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ABSTRACT  

Current modelling approaches often ignore the dynamics of organic chemicals uptake/release in forest 

compartments under changing environmental conditions and may fail in accurately predict exposure 

to chemicals for humans and ecosystems. In order to investigate the influence of such dynamics on 

predicted concentrations in forest compartments, as well as, on air-leaf-litter fluxes, the SoilPlusVeg 

model was developed including a forest compartment (root, stem, leaves) in an existing air-litter-soil 

model. The accuracy of the model was tested simulating leaf concentrations in a broadleaf woods 

located in Northern Italy and resulted in satisfying model performance. Illustrative simulations 

highlighted the “dual behaviour” of both leaf and litter compartments. Leaves appeared to behave as 

“filters” of air contaminants but also as “dispensers”, being deposition flux exceeded by volatilization 

flux in some periods of the day. Similarly, litter seemed to behave as a dynamic compartment which 

could accumulate and then release contaminants recharging air and vegetation. In just 85 days, litter 

could lose due to volatilization, diffusion to depth and infiltration processes, from 6% to 90% of 

chemical amount accumulated over 1 year of exposure, depending on compound physical and 
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chemical properties. SoilPlusVeg thus revealed to be a powerful tool to understand and estimate 

chemical fate and recycling in forested systems. 

 

KEYWORDS : multimedia fate model, plants, litter, PAH, PCB, risk assessment 

 

 



 3

INTRODUCTION 

Vegetation has a fundamental function in controlling air quality (e.g. reducing air concentrations of 

chemicals and particulate matter, Terzaghi et al., 2013) and the accumulation of chemicals in 

vegetation is the first step in the food chain uptake, influencing both human and environmental 

exposure and therefore effects. For this reason, vegetation uptake was accounted in current risk 

assessment modelling tools (e.g. EUSES model, EC, 2004) to predict exposure through food. 

However, it has been underlined the need for more dynamic and ecologically realistic description of 

vegetation uptake for improving human and ecological risk assessment, given the substantial 

simplicity of current regulatory approaches (EC, 2013). The role of vegetation in accumulating 

organic contaminants was first studied in the 1980/90s, when different studies were conducted to 

investigate chemical uptake by plant roots (Briggs et al., 1982; Briggs et al., 1983; Burken and 

Schnoor, 1998) and leaves (Bacci et al., 1985; Bacci et al., 1990). Later, the forest filter effect (FFE), 

i.e. the ability of forest to efficiently sequester chemicals from air and transfer them to the soil, was 

defined (McLachlan et al., 1998) and characterized for different types of forests (Horstmann and 

McLachlan, 1998; Jaward et al., 2005; Nizzetto et al., 2006a). Air-plant exchange was initially 

regarded as mostly a unidirectional (air → plant) flux for atmospheric pollutants; however, a number 

of studies later demonstrated that leaves behave as a dynamic compartment which, in response to 

environmental condition changes, can accumulate or re-emit organic contaminants (Dalla Valle et 

al., 2005; Gouin et al., 2002; Hornbuckle et al., 1996; Hung et al., 2001), as well as capture and 

release particulate matter and its associated chemicals (Terzaghi et al., 2013). Litter was also shown 

to be relevant in the accumulation or release of organic contaminants, influencing concentrations in 

air and controlling chemical transport across the air-soil interface (Ghirardello et al., 2010; Liu et al., 

2013; Nizzetto et al., 2014). Over the past two decades, interest in the role of forests in the cycling 

and fate of persistent organic pollutants (POPs) has increased, as their potential to act as final sink or 

temporary repository of POPs has been recognized and discussed (Scheringer and McKone, 2003).  
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Also the soil compartment has received much attention in the past twenty years since it was 

recognized as playing an important role suppling important ecosystem services to humans and 

environment, e.g., its buffer and filtering function for pollutants allows groundwater and surface water 

protection (Adhikari and  Hartemink, 2016; Brevik et al., 2015; Keesstra et al., 2012; Keesstra et al., 

2016). More specifically, a number of field studies were conducted to measure organic chemical 

concentrations in different compartments (air, leaves, litter and soil) of temperate, boreal and tropical 

forests (Choi et al., 2008; Jaward et al., 2005; Kompordová et al., 2016; Moeckel et al., 2008; 

Nizzetto et al., 2006b; Nizzetto et al., 2007; Nizzetto et al., 2008b; Su et al., 2007; Zheng et al., 2015), 

while some simplified modeling approaches were developed to estimate chemical fluxes between 

these compartments (Moeckel et al., 2009; Nizzetto et al., 2006b; Nizzetto et al., 2007; Nizzetto et al., 

2008a). Recently, the use of a more detailed parameterization of canopy (Nizzetto and Perlinger, 

2012) and of litter/soil (Moeckel et al., 2008; Nizzetto et al., 2014) exchange was suggested, in order 

to further explore their potential influence on global distribution and fate of organic chemicals. Since 

the late 1980s, a number of plant bioaccumulation models with different degrees of complexity were 

developed (Bathia et al., 2008; Cousins and Mackay, 2001; Czisar et al., 2012; Fantke et al., 2011; 

Komprda et al., 2009; Legind et al., 2009; Paterson et al., 1991; Priemer and Diamond, 2002; Trapp 

et al., 1994; Undeman et al., 2009; Wania and McLachlan, 2001; Wegmann et al., 2004). However, 

most of these models consider only the variability in exposure concentrations and assume that many 

plant and environmental parameters are constant over time, lacking ecological realism (EC, 2013). 

Furthermore, they generally furnish a simplified description and parameterization of the air and soil 

compartments and totally ignore the presence of a litter layer, although its inclusion in multimedia 

fate models was demonstrated to significantly alter the predictions of organic contaminants between 

air and soil (Ghirardello et al., 2010). The aim of this study was to develop a new dynamic vegetation 

model that accounts for the variability of meteorological and ecological parameters and integrate it 

in an existing dynamic air/litter/soil model (SoilPlus) (Ghirardello et al., 2010). The final model 

(SoilPlusVeg) includes two air compartments (Planet Boundary Layer, PBL and residual layer), a 
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multi-layered litter/soil compartment and a forest compartment (leaves, stem, roots) in which organic 

contaminants can partition and cycle. A preliminary sensitivity analysis of SoilPlusVeg model was 

performed and model performance was also evaluated adopting an ecologically realistic and full 

dynamic scenario developed in previous work (Terzaghi et al., 2015). Illustrative simulations were 

then run in order to show: i) the short-term variability of phenanthrene air-leaf fluxes; ii) the seasonal 

variability of some Polychlorinated Biphenyls (PCBs) fluxes in a forested system mainly focusing on 

air-leaf-litter exchanges; iii) the potential of a contaminated litter/soil system to recharge the 

atmosphere and therefore act as a chemical source for air and vegetation. The results of the present 

study, dealing with dynamics of air/plant/litter/soil compartment interactions, could be relevant when 

evaluating the exposure of humans and ecosystems to organic chemicals. 

MATERIALS AND METHODS  

2.1 Development of the vegetation model and integration with SoilPlus. A new dynamic 

vegetation model, based on the fugacity approach (Mackay et al., 2001), was developed to simulate 

a forest of trees composed of root, stem and leaf compartments. In this model, compartment capacities 

are expressed in terms of Z values (Table A.1) while transport and transformation processes are 

computed by means of D values (Table A.8). Organic chemicals can reach the vegetation 

compartments through dry gaseous deposition (absorption), dry particle deposition, rain dissolution 

of dissolved chemical, wet particle deposition and root uptake from soil; loss processes include 

volatilization, wash off, wax erosion, litter fall, degradation and transfer from roots to soil; moreover, 

translocation through xylem and phloem allows the chemical movement from roots to leaves and vice 

versa. The assembled vegetation model was integrated in an existing dynamic air/soil model 

(SoilPlus) described in detail in Ghirardello et al., 2010. Figure 1 shows a schematic representation 

of the vegetation compartments and their relationships with the air and the litter/soil compartments 

of the SoilPlus model. The resulting model (SoilPlusVeg) includes: 1) two air compartments, namely 

lower air (LA) and upper air (UA) representing the PBL and the residual layer respectively, which 
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vary in height and wind speed on an hourly basis; 2) a multi-layered soil, bare or covered by up to 

three litter horizons; 3) a vegetation compartment which can be composed of a mono-specific or a 

multi-specific forest but it can also be parameterized to reflect the characteristics of herbaceous plants 

and pasture systems. When the vegetation model was integrated in SoilPlus, it was assumed that the 

new compartments (roots, stem, and leaves) did not change the volume of the other ones (UA, LA, 

litter and mineral soil) and that vegetation evapotranspiration, although calculated by the model, it 

was not parameterized at species level. Furthermore, in order to distribute root volume in each soil 

layer, considering the rooting distribution in soil, the Gale and Grigal model (Gale and Grigal, 1987) 

was chosen (more details are given in Appendix A.6). The litter/soil organic matter (OM) mass 

balance of the SoilPlus model was improved considering OM deriving from falling leaves (Appendix 

A.13). Moreover, mass transfer coefficients (MTC) and D values for the air-soil exchanges were 

modified in order to consider the influence of the vegetation presence. More specifically, MTC for 

absorption (KEV) and dry particle deposition (UQ) to soil were modified during the vegetation period 

to consider the reduced turbulence of air under the plants; in addition, D values for rain dissolution 

(DRDissLA) and wet particle deposition (DWDepLA) were modified considering the fraction of water that 

drip to soil after/without intercepting leaves, while D value for dry particle deposition DDDepLA was 

correct to consider the particles not intercepted by leaves (Appendix A.12). In the model presented 

here, each compartment is described by a time dependent mass-balance equation written in 

differential form in which the chemical amount (mol) is the state variable. The left-hand terms of the 

equations represent the variation of the chemical amount (mol) in the compartments with time (Table 

A.10). The letters a- φ include the terms involved in the mass balance (Table A.11). The mass balance 

equations are 1st-order ordinary differential equations (ODEs), and the system is solved numerically 

using a 5th-order accurate, diagonally implicit Runge-Kutta method with adaptive time stepping 

(ESDIRK) (Semplice et al., 2012). More details about model parameterization can be found in the 

Supporting Information (Appendix A.1-A.14). 
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Figure 1 - Schematic representation of SoilPlusVeg model. The numbers indicate the vegetation compartment 
processes: 1) Air-leaf transfer (absorption + dry particle deposition + wet particle deposition + rain dissolution); 
2) Volatilization; 3) Leaf-soil transfer (wash-off + wax erosion + litterfall); 4) Stem-leaf transfer; 5) Leaf-stem 
transfer; 6) Roots-stem transfer; 7) Stem-roots transfer; 8) Soil-roots transfer; 9) Root-soil transfer; 10) 
Degradation in leaves; 11) Degradation in stem; 12) Degradation in roots. DOC stands for Dissolved Organic 
Carbon. 

 

2.2 Sensitivity analysis. A preliminary sensitivity analysis was conducted for phenanthrene (PHE) 

and pyrene (PYR) as reported in Appendix B.1 according to MacLeod et al., 2002, to investigate 

which input parameters (I) have the strongest influence on three outputs (O), i.e. concentrations in 

LA, leaves and litter. The sensitivity (S) for the selected output parameters (O) to changes in the 

individual parameters (I) was evaluated by varying each input individually by 0.1% and by assessing 

the absolute sensitivity of the outputs to these changes as follows:  
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II

OO
S

∆
∆=                                                                                                                                     Eq.1 

where ΔO and ΔI are the relative changes in the output and the input parameter, respectively.  

Three output parameters (PHE and PYR concentrations in LA, leaves and litter) and 50 input 

parameters were selected for the sensitivity analysis. More specifically, concentrations of the last 

hour of a year simulation were considered. 

2.3 Simulation scenario for the model evaluation. An evaluation of the SoilPlusVeg model 

performance was carried out for two Polycyclic Aromatic Hydrocarbons (PAHs), PHE and PYR 

(Table B.1) comparing model output of a one-year simulation with a dataset of leaf concentrations 

measured in a small broadleaf woods located in Northern Italy (Como) in 2007 (Terzaghi et al., 2015). 

The vegetation compartments were parameterized as reported in Appendix A. Simulations were 

performed for a mixed broadleaf woods, composed of Cornus mas (cornel), Corylus avellana 

(hazelnut) and Acer pseudoplatanus (sycamore maple). Bud burst occurred on 15 March 2012 for the 

two understorey species (cornel and hazelnut), while maple leaves appeared about 3 weeks later, on 

7 April. The growing season ended on 5 December but comparison between predicted and measured 

results was performed for a shorter period (15 March -7 June) and for only two species (cornel and 

maple). The air compartments were parameterized as reported in Morselli et al., 2011. Upper air height 

ranged between 10 m to 2267 m while that of lower air between 100 m and 3000 m, depending on the 

season and the period of the day (day or night). Wind speed in upper air ranged between 0.2 m/s and 

43 m/s, while in lower air between 0.2 m/s and 33 m/s. Such data were calculated with the help of a 

meteorological pre-processor (for details, see Morselli et al., 2012) starting from upper air soundings 

and standard meteorological observations collected during 2007 for a semi-urban site located in the 

proximity of Milan, about 50-km away from Como. Even though the topographical setting of Como 

(situated North of Milan, bordering to the Alps mountains) could determine differences in PBL height 

and dynamics with respect to the Milan site (substantially flat), this meteorological dataset was used 
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because of its completeness and given the lack of an upper air sounding station in the surroundings 

of Como. A single litter horizon (Oi) characterized by dynamic depth (~0.5 cm to ~3.5 cm), high 

porosity, low field capacity and wilting point (see Appendix C.1 for more details) and a 10 cm deep 

loamy sand soil were simulated. The total thickness of the litter/soil system was ~10.5 cm - ~13.5 cm 

depending on the period of the year. While the soil horizon was subdivided into a number (20) of 

0.005-m thick layers, a single layer of dynamic depth was considered for the litter horizon to evaluate 

how the change in some properties (such as porosity and organic carbon) would influence the fate of 

chemicals in this compartment. Organic carbon (OC) fractions were set to 56% and 4% in the litter 

and soil compartments respectively, while averaged DOC concentrations of 10 mg/L (mineral soil) 

and 20 mg/L (litter) were assumed in spring, multiplied by a factor of 3 and 2 in summer and fall 

respectively, and a factor of 0.5 in winter to obtain an annual average concentration of ~15 mg/L 

(mineral soil) and ~30 mg/L (litter) (Michalzik et al., 2001). These assumptions were made to 

reconstruct a seasonal DOC production profile as described in the literature (Kalbitz et al., 2000). The 

Oi horizon was assumed to be composed of fast degrading leaves, with an average half-life of 84 days 

(Jacob et al., 2009); the mineral soil had instead more persistent organic carbon (1% reduction in a 

year of simulation) to simulate typical humified organic matter. Meteorological parameters such as 

temperature, precipitation, solar radiation and PM10 concentrations were provided by the Regional 

Environmental Protection Agency (ARPA, 2014) on an hourly or daily basis for 2007 for Como city. 

In order to run the model, an estimate of the emission conditions was needed. The PAH sources were 

calibrated to reflect the observed range of variability in measured concentrations (Terzaghi et al., 

2015). More specifically, the direct chemical and PM10 emission to lower air were calibrated in order 

to obtain the best possible fit to the range of measured air concentrations (average of the week), while 

a PM10 background concentration equal to the lowest measured concentration (7 μg/m3) was assumed. 

No background concentration for chemical was considered. In Appendix C.2 more details about 

chemical emission in LA can be found. 
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2.4 Simulation scenario for the model illustration. The following illustrative simulations (i, ii, iii) 

were performed. i) The short-term variability of PHE air-leaf exchange was investigated. More 

specifically air-leaf fluxes obtained from model evaluation simulations were interpreted considering 

the daily variability of meteorological parameters, air compartment structure and chemical emission. 

ii) Five PCBs of different physical and chemical properties (Table D.1) were simulated to investigate 

the seasonal variability of chemical fluxes in a forested system mainly focusing on air-leaf-litter 

exchange. A one year simulation was run adopting the same scenario described in section 2.3, but 

assuming a chemical background concentration of ~13, 10, 5, 3, 2, 1 pg/m3 for PCB 28, 52, 101, 153, 

180 respectively and a PM10 background concentration of 15 µg/m3, which are in the range of 

concentration measured by our group in a remote forested area (Lys Valley) located in Northern Italy 

(Nizzetto et al., 2008b). iii) The role of a contaminated litter/soil system in acting as a possible PCB 

source for the overlaying vegetation was estimated with another one year simulation, maintaining the 

background air concentration to zero and setting the same chemical amount reached in litter and soil 

at the end of previous simulations. 

RESULTS AND DISCUSSION  

3.1 Sensitivity analysis. The sensitivity of the three outputs to changes in the most influential input 

parameters are shown in Figure B.1-Figure B.3, while a complete list of results can be found in 

Table B.2. PHE and PYR concentrations in LA were mostly affected by emission in LA (MOL_LA), 

LA height (HeightLA), wind speed in LA (WindSpeedLA) (S~1) and domain size (SimArea) (S~0.5). 

These parameters affected similarly concentrations in leaves and litter. For PHE and PYR 

concentration in leaves one of the most influential parameters was air temperature (HourlyTemp) 

(S~1.5), followed by plant-air partition coefficient (Kpa_monosp) (S~0.7 and S~0.5 for PHE and PYR 

respectively) and other parameters involved in the KPA estimation (Specific Leaf Area (SLA) (S~1), 

enthalpy of phase change between plant and air (DeltaHPA) (S~0.8) and SLA at full development of 

leaves (SLAstable) (S~0.7 and S~0.5 respectively)). Considering litter concentration, organic carbon 
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partition coefficient (Koc) (S~1) was among the most sensitive parameters followed by some physical 

and chemical properties (water solubility (WS) (S~0.8 and S~0.6, respectively) and vapour pressure 

(VP) (S~0.8 and S~0.6, respectively)) and air temperature (HourlyTemp) (S~0.6 and S~1, 

respectively). In addition, DOC partition coefficient (Kdoc) and DOC concentration (DOCconc) 

seemed to affect litter concentrations, although with a different degree for the two chemicals (S~0.2 

and S~0.7, respectively). Being a local sensitivity analysis (i.e., one parameter varied a little at a 

time), the approach presented here did not allow capturing, for example, the effect of the interactions 

among parameters (Augusiak et al., 2014); however, it helped in the identification of the key input 

parameters to which particular attention should be paid in order to obtain accurate results. 

3.2 Model evaluation 

3.2.1 Predicted vs. measured leaf concentrations. Hourly predicted concentrations in cornel and 

maple leaves were compared with data measured over a three-month period (15 March – 7 June) 

reported in Terzaghi et al., 2015 (Figure 2). More specifically, measured concentrations were 

compared with values predicted at h 12:00 of each sampling day to match leaf time collection 

(between h 11:00 and h 13:00). Modelled concentrations in leaves (solid lines) generally reproduce 

the seasonal pattern of the measured ones (black dots), in which leaf concentrations oscillate within 

a small range according to the air concentration trends influenced by chemical emission and 

meteorological parameters (Terzaghi et al., 2015). Only cornel leaves, which appeared 3 weeks before 

maple, show a concentration reduction after the first sampling event (29 Mar), caused by a decrease 

in air concentrations. Figure C.11 shows the comparison between: 1) measured, 2) predicted at h 

12:00, and 3) predicted daily average concentrations for each sampling day. Model results showed a 

good agreement with measured data, considering both plant species and both chemicals, with a 

quotient between predicted and measured concentration (Figure C.12) that ranged between 0.5 to 2.5 

(PHE, maple), 0.4 to 1.3 (PHE, cornel), 0.4 to 2.4 (PYR, maple) and 0.6 to 2.3 (PYR, cornel). The 

accuracy of SoilPlusVeg model predictions was similar to that of other dynamic bioaccumulation 
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models which include a vegetation compartment (Ftanke et al., 2011; Nizzetto and Perlinger, 2012; 

St-Amand et al., 2009; Undeman et al., 2009). Some 10-year long simulations were previously 

performed to verify the possible role of increasingly contaminated litter and mineral soil to influence 

the air compartment; this resulted in a volatilization flux from litter which represented just <0.05% 

of direct emission in air and caused variations in air and leaf concentrations lower than 0.01% and 

0.8% respectively, therefore not deviating from measured concentration significantly. 

3.2.2 Importance of spatial/temporal specific scenarios. Box-plots in Figure C.13 show the daily 

variability of predicted concentrations: measured values (black bars) generally fall between the 10th 

and 90th percentile of the daily predicted concentration distribution or were close to the minimum or 

the maximum with a few exceptions. Predicted concentrations in leaves varied by a factor of 1.4 to 

5.4 for PHE and 1.1 to 1.4 for PYR within the day (considering min and max values) due to the 

influence of meteorological parameters and air compartment structure. However, given the rapid 

response of leaves to air temperatures (Terzaghi et al., 2015) the sometimes observed discrepancy 

between measured and predicted concentrations in leaves could also be ascribed to a difference of air 

(and therefore leaf) temperatures between prediction and sampling time. Additionally, the sometimes 

measured concentrations are closer to predicted concentrations at a different time than h 12:00. This 

could be ascribed to the scenario adopted to run simulations and other uncertainties in model 

parameterization. The model scenario employs meteorological and ecological parameters and air 

compartment structure which were not measured exactly at the same time (SLA, LAI) or place (PBL 

height, wind speed, rainfall, solar radiation, temperature) of leaf concentrations. Furthermore, due to 

lack of information, chemical emission was calibrated considering weekly average air concentration 

and traffic as possible source of PAHs, ignoring the possibility of higher peak emissions on specific 

days of the modelled period. Some of these parameters (temperature, emission to air, lower air height, 

wind speed and SLA) resulted to significantly influence (S ~1) leaf concentration during the 

sensitivity analysis. Recently Takaki et al., 2014 and Trapp, 2015 have recognized the importance of 

using site-specific data to improve the accuracy of predictions when modelling organic compound 



 13

accumulation in vegetation. This could explain PHE and PYR prediction for maple leaves on 12 April 

for example: the overestimation by a factor of ~2 could be ascribed to the maple SLA value which 

being at its maximum level influenced accumulation increasing KPA (see Eq. (A.14)). More 

specifically, ecological parameters used to build the evaluation scenario were measured in 2012, five 

years later than the PAH determination in air and leaves; although the beginning of the 2012 growing 

season was shifted to match the leaf development start of 2007 (Terzaghi et al., 2015), the time 

employed to reach maximum SLA value after bud burst during the different vegetative seasons was 

assumed not to change, although a delay of about 1 week was observed (data not shown) during two 

consecutive vegetation seasons (2011 and 2012) in the same woods. Predicted concentrations in the 

two species did not always show the same deviation from measured values; this probably depends 

on: 1) species-specific features that now in SoilPlusVeg are assumed to be the same for both species 

such as permeance into the cuticle and mass transfer coefficient for absorption and dry particle 

deposition; 2) not species-specific air-leaf chemical fluxes but referred to canopy as a whole, 

SoilPlusVeg being a "big leaf" model and 3) the emission calibrated to match measured air 

concentration (at 1.5 m height) probably better represented cornel exposure conditions (being an 

under canopy species) rather than those of maple (upper canopy species). However, given the 

conditions outlined above, the predicted results are considered to give consistent and satisfying 

results, confirming the adequacy of the simulation scenario and parameters applied. 
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Figure 2- Comparison between PHE (a and b) and PYR (c and d) predicted (solid line) and measured (black dots) 
concentrations (µg/g dw) in leaves of cornel (green, a and c) and maple (orange, b and d) 
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3.3 Model illustration  

3.3.1 Short term variability of air-leaf exchange (i). The diurnal variability of air-leaf exchange 

was investigated considering the fluxes resulting from model evaluation. This is important to evaluate 

potential reversal of flux during the 24h cycle and its significance. Table D.2 summarizes yearly min, 

max, mean and median input and output fluxes to/from leaves for PHE and PYR. Again, fluxes refer 

to the canopy as a whole and not to single species. Absorption followed by volatilization and 

degradation were the most important fluxes to and from leaves. A three-day period (11-13 April) was 

chosen to evaluate how the variability of meteorological parameters, together with chemical emission 

in air, can influence the uptake/release of PAHs by plants. PHE air and leaf concentrations, PBL 

height and chemical emission trends during the selected period are depicted in Figure D.1, while 

absorption and volatilization fluxes to/from leaves are reported in Figure 3 together with PBL height 

and temperature.  

 

Figure 3 – Absorption, (solid black line) and volatilization (solid grey line) fluxes (Abs flux and Vol flux 
respectively), temperature (red line with square marker) and PBL height (light blue line with triangles marker) 
trend during a three-day period (11-13 April) for PHE. “M” means midnight while “N” stands for noon. 
 
Predicted concentrations in leaves followed air concentration changes caused by the variability of 

PBL height and chemical emission. In general air concentrations were higher during night time hours 

when PBL was low and chemical emission was still high (e.g. from 18 to 22 h of 11 April). On the 

contrary, during night time hours characterized by lower emission (e.g. from 1 to 5 h of 12 April), 

PBL influence was less evident. During daytime hours, despite the higher chemical emission, the 
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increase of PBL height caused a dilution of chemical in air resulting in lower concentrations. 

Generally, night time air concentrations exceeded day time concentration of an average factor of 16 

in this 3-day period. As appears from Figure 3 and Table D.3, during certain hours the volatilization 

flux of PHE from leaves exceeded absorption indicating that leaves could act as "dispensers" of air 

contaminants, not just air "filters", depending on meteorological conditions. More specifically, 

chemical release from leaves could happen both during daytime hours (driven by temperature 

mediated volatilization together with chemical gradient inversion caused by the increase of PBL 

height) and during part of the night time hours (caused by emission reduction and therefore chemical 

gradient inversion). Concentrations in leaves were a factor of ~2 higher at evening (after 5 p.m.), 

night and early morning (until 7/8 a.m.) hours with respect to the other period of the day. This is an 

example of typical behaviour and it agrees with Hung et al., 2001 which showed that the diurnal 

variation in grass concentration caused by the temperature-induced exchange of PCBs between the 

plant surface and the atmosphere resulted in highest concentrations at 6 am (45 pg/g) and the lower 

concentration throughout the warmer parts of the day (20-30 pg/g).  Therefore, plant leaves can be 

seen as a dynamic compartment which contributes to the diurnal variation of organic contaminant air 

concentrations, which deposit or volatilize from their surface in response to changes in environmental 

conditions (Hornbuckle and Eisenreich, 1996; Gouin et al., 2002; Nizzetto and Perlinger, 2012; Bao 

et al., 2016). Leaves can be one of the major air short-term sources and sinks of many persistent 

organic compounds (Dalla Valle et al., 2004), considering their surface area. 

3.3.2 Seasonal variability of air-leaf-litter exchanges (ii). Preliminary comparisons showed good 

agreement (within a factor of 1.2-3.9) between predicted and measured concentrations in leaves and 

litter collected in the Lys Valley (Nizzetto et al., 2008b; Moeckel et al., 2008) indicating that, with a 

more detailed and site-specific scenario definition, SoilPlusVeg would be a powerful tool to predict 

and understand chemical fate in vegetated systems. Predicted concentrations in mineral soil were 

orders of magnitude lower than the measured ones, with the measured values being the result of more 
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than 70 years of exposure, depending on PCB production and use (Kimbrough and Jansen, 1989). 

Figure D.2 shows air, leaf, litter and mineral soil (average of 10 layers) fingerprints at the end of the 

year: in the air compartment the less chlorinated compound (PCB 28) predominated, while in leaves 

and Oi layer a higher contribution of more chlorinated PCB appeared; moving from litter to soil, less 

hydrophobic congeners dominated the fingerprint (Figure D.3). This can be attributed to diffusion 

and leaching of more water soluble congeners in the dissolved phase. The transport of freely dissolved 

chemicals masked DOC mediated infiltration, which should favor the more hydrophobic chemical 

movement (Moeckel et al., 2008). This behaviour is shown in Figure D.4, where diffusion, leaching 

fluxes of truly dissolved and DOC associated PCB 28 and PCB 180 are depicted. In order to 

investigate the seasonal variability of chemical fate and cycling in the air-leaf-litter system, the least 

and the most hydrophobic congeners (PCB 28 and PCB 180) were selected for comparison. Note that, 

although included in the mass balance, air-leaf exchange was not shown here, being investigated in 

detail in the previous section. Figure 4 shows the seasonal accumulation (ng/m2) for a clean litter 

compartment exposed to background contaminated air for a one-year simulation. A different picture 

appeared for the two compounds of contrasting physical and chemical properties: while PCB 180 

accumulated during the whole year being less affected by loss processes, PCB 28 accumulation 

occurred for a shorter period (the first month) when the constant chemical input from air (leaves had 

not appeared yet) was not exceeded by chemical losses. In the following months, litter exhibited a 

reduction in PCB 28; about 70% and 30% of the input fluxes were re-volatilized in air or transferred 

to mineral soil (diffusion + infiltration) respectively; at the end of the year, litter fall contributed 

(mainly in October and November), resulting in a rapid increase.  
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Figure 4 – PCB 28 (orange) and PCB 180 (black) accumulation in litter from background air and reductio n 
following a decline in emissions to air 

 
In Figure 5 and Figure D.5, the seasonal variability of air-litter, leaf-litter, litter-air and litter-mineral 

soil transfer is compared. PCB 28 air-litter transfer did not show much change during the year with 

absorption the most important deposition process (~ 95% of annual air inputs). In contrast for PCB 

180 wet particle deposition (~ 50% of annual air inputs) contribution appeared during the rainiest 

months. For both chemicals, leaf-litter exchange assumed higher values during October-November, 

with litter fall the main process compared to wash-off and wax erosion (90% and 70% of annual leaf 

inputs for PCB 28 and PCB 180 respectively). PCB 28 negative net fluxes indicated net release from 

litter towards the air and underlying soil. Re-volatilization was the dominating loss process for PCB 

28 representing 30-92% of inputs (air-litter + leaf-litter fluxes), with the maximum during the hottest 

month (July) Figure D.6, while it was lower for PCB 180 (0.10-25%). Transfer to deeper layers 

mainly occurred through diffusion for PCB 28 (10-58% of inputs) and both by infiltration and 

diffusion for PCB 180 (0.75-41% and 0.14-56% respectively). In particular conditions, when the 

infiltrating water was maximized (heavy rainfall) and DOC concentrations were higher (i.e. August, 

September, and November), the role of DOC accounted for 55-87% of PCB180 losses, compared to 

3-15% from volatilization and 5-23% from diffusion. Biodegradation was negligible for both 

chemicals (<2% of inputs). This is in agreement with Liu et al., 2013 who reported that, litter 

volatilization fluxes represented about 70% and 30% of total loss for PCB 28 and PCB 180 (native 
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congeners) respectively and that leaching fluxes tended to be higher than volatilization for heavier 

compounds. However, when a contaminated soil is considered (such as in Lys Valley, with PCB 28 

and PCB 180 at 62 and 430 pg/g d.w. respectively) the fluxes do change in direction and amount: for 

PCB 28 volatilization goes up to a factor of 20 (with a maximum of about 1200 µg/month) and 

diffusion direction is now upwards; for PCB 180 volatilization goes up of a factor of 5 (with a 

maximum of about 10 µg/month) and here as well the diffusion direction is upwards.  

 

 

Figure 5- Air-litter (light blue), leaf-litter (gre en) and litter-air (orange) fluxes (µg/month) of PCB 28 (a) and PCB 

180 (b) 

The results presented here show that the seasonality driven by air temperature (which influences re-

volatilization), rainfall and DOC concentrations (which influence infiltration) appeared to be relevant 

in determining PCB concentrations in litter and their mobilization towards the adjacent 

compartments. Some litter characteristics, i.e. OM content and total porosity, may also play an 

important role in influencing litter concentrations. For PCB 28, remobilization of substantial amount 
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physical chemical properties (lower KOC) PCB 28 can reach equilibrium between air and mineral soil 

faster than PCB 180; OM decomposition increased PCB 28 fugacity resulting in a fugacity gradient 

back to overlying air and to underlying soil (Moeckel et al., 2008). Litter porosity instead, is involved 

in volatilization and diffusion processes; the simulated litter was characterized by a high porosity 

(0.95-0.99 cm3/cm3) and a low bulk density (0.002-0.015 g/cm3), being made up of dead leaves not 

yet formed into a compact layer. This would enhance chemical movement from litter towards air and 

mineral soil through volatilization and diffusion. Compared to a mineral soil layer (total porosity of 

0.44 cm3/cm3), the volatilization and diffusion potential could be double for this type of litter. Total 

porosity could vary moving from organic horizons to mineral layers, but also from broadleaf to 

conifer species: broadleaf litter has a large surface area and often “curls” create air spaces within the 

litter layer (Figure D.7); this gives less mass per volume than a needled litter layer produced in a pine 

forest (Ottmar and Andreu, 2007). Moreover, broadleaf litter is typically fresher and less compact in 

late summer/autumn than in winter/spring when snow or rainfall events can compress it. This 

highlights the need to measure litter porosity and composition evolution to obtain accurate prediction 

of chemical fluxes for different type of forests. Recently, OM turnover (Zheng et al., 2015) and forest 

species composition (broadleaves vs. conifers) (Komprdová et al., 2016) were identified to be key 

factors in influencing organic chemical fate in the litter/soil system; organic chemical translocation 

from upper to lower organic horizons appeared to be more rapid in the broadleaf deciduous forest due 

to faster litter and OM turnover compared to mixed and coniferous forests.  

3.3.3 Potential of a contaminated soil-litter system to recharge the atmosphere (iii). PCB 28 

showed a more dynamic behaviour in response to air chemical emission cease, since in 85 days 90% 

of the amount accumulated in the previous year was lost, with about the 80% lost in the first month 

(Figure 4); this compared to a reduction of just 6% for PCB 180 (Figure D.8). PCB 28 left the litter 

compartment mainly by volatilization and diffusion to depth (~35% and 60% of output respectively); 

in contrast infiltration was the main loss process for PCB 180 (24-86%), followed by diffusion to 

depth (6-49%). Diffusion to depth was also important for PCB 28, but balanced by diffusion up, did 
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not cause net losses. The role of litter as a potential source for air and therefore vegetation is 

represented in Figure D.9, where the response of air concentration related to PCB 28 and PCB 180 

transfer from litter is shown. Litter, similarly to what was shown for the leaves, seems to act as a 

source for air and therefore vegetation, in particular situations, for example, when air concentrations 

decreases due to a change in wind direction bringing less contaminated air.  

3.4 Relevance for risk assessment 

The knowledge of the dynamics of air/plant/litter/soil interaction may be useful when evaluating the 

exposure of humans and ecosystems in many ways. For example, diel variation of concentrations in 

air could be deeply influenced by the presence of vegetation and litter, as well as by the seasonality 

and meteorological conditions.  Similarly, vegetation concentrations of toxic chemical can vary in 

time, possibly showing unexpected behaviours: after an initial phase of accumulation, concentration 

in leaves can respond dynamically to air concentration changes and therefore if vegetation biomass 

is used as food by humans or other consumers in the ecosystem (e.g. cattle) could determine a variable 

exposure depending on time, season, species and meteorological condition when grazing or 

consuming.  

4. Conclusions  

A new dynamic vegetation model (SoilPlusVeg) that accounts for the variability of meteorological 

and ecological parameters was developed and integrated in an existing dynamic air/litter/soil model. 

A preliminary sensitivity analysis highlighted the importance of the air compartment structure, 

meteorological/ecological variability, litter characteristics and chemical emission in influencing air, 

leaf and litter concentrations. During the model evaluation procedure, good agreement between 

measured and predicted leaf concentrations was obtained. The importance of using site-specific data 

to parameterize the model in order to improve the accuracy of model predictions was recognized. 

Three model illustrations revealed the “dual behaviour” of leaf and litter compartments. Both leaves 
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and litter behaved as dynamic compartments which could accumulate or reemit organic chemicals. 

The SoilPlusVeg model could therefore be considered a powerful tool to understand and estimate 

chemical fate and recycling in forested systems, in the evaluation of the exposure of humans and 

ecosystems to organic chemicals. 
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