for diagnosis, prognosis and response to treatment. With the introduction of high-throughput technologies several
computational  approaches  have  been  proposed  to  identify  cancer-associated  miRNAs.  Here,  we  present  a  systematic  and
comprehensive overview of the current knowledge concerning the computational detection of miRNAs involved in tumor onset
and subtyping, with possible theranostic employment. An overview of the state of art in this field is thus proposed with the aim of
supporting researchers, especially experimentalists and pathologists, in choosing the optimal approach for their case of study. 

2. INTRODUCTION

For many years the search for cancer biomarkers focused primarily on alterations in the status and expression of protein-coding
genes conferring a survival advantage to cancer cells (oncogenes) or preventing cancer progress (tumour suppressors).

The first  evidence that,  besides protein coding genes,  non coding RNAs (ncRNAs) and in  particular microRNAs
(miRNAs) can act  as  either  oncogenes (oncomiRs)  or  tumour suppressors  was the identification of  miR-15 and  miR-16 as
potential cancer genes in the pathogenesis of chronic lymphocytic leukemia (CLL) (1). In more than half of CLL cases and in
other  malignancies,  deletion of  13q14.3.  was reported,  suggesting the occurrence in  this  region of  tumor suppressor  genes
involved in the initiation or progression of this disease. However, the identification of causal genes related to loss of 13q14.3. in
CLL failed, until the discovery that the critical region contained two tightly linked miRNAs, miR-15a and miR-16-1, responsible
of tumor suppression. 

In the early 1990s miRNAs were discovered (2, 3) as small non-coding RNA molecules (approximately 22 nucleotides
in length) that post-transcriptionally regulate gene expression by binding targets mRNAs and leading to inhibition of translation
or mRNA degradation (4). MiRNA are transcribed from different genomic locations as long primary transcripts (pri-miRNA) by
RNA polymerase (5). Frequently, to allow coordinated expression, some miRNAs are clustered in polycistronic transcripts. Once
transcribed, the pri-miRNA is processed by the successive action of two enzymes, Drosha and Dicer, to generate the mature
miRNA, recruited into an effector complex called RNA-induced silencing complex (RISC).  In animals,  the mature miRNA
guides the  RISC complex  to  the target  mRNAs through imperfect  base-pairing  to  multiple  sites  preferentially  observed in
3'untranslated regions (UTRs). In the currently described binding model, Watson-Crick base-pairing to the 5' end of miRNAs,
especially to the so-called “seed” that comprises nucleotides 2-7, is crucial for targeting (6).

MiRNA genes are frequently located in cancer susceptibility regions and at fragile sites, supporting their involvement
in cancer disease (7). Since 2002, when miR-15/16 involvement in CLL was described, expression data from a large panel of
cancer cell types have confirmed aberrant miRNA expression in a variety of cancer diseases (8-10). More recent experimental
evidences  suggest  that  specific  miRNAs  may  also  have  a  role  beyond  the  cancer  onset  and  directly  participate  in  cancer
invasiveness and metastasis (11, 12). In fact, miRNA profiles can distinguish not only between normal and cancerous tissue but
they can also successfully classify different subtypes of a particular cancer (13, 14). Moreover, due to their small size, miRNAs



are more stable than long mRNAs, allowing expression profiling from fixed tissues or other biological material. These results
thus corroborate the interest in miRNAs as novel, minimally invasive and robust biomarkers. In the last years, the discovery of
miRNAs in body fluids has opened the perspective to introduce miRNAs in clinics as biomarkers and putative therapeutic targets
(15, 16).

Since miRNAs started to be largely studied, multiple reviews dealing with these small non coding RNAs in cancer have
been proposed (17-19). Some of them provide an overview of the existing methods for miRNAs discovery (18). Some others take
into account the different approaches for the prediction of miRNAs target transcripts (19). Finally, others are more centered on
the medical aspects concerning microRNAs in cancer and they briefly report some examples of computational tools (17). Here
we present a systematic and comprehensive overview of the current knowledge concerning the computational identification of
miRNAs involved in cancer onset and subtyping, with possible theranostic employment. The aim of this review is thus to help
researchers, especially experimentalists and pathologists, in choosing the optimal approach for their case of study. Indeed due to
the complexity and heteregeneity of cancer diseases, computational approaches and system-oriented studies are becoming largely
employed to complement some limitations of experimental studies (20).  The description of the computational approaches is
organized as follows: in the first part, we describe methods exploiting expression data from miRNAs and/or mRNAs. The second
part is devoted to those methods that capture the effect of a joint miRNA-TF regulation. Then, some pipelines are introduced that
make use of more recent types of genomic data such as PAR-CLIP data and methylation profiles. In the last part, more recent
pipelines taking into account the miRNA-miRNA synergistic effect are described. 

3. COMPUTATIONAL APPROACHES TO DETECT MIRNAs INVOLVED IN CANCER ONSET AND SUBTYPING

Following the discovery of the crucial  role of miRNAs in cancer,  computational methods for the identification of
microRNAs potentially driver of cancer onset or subtyping have been proposed. Here, with the term miRNA driver we refer to a
miRNA whose overexpression promotes  the transition of  a  cell  from the normal  state  to  the cancerous one (cancer  driver
miRNA), or from a cancer subtype to another (cancer subtyping driver miRNA). Depending on the type of data that they employ,
six main categories of approaches can be distinguished: (i) Methods based on miRNA expression data; (ii) Methods based on
mRNA expression data; (iii) Methods based on combined miRNA-mRNA expression data; (iv) Methods taking into account the
miRNA-TF crosstalk; (v) More recent integrative works considering also other data types; (vi) Methods considering the miRNA-
miRNA synergistic effect. These six points are treated in detail in the sections below,  a summary of the main computational
approaches employed in the proposed algorithms is presented in Figure 1 and an overview of the available tools for each category
is summarized in Table 1.

3.1. Methods based on miRNA expression data
The role of microRNAs in cancer started to be explored computationally when the first profiling methods, able to

measure the expression pattern of all  known miRNAs, were made available (1,  21-27). At the beginning,  the bioinformatic
studies employing these expression data were aimed at investigating whether miRNAs expression could be used to distinguish
tumour  from  normal  tissue  (26).  Interestingly,  such  works  proved  that  miRNA expression  profiles  could  be  surprisingly
informative even when no robust mRNA marker could be identified. As a consequence, their encouraging classification power
and their number, lower than that of mRNAs, made them suitable as tumor biomarkers. Many researchers started to explore
computationally the involvement of miRNAs in cancer onset and subtyping through the analysis of their expression data with
statistical tests as Student’s t-test (8, 28-30), Wilcoxon signed-rank test (31-33), ANOVA (32, 34, 35) and Significance Analysis
of Microarrays (SAM) (8, 36). 

The output of such analysis is generally composed of hundreds of miRNAs, some of which are likely to be false
positives. However, a biomarker set should better be composed of only few molecules in order to be practically used in clinics,
thus differential expression analysis alone is not sufficient and a second step of prioritization is mandatory. Multiple strategies
were proposed to reduce the list of candidate microRNAs. When it was possible, microRNAs were ranked based on the number
of similar studies in which they were found differentially expressed (37). This strategy led, for example, to the detection of miR-
21, miR-106b, miR-17, miR-18a and miR-20a as candidate diagnostic and/or prognostic biomarkers for gastric cancer. In other
cases  the  functional  consistency  between the  miRNA target  genes  and  cancer-related  genes  was  evaluated  to  quantify  the
association between miRNAs and the type of cancer under investigation (38).  Data-driven approaches,  based on the use of
experimental  measurements  of  other  nature  like  epigenetics  (39),  or  proteomics  (40),  or  employing  prior  knowledge  like
networks  (41,  42),  were  also  employed  for  microRNA prioritization.  This  last  strategy  involves  the  reconstruction  of  an
undirected weighted network, whose nodes and edges represent differentially expressed miRNAs and their correlations (when
significant),  respectively. In such a network,  critical  nodes were pointed out evaluating some  centrality measures classically
employed  in  network  theory:  degree,  betweenness and  clustering  coefficient  (43).  Employing  this  approach,  in  (41)  some
candidate driver miRNAs in colorectal (miR-195, miR-1280, miR-140-3p and  miR-1246) and in pancreatic (miR-103, miR-23a
and miR-15b) tumors were identified. Among them, some were already known to regulate key oncogenic processes. MiR-103 is
associated with the TGF-β signaling and thus it contributes in maintaining tissue homeostasis and it plays a crucial role in the
suppression of the proliferation in cancer cells. MiR-23a is involved in the KRAS-mediated signaling. Finally, the overexpression
of miR-1246 had already been proved to decrease the induction of apoptosis. 
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Given their ability to model the miRNA organization at a system-level, networks have been also employed alone to
detect miRNA drivers. In some cases, following the procedure detailed above, a network whose nodes represent all the expressed
microRNAs is  reconstructed  independently  in  tumor  and  normal  tissue.  Then  the  two obtained  networks  are  compared  to
highlight cancer-associated microRNAs (44). Variants of the network reconstruction procedure were also explored, based on
measures  different  from correlation (45),  or  combining miRNA expression with  alternative  sources of  information as  drug
response and miRNA targets (46). In this last case, the approach led to the identification of 11 oncomiRs (e.g. miR-20a-5p, miR-
27a-3p, miR-29a-3p, and miR-146a-5p) biomarkers for metformin response in breast cancer. Finally, an approach completely
independent from the aforementioned ones is PROGmiR (47), which selects biomarker miRNAs having a prognostic potential
based on the Kaplan-Meier overall survival.

Overall, methods based on miRNA expression data can be easily used to identify miRNA biomarkers based on their
differential expression between normal and cancer tissues. The association between miRNA and clinical data can also provide
risk stratification of patients. A main advantage of miRNA in this context is that, as they are very stable in formalined tissues,
retrospective or prospective studies can be performed on samples collected in a clinical setting. The main drawback of analysis
using only miRNA data is the difficulty to define their functional consequences on disease progression with confidence.

3.2. Methods based on mRNA expression data
As described in the introduction, miRNAs act on the target mRNAs by translational silencing or mRNA degradation.

Thus, it has been demonstrated that mRNA abundance for the majority of the targeted genes is somewhat affected by miRNAs
(48, 49). Therefore the activity of a microRNA can also be predicted from mRNA expression data. Methods predicting miRNA
activity using mRNA data are particularly useful as mRNA expression data are already available for virtually all diseases. The
large availability of these data thus makes in silico studies predicting miRNA activity and their potential as biomarkers extremely
powerful. Predictions based on such studies can have outcomes both for biologists studying a specific tumor or pathologists to
assess new biomarkers.

All the algorithms that try to capture the dysregulation of a microRNA using only mRNA expression data generally
explore the expression behavior of its targets obtained using only one predictive database  (e.g. TargetScan, PITA, PicTar and
miRanda). Some examples are Sigterms (50) and CORNA (51) that perform an mRNA differential expression analysis and then
test whether the set of differentially expressed genes is enriched in predicted targets of a particular miRNA. Another tool is
MirAct (52), which infers the regulatory effect of a miRNA via a two-step procedure. First, a score measuring the activity of a
miRNA in a sample is obtained by comparing the expression levels of its non-targets with those of its targets. Second, the
changes of miRNA activity across different classes of samples are investigated by comparing the scores across samples. Finally,
miR-Path (53) is a recently developed R package to identify cancer driver microRNAs. The algorithm first identifies the targets
of each microRNA, using more than one predictive database, then it ranks the microRNAs based on the number of cancer
pathways that are enriched in their targets. The outputs of all these algorithms are strongly influenced by the huge amount of false
positives and the unknown amount of false negatives produced by the currently available microRNA target prediction algorithms.
On the contrary, CoMeTa (The Co-expression Meta-analysis of miRNA Targets) (54) is less affected by the number of false
positive miRNA targets, given that it selects bona fide miRNA target genes by ranking them according to their degree of co-
expression. Of particular note is the fact that miR-519d, miR-190 and miR-340, predicted by CoMeTa to regulate the TGFβ
pathway, were functionally validated.
All these algorithms do not take into account miRNA expression data, thus the association between the miRNA and the mRNA
expression levels  is  not  evaluated,  loosing a  key information which could provide evidence for  the regulatory relationship
between the miRNA and its putative mRNA targets. 

3.3. Methods based on combined miRNA-mRNA expression data
As pointed out in the previous section, the use of combined miRNA/mRNA expression data may be a timely strategy to

study the regulatory relationship between a miRNA and its putative targets,  permitting to achieve a higher precision in the
identification of biomarker  miRNAs in cancer  and to asses their functional significance.  Nowadays the study of  combined
miRNA/mRNA expression data is easy thanks to the multiple data types from hundreds of cancer patients that are collected in
repositories such as Gene Expression Omnibus (GEO) (55), The Cancer Genome Atlas (TCGA, http://cancergenome.nih.gov) and
the International Cancer Genome Consortium (ICGC (56)). Therefore, numerous procedures have been developed in the last
years to infer miRNA activities from these data. Based on their final aim, these works can be divided into two main categories: (i)
those interested in miRNA-mRNA couples and (ii) the microRNA-centered ones. The aim of the methodologies belonging to
group (i) is the identification of co-expressed miRNA-mRNA couples whose behavior is altered in cancer. Such couples are
generally identified by combining miRNA target prediction with miRNA/mRNA expression profiles correlation (57-61), or by
more sophisticated approaches integrating miRNA/mRNA expression with sequence complementarity (62-64),  or with other
strategies capturing the miRNA-mRNA pairs without taking into account target complementarity (65-68). Among the results
obtained by these methods, the miR-29 family was identified to recurrently regulate the DNA demethylation pathway in (60) and
a signature of four miRNAs (miR-320d, miR-139-5p, miR-567 and let-7c) was proposed for breast cancer grade classification in
(61).
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All these approaches, powerful for precise miRNA targets identification, have limited application in the context of
miRNA biomarkers detection. In fact, given that they deal with miRNA-mRNA couples, their evaluation of the miRNA driving
role is always conditioned by the activity of the associated mRNA. To overcome this limitation, methodologies that are centered
on microRNAs, corresponding to group (ii), are needed. The most common and well-defined miRNA-centered procedure taking
advantage of both miRNA and mRNA expression data involves a first step of microRNA differential expression analysis, in
which active microRNAs are detected, followed by the evaluation of their regulatory effect on mRNAs, in which the intersection
between the miRNA predicted targets and the group of regulated genes emerging from the expression data is computed. The set
of mRNAs regulated by each microRNA is generally evaluated studying the anti-correlation between the expression values of the
miRNA and those of its targets. A popular example of this kind of approach is MAGIA (69), but a similar procedure is also
applied in other works (70-75). Interestingly, such approach led to the identification in (73) of two miRNA signatures (miR-16,
miR-155, miR-125b, miR-374a and miR-16, miR-125b, miR-374a, miR- miR-374b, miR-421, miR-655, miR-497) predictive of
triple negative breast cancer overall survival and distant-disease free survival, respectively. Alternative measures employed to
capture  the miRNA-target  activity  from expression data  are:  inverse  expression (MMIA (76)),  which is  less  stringent  than
correlation, penalized Cox regression (77) and Independent Component Analysis (ICA), which was proved to give more reliable
results than correlation (78). In the last case eight microRNAs involved in type 1 diabetes regulation were identified, three of
which (miR-124, miR-375 and miR-204) were already documented to have an important role in this disease.

Given that these approaches evaluate the miRNA activity based not only on its expression but also on its regulatory
effects, they tend to be more accurate than those described in the previous sections. However they do not capture all those cases
in which a miRNA up-regulates its target mRNAs, phenomenon that has been abundantly observed (79-82). To take into account
also this regulatory mechanism, bioinformatics strategies that do not use miRNA-mRNA sequence complementarity have been
developed. Some of them apply the procedure described above without using target prediction, i.e. miRNA differential expression
followed by correlation analysis with all the expressed mRNAs (83, 84). In this case both positive and negative correlations are
considered.  Such basic  strategy proved is  effectiveness  by identifying  miR-648 as  a  novel  candidate  miRNA biomarker  in
prostate cancer (84). Some modifications of this pipeline have then been also proposed. Hua et al. (85) substitute correlation with
summed Pearson Correlation Coefficient (sPCC) that is less affected by signal distortions than correlation. Engstrom et al. (86)
and Genovese et al. (87) replace correlation with Mutual Information (MI), which does not assume a linear relationship between
miRNA and  mRNA expression  values.  Other  methods  substitute  miRNA differential  expression  analysis  with  alternative
approaches (87-89). Genovese et al. (87) and Zadran et al. (88) employ information-theoretic approaches, Context Likelihood of
Relatedness  modeling  algorithm and  Surprisal  analysis,  respectively.  Finally,  Sehgal  and  coauthors  (89)  substitute  miRNA
differential expression analysis with a selection based on the prognostic significance, more advisable for clinical application. The
use of measures alternative to correlation led in (87) to the identification of a novel regulation of TGF-β signaling via Smad4 by
miR-34a. 

The advantage of the above methods in respect to those that intersect predicted targets with expression correlation is
that they are more general and thus they can capture more complex miRNA-mRNA regulatory events. However, given that they
are less specific, they tend to be considerably prone to false positive predictions. In this regard, a good compromise is represented
by the combined use of miRNA targets prediction and miRNA/mRNA expression analysis without computing the intersection of
the  two.  Examples  of  these  approaches  are  represented  by  Context-Specific  MicroRNA  analysis  (CosMic)  (90),
TargetRunningSum (91) and MicroRNA Master Regulator Analysis (MMRA) (92, 93). The first two pipelines use a strategy
closely related to gene set enrichment analysis (GSEA) to calculate the enrichment of the top ranked sequence-based predicted
targets by the top ranked correlated genes. MMRA performs a more complex procedure involving  four sequential steps, each
aimed at progressively reducing the number of candidate microRNAs: (i) differential expression analysis to highlight microRNAs
with subtype-specific expression; (ii) target transcript enrichment analysis, to further select those microRNAs whose predicted
targets are enriched in the associated subtype mRNA signature; (iii) network analysis, in which an mRNA network is constructed
around each microRNA using ARACNE and tested for enrichment in signature genes; (iv) identification of microRNAs whose
expression ‘explains’ the expression of subtype signature genes, using stepwise linear regression (SLR) analysis. The pipelines
described so far have been typically applied to distinguish tumour from normal tissue or to test the involvement of microRNAs in
a  pathway  based  on  expression  profiles  derived  from  cell  lines  under  stimulation.  On  the  contrary,  MMRA  and
TargetRunningSum are the first designed for miRNA biomarker identification in tumor subtypes, a comparison characterized by
much lower variations. Moreover, as done only for CoMeTa so far, the results of both CosMic and MMRA were experimentally
validated in cancer cell lines by microRNA silencing experiments. In particular, the control of migration by miR-20a, miR-212
and miR-671-5p, identified by CosMic, was validated in MCF10A cells after EGF stimulation. On the other hand, miR-429, miR-
200b, miR-203 and miR-194, predicted by MMRA to drive the stem-like aggressive and poor prognosis colorectal cancer (CRC)
subtype, were functionally validated in HT29, NCIH508 and SW403 CRC cell lines, suggesting the use of these miRNAs as
biomarker and/or therapeutic molecules in the aggressive CRC subtype. Therefore MMRA is the only pipeline in its category able
to identify candidate miRNA driver of cancer subtypes whose role has been functionally verified.

Overall, the approaches based on the combined use or miRNA and mRNA expression described in this section allow
not only to strengthen miRNA prediction as a biomarker but also to reconstruct the effects of the miRNA deregulation on the
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cellular functions. They can thus lead to the identification of central pathways deregulated in cancer, having direct consequences
in the development of new therapeutic strategies. Moreover, the outputs of such approaches can help identifying key regulatory
mechanisms involved in drug resistance that can be targeted in the context of drugs combination.

3.4. Methods taking into account the miRNA-TF crosstalk
The translation of an mRNA into protein is a multi-step process regulated at the transcriptional and post-transcriptional

level by Transcription Factors (TFs) and microRNAs, respectively. Considering that TFs and miRNAs play a prominent role in
transcription, their own and target sequences represent one of the major location of cancer-driver alterations. At the same time,
given that they share a common regulatory logic, it is straightforward to hypothesize that they are able to cooperate. Therefore
cancer onset or subtyping is more frequently characterized by a dysregulation in the synergistic miRNA-TF crosstalk rather than
by the alteration of a single factor. As a consequence, to robustly identify miRNA biomarkers, it is important to consider the
coordinated miRNA-TF activity, which is generally modeled using networks. MiRNAs, mRNAs, and TFs are the three classes of
nodes in these networks, while edges are usually drawn integrating co-regulations inferred from miRNA/mRNA expression data
with  database  derived  interactions  (e.g.  TF-gene  interaction  form  JASPAR,  TRANSFAC  and  ECRbase  ;  miRNA-gene
interactions  from  PITA,  miRANDA,  TargetScan  5.0.,  RNAhybrid  and  Pictar,  Microcosm,  microrna.org,  DIANA-microT,
miRDB, RNA22 ; TF-miRNA interactions form mirGen2.0. and TransmiR). Moreover, a sign is associated to each graph edge
corresponding to activation/inhibition depending if this connects a molecule that influences positively/negatively the level of
another one. In this context, the different algorithms differ for the technique used to combine the database-derived and data-
driven interactions. MAGIA2  (94), extension of the MAGIA algorithm described in the previous section, and mirConnX (95)
reconstruct  two independent  networks.  One derived  from matched  microRNA/mRNA expression data  according to  Person,
Spearman correlation and mutual information. The other consistently retrieved from multiple interaction databases.  The two
networks are  then integrated computing the intersection for  MAGIA2 and through a weighted sum function for  mirConnX.
Interestingly, mirConnX proved to be performing particularly well in the detection of cancer associated miRNA-TF interactions.
For example, it identified a feed-forward loop among SMAD TFs, let-7 d and HMGA2 gene, which is central in the regulation of 
epithelial to mesenchymal transition (EMT). These approaches can be employed only if a matched microRNA/mRNA expression
dataset is available. Alternative methods, applicable also to unmatched miRNA/mRNA expression data, perform miRNA and
mRNA differential  expression  analysis  and  then  reconstruct  the  network  whose  nodes  are  represented  by  the  differential
molecules and whose links are derived from databases. MAGIA2  (supporting both procedures) and the pipelines by Ying et al.
(96) and Samantarrai et al. (97) follow this idea. Interestingly, the work by Ying and coauthors put light on the role of miR-16 in
triggering an accumulation of cells in G0/G1 through the silencing of multiple cell cycle genes and thus they suggested this
miRNA as candidate biomarker for ovarian cancer. The integration of database and data-driven derived information has been
finally performed also in other two completely new ways (98, 99). Gene4x (98) combines mRNA expression data with database
knowledge  (including  protein-protein  interactions)  through  the  use  of  multi-networks.  The  approach  proposed  by  Yu  and
coauthors (99)  uses a linear  regression model  taking into account  both miRNA/mRNA expression and predicted regulatory
relationships. Of note is the fact that multiple candidate biomarker microRNAs have been suggested for colorectal, pancreatic,
lung and gastric cancer in (98). For example, MiR-337 was suggested as biomarker for survival in pancreatic cancer and indeed
its overexpression had already been shown to induce the suppression of cell proliferation and invasion in pancreatic cancer. MiR-
153 was identified as prognostic marker in the same cancer and indeed it was already known to inhibit PDAC cell migration and
invasion by targeting SNAI1.

The regulatory networks, obtained with the procedures described above, are usually composed of over-represented sub-
network patterns known as network motifs (100, 101). Among the various motifs mixed feed-forward loops (FFLs) are those
playing a pivotal role in gene regulation and known to have an important role in cancer development (102). A typical mixed FFL
consist of a TF that regulates the transcription of the miRNA and both the TF and the miRNA regulate a common set of target
gene (103-106). Given that the study of mixed FFLs has emerged as a powerful tool to understand specific biological events,
multiple research groups have investigated their involvement in cancer. Sun et al. (107) have first reconstructed the regulatory
network of genes, TFs and microRNAs known to be involved in Glioblastoma (GBM) and then they have extracted significantly
over-represented mixed motifs. With such approach, Sun  et al. suggested six key miRNAs (miR-124, miR-137, miR-219-5p,
miR-34a, miR-9, and miR-92b) involved in the Notch signaling pathway in GBM. Among them the most noteworthy one is miR-
34a,  which regulates proteins involved in cell cycle, apoptosis,  differentiation and cellular development.  Afshar  et al.  (108)
developed integraMiR a new tool for regulatory network reconstruction and detection of overrepresented FFLs. On the other
hand, there are methods that do not reconstruct the network, but only explore all possible FFL combinations. Some of them
reconstruct the FFLs using only databases information (109, 110). In (110) the authors provide a comprehensive database of all
possible FFLs involving MYC, a TF of crucial importance in several biological processes, using only experimentally validated
interactions. In particular, the authors centered their discussion on three main FFL circuits: (i) MYC-PTEN-(miR-106b, miR-93,
miR-25, miR-19a, miR-22, miR-26a, miR-193b, miR-23b) suggested to act as a noise buffering circuit that guarantees a steady
level of PTEN, a tumour suppressor gene which plays an important role in various cancer related pathways; (ii) MYC-RB1-(miR-
106a, miR-106b, miR-17) which controls the expression of the retinoblastoma protein (RB1), a tumour suppressor shown to be
dysfunctional in many types of cancer and (iii) MYC-VEGF-(miR-106b, miR-106a, miR-93, miR-34a, miR-20a, miR-17, miR-
16, miR-15a) involved in cell migration and apoptosis. Jiang at al. (111) and Yan et al. (112) studied the FFLs active in multiple
cancer types. In (111) network motifs were reconstructed in 13 tumor types using predicted interactions. 26 of those motifs were

5



then prioritized having a significant biological activity in at least 5 tumor types, where the biological activity was investigated
through node differential expression and edge differential co-expression between tumor and normal tissue. In (112), instead six
tumor types were examined for FFLs presence through the tool dChip-GemiNI developed by the authors in the same paper.
DChip-GemiNI  reconstructs  the  FFLs  using  different  predictive  databases  and  then  selects  significant  FFL motifs  through
integration of network motifs and expression data. The significance of a motif is determined through the use of a network motif
score (NMS) and false discovery rate (FDR). The NMS is a function of multiple scores, including TF and miRNA binding scores
to their target sequences, differential expression P-values of the FFL components between normal and cancer tissues, and TF and
miRNA’s target enrichment in differentially expressed genes and miRNAs. The major limit in the use of the methods described
above for miRNA biomarkers identification is that they describe interactions that are more complex than those of the other
approaches. Indeed given that they try to capture regulatory processes jointly controlled by a miRNA and a TF their activity
cannot be controlled by only looking at the behavior of the miRNA.

The employment of the approaches proposed in this section for biomarkers identification is limited by the fact that they
take into account mechanisms that are too complex to be used in the clinics for cancer detection. However, their power is due to
the fact that they can substantially help cancer management by predicting key driver mechanisms with possible therapeutic
application.

3.5. More recent integrative works considering also other data types
The studies described so far are based on the use of expression data alone, they thus ignore all those effects that arise

from the interaction among different genomics levels. However, cancer is a complex disease characterized by multiple levels of
dysregulation, for this reason the generation of integrative approaches can be employed to better elucidate the role of small non-
coding RNAs in cancer. With the current availability of large collections of multi-omics data, it is now possible to compare
cancer and normal profiles in multi-omics dimension. The integrative studies designed for microRNA biomarker identification
realized  so  far  combine  methylation  with  miRNA/mRNA expression  data.  Volinia  S.  and  Croce  C.M.  (113)  employed
methylation and miRNA/mRNA expression data from TCGA to construct an integrated prognostic signature, composed of 7
miRNA (such as hsa-miR-328, hsa-miR-484, and hsa-miR-874) and 30 mRNA genes, for invasive breast cancer. RNAs were
selected if being significant in the survival analysis in at least two prognosis related subgroups and if their DNA methylation
profile was significantly associated with patients overall survival. Finally the identified signature was tested in eight independent
datasets proving to perform better than previous ones for risk stratification. Rajamani D. and Bhasin M.K. (114) employed a
network-based  approach  to  integrate  the  same  omics  profiles  (mRNA,  miRNA,  DNA methylation)  in  pancreatic  ductal
adenocarcinoma (PDAC). In particular, first multidimensional disease signatures were obtained using rank-based meta-analysis,
then these signatures  were integrated in  a  network constructed using knowledge-based interaction information.  Finally  key
regulators were identified from the network based on centrality measures. Yang et al (115) investigated the role of microRNAs in
the regulation of the ovarian cancer (OvCa) mesenchymal subtype through a multivariate linear regression model searching for
differentially expressed genes whose expression was correlated with copy number alteration, DNA methylation, or associated
miRNA expression. With such approach, eight miRNAs were predicted to be crucial in the regulation of the OvCa mesenchymal
subtype. Follow-up functional experiments validated the role of miR-506 in inhibiting cell migration and in preventing TGFβ-
induced epithelial-mesenchymal transition by targeting SNAI2, a transcriptional repressor of E-cadherin. 

Integration of multi-omics data is becoming nowadays a widely employed approach to decipher the complexity of
diseases such as cancer. Using miRNA data along with other data types can define comprehensive prognosis for patient that
would not be achieve with single data sets. It is foreseeable that muli-omic based prognosis as the potential to be the most
accurate methodology to precisely risk stratify patient and will play an important role in therapeutic strategy choices. On the
other side, one difficulty in determining the microRNAs activity is represented by the wide set of potential target genes. To more
accurately determine miRNA targets,  Photoactivatable-Ribonucleoside–Enhanced Crosslinking and Immunoprecipitation (PAR-
CLIP)-based methodologies (116), able to experimentally identify microRNA–target interactions in a genome-wide manner, have
been designed in the last years. However the current collection of miRNA targets identified through the PAR-CLIP technology is
restricted to a subset of the expressed microRNAs. For this reason the data obtained with this experimental technique have been
recently combined with predictive approaches to increase the accuracy of the reconstructed miRNA-target interactions. Farazi
and coauthors (117) identified miRNAs controlling subtype-specific pathways in breast cancer by training a regression model to
rank and select miRNA-target interactions from TargetScan predictions that display similar characteristics to AGO2-PAR-CLIP
targets and then prioritized miRNA regulatory activity based on association with expression of respective validated targets. The
results  of  this  approach suggest  that  miR-17,  miR-19a,  miR-25,  and miR-200b show high regulatory activity  in  the triple-
negative, basal-like subtype, whereas miR-22 and miR-24 do so in the HER2 subtype. Hamilton  et al. (10) identified a pan-
cancer,  coregulated oncogenic microRNA ‘superfamily’ by integrating the atlas of AGO-PAR-CLIP-based microRNA targets
with microRNA/mRNA expression, copy number variation (CNV) and exome-sequencing datasets. 

3.6. Methods considering the miRNA-miRNA synergistic effect
These few decades of research on miRNA regulation have evidenced that in cancer, as in other contexts, miRNAs

frequently act in a combined manner (118). The availability of large datasets derived from high-throughput experiments has
allowed researchers to start investigating the synergistic relationships among miRNAs. Some computational methods have then
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been designed to predict genes and pathway jointly regulated by a set of microRNAs. The network-based methods that we have
described above for the prioritization of differentially expressed microRNAs (41, 44-46) represent a first example of such kind of
methodologies. Given that from the structure of the miRNA-miRNA network, used to prioritize miRNAs, it is also possible to
elucidate their combined effect. Some methods have then been specifically designed for the identification of synergic microRNAs
regulatory modules (119-121). Zhang  et al (119) designed mirSRN (miRNA synergistic regulatory network), to infer miRNA
synergism in human molecular systems by considering both downstream miRNA targets and upstream TF regulation. Xu et al.
(121)  constructed  a  miRNA–miRNA functional  synergistic  network  via  co-regulating  miRNA modules  satisfying  three
conditions: common targets, enriched in the same gene ontology category and close proximity in the protein interaction network.
The same authors  compared  the  miRNA synergistic  network  obtained  on  normal  and tumor tissue observing an increased
frequency of synergism in the disease network. Two well-known examples of cooperating microRNA sets are represented by
miRNA families and genomically clustered microRNAs (122). MiRNA families are composed of miRNAs that share the same
seed region and thus can be captured by all those approaches that evaluate synergism by looking at the number of common
targets between groups of microRNAs. On the other hand, what is striking about miRNA clusters is that they frequently contain
representatives from different miRNA families, meaning that the miRNAs of a given cluster can target different mRNAs, but
surprisingly they have been shown to jointly regulate proteins in close proximity of the PPI network (123), or belonging to the
same pathway (124). The role of some well-known miRNA clusters in cancer has been largely studied experimentally (118).
However more than half of the total human microRNAs are organized into genomic clusters. If this is not a random event, we can
thus hypothesize an involvement of  other clustered miRNAs in cancer.  The systematic investigation of  the role  of miRNA
genomic clusters in cancer can be only realized computationally. By now, only two computational works exist about miRNA
clusters  (125,  126).  They  are  both  based  on  miRNA differential  expression  analysis,  but  no  methodologies  have  yet  been
designed for the identification of biomarker miRNA clusters employing more sophisticated steps as those described above for
single miRNA pipelines. 

4. CONCLUSIONS AND PERSPECTIVES

Since 2002, when the involvement of miR-15/16 in CLL was described, bioinformatic approaches contributed greatly
in elucidating the role of miRNAs in cancer. One of the causes of the high interest in miRNAs activity in cancer is given by the
fact that these tiny molecules are attractive candidates for employment as biomarkers. In fact, miRNAs are known to be very
stable in formalined tissues, which are the common source of samples for biomarker analysis, and they are present in body fluids,
which makes their analysis possible by less invasive methods and hence more practical in clinical settings. However, the full
potential of miRNAs should not be exhausted in their use as biomarkers. Future research should increment the development and
delivery of miRNA-based drugs.  In this respect,  some miRNAs have already shown promising results (127).  Moreover,  to
increase the efficacy of currently used non-miRNA treatments, miRNAs can be employed to overcome resistance by acting on the
multiple genes associated with a chemoresistant phenotype. Outstanding challenges remain to be overcome in order to achieve
this goal. The two main problems in miRNA-based therapies are their poor cellular uptake due to their size and negative charge,
as well as the off target effects due to the fact that a miRNA affects hundreds of transcripts in different tissues. To overcome these
limitations nanoparticles and polymers as well  as virus-based approaches are starting to be employed and overall,  targeting
miRNAs to reprogram regulatory mechanisms in cancer remains a strategy with strong potential and chances for success. 

The achievement of such a goal in a less timing and resource demanding way can be performed thanks to the support of
systems biology. In fact, elucidating the involvement of microRNAs in cancer onset and subtyping can help in the prioritization
of the key miRNAs having a promising power in theranostics. In this review the state-of-art computational approaches for the
detection  of  driver  microRNAs  in  cancer  have  been  comprehensively  described.  Concerning  the  existing  methods,  those
combining  miRNA  expression  with  other  measurements  (e.g.  mRNA  expression,  methylation)  are  those  giving  better
performances. In particular, the approaches combining miRNA and mRNA expression gave the best performances leading to
output miRNAs whose key role was also validated in functional experiments. The overall results seem thus to indicate that
integration of different data types is the key to improve the future development of miRNA-based theranostic tools. 

The majority of the approaches here proposed are devoted to elucidate the involvement of single microRNAs in cancer.
However, miRNAs have been shown to frequently act in a combined manner, both in cancer and in other contexts. In particular, a
well-known example of cooperating microRNA sets is represented by genomically clustered microRNAs. What is striking about
miRNA clusters is that their components can target different mRNAs that surprisingly jointly regulate proteins in close proximity
of the PPI network (118), or belonging to the same pathway (119). The systematic investigation of the role of miRNA genomic
clusters in cancer can be only realized computationally and by now no sophisticated methodologies have been designed for the
identification of biomarker miRNA clusters. For this reason, the design of methodologies centered on genomically clustered
microRNAs  should  probably  represent  the  next  step  to  achieve  in  computational  biology  in  order  to  improve  the  actual
identification of miRNAs in theranostics.
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Figure 1. Summary of the main computational modules employed. Summary of the main computational tasks performed by the
six chategories of algorithms presented in the paper. The grid reports on the rows the six tool chategories ( (i) Methods based on
miRNA expression data;  (ii)  Methods  based  on  mRNA expression  data;  (iii)  Methods based on combined  miRNA-mRNA
expression data; (iv) Methods taking into account the miRNA-TF crosstalk; (v) More recent integrative works considering also
other data types; (vi) Methods considering the miRNA-miRNA synergistic effect) and in columns the computational modules
(miRNA differential  expression analysis,  network miRNA-miRNA, survival analysis,  functional analysis,  mRNA differential
expression analysis, miRNA targets prediction, network miRNA-mRNA, TFs activity, miRNA-mRNA correlation computation,
integration of other data). A violet square is present in position (i,j) if the computational module j has been employed in at least
one publication of the tool chategory i. 

Table 1. Summary of the main discussed tools
Method category Main tool available to run discussed in 

this review
Main procedures not yet implemented in a tool discussed in this 
review

(i) Methods based on miRNA expression 
data

PROGmiR, SAM, ANOVA, Wilcoxon test, 
t-test

Volinia et al. (44), Piepoli et al. (41), Zhang et al. (39)

(ii) Methods based on mRNA expression 
data

Sigterms, CORONA, MirAc, miR-Path, 
CoMeTa

(iii) Methods based on combined miRNA-
mRNA expression data

MAGIA, MMIA, CosMic, 
TargetRunningSum, MMRA

Cava et al. (61), Liu et al. (66), Sehgal et al. (89), Hua et al. (85), 
Engstrom et al. (86), Genovese et al. (87)

(iv) Methods taking into account the 
miRNA-TF crosstalk

MAGIA2, mirConnX, Gene4x, integraMiR,
Dchio-GemiNI,

Ying et al. (96), Samantarrai et al. (97), Yu et al. (99), Sun et al. (107)

(v) More recent integrative works 
considering also other data types Volinia et al. (113), Rajamani et al. (114), Yang et al (115), Farazi et 

al. (117), Hamilton et al. (10)

(vi) Methods considering the miRNA-
miRNA synergistic effect

mirSRN Xu et al. (121)

The main methods/algorithms/tools discussed in the text are here summarized. On the rows are reported the main six categories
of  approaches  described  in  the  text,  while  the  two  columns  correspond  to  tools  available  to  run  and  procedures  not  yet
implemented in a tool, respectively.

Running title: ???? 
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