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Of the vulnerability of orphan complex proteins: The case study of the E. coli IscU and IscS
proteins

Filippo Prischia, Chiara Pastorea, Marta Carronib, Clara lannuzzia, Salvatore Adinolfia,
Pierandrea Temussia, ¢, Annalisa Pastorea, ,

Abstract

IscS and IscU, the two central protein components of the iron sulfur cluster assembly
machinery, form a complex that is still relatively poorly characterized. In an attempt to
standardize the purification of these proteins for structural studies we have developed a
protocol to produce them individually in high concentration and purity. We show that IscS is
a rather robust protein as long as it is produced in a PLP loaded form and that this co-factor
is essential for fold stability and enzyme activity. In contrast to previous evidence, we also
propose that, in contrast with previous evidence, IscU is a thermodynamically stable protein
with a well defined fold but, when produced in isolation, is a ‘complex-orphan protein’ that
is prone to unfolding if not stabilised by a co-factor or a protein partner. Our work will
facilitate further structural and functional studies of these proteins and eventually lead to a
better understanding of the whole machinery.

Introduction

The concept of “molecular recognition” has gained a central role in structural biology
especially since the completion of the human genome project has suggested the possibility
that the secret of organism complexity could be in interactions [1]. In recent years, many
structures of protein—protein and protein—ligand complexes have been solved by X-ray,
nuclear magnetic resonance (NMR) and electron microscopy methods, pointing out that
shape and electrostatic complementarity [2] ; [3] as well as hydrophobic contributions [4]
play an important role in protein recognition. However, although the study of complex
assemblies has become increasingly important, several difficulties remain intrinsic to the
accomplishment of this task. A prerequisite for the study of molecular assemblies is the
production of the proteins. This is often not easy to accomplish since some of the complex
components are what we may call ‘complex-orphan proteins’. With this term we may
indicate proteins which, although not necessarily unstable from a thermodynamic point of
view, tend to misfold or aggregate in the absence of their natural co-factors and/or protein
partners or under conditions of environmental stress. This means that the study of these
complexes requires the development of specific and well focused strategies.

Here, we discuss the problems encountered in a long-term systems biology project which
aims at understanding the complex machinery required for iron sulfur cluster assembly and
outline the ways we overcame some of these difficulties. In prokaryotes, the genes which
encode the proteins involved in iron sulfur cluster assembly are conveniently grouped in
distinct operons, known as isc, suf and nif [5]; [6]; [7] ; [8]. Each of these operons operates
in different organisms and/or under different environmental conditions [5]. We are
currently studying the gene products of the isc operon with the ultimate goal of dissecting
and understanding the precise function of each of the different components. Among the up
to nine isc proteins, a pivotal role is played by IscS, the desulfurase central to cluster
production which converts cysteine into alanine and persulfide [9]. IscS forms a complex



with IscU, a scaffold protein which transiently hosts the cluster [10]. Although central to the
iron sulfur cluster machinery still relatively little is known about the IscS/IscU complex.

In the present study, we focused on IscS and IscU as a paradigmatic example of complex-
orphan proteins and discussed how to produce them in an active form. We also underline
the dangers and the problems encountered when not succeeding in this task: it is clear from
our experience that difficulties in protein production may lead to wrong or misleading
interpretations.

Materials and methods
Protein production

The proteins were purified as previously reported [11]; [12] ; [13]. In short, IscU and IscS
were subcloned by PCR from bacterial genomic DNA and individually expressed from a pET-
30 vector (EMBL Heidelberg) as fusion proteins with His-tagged glutathione-S-transferase
(GST) and a cleavage site for Tobacco Etch Virus (TEV) protease which leaves, after cleavage,
two additional amino acids (Gly—Ala) at the protein N-terminus. IscS was also expressed
from a pET-11 vector (EMBL Heidelberg). Unless otherwise specified, IscS was expressed in
the presence of 100 uM PLP purchased from Sigma and added without further purification
to the growing media. IscU was expressed by growing the cells in LB enriched medium
containing 8.3 uM ZnS04 (Sigma) to stabilize its fold according to the protocol previously
reported [14]. 15N- and 15N,13C-labelled samples of IscU for nuclear magnetic resonance
(NMR) studies were produced by growing the bacteria in minimal medium using 15N
ammonium sulfate and 13C-glucose as sole sources of nitrogen and carbon.

The proteins were purified by affinity chromatography using Ni—NTA gel and cleaved from
the tag by TEV protease followed by Ni—-NTA gel. All purification steps were carried out in
the presence of 20 mM B-mercaptoethanol. The collected proteins were further purified by
gel-filtration chromatography on a Superdex 75 26/60 column (GE Healthcare). Samples
were eluted in a solution of 20 mM Tris-HCl buffer (pH 8.0), containing 150 mM NaCl and 20
mM B-mercaptoethanol.

Protein purity was checked by SDS—PAGE and by mass-spectrometry. Evaluation of the
apparent molecular weight of IscS without PLP was achieved by size exclusion
chromatography using Superdex 75 13/300 column (GE Healthcare).

Typically, we could obtain yields of 9 mg and 6.5 mg per liters of culture for unlabelled IscS
and IscU, respectively.

Isolation of the IscS/IscU complex

Analytical gel filtration experiments were performed using a prepacked HiLoad 10/30
Superdex 200 column (Pharmacia). The column was equilibrated with 20 mM Tris-HCI buffer
(pH 8.0) in the presence of 150 mM NaCl and 20 mM B-mercaptoethanol. Samples were
prepared by mixing 100 ul IscS 0.4 mM and 150 pl IscU 0.4 mM and bringing the volume to
500 pl with sample buffer (20 mM Tris-HCl at pH 8.0, 150 mM NaCl and 20 mM B-
mercaptoethanol). The final sample (80 uM IscS and 120 uM IscU) was loaded using a static



loop (500 pl) and eluted with the same equilibrating buffer. The composition of the column
fractions was analyzed by SDS—PAGE.

Crystallization tests

To test whether IscS produced according to our protocol has a native fold we attempted
crystallization under the conditions previously described [15]. IscS crystals were grown at 20
°C by vapor diffusion either in sitting or hanging drops, equilibrated against a solution
containing 12% (w/v) PEG 10,000, 20% (w/v) PEG 2000, 0.1 M Tris-HCl pH 9 and 70 mM
sodium citrate at pH 6.5. Crystallization trials for the IscS/IscU complexes were also set up
using a variety of commercially available sparse-matrix screens. Crystallisation drops,
containing either 1:1 or 1:2 volume ratios of protein to reservoir, were set up using the
mosquito liquid handling robot (TTP LabTech’s). Data were collected either at the X-ray
crystallography facility of Imperial College London or at the microfocus beamline of the
European Synchrotron Radiation Facility (ESRF, Grenoble, France). Processing of the images
was performed using the Mosflm software.

Assignment of the NMR spectrum of IscU

NMR spectra of Escherichia coli IscU were acquired on 15N or 15N/13C uniformly labelled
samples typically at 0.6 mM concentration in 90%/10% H20/D20 and 20 mM Tris-HCl at pH
8.0, 150 mM NaCl and 10 mM DTT. All the spectra were recorded at 25 °C on Varian or
Bruker spectrometers operating at 500, 600 and 800 MHz proton frequencies and equipped
with 5 mm triple-resonance probes or cryo-probes. The WATERGATE sequence was used for
water suppression [16]. The spectra were processed using NMRPipe [17] and analyzed using
the Xeasy software [18]. The spectra were typically processed applying an
exponential/Gauss window function and zero filled to double the size of the data.

The quality of the IscU NMR spectra is excellent. Complete assignment of most of the 1H,
15N, 13C backbone resonances was obtained using CBCA(CO)NH [19], CBCANH [19], HNCA
[20], HN(CO)CA [21], and HNCO [22] recorded at 600 MHz. The assignment is deposited to
the BMRB database (accession number 16,245).

CD experiments

Secondary structure was checked by far-UV CD using a Jasco J-715 spectropolarimeter. The
spectra were recorded at 25 °C using a cuvette with 0.1 cm pathlength. The protein
concentration was 10 uM. The buffer composition was 10 mM Tris-HCI (pH 8.0), 150 mM
NaCl, and 10 mM B-mercaptoethanol.

NMR titrations

All spectra were recorded at 25 °C and 600 MHz using proteins in 20 mM Tris-HCI (pH 8.0),
150 mM NaCl, and 20 mM B-mercaptoethanol. 15N labelled IscU (0.4-0.6 mM) was titrated
with aliquots of an IscS stock solution 0.55—0.6 mM to reach IscU:lscS molar ratios of 1:0.25,
1:0.5, 1:0.75, 1:1.



Absorbance experiments

Cluster reconstitution was performed in an anaerobic chamber (Belle) under nitrogen
atmosphere. Solutions of purified IscU (50 uM) were incubated in sealed cuvettes typically
using 3 mM DTT and 40 uM Fe(NH4)2S04 for 30 minutes in 50 mM Tris-HCl buffer at pH 7.5
and 150 mM NacCl. Subsequently, 1 uM IscS and 250 uM Cys were added to start the
reaction. Cluster formation was followed by absorbance spectroscopy using a Cary 50 Bio
(Varian) spectrophotometer. Variations in the absorbance at 456 nm were measured as a
function of time.

Results
IscS production

We produced IscS using two different vectors, a pET-11 plasmid with an N-terminal His—tag
and a pET-30 plasmid with a GST-tag. In both cases, the FPLC1-chromatogram using a
Superdex 75 26/60 column of IscS presented two distinct peaks (Fig. 1A). Only for the His-
tagged protein, we could collect the two fractions separately and analyze them by SDS—
PAGE, whereas due to peak overlap, we could not resolve IscS from the GST dimer since the
two proteins do not differ enough in molecular weight.

IscS—PLP loaded purification. (A) FPLC-profiles of IscS loaded on a Superdex 75 ...

Fig. 1.

IscS—PLP loaded purification. (A) FPLC-profiles of IscS loaded on a Superdex 75 26/60 column
after overnight TEV digestion recorded at 400 nm (gray) and 280 nm (black) wavelength.
The peak at 145 ml elution is IscS—PLP loaded, since it absorbs at 400 nm. The peak at 165
ml corresponds to PLP free IscS. The protein concentration never exceeded 200 uM. (B)
Superposition of the absorption spectra of the gel filtration fractions eluted at 145 ml (gray)
and 165 ml (black). (C) CD spectra of the PLP free (black) and loaded (gray) IscS samples.
Figure options

The two collected fractions both contained IscS, but had different absorption spectra (Fig.
1B). The species eluting at a volume compatible with the molecular weight of a dimer (90
kDa) presented an absorption peak around 390 nm, typical of the PLP group. A second peak
had the typical absorption profile of a protein but no other absorption suggesting lack of
PLP. This peak eluted at an apparent molecular weight of 65 kDa, that is very distinct from
that expected for either the dimer (90 kDa) or the monomer (45 kDa). CD spectra revealed
that the fraction lacking PLP is completely unfolded whereas the 90 kDa species, which is
PLP loaded, is folded (Fig. 1C). This species also proved to be stable as a function of time and
less prone to aggregation.

Therefore, we concluded that IscS needs PLP to be in a correctly folded dimeric state, its
fold depending on the presence of the co-factor.

Estimate of PLP occupancy in IscS
To increase purity and homogeneity of our IscS samples and standardize their production,

we screened different purification protocols to increase PLP occupancy. Few protocols have
been published on the evaluation of the occupancy in enzymes of PLP or similar cofactors.



Occupancy is commonly estimated by extracting the cofactor from the macromolecules
using strong acids [23]. Alternatively, Vickery and coworkers estimated occupancy of ca.
90% from sample homogeneity [9]. We used a different approach.

We calculated the occupancy from the molar ratio between the protein (at 280 nm) and the
bound PLP (at 390 nm) using the formula:

Occupancy=(A280/elscs)/(A390/ePLP)
Turn Mathlax on

where A is the absorbance at the corresponding wavelength and € is the extinction
coefficient. This value for PLP was obtained as the slope of free PLP concentration as a
function of absorbance at 410 nm (Fig. 2A). We could safely assume that the band at 390
nm observed in PLP-loaded IscS solely corresponds to bound PLP using the following
assumptions. The absorbance spectrum of unbound PLP has absorption peaks at 410 nm
and 295 nm depending on the pH, which correspond respectively to the active
unprotonated and the inactive protonated forms [23]. The absorbance maximum of PLP-
loaded IscS around 390 nm must correspond to the 410 nm band upshifted because it is in a
buried environment. The spectrum of IscS in a PLP free misfolded form does not absorb at
this wavelength. Under these conditions, no free PLP is present in solution as we could
check by comparing the 1D NMR spectra of IscS and of free PLP (Fig. 2B): the spectrum of
PLP contains a characteristic sharp peak at 2.7 ppm which disappears completely in the
protein spectrum, as expected when the co-factor is bound to the high molecular weight
IscS dimer.

Estimate of the PLP occupancy in IscS. (A) Calibration curve to estimate the PLP ...

Fig. 2.

Estimate of the PLP occupancy in IscS. (A) Calibration curve to estimate the PLP extinction
coefficient obtained by recording the PLP concentration versus the absorbance at 410 nm.
(B) Comparison of the NMR spectra of PLP and of a PLP-loaded IscS sample. The sharp
resonance at 2.7 ppm corresponds to PLP and disappears completely in the spectrum of the
protein indicating that all the PLP is bound to IscS. The resonance at 3.8 ppm arises from the
buffer (Tris-HCI). (C) IscS crystals as obtained in 12% (w/v) PEG 10000, 20% (w/v) PEG 2000,
0.1 M Tris-HCl at pH 9 and 70 mM sodium citrate at pH 6.5 as previously described [15].
Figure options

We applied this protocol to estimate the PLP ratio of different IscS preparations purified
following the same procedure. We found a 1:0.4 IscS:PLP molar ratio when cells expressing
the GST-tagged protein were grown in LB medium. This is mainly due to the inefficiency of
the purification protocol, which does not allow separation of the unfolded PLP-free form
from the folded PLP loaded protein. The occupancy was 1:0.9 for the GST-tagged protein
produced from cells grown in a PLP enriched LB medium. This indicates that the presence of
PLP in the medium increases the occupancy but the higher ratio of IscS:PLP was almost
counter-balanced by a toxic effect of PLP onto the cells. This significantly reduced the
production yields. Only for the His-tagged protein obtained from cells grown in LB medium
did we obtain a 1:1 occupancy. This result indicates that the ability of efficiently
discriminating between the folded dimer and the unfolded monomer allowed us to obtain a
pure 100% PLP loaded sample.



Crystals of IscS obtained in this way could be easily reproduced under the same conditions
described by Vickery et al. [15] (PDB entry code: 1P3 W) (Fig. 2C). This indicates that the
purified protein is properly folded and suitable for further structural studies of IscS in
complex with its partners IscU, CyaY and Yfhl.

IscU production

Production of IscU proved to be more problematic. During the nearly eight years of studies
of this protein, we observed a large variability of the NMR spectra of IscU depending on the
preparation used. In many of our samples, we observed more peaks than expected. For
example, we could deduce the presence of two distinct tryptophan residues whereas we
would expect only one from the protein sequence (Fig. 3A). The resonance of one of the two
indole amide groups is at the position typical for a random coil structure. This result
indicated the presence in solution of at least two species, one well folded, the second one
being unfolded.

Comparison of IscU produced in different ways. (A) NMR HSQC spectra of IscU ...

Fig. 3.

Comparison of IscU produced in different ways. (A) NMR HSQC spectra of IscU grown
without addition of zinc in the medium. The two resonances corresponding to the two
indole Trp are boxed. (B) The same as in (A) but grown in the presence of zinc. (C) Final point
of a titration of IscU with an equimolar ratio of IscS. The spectrum of IscU disappears
indicating formation of the complex. The spectra were all recorded at 25° C and 600 MHz.
Figure options

The amount of the unfolded species decreased when we started adding zinc in the growth
media, supporting the suggestion that this cation stabilizes the fold by compensating for the
absence of the cluster and/or of the binding partner IscS [24]. The HSQC spectrum of
samples prepared in this way is that of a well folded monomeric protein with well spread
sharp resonances (Fig. 3B).

When sample production became fully reproducible, we could fully assigh most of the
backbone resonances, that is out of a total of 124 non-proline residues (there are four
prolines) 97 residues were assigned. The resonances of the residues which remained
unassigned are either absent in the spectrum or do not form connectivities with the
neighbouring groups thus making the assignment difficult. Among the non-assigned
resonances are the first 16 N-terminal residues which is unfolded in other PDB deposited
NMR structures and those of residues 21-23, 35, 36, 49, 64, 65, 100, 101, 104 and 105
which are in loop regions.

These observations strongly suggest that, even when correctly folded, the N-terminus of the
protein is more flexible and unstructured.

Studying the IscU/IscS interaction by NMR
To prove that the two proteins interact with each other as previously described for other

orthologues [9]; [25] ; [26], we followed the effect of titrating unlabelled PLP-loaded IscS
into 15N labelled IscU by hetero-nuclear NMR techniques. The IscU spectrum is affected by



titration with IscS already at a 1:0.7 IscU:IscS molar ratios confirming the presence of a
specific interaction between the two proteins. At a 1:1 molar ratio we observe
disappearance of nearly the whole spectrum (Fig. 3C). No indication of precipitation was
found. Since the resonances disappear without concomitant chemical shift perturbation we
must conclude that the effect is due to complex formation and that the process is under an
intermediate-slow exchange regime in the NMR time range.

Isolation of a stable IscU/IscS complex

A 50% molar excess of IscU was added to a 0.4 mM solution of IscS and the mixture was
analyzed by analytical gel filtration. The resulting profile differs from that of the single
components, suggesting formation of the complex (Fig. 4A). This species could be
independently purified and analyzed by SDS—-PAGE (Fig. 4B). Fractions collected from the
first high molecular mass peak of the gel filtration profile contain the complex. No fraction
containing only IscS was found. Fractions from the second peak correspond to a lower
molecular mass and contain only IscU. This result was expected since IscU was present in
excess in the initial sample.

Isolation of IscS—IscU complex. (A) FPLC-profile of a mixture of the two ...

Fig. 4.

Isolation of IscS—IscU complex. (A) FPLC-profile of a mixture of the two components. The
peak eluting at 7.8 ml corresponds to the IscS/IscU complex, the peak at 11.5 ml is isolated
IscU (added in excess). (B) SDS—PAGE gel of all the fractions collected between 6 and 12 ml.
(C) Comparison of the enzymatic rates of iron sulfur cluster formation on IscU as followed by
absorption spectroscopy at 456 nm. The black curve was obtained using IscS with a high PLP
occupancy. The gray curve was recorded using IscS purified from a GST-fusion construct
(low PLP occupancy).

Figure options

Crystallisation trials using the IscS/IscU complex were setup but were unsuccessful. Two
likely reasons for it are the relatively low affinity of the complex [9] and the flexibility of the
N-terminal tail of IscU.

Efficient production of IscS and IscU appreciably influences the enzyme kinetics

We used IscS and IscU to study the kinetics of Fe—S cluster formation on IscU and establish a
detailed mechanism [27]. Therefore we tested how different protocols of purification could
influence our results (Fig. 4C). When IscS was prepared with the protocol which ensures
high PLP occupancy we obtained appreciably faster kinetics, both confirming the active
state of the protein and giving us an estimate of the variability we may expect in this assay
when in suboptimal conditions.

Discussion

The IscU/IscS complex is central to iron sulfur cluster formation: IscS is the enzyme which
provides the sulfur essential for the cluster, whereas IscU is widely accepted to be the
transient acceptor scaffold [26]. The two proteins are known to form a complex [9] ; [26]
thus suggesting a specific relationship. Complex formation is undoubtedly advantageous to
allow efficient transfer of the persulfide from the enzyme to the scaffold. Much however



needs to be understood about the mechanism of cluster assembly and this is why it is
essential to be able to produce isc proteins in a reproducible active form.

We have shown in this study that IscS is a relatively robust protein as long as it retains its
PLP co-factor which we have shown to be essential for protein fold. We have provided
guidelines both on how to produce the protein in a substantially populated PLP loaded form
and how to estimate the co-factor content. The protein produced in this way is correctly
folded, enzymatically active and able to crystallise reproducibly.

Obtaining a conformationally active form of IscU is more difficult, since IscU is a relatively
small protein with a limited hydrophobic core and is prone to misfolding and unfolding.
While thermodynamically not unstable as shown by previous studies [12], we have observed
that its production in isolation can be problematic. This is in full agreement with other
authors’ observations [24] although the interpretation of some of the data may be slightly
different. IscU is in our opinion incorrectly considered an intrinsically unstable protein or a
molten globule state. We have shown in this and in a previous study that most of the
apparent instability of IscU can be explained by the absence of a suitable partner. In vivo,
IscU is embedded into an anaerobic environment which would prevent, for instance,
oxidation of the three well conserved but exposed and reactive cysteines [10]. It will also be
in an IscS bound form state or, when released from this interaction, will likely be loaded
with an iron sulfur cluster.

The difficulty of handling orphan complex proteins may have led structural biologists to
overinterpreting the problematic data of some of these proteins. For instance, Thermotoga
maritima IscU has been depicted as displaying unique structural and motional
characteristics with respect to other members of the same class of proteins [28]. These
authors suggested that IscU from Thermotoga maritima, unlike other proteins able to host
iron sulfur clusters, adopts a mobile, molten globule-like state and attributed to this state
specific physiological relevance, implying that the extra flexibility might be necessary to bind
the iron sulfur cluster. As stated above, this view is at variance with our own experience
with E. coli IscU. It is true that, when isolated from its native complex, IscU is particularly
vulnerable and may require the help of cofactors, such as the zinc ion, to remain stable for a
prolonged time. However, it appears to be a well folded stable protein when properly
expressed and isolated [12] even though we cannot exclude that an unfolded state might
have a functional significance in nature.

We suggest that the apparent instability of IscU can be explained by classifying it as a
complex-orphan protein that is a protein difficult to produce in the absence of its cellular
partners. We previously introduced this concept for FMRP, a protein which is hard to
produce and very prone to aggregation and/or degradation [29]. As IscU, also FMRP is
known to take part to a complex network of interactions with other cellular partners. We
strongly believe that the family of the complex-orphan proteins, well distinct from other
classifications, is of high interest for understanding molecular assemblies.

In conclusion, we have discussed here the problems in producing two biologically essential
proteins when separated from their native complex status. It is interesting to notice that
difficulties in producing isolated proteins of the isc operon have been observed also for



other components. The alternative scaffold isc protein IscA, for instance, can be obtained in
a correctly folded iron sulfur cluster loaded state only when co-expressed with other
members of the operon [30]. This is certainly an important and promising direction which
we are going to pursue next.

Note added in proof

While this manuscript was under review, a paper was published describing the crystal
structure of the IscS/IscU complex from E. coli (Shi, R., Proteau, A., Villaroya, M., Moukadiri,
l., Zhang, L., Trempe, J.F., Matte, A., Armengod, M.E., Cygler, M. (2010) PLoS Biol. 8,
e1000354).
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