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Abstract  

Intrinsic or acquired chemoresistance represents the main obstacle to the successful treatment of 

cancer patients.  Several mechanisms are involved in multidrug resistance: decreased uptake of 

hydrophilic drugs, increase of energy dependent efflux, alteration of the redox state, alteration of 

apoptotic pathways, and modification of the tumor microenvironment. In recent years, several types 

of nanoparticles have been developed to overcome these obstacles and  improve the accumulation 

and release of drugs at the pathological site. In this review we describe the main mechanisms 

involved in multidrug resistance and the nanovehicles which have been proposed to target specific  

aspects of  this phenomenon. 

1. Introduction  

Drug resistance, which occurs in nearly all types of cancer, is a major problem in the treatment of 

cancer patients. Drug resistance can be classified in two ways:  the intrinsic resistance, when tumors 

are resistant prior to treatment, therefore the drugs are not effective even with initial early diagnosis 

and treatment, and the  acquired resistance which occurs after prolonged cycles of chemotherapy, 

despite an initial positive response [1]. Unfortunately, resistance appears not only to conventional 

chemotherapy but also to targeted therapies, the so-called “smart drugs”, such as kinase inhibitors 

and tamoxifen that binds to the estrogen receptor [2]. 

Various mechanisms have been proposed to elucidate pathways and targets of multidrug resistance 

(MDR) [1]. They can be summarized by three major mechanisms: 1) decreased uptake of 

hydrophilic drugs, such as folate antagonists, nucleoside analogues and cisplatin, which require 

transporters to enter cells; 2) various molecular changes in cells, that affect the capacity of cytotoxic 

drugs to kill cells, including alterations in redox status, increased repair of DNA damage, alteration 

of apoptotic machinery etc., and 3) increased energy-dependent efflux of hydrophobic drugs, that 

can easily enter the cells by diffusion through the plasma membrane. This phenomenon occurs 



predominantly via ABC superfamily transporters and elevated expression levels of these drug efflux 

pumps [3].  

1.1 ABC Transporter family 

The first mechanism found to explain MDR is the increased efflux of  hydrophobic cytotoxic drugs, 

mediated by members of energy-dependent transporters, the ABC transporter family [4]. The 

human ATP-binding cassette (ABC) transporters are  a large group of membrane protein complexes 

which consist of 48 members, classified into seven subfamilies from ABC-A through to ABC-G 

based on their sequence similarities [5]. Among the 48 ABC transporters, the protein complexes 

located on the plasma membrane significantly affect the intracellular concentration of diverse drugs, 

drug conjugates and metabolites by export. Several ABC proteins have been characterized to confer 

resistance to anticancer drugs. Among them, P-glycoprotein (MDR, Pgp or ABCB1), multidrug 

resistance protein 1 (MRP1 or ABCC1) and ABCG2 (also known as Breast Cancer Resistance 

Protein: BCRP) are the most frequently associated with MDR [6]. Increased expression of Pgp, as 

well as of other ABC proteins, can be induced by exposure of the cells to the drugs, due to genomic 

mutations or epigenetic modifications of its promoter [7]. The overexpression of these pumps 

obviously reduce the intracellular concentration of numerous endo- and exo-toxins which are 

structurally and biochemically distinct, resulting in MDR. To overcome ABC transporter-mediated 

MDR  and sensitize cancer cells to chemotherapeutic agents, some inhibitors of ABC superfamily 

transporter have been used in association with chemotherapeutic drugs. Although the combined 

therapies displayed some encouraging clinical results, there is no effective MDR reversing agent 

approved for an appreciable sensitization of malignant tumors to chemotherapeutic drugs without 

toxic effects to date. Combined treatment  with the first-generation MDR inhibitors such as 

verapamil and cyclosporine A and anticancer drugs (e.g., mitoxantrone and daunorubicin) led to 

toxic side effects showing only limited function or no benefits [8; 9]. 

1.2 Alteration of signaling pathways 

Several signaling pathways have been found to be involved in chemoresistance of cancer cells. A 

pathway frequently activated, during life of the cancer cells, is  the Hedgehog (Hh) pathway [10]. 

The Hh signaling pathway is one of the important signaling pathways that play key roles in the 

processes of embryonic development, carcinogenesis, maintenance of cancer stem cells (CSCs), and 

the acquisition of epithelial-to-mesenchymal transition (EMT) leading to metastasis [10]. The 

functional transcription activators of the Hh pathway include the GLI proteins. Inhibition of the 

activity of GLI can interfere with almost all DNA repair types in human cancer and can render 

tumor cells more vulnerable to lethal DNA damages induced by chemotherapy and radiotherapy 

[10]. Moreover,  the activation of GLI-mediated transcription (through ligand-dependent or ligand-



independent modes), also induces chemo-resistance also by increasing drug efflux in an ABC 

transporter-dependent manner [11]. Thus, Hh signaling is an important therapeutic target to 

overcome MDR and consequently increases the chemotherapeutic response in the treatment of 

cancer. 

Another signaling pathway which has been found to be involved in chemoresistance is the 

Keap1/Nrf2 pathway [12]. Nrf2 (NF-E2-related factor 2) transcription factor is the master regulator 

of the antioxidant response of the cells to oxidative stress stimuli through the activation of  the 

synthesis  of cytoprotective genes. Under physiological conditions, Nrf2 is present in the cytoplasm 

where it is bound by Keap1 (Kelch-like ECH-associated protein 1). Keap1 forms a complex with 

Cul3 and Rbx1, and this E3 ubiquitin ligase complex is able to bind and ubiquitinate Nrf2, resulting 

in Nrf2 proteasomal degradation [13]. When oxidative stress is present within the cell, the cysteine 

residues of Keap1 become oxidized, resulting in a conformational change of the Keap1–Nrf2 

complex which prevents Nrf2 ubiquitination. The stabilized Nrf2 accumulates in nuclei, 

heterodimerizes with small Maf proteins and activates target genes for cytoprotection through the 

antioxidant response element (ARE)/electrophile response element (EpRE) [14].  Nrf2 has a dual 

role in cancer: the canonical protective role in carcinogenesis, and the non-canonical 'dark-side' of 

Nrf2 in promoting chemoresistance [15]. A Nrf2 role in cisplatin resistance of bladder cancer cells 

has been indicated by Hayden et al. (2014), which demonstrated that Nrf2 overexpression is 

associated with clinically relevant cisplatin resistance, that becomes reversible after Nrf2 silencing 

in experimental models [16]. In ovarian cancer, an aberrant activation of Nrf2 is observed, which 

confers resistance to cisplatin-induced apoptosis [17]. 

Increasing evidence has demonstrated the involvement of Yes-associated protein (YAP) with 

chemoresistance in diverse types of cancers. YAP, a transcriptional co-activator, is a key 

component of the Hippo tumor-suppressor pathway [18]. Hippo pathway-mediated YAP 

phosphorylation on Ser127 mainly leads to its cytoplasm sequestration or ubiquitination and 

degradation [19]. Conversely, unphosphorylated YAP translocates into the nucleus where it binds to 

the TEAD transcription factor, triggering the expression of several genes involved in organ size 

control, cell proliferation and survival (i.e. CTGF and survivin) [20]. Indeed, YAP expression 

inhibition results in reduced cell proliferation and enhanced cell death through modulation of 

downstream transcriptional targets [21]. Moreover, YAP expression and nuclear localization 

strongly correlate with poor patient outcome and the progression of several tumors, including 

bladder and ovarian cancer [22].  In particular, for these two types of tumors, YAP protein has been 

demonstrated to play a role in cisplatin resistance of cancer cells. Overexpression of Yap2 in 

immortalized ovarian surface epithelium cells resulted in increased cell proliferation, resistance to 



cisplatin-induced apoptosis, faster cell migration, and anchorage independent growth, while YAP 

knockdown resulted in increased sensitivity to cisplatin-induced death [23]. Recently it has been 

demonstrated that constitutive expression and activation of YAP is inversely correlated with “in 

vitro” and “in vivo” cisplatin sensitivity of urothelial cell carcinoma cells [24]. YAP overexpression 

protects, while YAP knockdown sensitizes cancer cells to chemotherapy and radiation effects via 

increased accumulation of DNA damage and apoptosis [24]. 

Through a screening approach, Matz et al (2014 ) created a library of barcoded pathway-activating 

mutant complementary DNAs to identify those that enhanced the survival of cancer cells in the 

presence of 13 clinically relevant, targeted therapies. The Authors found that RAS-MAPK 

(mitogen-activated protein kinase), Notch1, PI3K (phosphoinositide 3-kinase)-mTOR (mechanistic 

target of rapamycin), and ER (estrogen receptor) signaling pathways often conferred resistance to 

specific drugs. In particular, they demonstrated that the activation of the Notch1 pathway promoted 

acquired resistance to tamoxifen (an ER-targeted therapy) in breast cancer cells and that the 

inhibition of  Notch signaling restored tamoxifen sensitivity. Moreover, Notch1 knockdown fully 

sensitized drug-resistant melanoma cells to MAPK inhibitors, indicating that, Notch1 signaling may 

be a therapeutic target in some drug-resistant breast cancers and melanomas [25]. 

1.3 Control of redox state. 

The redox status regulation plays an important role in cancer cell survival to the therapy. Many 

types of cancer cells display a large amount of reactive oxygen species (ROS), due to an aberrant 

metabolism, mitochondrial dysfunction or activation of oncogenes. This characteristic makes cancer 

cells more vulnerable to damage by further ROS production induced by exogenous agents [26]. In 

this context, ROS may exert a cytotoxic effect, leading to the death of malignant cells and thus 

limiting cancer progression [27]. On the basis of these observations, several ROS-generating agents 

are currently in clinical trials as single agents or in combination therapy [28].  Alteration of redox 

status, namely the increase of antioxidant defenses  in cancer cells, has been indicated as 

responsible for radio- and chemoresistance. Indeed, some cancer cells, in particular those in 

advanced stages of disease, have become highly adapted to intrinsic oxidative stress by up-

regulating their antioxidant systems [29]. This redox adaptation provides a mechanism of resistance 

to many anticancer agents, due to increased tolerance of exogenous stress and increased capacity for 

drug inactivation, mainly linked to the GSH increase [30]. 

1.4 miRNA and chemoresistance.  

Several reports have recently highlighted the involvement of endogenous non-coding RNAs, known 

as microRNAs (miRNAs), in the evolution of drug resistance in cancer cells. MiRNAs are small 

non-coding RNAs 19–25 nucleotides in size involved in many biological processes such as 



survival, apoptosis, cell cycle and gene expression regulation [31]. MiRNAs are evolutionarily 

conserved and work by silencing gene expression.  They are involved in many different cancer 

types and can act as both tumor suppressors and oncogenes [32]. Accumulating evidence is 

revealing an important role of miRNAs in anticancer drug resistance and their expression profiling 

can be correlated with the development of resistance [33]. Some miRNAs, such as miRNA 21, have 

been involved in the resistance toward  doxacetal in prostate cancer cells [34] and it’s aberrant 

expression is critically correlated with the disease stage, drug resistance, and survival of pancreatic 

cancer patients [35]. The miR-21 is one of the most commonly implicated miRNAs in cancer as its 

expression is highly up-regulated in a variety of solid tumors,  including breast, gastric, colon, lung, 

pancreatic and ovarian cancers [36]. Several downstream pathways of miR-21 have been identified 

including phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase/protein kinase B 

(PI3K/Akt), programmed cell death protein 4 (PDCD4, neoplastic transformation inhibitor protein), 

NF-κB pathways  and the HIF-1α pathway,  a key downstream target of miR-21 in regulating tumor 

angiogenesis [37].  Inhibition of miR-21 by curcumin increased pancreatic cancer cell sensitivity to 

gemcitabine [38]. Roy et al. showed that  difluorinated-curcumin decreased miR-21 in 5-FU and 

oxaliplatin resistant colon cancer cell lines through upregulation of phosphatase and tensin homolog 

(PTEN) and thus reduced the activity status of the PI3K/Akt pathway [39] which is involved, when  

activated,  in the drug resistance of colon cancer cells [40]. In addition to miRNA 21, other 

miRNAs, such as, Let 7, miRNA 15, miRNA 16 and miRNA 34, have been found to be involved in 

chemoresistance [41]. This  indicates that miRNA-based therapy may provide a new strategy to 

overcome drug resistance in future. 

1.5  Tumor microenvironment 

Another aspect involved in chemoresistance is the abnormal tumor microenvironment which 

induces a collection of cellular stress responses and plays a major role in determining the metabolic 

status and chemosensitivity in cancer cells [42]. Tumor vasculature is structurally and functionally 

abnormal, and combined with intrinsically altered tumor cell metabolism, produces heterogeneity in 

oxygenation, pH, exposure to increased interstitial fluid pressure and the concentrations of glucose 

and many other metabolites that promote tumor progression and metastatization [43]. For example, 

in certain microenvironmental contexts, extreme hypoxia causes endoplasmic reticulum stress and 

activates the unfolded protein response, which provides a further adaptive mechanism that allows 

tumor cells to survive under adverse metabolic conditions [44]. Moreover, since oxygen is a potent 

radiosensitizer, hypoxia inhibits effective radiation killing in vitro [45]. and has a direct effect on 

the effectiveness of drugs, such as mephalan, bleomycin, and etoposide, which require molecular 

oxygen for maximal efficiency [46].  



The impairment of the ability of the tumor vasculature to deliver nutrients and remove waste 

products leads to the increase of  environmental acidosis [47], which is involved in chemoresistance 

too. Indeed, in an acidic extracellular environment, the cellular uptake of some chemotherapeutic 

drugs , such as doxorubicin, mitoxantrone, or vinblastine, is significantly reduced [48]. 

In recent years, several types of nanoparticles have been produced in order to overcome the 

alterations above described which make cancer cells highly resistant to cancer therapy. 

2. Nanoparticles in chemoresistant cells. 

As described above, several mechanisms are involved in induced or intrinsic resistance. Therefore 

nanomedicine developed drug-loaded nanocarriers able to target specific aspects of chemoresistant 

cancer cells. In this section we report the more recent issues describing the nanoparticles employed 

in overcoming the diverse behaviors of chemoresistant tumors. 

2.1 Targeting ABC transporters 

As previously illustrated, the overexpression of ABCs is a well-known mechanism of MDR in 

cancer and is associated with therapeutic failure. Since their discovery, ABCs have emerged as 

attractive therapeutic targets and the search for compounds that inhibit their expression and/or their 

functional activity has gained growing interest [49]. However, the pharmacological ABC inhibitors 

present high toxicity and the clinical results have been somewhat disappointing. 

Some attempts have been performed to conjugate nontoxic compounds, or lowest doses of toxic 

compounds, which have been demonstrated an inhibitory activity on some member of ABC 

transporters, with antineoplatic drugs (Fig.1). In example, Khdair et al. (2009) utilized aerosol OT 

(AOT)-alginate nanoparticles as a carrier for the simultaneous cellular delivery of methylene blue, 

an inhibitor of P-gp, and  doxorubicin. After  photoactivation, nanoparticle-mediated combination 

therapy resulted in a significant induction of both apoptosis and necrosis in adriamicin-resistant 

cancer cells compared to single drug treatment [50].  Song et al. (2000) loaded poly(d,l-lactide-co-

glycolide acid) (PLGA) nanoparticles with vincristine and verapamil hydrochloride (VRP), a 

calcium channel blocker, able to reverse completely the resistance caused by Pgp in vitro (Huang et 

al., 1999).  Results demonstrated that the co-encapsulation of an anticancer drug and 

chemosensitizer had high therapeutic effectiveness on MCF-7/ADR breast cancer cells and suggest 

that this strategy might cause lower normal tissue drug toxicity and fewer drug–drug interactions 

[51]. Transferrin coated liposomes co-encapsulating verapamil and doxorubicin have been tested by 

Wu et al (2009), which demonstrated that this association exhibited 5 and 3-fold higher cytotoxicity 

in doxorubicin-resistant human erythroleukemia K562 cells, compared to non-targeted liposomes 

and transferrin targeted liposomes with doxorubicin alone, respectively [52]. Other studies have 

been performed to reduce drug efflux from cancer cells, by utilizing specific platforms for the drug 



delivery. Nanodiamonds (NDs) are promising candidates in this field, demonstrating significant 

potential as gene/drug delivery platform for cancer therapy. The effectiveness of the ND platform 

has been demonstrated in daunorubicin delivery in K562 resistant  cells [53] and in mitoxantrone 

delivery in the MDA-MB-231 triple negative breast cancer cell line that was lentivirally transduced 

for resistance against mitoxantrone [54]. In addition, NDs have been utilized to deliver epirubicin  

in hepatic cancer stem cells, demonstrating a high effectiveness in overcoming chemoresistance by  

promoting endocytic uptake and enhancing tumor cell retention [55]. These works demonstrated 

that ND-drug complexes have favorable drug delivery properties and are capable of improving drug 

retention and efficacy. Recently, Kovács D. et al. (2015) demonstrated that silver nanoparticles 

(AgNPs) display an anti-proliferative effect and induce apoptosis mediated cell death both in drug 

sensitive and in MDR cancer cells and that this action is due to the inhibition of the efflux activity 

of MDR cancer cells which enhance drug accumulation. Furthermore, AgNPs synergistically 

potentiate six different antineoplastic agents on drug resistant cells [56]. 

2.2 Targeting signal transduction pathways 

Since several signal transduction pathways are activated in cancer cells, some studies have been 

devoted to investigating whether the delivery of specific inhibitors of a signaling pathway could 

overcome the MDR. Fan et al. (2010)  utilized micellar nanoparticles self-assembled from 

copolymer folate–chitosan (FA–CS) as carriers to co-deliver doxorubicin and pyrrolidinedithio 

carbamate (PDTC), an antioxidant and chelator of heavy metals that blocks NF-κB activity by 

suppressing the release of IκBα from NF-κB [57]. These NPs were designed to achieve targeted 

doxorubicin delivery via endocytosis, with a low pH responsive endosomal or extracellular drug 

release, and to overcome resistance via inhibition of NF-κB by PDTC. Results confirmed that the  

co-delivery of the NF-κB inhibitor PDTC and doxorubicin, effectively overcame drug resistance.  

Another approach was the use of metallic nanoparticles to increase the cytotoxic effect of 

chemotherapeutic drugs. Xiong et al. (2014) have demonstrated that 20 nm gold nanoparticles 

(AuNPs) carrying cisplatin prevent cisplatin-induced activation of Akt and NF-kB signaling axis in 

ovarian cancer cells that are critical for epithelial-mesenchimal transition, stem cell maintenance 

and drug resistance. In vivo, AuNPs sensitize orthotopically implanted ovarian tumor to a low dose 

of cisplatin and significantly inhibit tumor growth [58]. Other effects displayed by AuNPs is related 

to the modification of gene expression as detected in CaCo2 colon cancer cells by Bajak et al. 

(2015). The modifications affected some Nrf2 responsive genes (several metallothioneins, HMOX, 

G6PD, OSGIN1 and GPX2) that were highly up regulated and  members of the selenoproteins that 

were also differentially expressed. These findings indicate that exposure to AuNPs induces 



oxidative stress signaling pathways, and might enhance  the anti-cancer properties of 

chemotherapeutic drugs [59]. 

The inhibition of the Nrf2 pathway could represent a way to sensitize cancer cells to anticancer 

drugs by increasing intracellular oxidative stress. Luteolin, as a flavonoid compound, can inhibit 

Nrf2 and sensitize cancer cells to chemotherapeutic agents. Sabzichi  et al. (2014) demonstrated that 

luteolin loaded in phytosomes, as an advanced nanoparticle carrier, sensitized MDA-MB 231 cells 

to doxorubicin [60]. 

2.3 Targeting redox state 

The extent of antioxidant capacity is actually  reported to correlate with the aggressiveness of  

tumors and it can go beyond the antioxidant capacity of normal cells [61]. In normal cells the 

glutathione (GSH) concentration is 100 to 1000 times higher than that in the extracellular fluids and 

circulation and it is further increased in chemoresistant tumor cells. GSH has been recognized as an 

ideal and ubiquitous internal stimulus for rapid destabilization of nano-carriers inside cells to 

accomplish efficient intracellular drug release. For this reason GSH-responsive nanoparticles (GSH-

NPs), which respond to the intracellular concentration of GSH, have been developed [62]. Since in 

most chemo-resistant and radio-resistant cancer cells the level of intracellular GSH was higher than 

in the chemo-sensitive or radio-sensitive cancer cells, it has been speculated that GSH-NPs could 

preferentially drive the drugs in the resistant cancer cells. To pursue this purpose, a new class of β-

cyclodextrin GSH-responsive nanosponges (GSH-NSs) that are able to host and to release 

anticancer drugs in the presence of GSH, at concentrations similar to those found in chemoresistant 

cancer cells, have been synthesized  (Fig.2) [63]. 

However, even if the antioxidant capacity of chemoresistant cancer cells could constitute a cue for 

the choice of particles sensitive to the high GSH concentrations, on the other hand, the increase of 

oxidative stress in this type of cancer cells can contribute to their killing. There is rapidly 

accumulating evidence sustaining the fact that some types of nanoparticles induce oxidative stress 

that consequently results in signaling pathway stimulation and apoptotic cell death of cancer cells. 

Cadmium telluride quantum dots (CdTe-QDs) have recently been shown to effectively induce 

apoptosis in hepatocellular carcinoma HepG2 cells by activating  MAPKs, including JNK, Erk1/2 

and p38, as a result of oxidative stress induced in HepG2 cells [64]. Analogously, cadmium sulfide 

quantum dots (bsCdSQDs) stabilized with a biosurfactant induces ROS-mediated apoptotic cell 

death in human prostate cancer LNCaP cells [65]. The ROS mediated activation of ERK1/2, JNK 

and p38 MAPK and apoptosis induction was also observed by treating hepatoma SMMC-7721 cells 

with cerium oxide nanoparticles. The use of  



ROS scavangers dramatically reduced activated kinases and simultaneously there was a decrease in 

the apoptotic rate [66]. It has been found that the metal based nanoparticles, such as  tungsten 

carbide-cobalt (WC-Co) nanoparticles, zinc oxide (ZnO) nanoparticles, cobalt nanoparticles, 

titanium dioxide (TiO2) nanoparticles, nickel oxide nanoparticles, cuprous oxide nanoparticles, 

silver nanoparticles and zinc nanoparticles can induce oxidative stress and increase the ROS level in 

a number of different tumor cells [67]. This effect could increase the cytotoxicity of prooxidant 

cytotoxic drugs. 

2.4 Targeting microenvironmental stressors 

Due to the specific micro environment of the tumor, some of the unique factors such as low pH and 

hypoxia can be used as a trigger to overcome MDR. The acidosis in tumor cells, due to the high 

production of lactate by Warburg effect, and the related acidosis of the environmental tissue due to 

the impairment of the ability of the tumor vasculature to remove waste products, have been 

considered for developing of nanoparticles able to release the drug in an acidic environment. Aryal  

et al. synthetized a Bi(PEG-PLA)-Pt(IV) polymer-cisplatin prodrug conjugate which had a well 

controlled cisplatin loading yield and showed excellent acid-responsive drug release kinetics, 

leading to enhanced in vitro cytotoxicity against tumor cells as compared to free cisplatin [68]. 

Long-circulating and pH-sensitive liposomes containing cisplatin (SpHL-CDDP) have been 

developed by Leite et al. (2012), which demonstrated that the intravenous administration of SpHL-

CDDP in solid Ehrlich tumor-bearing mice caused a significant reduction in the tumor volume and 

a higher tumor growth inhibition ratio with respect to the administration of CDDP alone [69]. Wu et 

al. (2012) have synthesized  mixed micelles of polyethylene glycol based on DSPE-PEG2000, 

DSPE-PEG3400 and a pH-sensitive polymer PHIS-PEG2000.  This mixed micelles showed a pH-

dependent drug release property with much faster release at around pH 5.5 compared to micelles 

without PHIS-PEG2000 [70]. Other core-crosslinked pH-sensitive degradable micelles were 

synthesized based on poly(ethylene glycol)-b-poly(mono-2,4,6-trimethoxy benzylidene-

pentaerythritol carbonate-co-acryloyl carbonate) (PEG-b-P(TMBPEC-co-AC) copolymer that 

contains acid-labile acetal and photo-cross-linkable acryloyl groups in the hydrophobic 

polycarbonate block for intracellular paclitaxel (PTX) release. The in vitro release studies showed 

that rapid drug release was obtained under mildly acidic conditions,  whereas PTX release at pH 7.4 

was greatly inhibited [71]. A pH-sensitive mixed copolymer micelles system, composed of 

hyaluronic acid-g-poly(l-histidine) (HA-PHis) and d-α-tocopheryl polyethylene glycol 2000 

(TPGS2k), an  inhibitor of the efflux pumps, was developed to co-deliver doxorubicin and TPGS2k 

into drug-resistant breast cancer MCF-7 cells. The pH dependent drug release profile due to the 

protonation of poly(l-histidine) and the higher cellular uptake conferred to these micelles an 



enhanced MDR reversal effect [72]. Another system to release drug in an acidic environment has 

been recently proposed by Nogueira et al. (2016), which  prepared chitosan-based nanoparticles 

encapsulating methotrexate modified with the pH-sensitive surfactant 77KS [73]. The presence of 

77KS gives a pH-sensitive behavior to nanoparticles, which allowed accelerated release of 

methotrexate with decreasing pH as well as pH-dependent membrane-lytic activity. 

As previously described, hypoxia is a characteristic of tumor tissues, which can confer, through 

hypoxia-inducible factors (HIFs), pro-survival and pro-angiogenetic stimuli. Moreover hypoxia 

induces macrophage recruitment and transforms them in tumor-associated macrophages (TAMs) 

which, in turn, promote wound healing, tissue repair and production of anti-inflammatory cytokines 

like IL-10 [74]. To overcome the hypoxia in the cancer tissue [75] Song et al. (2016) synthesized 

MnO2 nanoparticles by reducing manganese permanganate (KMnO4) to MnO2 with cationic 

polyelectrolyte poly-(allylamine hydrochloride) (PAH) [76]. The high reactivity of manganese 

dioxide nanoparticles (MnO2 NPs) toward hydrogen peroxide (H2O2), for the simultaneous 

production of O2 and regulation of pH, alleviates tumor hypoxia. Moreover, the Authors conjugated 

to MnO2 NPs, hyaluronic acid (HA-MnO2 NPs) which has an immune toxicological effect on 

macrophages and induces their activation and the production of endogenous ROS, and  coated HA-

MnO2 NPs with mannan that targets the mannose receptor on the surface of TAMs. These 

modifications  further enhanced the ability of MnO2 NPs to lessen tumor hypoxia and modulate 

chemoresistance. Indeed, combination treatment of breast tumors with Man-HA-MnO2 NPs and 

doxorubicin significantly inhibited tumor growth and tumor cell proliferation as compared with 

chemotherapy alone.  

2.5 Delivery of RNA molecules 

The use of RNA molecules to counteract chemoresistance involves both miRNAs,  and  small 

interfering RNA (siRNA). SiRNA are target-specific double-strand RNA molecules synthesized to 

suppress gene expression through the process of RNA interfering [77]. As previously illustrated, 

miRNAs are small non-coding RNA molecules (containing about 22 nucleotides) found in plants, 

animals and some viruses, that functions in RNA silencing and post-transcriptional regulation of 

gene expression [78]. MiRNAs in cancer can function as oncogenes or tumor suppressors. In 

cancer, overexpression of some  miRNAs, such as miR-21, may promote cancer development by 

negatively regulating tumor suppressor genes and/or genes that control cell differentiation or 

apoptosis. On the contrary, underexpression of other miRNAs, such as let-7, function as tumor 

suppressor genes and may inhibit cancers by regulating oncogenes and/or genes that control cell 

differentiation or apoptosis [79].  



The use of miRNA and siRNA in cancer therapy or to counteract chemoresistance is hindered by 

two main factors: 1) they are unstable in blood since they are substrates of blood nucleases; 2) they 

have large molecular weights and are hydrophilic, thus  they have very poor ability to cross the 

lipophilic phospholipids bilayers of cell membranes.  

To overcome these obstacles, various nanoparticle types have been developed for the delivery 

miRNA or siRNA into the tumor mass. In the chemoresistance context, siRNA have been utilized to 

silence genes involved in chemoresistance, whereas the miRNA or anti-miRNAs were utilized to 

block the action of cellular oncogenes or oncogenic miRNAs, respectively. 

2.5.1 Small interfering RNA delivery 

    Although the use of siRNA is an attractive option for post-transcriptional silencing of a target 

genes, some  limitations to clinical application of  siRNA drugs in oncology depend on  their 

physicochemical properties, the large molecular weight and polyanionic nature of siRNA which 

limits its' passive uptake by cells [80]. In addition extracellular barriers exist that prevent an 

efficient delivery of siRNA and  transfection in solid tumors [81]. Moreover, because of plasmatic 

nucleases, siRNA cannot be directly injected into systemic circulation. Consequently, the 

encapsulation of siRNA with nanoparticles can shield the siRNA from plasmatic nucleases and 

immune responses, thus assisting in successful siRNA delivery (Fig. 3).  

Lipid-based particles (or liposomes) have been used for decades for the delivery of gene medicines 

including plasmids, antisense oligonucleotides, and siRNAs. A number of lipid-based particle 

systems have been developed for delivery of siRNAs or miRNA mimics and used in clinical trials 

[82]. Wang et al. (2011) demonstrated an increase of siRNA delivery, using lipoplex of siRNA with 

pegylated cationic liposomes (PCat) [83]. In particular, by targeting survivin, an inducible 

chemoresistance gene, in combination with paclitaxel treatment, the Authors demonstrated that the 

silencing of survivin enhanced paclitaxel anticancer activity in a human pancreatic Hs766T 

xenograft model [84]. However, there are many problems with lipid-based delivery systems in vivo, 

such as rapid clearance by the liver, lack of target tissue specificity and a low entrapment efficiency 

[85]. To increase entrapment efficiency, Landen Jr. et al. developed a method of formulating 1,2-

dioleoyl-sn-glycero-3-phosphatidylcholine-(DOPC-) encapsulated siRNA liposomes [86]. DOPC-

encapsulated siRNA targeted  the oncoprotein EphA2,  a tyrosine kinase receptor in the ephrin 

family, which is highly overexpressed in ovarian cancer and correlates with low response to therapy 

[87]. This system was highly effective in reducing EphA2 expression 48 h after administration of a 

single dose in an orthotopic model of ovarian carcinoma [86].  

PLGA is a copolymer which is used in a host of Food and Drug Administration (FDA) approved 

therapeutic devices, owing to its biodegradability and biocompatibility. Recently PLGA is being 



used as a nanocarrier for plasmid DNA and siRNA delivery. The advantages conferred by PLGA-

based siRNA delivery include high plasma stability and endocytic uptake [88]. Modification of 

PLGA leading to the targeting of  specific aspects of resistant tumors can increase the accumulation 

of these particles in tumor sites. For example pH-labile linkage-bridged block copolymer of 

poly(ethylene glycol) with poly(lacide-co-glycolide) (PEG-Dlinkm-PLGA) was used for siRNA 

delivery. The obtained siRNA-encapsulating PEG-Dlinkm-PLGA nanoparticle gained efficiently 

prolonged circulation in the blood and preferential accumulation in tumor sites via the PEGylation 

[89]. Recent studies have shown that the suppression of gene products involved in the DNA repair 

pathway, such as REV1/REV3l can sensitize intrinsically resistant tumors to chemotherapy and 

reduce the frequency of acquired drug resistance of relapsed tumors. Thus, a combination of 

conventional DNA-damaging chemotherapy with siRNA-based therapeutics has been proposed by  

Xu et al., (2013). The Authors found that nanoparticles (NPs) self-assembled from biodegradable 

PLGA-PEG block copolymers delivering a cisplatin prodrug in combination with REV1/REV3L-

specific siRNAs revealed a synergistic effect on tumor inhibition in a human lymph node carcinoma 

of the xenograft mouse model and they were strikingly more effective than platinum monotherapy 

[90]. 

Chitosan-encapsulated TWIST-siRNA nanoparticles were constructed and used to silence the 

TWIST gene [91], which has been involved in chemoresistance and poor prognosis of 

nasopharyngeal carcinoma [92]. It has been shown that nanoparticles successfully knock-down 

TWIST expression in a human nasopharyngeal cell line (CNE2) , and significantly sensitized CNE2 

cells to irradiation.  

2.5.2 miRNA delivery  

MiRNAs play critical roles in modulating the oncogenic driver pathways involved in the acquisition 

of resistance to cancer treatments. Despite promising results in the development of miRNA 

therapeutics and successes on in vitro studies, limited progress has been made with in vivo studies 

or clinical trials. To increase the resistance to serum nuclease, avoid the activation of the innate 

immune system, and reduce off-target effects, chemical modifications of miRNA molecules [93] 

and different types of nano-vehicles have been proposed to treat different cancer types [94]. 

Triple negative breast cancers (TNBCs) are a specific subtype of epithelial breast tumours that are 

immunohistochemically negative for the protein expression of the estrogen receptor (ER), the 

progesterone receptor (PR) and lack overexpression/gene amplification of HER2 [95]. Treatment of 

TNBC with chemotherapeutics such as taxanes is initially very effective in most patients. However, 

the majority of these tumors develop resistance [96]. To treat and overcome resistance of  TNBC 

several nano-vehicles have been proposed. Wang et al. (2015) have loaded hyaluronic acid (HA)-



decorated polyethylenimine-poly(d,l-lactide-co-glycolide) (PEI-PLGA) nanoparticles with 

doxorubicin and miR-542-3p, a potent tumor suppressor molecule, which targets tumor suppressor 

p53 and apoptosis inhibitor survival [97]. The co-delivery of doxorubicin and miR-542-3p 

increased both drug uptake and cytotoxicity in triple negative breast cancer cells.  

Recently an hydrophilic poly(ethylene glycol)-conjugated poly(lactic-co-glycolic acid) nanoparticle 

(PLGA-PEG-NP) delivery system has been demonstrated the ability to successfully deliver 

antisense-miR-21. miR-21 is an oncogenic miRNA involved in tumor initiation, progression, invasion and 

metastasis in several cancers, including triple negative breast cancer (TNBC). Antisense-miR-21-loaded 

nanoparticles (NPs) were able to increase the apoptoic effect of orlistat-loaded NPs in triple negative breast 

cancer cells [98]. 
An important finding in systemic delivery of anti-miRNA has been reported by Shu D. et al. (2015) which 

proposed an application of RNA nanotechnology for specific and efficient delivery of anti-miR-21 to block 

the growth of triple negative breast cancer in orthotopic mouse models [99]. These therapeutic RNA 

nanoparticles contain an 8-nt sequence complementary to the seed region of miR-21, and a 39-nt sequence 

complementary to epidermal growth factor receptor (EGFR). They simultaneously target EGFR for 

internalizing RNA nanoparticles into cancer cells via receptor mediated endocytosis and are able to inhibit 

miR- 21 activity.  In addition, these particles demonstrate a resistance toward RNase and  are 

thermodynamically stable, thus remaining intact after systemic injection into mice.  

Another tumor which displays a great resistance to chemotherapic treatment is glioblastoma. Despite 

important advances in cancer treatment, which resulted in significant improvement of clinical outcomes, 

glioblastoma relapse is very frequent and patient survival is 12 to 15 months after diagnosis [100]. 

Successful in vivo delivery  of anti-miRNA oligonucleotides to brain tumors requires the carriers not only 

possessing bioavailability but also overcoming the blood–brain barrier and enhance target cell uptake, while 

sparing the normal tissues. In this regard, Costa et al. (2015)  proposed  stable nucleic acid lipid particles  

(SNALPs) coupled  with chlorotoxin (CTX), a scorpion-derived peptide that was reported as a reliable and 

specific marker for gliomas [101] to the surface of stabilized liposomes, for delivery of anti-miR-21 

oligonucleotides to glioblastoma cells [102]. This delivery system enhanced uptake in brain tumors and 

increased miR-21 silencing, while  showing no signs of systemic immunogenicity. Moreover, the systemic 

treatment with targeted nanoparticle-formulated anti-miR-21 oligonucleotides and sunitinib (a tyrosine 

kinase inhibitor) decreased tumor cell proliferation and tumor size and enhanced apoptosis in glioblastoma-

bearing mice.  

2.6 Co-delivery of chemotherapeutic drugs 

Multi-targeted strategies are necessary to overcome multidrug resistance mechanisms and several 

studies have investigated effective combinatorial approaches for cancer treatments. The use of 

gemcitabine (2′,2′-difluorodeoxycytidine; dFdC) in combination with carboplatin to treat patients 

with advanced, refractory, or recurrent ovarian cancer as well as patients who showed initial 



resistance to platin-based treatments has been recently approved by the U.S. Food and Drug 

Administration (FDA) [103]. However, cancer cells often show a defective transport of 

gemcitabine. To  overcome the transporter defects in ovarian cancer cells, Hung et al. (2015) 

constructed NPs from poly(d,l-lactic-co-glycolic acid)-block (PLGA-b)-poly(ethylene glycol) 

(PEG)  polymer (PLGA-b-PEG-OH) containing gemcitabine, cisplatin or  both compounds [104]. 

and demonstrated that this construct highly increased the chemotherapeutic efficacy of gemcitabine. 

Moreover, the delivery of a gemcitabine-cisplatin combination in such nanoparticle formulation 

increased their synergistic interactions.  

Magnetite doped mesoporous silica nanoparticles (MSNs), in which both internal porous and 

external surface of MSN were  respectively exploited to load two different kinds of cytotoxic 

agents,  camptothecin and arsenic trioxide, have been prepared by Muhammad Fet al. (2014) [105]. 

MSNs were used to inhibit proliferation of BxPC-3 pancreatic cancer cells, which are associated 

with a low responsiveness to conventional chemotherapies. Results obtained (da molti autori, ci 

sono moltissimi lavori in letteratura) demonstrated that the cell inhibition performance of dual drug 

nanoformulation was significantly higher than single drug formulation, possibly due to additional or 

synergistic effects.   

3. Conclusion and future prospective 

Studies on the mechanisms involved in chemoresistance are progressing rapidly and new targets for 

the nanomedicine application are continuously being found. In addition, advancement in the field of 

nanomedicine has led to the development of several types of nanoparticles able to overcome 

multidrug resistance mechanisms and re-sensitize cancer cells to the anticancer drug.  Multivalent 

constructs may include both drugs acting on cancer cells in combination with inhibitors of drug 

efflux,  or siRNA against genes involved in specific pathways, in combination with anticancer 

drugs. Results obtained have demonstrated that nano-drug delivery systems are a versatile platform 

for delivery of anticancer drugs and for overcoming cancer drug resistance mechanisms, 

maximizing chemotherapeutic efficacy. However, many multifunctional nano-platforms are still in 

the initial stage of development and a number of safety issues and therapeutic efficacy issues of the 

nanomaterials should also be addressed before they enter into clinical trials. During the transition 

“benchtop-to-clinic” is also necessary to increase manufacturing reproducibility and  overcome the 

lack of collaboration in innovative research between academia and the pharmaceutical industry. 
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