Pure and Fe-doped CeO2 nanoparticles obtained by microwave assisted combustion synthesis: Physico-chemical properties ruling their catalytic activity towards CO oxidation and soot combustion

This is the author's manuscript

Original Citation:

Availability:

This version is available http://hdl.handle.net/2318/1638285 since 2018-06-12T16:00:13Z

Published version:

DOI:10.1016/j.apcatb.2017.04.032

Terms of use:

Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.
Pure and Fe-doped CeO\textsubscript{2} nanoparticles obtained by microwave assisted combustion synthesis: physico-chemical properties ruling their catalytic activity towards CO oxidation and soot combustion

Tapas R. Sahoo,1,8 Marco Armandi,2,8 Rossella Arletti,3 Marco Piumetti,2 Samir Bensaid,2 Maela Manzoli,4 Sirish R. Panda,1 Barbara Bonelli*2,5

1 Department of Chemistry, School of Applied Sciences & Center of Industrial Technology, KIIT University, Bhubaneswar 751024, Odisha, INDIA.
2 Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, ITALY.
3 Department of Earth Sciences, Università degli Studi di Torino, Via Valperga Caluso 35, 10125 Torino, ITALY.
4 Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, ITALY.
5 INSTM Unit of Torino-Politecnico, Corso Duca degli Abruzzi 24, 10129 Torino, ITALY.

8 Both authors equally contributed to the work.

*Corresponding author’s email barbara.bonelli@polito.it

Keywords: CeO\textsubscript{2} nanoparticles, Fe-doping, Microwave Assisted Combustion Synthesis, CO oxidation, soot combustion.
Abstract

A sample of pure CeO$_2$ and two samples of Fe-doped CeO$_2$ containing either 3 or 6 at. % Fe were obtained by microwave assisted combustion synthesis. The powders were extensively characterized by several techniques and tested as catalysts for both CO oxidation and soot combustion.

As-synthesized CeO$_2$ nanoparticles have a mostly squared shape and size well below 100 nm; they are characterized by the presence of surface Ce$^{3+}$ species likely due to the occurrence of very defective ceria crystalline phases, as revealed by HR-TEM. Oxidation at 400 °C leads to the formation of a hydroxyls-rich surface, with several types of OH groups related to both Ce$^{4+}$ and Ce$^{3+}$ species; reduction in H$_2$ at mild temperature (200 °C) leads both to reduction of surface Ce$^{4+}$ to Ce$^{3+}$ and formation of new OH groups.

With respect to CeO$_2$ nanoparticles, Fe-doped ones have, as a whole, a larger size and less abundant surface OH species. A core-shell structure is inferred where Fe is mostly present in the shell, both in a secondary phase (CeFeO$_3$) and as a dopant, finally lowering the band gap of the material. The presence of Fe improved samples reducibility, as shown by the lowering of the onset of temperature programmed reduction.

Catalytic tests of CO oxidation showed that surface Fe species significantly improve the catalytic performance of the samples, by lowering the onset of CO conversion to CO$_2$ especially at low Fe content (*i.e.* 3 at. %), whereas at 6 at.% Fe loading, the preferential formation of the secondary phase CeFeO$_3$ occurs, finally lowering the CO conversion with respect to the sample containing 3 at. % Fe.
Conversely, the soot combustion activity was higher for pure CeO$_2$ nanoparticles, likely due to their smaller size, which increases the amount of solid-solid contact points between soot and the catalyst. However, a positive effect of the presence of surface Fe species on the catalytic activity towards soot combustion was observed, as well.

1. Introduction

CeO$_2$ is one of the most studied metal oxides having environmental and/or energy applications: the CeO$_2$-ZrO$_2$ mixed oxide is a component of three-ways-catalyst used for automotive post-combustion [1-3], whereas (variously doped) CeO$_2$ is studied, *inter alia*, as solid electrolyte for solid oxide fuel cells (SOFCs), especially in nanometric form [4,5].

Some intrinsic properties of CeO$_2$, *i.e.* the cubic (fluorite) structure and the cerium attitude to undergo fast and reversible Ce$^{4+}$/Ce$^{3+}$ redox cycles, render CeO$_2$ a material with peculiar properties: the crystalline structure, stable in a wide range of temperatures and pressures, allows storing/releasing oxygen, eventually acting as an oxygen pump [6,7]. The high mobility of oxygen within CeO$_2$ bulk is a crucial issue in any catalytic and electrochemical application [8] and is extensively studied by means of both experimental and theoretical methods [9-12]. Oxygen mobility is related to the presence of an intrinsic amount of structural defects/oxygen vacancies that increase by doping with either a Lanthanide or another metal with oxidation state lower than +4 [7,9].

The nanotechnologies era and the development of new synthetic routes allowed obtaining both pure and doped CeO$_2$ nanoparticles (NPs) that bear some peculiar features, *e.g.* a higher oxygen mobility, with respect to those obtained by traditional methods [13,14]. By varying the synthesis
parameters, CeO$_2$ NPs with different size and morphology, *i.e.* disordered polyhedrons, wires, disks, flowers, cubes, *etc.* [15] are produced. Different morphologies are obtained by various methods, including addition of organic/inorganic templates or capping agents, variation of pH, *etc.* Those methods are, however, complicated and/or require the use of some costly and non-green reagent (*e.g.* a surfactant as organic template). Changes in morphology affect the surface properties of CeO$_2$ NPs, the defects chemistry of the material and the related catalytic activity, especially as far as CeO$_2$ reducibility is concerned [16].

Combustion synthesis (CS) is a suitable alternative route for the preparation of metal oxides-based catalysts and ceramics, since it allows obtaining nanostructured materials with high specific surface area in a simple and rapid way [17]. During Solution Combustion Synthesis (SCS), a fast and spontaneous reaction occurs between the oxidizer (*e.g.* a metal nitrate) and the fuel (*e.g.* glycine) in solution. The method is reproducible, employs low cost reagents and produces, and produces in a single batch a sizable amount of powder that can undergo successive treatments, *e.g.* calcination in order to get rid of the fuel excess.

Microwave Assisted Combustion Synthesis (MACS) is carried out within a microwaves oven, ensuring shorter reaction times and a more homogeneous heating of the reagents mixture. MACS has become a technique of choice for the preparation of materials, especially ceramics, where it is important to avoid temperature gradients that may induce fractures formation in the final product [18]. Microwaves heat species in solution at a molecular level, whereas an electric oven heats a mixture from the exterior to the interior, ultimately creating a temperature gradient and leading to the production of heterogeneous powders. In MACS, the electromagnetic radiation interacts with polar reagents, and so the dipoles tend to align with respect to the electric field, inducing dipole oscillations with the radiation, and increasing absorption of energy. Oscillating
molecules collide more frequently and at higher energy, facilitating bonds breakage and new bonds formation: the heat needed for the reaction is generated within the mixture, without the necessity of an external source.

MACS allows rapidly obtaining considerable amounts of phases that are stable at high temperature (oxides, nitrides, carbides) and characterized by nanometer size, high specific surface area and high defectivity, all parameters that are crucial for catalytic applications, as well.

To the best of our knowledge, no paper on Fe-doped CeO$_2$ powders obtained by MACS for catalytic applications has been published, so far: in this work, MACS was employed to synthesize both pure and Fe-doped CeO$_2$ powders (with composition Ce$_{1-x}$Fe$_x$O$_2$ where $x = 0.03$ or 0.06).

The choice of Fe as a dopant stems from its higher abundance with respect to Lanthanides, and the possibility to increase the amount of oxygen vacancies, which can lead to a higher number of labile oxygen species at NPs surface, with an ultimate positive impact on the catalytic activity.

As a catalyst for energy and environmental applications, CeO$_2$ has been recently proposed for the splitting of water [19,20], although CeO$_2$-based nanocatalysts gave good performance (in terms of both activity and selectivity) also in the production of H$_2$ from ethanol reforming [21]. Similarly, CeO$_2$-supported Rh, Pd, Pt and Au NPs showed enhanced catalytic properties in two important reactions for H$_2$ purification, *i.e.* the preferential oxidation of CO (COPROX) in the presence of H$_2$ and the water gas shift (WGS) reaction [22-33]. In this work, yet other two reactions of environmental relevance were studied, *i.e.* oxidation of CO and soot combustion, for which CeO$_2$-based nanocatalysts are investigated in the literature [34-45]. In the former reaction, the presence of surface labile oxygen species (O$_{\alpha}$) is a crucial aspect, whereas in the latter
reaction, the textural and structural properties of the catalyst as well as the contact points between soot and catalyst particles play a crucial role.

2. Experimental

2.1 Materials synthesis

Stoichiometric amounts of analytical grade reagents were used, i.e. 1 g ceric ammonium nitrate \((\text{NH}_4)_2[\text{Ce(NO}_3)_6]\), and either 0.023 g or 0.047 g ferric nitrate \((\text{Fe(NO}_3)_3\) in order to obtain \(\text{Ce}_{0.98}\text{Fe}_{0.02}\text{O}_2\) and \(\text{Ce}_{0.94}\text{Fe}_{0.06}\text{O}_2\) compositions, respectively. Correspondingly, either 0.5277 g or 0.5395 g glycine (fuel) was added as dictated by the oxidizer/fuel ratio [46]. The resulting mixture was exposed to MW irradiation in a microwave oven, heated at high power of 800 W and frequency of 2450 MHz, for a maximum of 3 min. During this period, the redox mixture boiled, underwent dehydration and then was ignited (due to internal heating), resulting in an exothermic reaction with a flame persistent for 2-4 secs. This process is instantaneous, and the resulting residue was powdery and crystalline (see below). The three samples will be referred to as \(\text{CeO}_2\) (0 at. % Fe), \(\text{Ce}_\text{Fe}3\) and \(\text{Ce}_\text{Fe}6\) (3, 6 at. % Fe, respectively).

2.2 Methods

\(\text{N}_2\) sorption isotherms at \(-196 ~\text{C}\) were measured on the powders previously outgassed at 150 \(\text{C}\) in order to remove water and other atmospheric contaminants (Quantachrome Autosorb 1C); samples specific surface area (SSA) was calculated according to the Brunauer–Emmett–Teller (BET) method, the corresponding values being reported in Table 1.

Field Emission Scanning Electron Microscopy (FESEM) micrographs (Fig. SM1) were collected on a Zeiss Merlin microscope equipped with a Gemini II column.
Electron micrographs were obtained on a Jeol 3010-UHR high-resolution transmission electron microscope (HR-TEM) operating at 300 kV and equipped with a LaB₆ filament and an Oxford Inca Energy TEM 300 EDX analyser by Oxford Link. Digital micrographs were acquired on an Ultrascan 1000 camera and processed by Gatan digital micrograph. Before experiments, the powder samples were milled in an agate mortar and deposited on a copper grid covered with Lacey carbon film.

To measure X-ray Fluorescence (XRF), samples were pressed in order to obtain pellets of ca. 1 cm² area, and analyzed by means of a Rigaku ZSX 100s instrument, on 0.3 cm² spots.

X-Ray Powder Diffraction (XRPD) experiments were performed at the ID22 high-resolution beamline at ESRF (European Synchrotron Radiation Facility) in Grenoble (France) with a fixed wavelength of 0.4106 Å on a multi-channel detector system. The powder samples were loaded and packed in a 0.3 mm boron capillary, mounted on a standard goniometric head, and spinned during data collection. Structural and unit cell refinements were performed by full profile Rietveld analysis using the GSAS package [47] with EXPGUI interface [48]. The refinements were performed in the space group $Fm\overline{3}m$. The Bragg peak profile was modeled by using a pseudo-Voigt function [49] with 0.001% cutoff peak intensity. The background curve was fitted using a Chebyshev polynomial with 9 variable coefficients. The 2θ–zero shift was accurately refined in separate cycles to avoid correlation with unit cell parameter. The scale factor, unit-cell parameters and displacement thermal parameter were allowed to vary. The high resolution and high flux available on the beamline allowed identifying the presence of CeFeO₃ in both Ce_Fe3 and Ce_Fe6 samples as secondary phase (vide infra). The refinements of the collected patterns were treated as a two phases analysis and quantitative phase analyses (QPA) were performed by allowing the variation of the two scale factors.
From XRPD analyses, information on the full width at half maximum (FWHM) was extracted and used to estimate the average micro-strain and crystallite size calculated from Williamson – Hall plot, on the basis of the eq. (1):

$$\beta \cos \theta = \frac{\lambda}{t} + 4\varepsilon \sin \theta$$ \hspace{1cm} (1)

In eq. (1), β is FWHM, λ is the wavelength, t is the crystallite size, θ is the Bragg angle and ε is the micro-strain. The results of the refinements and the XRPD are reported in Table 2 and Figure 2, respectively. Williamson-Hall plots for the three samples are reported in Figure 3.

XPS (X-ray Photoelectron Spectroscopy) analysis was carried out on a XPS PHI 5000 Versa probe apparatus, using a band-pass energy of 187.85 eV, a 45° take off angle and a 100.0 µm diameter X-ray spot size for survey spectra. High-resolution XP spectra were recorded in the following conditions: pass energy of 20 eV, resolution of 0.1 eV, and step of 0.2 eV. Sample charging effects were eliminated by referring to the spectral line shift of the C 1s binding energy (BE) value at 284.5 eV. XP-spectra were analyzed by means of a commercial software (CasaXPS, version 2.3.16), by applying mixed Gaussian-Lorentzian (70-30%) profiles.

H$_2$-TPR (Temperature Programmed Reduction) analysis was carried out on a TPD/R/O 1100 ThermoQuest instrument: in each experiment, ca. 100 mg sample was treated under constant flow (20 mL min$^{-1}$) of 5 vol. % H$_2$/Ar mixture in the 50-900 °C temperature range (temperature ramp = 10 °C min$^{-1}$) and holding at 900 °C for 30 min. Before analysis, samples were pretreated under pure O$_2$ flow from room temperature to 400 °C (temperature ramp = 10 °C min$^{-1}$).

For micro-Raman spectroscopy, the powders were gently pressed on a glass microscope slide and analyzed by means of a Renishaw InVia Reflex micro-Raman spectrometer (Renishaw plc, Wottonunder-Edge, UK), equipped with a cooled CCD camera. The Raman source was a diode laser (λ_{ex}=514.5 nm), and samples inspection occurred through a microscope objective (50X), in
backscattering light collection in the following experimental conditions: 10 mW laser power; 10 s exposure time and 1 accumulation.

Fourier Transform Infra Red (FT-IR) spectra were recorded at 2 cm\(^{-1}\) resolution on a Bruker FTIR Equinox 55 spectrometer, equipped with a MCT (Mercury Cadmium Tellurium) cryodetector. For IR measurements, samples were shaped as thin, self-supporting wafers (ca. 15-20 mg cm\(^{-2}\)). Adsorption of CO at nominal -196 °C was studied by using a homemade quartz IR cell equipped with (IR transparent) KBr windows that allows pouring liquid N\(_2\) to cool down the sample. CO was dosed on samples by admitting increasing amount of gas within the cell and by waiting equilibrium (CO equilibrium pressures in the 0.05-15 mbar range).

Before CO adsorption, the IR cell was connected to a standard vacuum frame (residual pressure below 10\(^{-3}\) mbar) and the samples were treated under vacuum at high temperature (in order to remove water and other atmospheric contaminants) or treated at high temperature under controlled atmospheres (O\(_2\) or H\(_2\)) in order to study oxidized/reduced surfaces.

Diffuse Reflectance (DR) UV-Vis spectra were measured on a Cary 5000 UV-Vis-NIR spectrophotometer (Varian instruments).

2.3 Catalytic tests

Catalytic activity of the samples was tested in a temperature-programmed oxidation (TPO) setup, comprising a quartz U-tube micro-reactor; a PID-regulated (Proportional-Integral-Derivative) furnace; a K-type thermocouple (placed at the reactor inlet in such a way that its tip is as close as possible to the reactor bed) and a non-dispersive infrared (NDIR) analyser (ABB Uras 14) as gas detector.
2.3.1 CO oxidation tests: the bed reactor contains 100 mg catalyst. A gaseous mixture of CO (1000 ppm-vol) and 10 % v/v O₂ in N₂ is fed to the reactor at a flow rate of 50 Nml min⁻¹, while the furnace temperature gradually increases from ambient temperature (heating rate = 5 °C min⁻¹) to the temperature at which CO is fully converted to CO₂.

2.3.2. Soot combustion tests: the bed reactor consists in a mixture of 150 mg SiO₂, 45 mg catalyst and 5 mg soot that is ball-milled for 15 min in order to obtain a “tight” soot-catalyst contact (Degussa Printex-U was used as model soot). “Tight contact” conditions are the optimal way to discriminate the intrinsic activity of the catalyst, i.e. to avoid the occurrence of kinetic limitations due to the poor availability of catalyst actually in contact with soot particles. 100 Nml min⁻¹ oxidizing gas mixture (10 % v/v O₂ in N₂) is fed into the reactor while the furnace temperature gradually increases from ambient temperature to 700 °C (heating rate = 5 °C min⁻¹). The gaseous mixtures were analysed by CO/CO₂ NDIR analysers (ABB), simultaneously recording the temperature of the fixed-bed and the CO/CO₂ outlet concentration during reaction. Temperatures corresponding to 10%, 50% and 90% conversion of either CO or soot (denoted as T₁₀%, T₅₀%, and T₉₀%, respectively) were taken as indices of catalytic activity, along with the temperature at which the peak of CO₂ emission occurred (Tₚₑᵃᵏ₃O₂).

In order to get insight into the phenomena related to the behaviour of catalytically active oxygen species in the presence of soot and in the absence of O₂(g), soot-TPR measurements (Fig. SM6) were carried out as follows: a bed mixture like that used for soot combustion tests was prepared in “tight contact” conditions and put inside the fixed-bed micro-reactor where pure N₂(g) was fed at 100 ml min⁻¹. The furnace temperature was increased from ambient to 650 °C (heating rate = 5 °C min⁻¹) and CO/CO₂ concentrations were measured at the reactor outlet (NDRI analysers).
Additional repeatability tests were carried out: first, fresh powders were tested under the same conditions adopted during previous soot combustion tests, and then each (newly tested) powder was recovered at the end of the first cycle and subjected to a second oxidation cycle (by re-addition of the same amount of soot), to check stability after exposure to high temperatures.

3. Results and Discussion

3.1 Textural, morphological and compositional characterization of the samples

N₂ adsorption/desorption isotherms (not reported) measured at -196 °C on the three samples were of Type II, with limited hysteresis loops likely due to some inter-particles porosity. CeO₂ sample showed the largest BET SSA value (25 m² g⁻¹, Table 1) whereas Fe-doping led to a BET SSA decrease with both Ce_Fe3 (5.0 m² g⁻¹) and Ce_Fe6 (2.5 m² g⁻¹) samples. Accordingly, Fe-doping led to the occurrence of larger NPs and higher degree of aggregation, as observed by FE-SEM analysis (Fig. SM1). CeO₂ (Fig. SM1a) showed aggregates of irregular NPs with size around 20 nm. Both Ce_Fe3 and Ce_Fe6 samples showed, instead, larger particles, forming spongy aggregates with large alveoli (Fig. SM1d), as typical of materials obtained by CS. Indeed, by assuming the value of 7.56 g cm⁻³ for the density of pure ceria, the geometrical surface area of spherical ceria NPs with 20 nm and 150 nm diameter is 40 m² g⁻¹ and 5.3 m² g⁻¹, respectively.

To gain more insights on the samples morphology, selected TEM images of the CeO₂, Ce_Fe3 and Ce_Fe6 samples are reported in Fig. 1a, 1c and 1e. The CeO₂ sample shows squared ceria NPs with size in the 50 - 100 nm range, whereas with Ce_Fe3 sample such NPs occur along with very large and roundish particles (size ≥ 250 nm), which in turn are those almost exclusively detected with Ce_Fe6 sample, in agreement with the corresponding decrease of BET SSA at
increasing Fe content. The average Fe/Ce atomic ratio was evaluated by performing EDX analysis on different areas of the samples: the obtained values (Table 1) correspond to the nominal Fe/Ce atomic ratio.

The actual Fe/Ce ratio was also measured by XRF (Table 1). With both Fe-doped CeO₂ samples, a Fe content corresponding to the nominal value was measured also in this case, in agreement with EDX values. On the other hand, the surface chemical composition as determined by XPS analysis (*vide infra*) showed a much higher surface Fe/Ce atomic ratio (Table 1) with respect to the nominal one, likely indicating the occurrence of a Fe-rich shell.

The adopted techniques provide, indeed, complementary information on samples composition, in that XRF measures the overall chemical composition (both surface and bulk), EDX provides semi-quantitative information on the overall composition (especially as far as sample homogeneity is concerned), and XPS monitors chemical composition of the surface.

By taking into account the different types of compositional data, the presence of core-shell NPs, with a Fe enriched-shell, is inferred. Such a Fe concentration at NPs surface may eventually lead to the formation of other phases (*vide infra*).

The XRPD pattern of the three samples are reported in Fig. 2: that of pure CeO₂ corresponds to the well-known fluorite-type structure with space group *Fm-3m*. As a whole, no appreciable shift of the peak positions was observed with Fe-doped CeO₂ samples, indicating tiny variations of the unit cell among the three samples. On the contrary, a decrease in the peak broadening from CeO₂ to Fe-doped CeO₂ was clearly recognizable, indicating an increase of grains size, in agreement with morphological analysis (*vide supra*).
Fe-doped samples maintain the same structure of CeO$_2$, though additional and very low intensity reflections are observed, corresponding to the CeFeO$_3$ crystalline phase (asterisks in Fig. 2). Based on QPA performed by the Rietveld method, the estimated amount of the secondary phase was 1.6 wt. % and 5 wt. % CeFeO$_3$ with Ce_Fe3 and Ce_Fe6, respectively.

Such results allow measuring the amount of Fe present in the secondary phase (CeFeO$_3$) and, consequently, the actual amount of Fe hosted by the CeO$_2$ lattice. The Fe/Ce atomic ratio in the CeFeO$_3$ phase, as calculated on the basis of QPA, is 0.011 and 0.036 with Ce_Fe3 and Ce_Fe6, respectively: both values are lower than nominal ones (0.031 in Ce_Fe3 and 0.064 in Ce_Fe6). By difference, it results that only 63 % and 44 % of the added Fe actually enters the CeO$_2$ structure by substituting Ce atoms in Ce_Fe3 and in Ce_Fe6 sample, respectively.

Table 2 reports the results concerning cell parameter refinements: being the samples doped with two different amounts of Fe, a variation of the unit cell parameter (a) proportional to the amount of Fe in the structure was expected. Several studies on Fe-doped CeO$_2$ with a Fe content as high as 10 at.% reported a contraction of the CeO$_2$ network induced by the introduction of (smaller) Fe$^{3+}$ ions at Ce$^{4+}$ sites [50,51] following a Vegard law model. On the contrary, Phokha and co-workers [52] observed an increase of the cell parameter of Fe-doped CeO$_2$ with increasing the amount of hosted Fe, which was explained by the presence of Ce$^{3+}$ ions (larger than Ce$^{4+}$ ions) in the lattice. The present Fe-doped CeO$_2$ samples experience only tiny variations of unit cell parameter, a 0.002 % decrease being barely observed with Ce_Fe6 sample. Such percentage is very low if compared with the lengthening of the a parameter expected on the basis of the paper by Laguna and coworkers [51] concerning Fe-doped CeO$_2$ of comparable composition, even by considering that only 63 % of nominal Fe-atoms actually entered the CeO$_2$ structure. The occurrence of such a small variation in the unit cell could be attributed to a heterogeneous
distribution of Fe within the CeO$_2$ structure, \textit{i.e.} mostly within the cells in the outer layers of the grains.

Williamson – Hall plots and the derived data are reported in Fig. 3 and Table 2, respectively. As already noticed form the inspection of XRPD patterns in Fig. 2, the grain size increases from pure to Fe-doped CeO$_2$, whereas no differences are observed in the grain size of the two Fe-doped samples. The only observable difference is found in the grains micro-strain, higher with Ce$_x$Fe$_6$ sample, and that could be due to a higher degree of lattice distortion at higher Fe concentration.

Indeed, the crystallinity of the CeO$_2$, Ce$_x$Fe$_3$ and Ce$_x$Fe$_6$ samples was confirmed by HR-TEM analysis (Fig. 1b, 1d and 1f), during which crystalline phases were investigated by measuring the distances between the fringes in the corresponding Fourier transformed images of all the HR-TEM micrographs. Interestingly, beside the (expected) fringes due to the CeO$_2$ cubic fluorite-like phase (JCPDS file number 00-034-0394), other defective ceria crystalline phases, such as Ce$_6$O$_{11}$ (JCPDS file number 00-032-0196) and Ce$_2$O$_3$ (not shown, JCPDS file number 00-049-1458) were observed. The presence of such defective phases, not detected by XRD, is explained by assuming that they actually correspond to a very low percentage of the overall crystalline domains. It can be inferred, however, that the occurrence of such defective ceria phases was likely induced by the preparation procedure, showing that MACS allows obtaining highly defective NPs, where defects are possibly located at the surface of large CeO$_2$ agglomerates.

In agreement with XRDP measurement, after Fe doping, the fringes related to the CeFeO$_3$ phase (JCPDS file number 00-022-0166) are also observed with both Ce$_x$Fe$_3$ and Ce$_x$Fe$_6$ samples. Moreover, due to the much smaller ionic size of Fe$^{3+}$ as compared to Ce$^{4+}$, it can be inferred that Fe$^{3+}$ can occupy either network Ce$^{4+}$ sites or interstitial sites in the fluorite lattice, giving rise to
tiny changes in the lattice parameter, as observed by XRDP cell parameter refinement (Table 2). Therefore, the amount of Fe added by synthesis can rule the formation of different amounts of sub-stoichiometric phases in Ce_Fe3, whereas in Ce_Fe6 sample a higher Fe content likely promotes the formation of the CeFeO3 phase and possibly inhibits formation of the Ce6O11 defective phase. This result is in agreement with the assumption that with Ce_Fe6 sample a lower amount of Fe³⁺ is actually included in the fluorite with respect to Ce_Fe3 sample. Therefore, the addition of Fe affects the formation of defective ceria phases, as observed by the analysis of HRTEM fringes, and the larger amount of interstitial Fe³⁺ found for Ce_Fe3 could induce an increase in the structural defectiveness of ceria.

The presence of a Fe-rich shell can be assessed by means of XPS, a technique that allows studying the chemical composition of the surface. The most relevant results obtained by the curve-fit of XP-spectra in the O 1s, Ce 3d and Fe 2p BE ranges are reported in Table 3. The position of the Fe2p 3/2 and Fe 2p1/2 lines agrees with the presence of Fe³⁺ species, the corresponding XP spectra being reported in the Supplementary Material (Fig. SM2).

Concerning O 1s lines (Fig. 4), a satisfactory curve-fit is obtained by using two components, related to the presence of surface and sub-surface oxygen species, referred to as Oα (BE ca. 531 eV) and Oβ (BE ca. 529 eV), respectively. The former are labile and more reactive species with respect to sub-surface Oβ species, and play an important role in metal oxides-catalyzed processes [34,53]. With Fe-doped samples, the position of the O 1s lines does not change significantly, but the atomic percentage of Oα species varies, as shown by the corresponding values in Table 3. The Oα/Oβ ratio was 0.34, 0.73 and 0.72 with bare CeO2, Ce_Fe3 and Ce_Fe6 samples, respectively. The increase in the amount of Oα species s more conspicuous with Ce_Fe3 sample, in agreement with the higher amount of defective ceria revealed by HR-TEM analysis. A higher
Fe content does not lead to a further increase in the relative amount of O$_\alpha$ species indicating that, at higher loading, Fe starts to enter the NPs bulk, finally escaping detection by XPS, a technique with a penetration depth < 10 nm.

The Ce 3d range (Fig. SM3) shows several components due to the presence of both Ce$^{4+}$ and Ce$^{3+}$ surface species. As reported by the literature [54-57], the ground state of Ce$_2$O$_3$ is purely 4f1, whereas that of CeO$_2$ is a mixture of multi-electron configurations 4f0 and 4f1 L, where L denotes a hole in the O 2p orbitals. The Ce 3d photoemission gives rise to a rearrangement of valence electrons. The XPS Ce 3d$_{5/2}$ and 3d$_{3/2}$ doublets are commonly denoted u and v, respectively, and extend in the 880-920 eV BE range. For CeO$_2$, the final states due to the photoemission of the Ce 3d give rise to six peaks ascribed to the three pairs of the spin-orbit doublets. The six peaks are due to the different occupancies of the Ce 4f final state strongly hybridized with the O 2p orbital, as thoroughly discussed in the literature [54].

The position of Ce peaks is reported in Table 3, along with surface chemical composition. The total amount of surface Ce$^{3+}$ species, as calculated according to eq. (2):

$$Ce^{3+}(\%) = \frac{S_v' + S_u'}{\sum(S_v + S_u)} \times 100$$ (2)

is 22.5, 26.5 and 23.4 % for CeO$_2$, Ce_Fe3 and Ce_Fe6 samples, respectively, showing that a certain amount of reduced Ce$^{3+}$ species is already present in CeO$_2$ sample, in agreement with previous characterization, and that the effect of Fe-doping on the surface is more relevant with Ce_Fe3 sample. As mentioned previously, the Fe/Ce atomic ratio measured by XPS is much higher than the nominal value with both Ce_Fe3 and Ce_Fe6 samples, but still below that of
CeFeO$_3$. Such result likely means that Fe species mainly occur at the surface of the NPs, either within the CeFeO$_3$ phase or by substituting near-surface Ce species.

XPS results along with XRPD (showing the occurrence of CeFeO$_3$ spinel phase and a limited variation of cell parameter) confirm the idea of a Fe-richer shell, where Fe-doping mainly concerns the ceria cells at the outer layers of the grains. This is also in agreement with the HR-TEM observations that pointed out the presence of defective crystalline surfaces, possibly induced by Fe insertion.

The different surface composition is expected to affect several physico-chemical parameters, including reducibility of the samples, the corresponding H$_2$-TPR profiles being reported in Fig. 5: CeO$_2$ sample shows two main H$_2$ consumption peaks, assigned in the literature to the reduction of surface Ce$^{4+}$ species (low T) and bulk ceria (high T) [57]. The presence of Fe brings about a change in curves shape at low T, whereas the peak due to bulk reduction at high T is almost unaltered, in agreement with the preferential occurrence of Fe at the outer shell of NPs.

All this notwithstanding, with both Ce_Fe3 and Ce_Fe6 samples, a shift of H$_2$ consumption onset to lower T is observed, in that reduction of CeO$_2$ sample starts at ca. 300 °C, whereas reduction of both Fe-doped samples starts at 200 °C. Such behavior implies a higher reducibility of NPs outer shell due to the presence of Fe; the corresponding amounts of consumed H$_2$, reported in Table 1 as normalized to sample unit mass, agree with such hypothesis, in that the total amount of consumed H$_2$ increases with the Fe content.

3.2 Characterization of surface species by means of IR spectroscopy and CO adsorption at nominal -196 °C
The nature of surface species can be studied through adsorption of probe molecules as followed by IR spectroscopy, which is a fundamental technique for the study of surface species [58-60], like the different types of OH groups [16,61,62] usually found at the surface of ceria and depicted in Scheme 1.

Figure 6 reports the IR spectra of the CeO\textsubscript{2} sample pretreated as follows: outgassed at 250 °C (curve a), oxidized at 400 °C (curve b) and then reduced in H\textsubscript{2} at 200 °C (curve c). The curves in Fig. 6 are characterized by the typical scattering profile of ceria above 600 cm-1 [61]. No remarkable signals ascribable to electronic effects were observed upon reduction (curve (c) in Fig. 6), at variance with literature reports on ceria reduced at higher temperatures [62]. This is likely due to the low reduction temperature adopted in this work.

The IR spectrum of CeO\textsubscript{2} sample outgassed at 250 °C shows a band centered at 3630 cm-1 in the O–H stretching region (3800-3500 cm-1, inset to Fig. 6). The 3630 cm-1 band position is consistent with the presence of OH\textsubscript{IB} sites (Scheme 1), i.e. bridged OH groups close to surface anionic vacancies that can form, for instance, by elimination of isolated OH\textsubscript{I} species at temperatures as low as 200 °C [61,62]. Although micro-Raman spectroscopy (Fig. SM4) evidenced an extremely low concentration of oxygen vacancies in the three fresh samples (i.e. not outgassed powders), this does not rule out the likely formation of oxygen vacancies when powders are outgassed at a high temperature. On the one side, HR-TEM observation pointed out the formation of defective ceria phases in the CeO\textsubscript{2} sample; on the other side, the fact that the amount of oxygen vacancies did not increase after Fe doping is in agreement with previous characterization, showing that most of surface Fe species were involved in the formation of the CeFeO\textsubscript{3} phase.
OH\textsubscript{IIB} sites usually give rise to an O–H stretching band found at slightly different wavenumbers depending, \textit{inter alia}, on the oxidation state of cerium: Badri \textit{et al.} assigned bands at 3635 cm-1 and 3647 cm-1 to OH\textsubscript{IIB} species where cerium occurred as Ce4+ and Ce3+ species, respectively [61]. This assignment is further confirmed by the presence of a weak band at about 2130 cm-1 related to the forbidden \(^{2}\text{F}_{5/2} \rightarrow^{2}\text{F}_{7/2}\) electronic transition of Ce3+[62] and indicating that outgassing at 250°C has a reducing effect on the surface. Several bands in the 3000 – 2800 cm-1 and 1700 – 1250 cm-1 range of curve a are assigned to IR modes of glycine [63], indicating that residual molecules of the fuel are likely adsorbed at the surface of CeO\textsubscript{2} sample. Such hypothesis is confirmed by TG – Mass analysis (reported in Fig. SM5): the TG curve shows a limited mass loss (ca. 2.5 wt. %) in the temperature range between 100 and 300 °C, accompanied by a corresponding peak with mass = 30 u in the mass spectrum, ascribable to NH\textsubscript{2}CH\textsubscript{2}+species, \textit{i.e.} the main fragment of glycine [64]. The amount of residual glycine was however very low, as confirmed by the limited mass loss occurring at low temperature (Fig. SM5), and therefore its influence on the catalytic activity of the samples is reasonably negligible.

Figure 7a reports the IR spectra taken after dosing CO at nominal -196 °C on CeO\textsubscript{2} sample outgassed at 250 °C: difference spectra are reported, as obtained after subtraction of the spectrum of the bare sample in Fig. 6, and therefore positive and negative bands correspond to species forming and disappearing after CO adsorption, respectively.

CO dosage on CeO\textsubscript{2} sample outgassed at 250 °C (Fig. 7a) leads to the appearance of a band at 2152 cm-1 and of a broad and less intense band at 2127 cm-1 in the C≡O stretch range (2250-2050 cm-1). On the ground of previous literature reports, the 2127 cm-1 band is assigned to Ce3+---CO complexes formed by adsorption of CO molecules on coordinatively unsaturated surface (c.u.s.) Ce3+ species [62,65,66]. The 2152 cm-1 band is due to CO molecules H-bonded to OH groups.
originally absorbing at 3630 cm\(^{-1}\), as confirmed by the negative band observed in the O–H stretch region (3750-3000 cm\(^{-1}\), inset to Fig. 7a). According to the literature, CO molecules adsorbed on Ce\(^{4+}\) sites give rise to IR bands in the 2187 – 2165 cm\(^{-1}\) range [65], not observed in the present case: Ce\(^{4+}\) sites, which are strong Lewis acids, are likely occupied by adsorbed glycine molecules. Nonetheless, the under vacuum treatment at 250 °C has a partially reducing effect on ceria surface [61,62], favoring the formation of surface Ce\(^{3+}\) species, which were also present on the as-synthesized sample, in agreement with XPS analysis.

In order to remove the organic residues, the CeO\(_2\) sample was oxidized at 400 °C, the corresponding IR spectrum being reported as curve b in Fig. 6: as expected, IR bands of glycine disappear after oxidation, minor bands in the 3000 – 2800 cm\(^{-1}\) range being instead due to surface contamination by vacuum grease always present during the experiments. Peaks in the 1700-1250 cm\(^{-1}\) range are assigned to carbonate-like surface species [62,66,67], usually observed at ceria surface, the assignment of which is not straightforward [62]. All this notwithstanding, the relatively high thermal stability of such carbonate-like species allows inferring that mainly polycdentate species are present [62], since lower coordination carbonates are removed above 300 °C. More interestingly, in the O–H stretch region (inset to Fig. 6) several new bands are observed upon oxidation at 400 °C: the 3715 cm\(^{-1}\) band is assigned to mono-coordinated OH\(_I\) species (Scheme 1), whereas signals at 3687, 3650 and 3630 cm\(^{-1}\) to bridged OH\(_{IIA}\) and OH\(_{IIB}\) species [61,62]. In this case, the band at about 2130 cm\(^{-1}\) is not observed, confirming the effectiveness of the oxidation treatment.

Fig. 7b reports difference IR spectra obtained after adsorption of CO at nominal -196 °C on oxidized CeO\(_2\) sample. As a first comment, the intensity of the bands due to adsorbed CO species is one order of magnitude higher than in IR spectra reported in Fig. 7a. Such a remarkable
increase in intensity is related to the decomposition of carbonate species upon oxidation at 400 °C, resulting in a (clean) surface exposing oxidized Ce$^{4+}$ sites that are prone to adsorb CO molecules. Indeed, the most intense band at about 2150 cm$^{-1}$, which promptly disappears by decreasing CO pressure, is assigned to CO molecules interacting with surface OH groups. Conversely, the residual sharp peak at 2157 cm$^{-1}$ (that gradually decreases with pressure without changing its position) is due to CO molecules adsorbed on isolated c.u.s. Ce$^{4+}$ sites. Moreover, a third band (shifting with coverage from 2169 to 2177 cm$^{-1}$) is assigned to CO molecules interacting with another kind of c.u.s. Ce$^{4+}$ sites. The blue shift observed by decreasing the coverage is an indication that the latter c.u.s. Ce$^{4+}$ sites are interacting each other, i.e. they are likely located on extended surfaces. Finally, a (ca. 100 times) less intense band in the 2115-2095 cm$^{-1}$ range is assigned to 13CO molecules interacting with surface sites, in agreement with both the relative abundance of 13C/12C isotopes and the 1.026 reduced mass ratio.

CO was dosed at -196 °C also on CeO$_2$ sample reduced in H$_2$ at 200 °C, the corresponding IR spectra being reported in Fig. 7c. In comparison with Fig. 7b concerning same CO equilibrium pressures on the sample oxidized at 400 °C, the bands due to CO interacting with OH groups and that related to c.u.s. Ce$^{4+}$ sites decrease in intensity, confirming the reduction of some surface sites. Correspondingly, a band at 2127 cm$^{-1}$ (arrow) is seen, due to CO molecules adsorbed on reduced Ce$^{3+}$ sites. The poor intensity of the band corresponding to CO interacting with Ce$^{3+}$ sites is not surprising, since in the present case reduction was carried out in quite mild conditions, as confirmed by the lack of the band at about 2130 cm$^{-1}$ in curve c of Fig. 6.

In order to understand the effect of oxidation and/or reduction on the hydroxyls population, a curve-fitting procedure was carried on the hydroxyls IR spectra of the CeO$_2$ sample after oxidation at 400 °C and reduction at 200 °C. Fig. 8 reports corresponding IR spectra along with
the curve-fitting results. With the oxidized sample, a satisfactory curve-fit was obtained by assuming the presence of four peaks with maxima at 3710 cm$^{-1}$ (OH$_{\text{I}}$ species), 3687 cm$^{-1}$ (Ce$^{3+}$-related OH$_{\text{IIA}}$ species), 3662 cm$^{-1}$ (Ce$^{4+}$-related OH$_{\text{IIA}}$ species) and 3640 cm$^{-1}$ (Ce$^{4+}$-related OH$_{\text{IIB}}$ species). With the reduced sample, instead, the best curve-fit was obtained in the presence of five peaks, i.e. by adding a peak with maximum at 3651 cm$^{-1}$, assigned to the formation of Ce$^{3+}$-related OH$_{\text{IIB}}$ species. The relative area of the peaks was also considered, leading to the conclusion that Ce$^{4+}$-related OH$_{\text{IIA}}$ species (3687 cm$^{-1}$) reacted with H$_2$, likely forming OH$_{\text{I}}$ species and Ce$^{3+}$-related OH$_{\text{IIB}}$ species (Scheme 2), in agreement with previous literature reports [61].

The effect of Fe-doping on the surface properties of the material was noticeable, since an overall loss of transparency was observed in the IR range, related to the decreased surface area of the doped samples. Both Ce$_{\text{Fe3}}$ and Ce$_{\text{Fe6}}$ samples showed a less abundant OH population, likely due to the presence of surface Fe$^{3+}$ species in the CeFeO$_3$ phase both after outgassing at 200 °C (spectra not reported) and after oxidation at 400 °C (performed to get rid of adsorbed glycine molecules, as with CeO$_2$ sample).

In Fig. 9a, the IR spectra of CeO$_2$ (black curve), Ce$_{\text{Fe3}}$ (red curve) and Ce$_{\text{Fe6}}$ (green curve) samples are compared in the O–H stretching region: the Fe-doped samples show a weak signal at 3648 cm$^{-1}$, indicating the sole presence of OH$_{\text{IIB}}$ species. With Ce-Fe3 sample (red curve), a broad absorption centered at 3400 cm$^{-1}$ is related to H-bonded OH groups.

In Fig. 9b, the IR spectra of the three samples are compared in the whole IR spectral range: at variance with pure CeO$_2$, no bands ascribable to carbonate-like species are observed with Fe-doped samples, whereas a steep increase of absorbance is seen in the 2000-1000 cm$^{-1}$ range, corresponding to 0.25-0.12 eV energy. The addition of Fe induced a modification in the IR
spectra, in that an electronic absorption band (observed below 1500 cm$^{-1}$ in the CeO$_2$ spectrum, black curve) results eroded in Fe-doped samples (red and green curves), the entity of such modification being more evident on increasing the Fe loading. The aforementioned electronic absorption is related to free electrons in the conduction band of ceria: such electrons are trapped by the presence of new energy levels induced by Fe-doping, causing the erosion of the above-described absorption, as clearly shown by difference spectra reported in Fig. 9c (dashed red and dashed green curves), where a monotone negative absorption is observed. This phenomenon is more pronounced for Ce$_3$Fe$_3$ (dashed red curve) than for Ce$_3$Fe$_6$ (dashed green curve).

Figure 10 reports IR spectra recorded after dosing CO at nominal -196°C on Ce$_3$Fe$_3$ (red curve) and Ce$_3$Fe$_6$ (green curve) samples oxidized at 400 °C: a band is seen at ca. 2156 cm$^{-1}$, due to CO molecules interacting with OH groups. Concerning the latter band, a contribution of CO molecules adsorbed on isolated c.u.s. Ce$^{4+}$ sites cannot be excluded, in agreement with the presence of OH$_{II}$ species. No signals ascribable to surface Fe$^{3+}$ species were instead detected, since Fe$^{3+}$ usually does not form carbonyl species [65], indicating that most of surface Ce$^{4+}$ ions were likely replaced by Fe$^{3+}$ species.

3.3. UV-Vis spectroscopy

The DR UV-Vis spectra of the three as-synthesized samples under vacuum at room temperature are shown in Figure 11: the UV-Vis spectrum of CeO$_2$ (black curve) shows three absorption bands at 243, 270 and 330 nm. The first two bands are assigned to ligand to metal charge transfer transitions from O$^{2-}$ to Ce$^{3+}$ (243 nm) and Ce$^{4+}$ (270 nm) species, and the 330 nm band is due to the inter-band transition of CeO$_2$, usually observed in the 320-340 nm range [68]. With Fe-doped samples (red and green curves), new bands are observed above 400 nm, assigned to d-d
transitions of Fe$^{3+}$ species [69]. Some changes are detected also in the spectral region below 400 nm: the relative intensity of $O^2- \rightarrow Ce^{3+}$ and $O^2- \rightarrow Ce^{4+}$ bands changes, as shown by the upward and downward arrows reported in the Figure, indicating that, as a consequence of Fe-doping, the relative amount of Ce$^{3+}$ species increases with respect to Ce$^{4+}$ species, in agreement with previous characterization. Nonetheless, a bathochromic shift of the 320 nm band is observed with increasing the amount of Fe, in that the band due to inter-band transition is observed at 345 and 355 nm with Ce_Fe3 and Ce_Fe6 samples, respectively. This effect has been already observed with variously doped CeO$_2$, and corresponds to a decrease of the oxide band-gap as consequence of Fe$^{3+}$ doping, though restricted to near subsurface layers [70]. In the present case, the band-gap changes from 3.4 eV with pure CeO$_2$ to 3.2 eV and 3.1 eV for Ce_Fe3 and Ce_Fe6 samples, respectively, in agreement with the 0.25-0.12 eV value found in the IR spectra reported in Fig. 9. Such feature may represent a possibility for Fe-doped CeO$_2$ obtained by MACS to have some photocatalytic applications, although not explored in this paper.

3.4 Catalytic tests concerning activity of the samples towards CO oxidation

Figure 12 shows CO conversion to CO$_2$ in the 150 – 500 °C range for both the catalized and uncatalized reaction (dotted curve): as a whole, with Fe-doped samples a remarkable improvement of CO oxidation was observed with respect to CeO$_2$ sample.

In particular, the Ce_Fe3 sample exhibited the best performance in terms of both $T_{10%-50%-90%}$ values (277, 298, 327°C, respectively) and specific CO oxidation rate ($= 59.13$ mmol m$^{-2}$ h$^{-1}$ at 285°C) (Table 4, section A). With the Ce_Fe6 sample, the oxidation activity decreases (CO oxidation rate $= 40.85$ mmol m$^{-2}$ h$^{-1}$ at 285°C), in agreement with HR-TEM characterization.
showing that a higher Fe content seems to inhibit the formation of the Ce$_6$O$_{11}$ defective phase, with consequent formation of a higher amount of both CeO$_2$ and CeFeO$_3$ phases. The latter phase appears less effective towards CO oxidation with respect to highly dispersed Fe-species within the ceria lattice. Finally, the CeO$_2$ sample resulted the least performing CO oxidation catalyst, in terms of both $T_{10\%-50\%-90\%}$ values and specific oxidation rate, despite its higher BET surface area, likely due to the lack of the positive Ce-Fe synergy that, according to the literature, is achieved by combining the redox behavior of cerium (Ce$^{4+}$/Ce$^{3+}$) and iron (Fe$^{3+}$/Fe$^{2+}$) species [50]. Interestingly, a fair correlation is observed between CO oxidation activity of the samples and the corresponding amount of surface O$_\alpha$ species (Table 3), as measured XPS (vide supra). The latter finding confirms that O$_\alpha$ species can be directly involved in the catalytic oxidation of CO, at variance with other ceria-based nanostructures (namely, Ce-Zr-O and Ce-Pr-O systems) [36,71,72]. According to previous work [73], this suggest the occurrence of either a Langmuir-Hinshelwood or Eley-Rideal type mechanism, in which the determining steps occur in the gas phase: however, further considerations about reaction mechanisms are out of the scopes of this paper and will be the matter of future work.

3.5 Catalytic tests concerning activity of the samples towards soot combustion

Figure 13 shows the soot conversion to CO$_x$ (%) in the 150 – 650 °C range during both the catalysed reaction (in “tight contact” conditions) and the non-catalysed reaction (soot only).

At variance with CO oxidation, the CeO$_2$ sample performed better than both Fe-doped CeO$_2$ ($T_{10\%-50\%-90\%} = 364, 413, 456$ °C; $T_{\text{peak CO}_2} = 424$ °C).
The contact points between soot and catalyst particles play a key role in such solid-solid reaction mediated by gas-phase oxygen \((O_{2(g)}) \) and therefore the smaller size of CeO\(_2\) NPs improves the contact interactions with soot aggregates, finally leading to a higher activity. If, however, we consider that in “tight contact” conditions the soot is completely surrounded and in contact with the catalyst (being the latter in large excess, as tests were performed with a catalyst/soot mass ratio equal to 9, \textit{vide supra}), one can assume that soot reactivity directly depends on the specific surface (which is not the case in “loose” contact) \[41,42,45\]. In other words, soot is in direct contact with the same mass of catalyst in all experiments, and the mechanical force exerted in “tight contact” conditions makes fully accessible the catalyst surface, provided that no inner porosities inaccessible to soot (\textit{i.e.} well below soot particle sizes) are present. This, in fact, occurs for the investigated samples, for which microporous intra-particle volume is nearly absent and the inter-particle volume is mesoporous, according to N\(_2\) sorption isotherms at -196 °C \((\textit{vide supra}) \).

The fact that doping with Fe may lead to a decreased activity towards soot combustion can be, at first sight, a disappointing result. However, if specific soot oxidation rates are normalized to samples BET SSA, an interesting result emerges: the Fe-doped samples showed a higher catalytic activity, increasing with the Fe content, as the normalized soot oxidation rates per unit m\(^2\), calculated at 400 °C by considering unitary that of CeO\(_2\), result 3.7 and 4.9 for Ce_Fe3 and Ce_Fe6, respectively, due to the positive effect of Fe doping on the catalytic properties of these samples.

Further insight into soot oxidation can be derived by the soot-TPR curves reported in the Supporting Material (Fig. SM6), showing that the CeO\(_2\) sample provides the largest amount of CO\(_2\): also in the absence of O\(_2(g)\), CeO\(_2\) NPs confirm their higher activity, ascribable to a higher
tendency of surface oxygen species to react with soot particles. Above 450 °C, the CO₂ emissions of the three catalysts are very similar: since surface oxygen species have been consumed at low T, reaction occurs with oxygen species coming from the bulk. The latter phenomenon requires higher T, at which the three catalysts perform similarly, being Fe-doping mostly related to the surface.

Concerning soot combustion, a second set of experiments was carried out with the fresh powders, to test both the repeatability of the catalytic measurements and the quality (and the overall homogeneity) of samples obtainable by MACS.

Figure 14 reports the two catalytic cycles obtained with fresh powders: the first cycles nearly coherre to previous ones, as comparable results are obtained with respect to Fig. 13, given the very limited differences between the values of T₅₀% in Fig. 13 and Fig. 14 (i.e. 413 °C vs 414 °C for CeO₂, 453 °C vs 461 °C for Ce_Fe₃, 487 °C vs 479 °C for Ce_Fe₆, respectively): indeed the maximum deviation observed between the two tests was 8 °C (Ce_Fe₆). This result showed that homogeneous powders are obtained by MACS, as the catalytic activity was comparable to the previous powders.

Moreover, the tests in Fig. 14 showed a positive effect of Fe doping towards selectivity to CO₂: Fe-doped samples showed indeed a superior CO oxidation activity, as almost no CO emissions were detected (the selectivity to CO₂ at Tₚₑ𝐚ᵏ₂₉ was 97% and 99% for Ce_Fe₃ and Ce_Fe₆ respectively), at variance with CeO₂, for which the selectivity to CO₂ at Tₚₑ𝐚ᵏ₂₉ was 97% and 86%.

The catalysts were then recovered, and the soot-catalyst bed was re-prepared by adding soot and repeating the measurement: the obtained soot conversion curves (hollow symbols in Fig. 14) show that the catalyst degradation was limited, though selectivity to CO₂ decreased, especially
with CeO$_2$ sample (from 86% to 60% during the second cycle). This effect was also evident with the Fe-doped samples, where CO oxidation activity decreased shifting towards higher T. Future work will concern the improvement of catalysts stability, with the aim of obtaining catalysts able to withstand (technologically relevant) phenomena of ageing.

Conclusions

Microwave Assisted Combustion Synthesis (MACS) allowed the preparation of both pure and Fe-doped CeO$_2$ nanoparticles with interesting catalytic performance in two reactions of environmental interest, namely CO oxidation and soot combustion. The catalytic performance of the prepared materials was deeply affected by their physico-chemical properties, and in particular i) the extent of Fe doping within the ceria lattice, with respect to the formation of a secondary CeFeO$_3$ phase, ii) the presence of defective ceria phases at the surface of larger agglomerates and iii) the nanoparticles size. The first property influences the presence of surface oxygen species (O$_{\alpha}$) that are responsible of the catalytic performance of the samples as catalysts for CO oxidation, whereas the other two parameters are crucial in the soot combustion. In the latter reaction, implying an intimate contact between the solid reagent (soot) and the catalyst, a positive effect of Fe doping was indeed observed (as intrinsic soot oxidation activity per unit of catalyst surface), which however is not able to counterbalance the low SSA that characterizes the Fe-containing samples. This made the CeO$_2$ sample finally prevail over the Fe-doped ones, in a comparison based on overall soot conversion.

Such findings were obtained on the ground of a multi-techniques characterization, which allowed figuring out other interesting physico-chemical parameters of the materials obtained by MACS, as well. For instance, IR spectroscopy allowed the detection of several hydroxyls species at the
surface of materials obtained by MACS, rarely observed with CeO₂-materials obtained by means of other syntheses, indicating the occurrence of a very defective surface, which could be exploited also for other catalytic reactions implying the presence of acid/base functionalities. Accordingly, the CeO₂ sample produced by MACS showed the prevailing occurrence of very defective Ce₆O₁₁ and Ce₂O₃ surfaces, as observed by HRTEM.

On the other hand, doping with Fe, although limited due to the formation of the CeFeO₃ secondary phase, led to a decrease in the band-gap of the material, an interesting result that could be exploited for photocatalytic applications, although not explored in the present paper.

Acknowledgments

The authors thank Dr Paola Rivolo, for performing the micro-Raman spectroscopy measurements, and Melodj Dosa, for performing the soot-TPR measurements (Department of Applied Science and Technology, Politecnico di Torino).

References

[41] V. Rico-Pérez, E. Aneggi, A. Bueno-López, A. Trovarelli, Synergic effect of Cu/Ce$_{0.5}$Pr$_{0.5}$O$_{2-\delta}$ in soot combustion, Appl. Catal. B: Environ. 197 (2016) 95-104.

[73] H.-T. Chen, J.-G. Chang, Computational Investigation of CO Adsorption and Oxidation on

Table 1
Some relevant physico-chemical parameters of the samples, as determined by compositional analysis (XRF, EDX and XPS); N$_2$ isotherms at -196 °C and H$_2$-TPR.

<table>
<thead>
<tr>
<th>Sample (Fe/Ce nominal atomic ratio)</th>
<th>Fe/Ce atomic ratio from XRF</th>
<th>Average Fe/Ce atomic ratio from EDX</th>
<th>Surface Fe/Ce atomic ratio from XPS</th>
<th>BET SSA (m2 g$^{-1}$)</th>
<th>Amount of H$_2$ consumed during TPR (µmol g$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ce (Fe/Ce = 0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>1.01</td>
</tr>
<tr>
<td>Ce$_{Fe3}$ (Fe/Ce = 0.031)</td>
<td>0.031</td>
<td>0.038</td>
<td>0.468</td>
<td>5.0</td>
<td>1.17</td>
</tr>
<tr>
<td>Ce$_{Fe6}$ Fe/Ce = 0.064</td>
<td>0.064</td>
<td>0.064</td>
<td>0.672</td>
<td>2.5</td>
<td>1.63</td>
</tr>
</tbody>
</table>

Table 2: Refined unit cell (a), grain size (D), micro-strain (ε) and QPA phases percentages as obtained by Rietveld refinement.
<table>
<thead>
<tr>
<th>Sample</th>
<th>a (Å)</th>
<th>D (nm)</th>
<th>ε</th>
<th>wt% CeO₂</th>
<th>wt% CeFeO₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>CeO₂</td>
<td>5.41404(3)</td>
<td>20</td>
<td>0.045</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Ce_Fe3</td>
<td>5.41405(7)</td>
<td>137</td>
<td>0.0225</td>
<td>98.4</td>
<td>1.6</td>
</tr>
<tr>
<td>Ce_Fe6</td>
<td>5.413907(4)</td>
<td>137</td>
<td>0.04</td>
<td>95</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 3

Most relevant results as obtained by means of XPS analysis and related curve-fitting procedure.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Binding Energy (eV) and atomic percentage composition (in brackets)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O1s</td>
<td>Ce 3d 5/2</td>
</tr>
<tr>
<td></td>
<td>Oβ, Oα</td>
<td>v, v' (Ce³⁺), v'', v'''</td>
</tr>
<tr>
<td>CeO₂</td>
<td>529.13, 531.73 (74.3, 25.7)</td>
<td>882.16, 883.67 (11.6, 16.9)</td>
</tr>
<tr>
<td>Ce_Fe3</td>
<td>529.24, 531.88 (57.7, 42.3)</td>
<td>882.22, 883.79 (10.1, 19.8)</td>
</tr>
<tr>
<td>Ce_Fe6</td>
<td>529.26 (58.1)</td>
<td>531.77 (41.9)</td>
</tr>
</tbody>
</table>
Table 4 Catalytic performances of the catalysts towards the reactions of CO oxidation (Section A) and soot combustion (Section B).

Section A

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>$T_{10%}$</th>
<th>$T_{50%}$</th>
<th>$T_{90%}$</th>
<th>r^a (mmol m$^{-2}$ h$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CeO$_2$</td>
<td>319</td>
<td>362</td>
<td>410</td>
<td>1.13</td>
</tr>
<tr>
<td>Ce$_x$Fe$_3$</td>
<td>277</td>
<td>298</td>
<td>327</td>
<td>59.13</td>
</tr>
<tr>
<td>Ce$_x$Fe$_6$</td>
<td>286</td>
<td>310</td>
<td>361</td>
<td>40.83</td>
</tr>
</tbody>
</table>

a Specific CO oxidation rate calculated at 285 °C, a temperature allowing the assumption that the three catalysts were all working under kinetic control.

Section B

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>$T_{10%}$</th>
<th>$T_{50%}$</th>
<th>$T_{90%}$</th>
<th>$T_{peak \ CO_2}^a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CeO$_2$</td>
<td>364</td>
<td>413</td>
<td>456</td>
<td>424</td>
</tr>
<tr>
<td>Ce$_x$Fe$_3$</td>
<td>391</td>
<td>461</td>
<td>519</td>
<td>458</td>
</tr>
<tr>
<td>Ce$_x$Fe$_6$</td>
<td>404</td>
<td>487</td>
<td>547</td>
<td>489</td>
</tr>
</tbody>
</table>

aTemperature at which the maximum CO$_2$ emission is reached during soot combustion tests in “tight contact” conditions.
Scheme 1. Types of OH species found at the surface of CeO$_2$ according to the literature [54, 55].

Scheme 2. Proposed reaction occurring at the surface of CeO$_2$ sample upon reduction in H$_2$ at 200 °C.

Figure Captions

Figure 1. TEM and HR-TEM images of CeO$_2$ (sections a and b, respectively), Ce$_x$Fe$_{3-y}$ (sections c and d, respectively) and Ce$_x$Fe$_{6-y}$ (sections e and f, respectively). Instrumental magnification 50000X (left column) and 300000X (right column).

Figure 2. XRPD pattern collected on the pure CeO$_2$ and on the Fe-doped samples (Ce$_x$Fe$_3$ and Ce$_x$Fe$_6$).

Figure 3. Williamson-Hall plot for the pure CeO$_2$ and the Fe-doped samples as obtained by the FWHM of (111) (200) (220) (311) (400) (331) and (420) peaks.

Figure 4. XP spectra of the three samples in the O 1s BE range. Curve-fittings were obtained by applying a mixed Gaussian-Lorentzian profile.
Figure 5. H$_2$-TPR profiles as obtained with CeO$_2$ (black curve), Ce_Fe3 (red curve) and Ce_Fe6 (green curve).

Figure 6. IR spectra in the 3850-750 cm$^{-1}$ range concerning sample CeO$_2$ outgassed at 250 °C (curve a), oxidized at 400 °C (curve b) and reduced in H$_2$ at 200 °C (curve c). Inset: detail of the corresponding O–H stretching range (3800-3500 cm$^{-1}$).

Figure 7. IR spectra in the C≡O stretch range (2250-2050 cm$^{-1}$) recorded after dosing CO at nominal -196 °C on CeO$_2$ sample outgassed at 250 °C (a); oxidized at 400 °C (b) and reduced at 200 °C (c). Difference spectra are reported, as obtained by subtraction of the spectrum of the bare sample in Fig. 6; CO equilibrium partial pressures are in the 0.05-15.0 mbar range. Inset to Section a: same IR spectra in the O–H stretching region (3750-3000 cm$^{-1}$).

Figure 8. IR spectra concerning the O–H stretching range of CeO$_2$ after oxidation at 400 °C and reduction at 200 °C, along with the results of the curve-fitting procedure obtained by applying a Gaussian profile (Origin 8.5 software) to the peaks. IR spectra are reported as continuous lines, whereas single peaks resulting from curve fits as dashed-dotted lines and the resulting curve fits as dotted curves.

Figure 9. IR spectra of the three samples after oxidation at 400 °C in the OH stretching range (section a, 3800-3000 cm$^{-1}$) and in the whole spectral range (section b, 3800-600 cm$^{-1}$). Section c: difference spectra obtained by subtraction of the IR spectrum of sample CeO$_2$ concerning Fe-doped samples. Color legend: CeO$_2$ (black curve), Ce_Fe3 (red curve) and Ce_Fe6 (green curve).

Figure 10. IR spectra in the C≡O stretching range (2250-2050 cm$^{-1}$) obtained after dosing ca 5.0 mbar CO on samples Ce_Fe3 (red curve) and Ce_Fe6 (green curve) oxidized at 400 °C.
Figure 11. DR-UV-Vis spectra of CeO$_2$ (black curve), Ce$_x$Fe$_{3-x}$ (red curve) and Ce$_x$Fe$_{6-x}$ (green curve) powders under vacuum at room temperature.

Figure 12. CO oxidation tests: CO to CO$_2$ conversion curves (%) in the 150 – 500 °C temperature range, as obtained with CeO$_2$ (black curve), Ce$_x$Fe$_{3-x}$ (red curve) and Ce$_x$Fe$_{6-x}$ (green curve) samples and in the non-catalyzed reaction (dotted curve).

Figure 13. Soot combustion tests: soot conversion (%) in the 150 – 650 °C temperature range as obtained with CeO$_2$ (black curve), Ce$_x$Fe$_{3-x}$ (red curve) and Ce$_x$Fe$_{6-x}$ (green curve) samples and in the non-catalyzed reaction (dotted curve).

Figure 14. Repeatability and stability tests: soot conversion (%), CO (ppm) and CO$_2$ (%) measured at the reactor outlet in the 150 – 650 °C temperature range as obtained with CeO$_2$ (black curves), Ce$_x$Fe$_{3-x}$ (red curves) and Ce$_x$Fe$_{6-x}$ (green curves). Full and hollow symbols refer to first and second cycle, respectively.
Figure 1. Tapas R. Sahoo et al.
Figure 2. Tapas R. Sahoo et al.

Figure 3. Tapas R. Sahoo et al.
Figure 4. Tapas R. Sahoo et al.
Figure 5. Tapas R. Sahoo et al.

Figure 6. Tapas R. Sahoo et al.
Figure 7. Tapas R. Sahoo et al.
Figure 8. Tapas R. Sahoo et al.

Figure 9. Tapas R. Sahoo et al.
Figure 10. Tapas R. Sahoo et al.

Figure 11. Tapas R. Sahoo et al.
Figure 12. Tapas R. Sahoo et al.

Figure 13. Tapas R. Sahoo et al.
Figure 14. Tapas R. Sahoo et al.
Supplementary Material

Pure and Fe-doped CeO$_2$ nanoparticles obtained by microwave assisted combustion synthesis: physico-chemical properties ruling their catalytic activity towards CO oxidation and soot combustion

Tapas R. Sahoo,1,§ Marco Armani,2,§ Rossella Arletti,3 Marco Piumetti,2 Samir Bensaid,2 Maela Manzoli,4 Sirish R. Panda,1 Barbara Bonelli*2,5

1 Department of Chemistry, School of Applied Sciences & Center of Industrial Technology, KIIT University, Bhubaneswar 751024, Odisha, INDIA.

2 Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, ITALY.

3 Department of Earth Sciences, Università degli Studi di Torino, Via Valperga Caluso 35, 10125 Torino, ITALY.

4 Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, ITALY.

5 INSTM Unit of Torino-Politecnico, Corso Duca degli Abruzzi 24, 10129 Torino, ITALY.
Fig. SM1. FE-SEM micrographs of samples CeO$_2$ (a), Ce$_x$Fe$_3$ (b) and Ce$_x$Fe$_6$ (c). Instrumental magnification: 750, 250 and 200K X. Section d: lower magnification picture taken with sample Ce$_x$Fe$_6$ showing the occurrence of spongy-like aggregates; instrumental magnification: 50K X.
Figure SM2. XP spectra of Ce_Fe3 and Ce_Fe6 samples in the Fe 2p BE range. BE of the corresponding four components are reported in Table 3 of the main text.
Figure SM3. XP spectra of the three samples in the Ce 3d BE range. BE of the corresponding eight components are reported in Table 3 of the main text.
Fig. SM4. Raman spectra of samples CeO$_2$ (black curve); Ce$_x$Fe$_{3-y}$ (red curve) and Ce$_x$Fe$_6$ (green curve) in the 425 – 600 cm$^{-1}$ range.

Figure SM4 shows the presence of a Raman peak centered at 464 cm$^{-1}$, assigned in the literature to the symmetric breathing mode of O atoms around cerium ions in pure ceria [1]: Fig. SM4 shows that the peak is not altered in Fe-doped samples. Since only the O atoms are involved in this mode, its frequency should not be nearly dependent on the cation mass: only when an increase of the Ce-O bond lengths is brought about by lattice distortions, the 464 cm$^{-1}$ mode shifts towards lower frequencies [2]. Since, as reported in the Figure, the peak does not shift by increasing the Fe content, a negligible effect of Fe doping on the ceria lattice can be inferred. Moreover, the phonon mode at 570 cm$^{-1}$, present when oxygen vacancies occur in the ceria lattice [2], is absent, likely due to an extremely low concentration of oxygen vacancies, both in CeO$_2$ and Fe-doped samples.
Fig. SM5. TG (Thermogravimetric) curves (upper part) and mass spectra corresponding to m/z = 30 (lower part) obtained on CeO$_2$ (curve 1), Ce$_3$Fe$_3$ (curve 2) and Ce$_6$Fe$_6$ (curve 3) samples, showing the negligible mass loss due to the limited presence of residual glycine fuel in the as-synthesized samples.
Fig. SM6. Soot-TPR tests: CO\textsubscript{2} (%) measured at the reactor outlet in the 150 – 650 °C temperature range as obtained by flowing pure N\textsubscript{2}(g) in the presence of CeO\textsubscript{2} (black curve), Ce\textsubscript{Fe3} (red curve) and Ce\textsubscript{Fe6} (green curve) samples.

Soot-TPR tests were obtained in “tigh contact” conditions, as well, under pure N\textsubscript{2(g)} flow. In the absence of O\textsubscript{2} in the gas phase, the only source of oxygen for soot combustion is that supplied by the catalyst itself. At low T, carbon soot is largely oxidized to CO\textsubscript{2}, indicating a fast conversion of intermediate species (i.e. CO) to CO\textsubscript{2} (curves concerning CO evolution are not reported as the selectivity to CO\textsubscript{2} exceeded 98 %). Fig. 14 shows
References
