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An ecogenetic disease-affected predator–prey 
model
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Abstract: A nonlinear ecoepidemic model of new type is introduced here, in that it 
contains genetically distinguishable subpopulations. Further, in the system a preda-
tor is present, that hunts these two disease-affected genotypes. Under the assump-
tions of the model, the disease cannot endemically survive in the predator-free 
environment. The healthy prey can thrive in the absence of the predators, but this 
is in line with previous results and does not appear to be due to the effects of the 
epidemics. On the other hand, the disease affects the stability of the purely demo-
graphic equilibria.
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1. Introduction
Mathematical ecogenetic models have recently been introduced (Venturino, 2012; Viberti & 
Venturino, 2014). They seem to be a particular example of what are nowadays commonly called 
“structured populations models,” that have been studied for quite some time, starting from the 
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seminal work of Kostitzin in the 30s of the past century; on this, see the nice review paper (Scudo, 
1976). In fact, for structured populations, now, one understands mainly populations that are not just 
dependent on time, but also on age, distinguishing therefore several age cohorts (Cushing, 1998). 
Human survival tables based on age cohorts have been in use among accountants for centuries, in 
order to calculate life insurance premiums. In ecology, in the simplest case of insects, for instance, 
these could be the larval, pupa, and adult life stages; for fishes instead, we would have eggs, larvae, 
immature juveniles, and adults. Structure therefore adds to the population description a new dimen-
sion, be it age, as depicted and analyzed in the classical papers (Gurtin & McCamy, 1974, 1979), and 
for which analytical approaches are available (Webb, 1985), or instead size, for which more sophis-
ticated numerical methods need to be introduced (Angulo & López-Marcos, 1999). Indeed, the basic 
age description corresponds to a linear, or more generally nonlinear (Gurtin & Levine, 1979), wave 
equation, with an initial and a boundary condition at age zero, for which standard numerical schemes 
are available (Smith, 1985). These considerations could be extended to interacting populations 
(Venturino, 1984, 1987) A structure can also be superimposed on diseases: the classical Kermack–
McKendrick model (Kermack & McKendrick, 1927) considers the population partitioned among sus-
ceptibles, infected, and recovered individuals. In addition, one could also include a latent period of 
exposed individuals in which the disease is incubating, but they are not yet able to spread it. A more 
general description in which all these stages are envisioned in a continuum is contained in Venturino 
(1985).

In the of models (Venturino, 2012; Viberti & Venturino, 2014), the main idea is to consider a popu-
lation which has two identifiable genotypes, and in some way intermingles with another population. 
In Venturino (2012) the case of predator–prey interactions in considered. Here too, we examine a 
highly nonlinear system, containing a basic demographic situation of the same type as Venturino 
(2012), which differs however in a major feature.

In the past 20 years or so, a lot of effort in mathematical biology has been devoted to the study of 
ecosystems in which also epidemics spread. Thus, in addition to their demographic interactions, 
populations also experience transmissible diseases. The presence of the latter profoundly influences 
the system’s outcomes, so that a stable population configuration from the purely demographic point 
of view becomes instead unattainable in presence of the disease (Beltrami & Carroll, 1994; Hadeler 
& Freedman, 1989; Venturino, 1994). The basic demographic models can be of the predator–prey 
type with disease affecting the prey (Chattopadhyay & Arino, 1999; Venturino, 1995), or also the 
predators (Auger et al., 2009; Venturino, 2002), but can include also e.g. competition (Saenz & 
Hethcote, 2006). Some of the earlier developments of this discipline are contained in Chapter 7 of 
Malchow, Petrovskii, and Venturino (2008). More recent contributions consider issues such as the 
study of equilibria (Delgado, Molina-Becerra, & Suarez, 2005) and their global stability (Zhen & 
Haque, 2006). Viruses in planktonic and other ecosystems have been considered in Beretta and 
Kuang (1998) and Singh, Chattopadhyay, and Sinha (2004), but the effect of viruses could also be 
favorably exploited to control the spread of pests (Bhattacharyya & Bhattacharya, 2006). More re-
cent investigations include findings of complex dynamics (Bate & Hilker, 2013), and of chaotic be-
havior (Kooi, van Voorn, & Das, 2011), predation switching (Hotopp, Malchow, & Venturino, 2010), an 
idea taken from the purely demographic models (Khan, Balakrishnan, & Wake, 2004), applications of 
harvesting and control theory as measures to contain epidemics (Bairagi, Chaudhuri, & 
Chattopadhyay, 2009; Jana & Kar, 2013; Kar & Jana, 2013), more sophisticated models including 
delays (Bairagi, Sarkar, & Chattopadhyay, 2008), various functional response functions (Bairagi, Roy, 
& Chattopadhyay, 2007). These ecoepidemic models have also been reformulated as intraguild pre-
dations (Sieber & Hilker, 2011). A recent, rather comprehensive, review of the field is provided in 
Venturino (2016).

It is well known that genetic variability may influence the response to pathogens and diseases. For 
instance, an example of this kind of situation is provided in humans by sickle cell anemia, which af-
fects mainly individuals belonging to a recessive blood type.
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In the animal realm, the classical example of evolutionary adaptation in population genetics is 
provided for instance by the peppered moth Biston betularia. It is well-known that this insect has 
several melanic and non-melanic morphs that are genetically controlled. About 200 years ago the B. 
betularia was light colored and this helped against predators, mainly birds, since the trunk of the 
trees where they rested were mainly of light colors (Grant, 1999). In the following century, however, 
smoke and pollution due to the newly implanted industries in the UK rendered the trunks of dark 
colors, causing higher moth mortality due to predation, as they were more easily spotted. Conversely, 
the melanic moth, carbonaria, thrived because with its dark color it could easily hide among the 
trees. Rather recently, there has been a hot debate on whether this phenomenon is attributable or 
not to evolutionary mechanisms (Clarke, 2003; Hooper, 2002).

In Lively and Apanius (1995) it is remarked that parasites respond in different ways to various host 
genotypes, this being supported by some field evidence, for which parasites attack the most abun-
dant genotype. Evidence, Lively, Craddock, and Vrijenhoek (1990) and Vrijenhoek (1993) shows that 
the parthenogenetic fish Poeciliopsis spp., which has a sexual and a clonal form coexisting in the 
population, infected by the trematode larvae Uvulifer spp., harbored more parasites than coexisting 
outcrossed fish. The result was the opposite in case of a highly inbred population, but later, when 
sexual fish were reintroduced into the initial inbred population, the clonal fish turned out to be more 
infected than the sexual ones (Vrijenhoek, 1993). This demonstrates that parasites can rapidly spot 
changes in the genotype frequency in a population.

Also, one strain of nematode that originally was able to infect four species of Drosophila, after be-
ing exposed to only one of them for a couple of years, was unable to infect one of the original species 
(Jaenike, 1993). Similarly, experiments with Plodia interpuncella and the granulosis virus (Read, 
1991) report an increased viral resistance that was much higher in the subpopulation maintained in 
the presence of the virus than in the virus-free control subpopulation. This evidence indicates that 
host specificity may change in time due also to genetic changes.

Motivated by the fact that different genotypes may experience different responses to external 
interferences therefore also in animals, as mentioned above, and thus not only to predators, but also 
to pathogens, we consider here a hypothetical ecogenetic model, similar to some other systems al-
ready studied, that in comparison with the current literature (Venturino, 2012; Viberti & Venturino, 
2014), makes a step forward, namely it introduces a disease among the genetically distinguishable 
population, that affects only one genotype.

Specifically, we consider two genotypes of the Drosophila suzukii, one of which is affected by nem-
atodes, that are however not explicitly built into the model. They only partition the insects among 
healthy and infected classes. This fruit fly has several predators, the most common of which are the 
frogs. In addition, there are some that are even commercially available (Cuthbertson, Blackburn, & 
Audsley, 2014), such as Orius majusculus, Orius laevigatus, Atheta coriaria, Hypoaspis miles, and 
Anthocoris nemoralis.

The ecosystem under investigation then contains the prey, with two distinct genotypes, of which 
only one is subject to a disease. In addition, the predators hunt these subpopulations. Possible ques-
tions to which such a model could provide an answer is related to whether the presence of the 
predators is able to extinguish the disease, or whether the infection in the prey can wipe out the 
predators. The answers are tied to the interpretation of the actual situation at hand. For instance, we 
would like to get rid of the predators if they are seen as a pest; on the other hand, if the prey are a 
valuable resource, to eliminate the disease among them would certainly enhance their survival.

The presentation is organized as follows. In the next section, we describe mathematically the 
system in consideration. Section 3 studies the possible long-term behavior of the model, assessing 
its equilibria, and in Section 4 their stability is investigated. A final discussion of the findings con-
cludes the paper.
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2. The Model
Let X and Y be the genotypes of the prey population. We assume that one of them is prone to a dis-
ease, for which we partition its individuals in the two subpopulations of susceptibles S and infected 
I, so that X = S + I. Let Z denote the predators.

We make the standard assumptions of mathematical ecogenetic models (Venturino, 2012), with-
out using the more sophisticated HTII response terms considered in Viberti and Venturino (2014). 
The two prey genotypes reproduce exponentially, a fact that is modeled via logistic terms, and pro-
duce offsprings of both genotypes with probabilities p and q, p + q = 1.

The reproduction at rate is r, all the offsprings are born healthy, i.e. they belong to class S, in other 
words the disease is not vertically transmitted. The susceptibles feel the population pressure of the 
similar individuals and those of the other genotype, but not of the infected. Here also the infected 
recovering from the disease that re-enter into this class are accounted for. Its losses are due to pre-
dation and possible contagion of the disease.

The infected are recruited only via these successful contacts, are hunted and can recover. We as-
sume the disease to be mild and also predation to occur at a fast rate, for which the disease-induced 
mortality can be disregarded. We also disregard the intraspecific population pressure on the 
infected.

The second prey genotype population Y reproduces also logistically, feeling the intraspecific popu-
lation pressure, as well as the one of the other genotype. Furthermore, contacts of Y with infected 
constitute an additional mortality �IY, which we take at the same rate as the intraspecific popula-
tion pressure, thus setting � = b. This asymmetry in the infected behavior is ascribed to the fact that 
they are poisonous to the predators Z, as we will see below, and in that sense they are also harmful 
to the genotype Y that is not their own.

The predators hunt the first genotype, independently of whether it is infected or not, and the sec-
ond one Y possibly at a different rate. Their natural mortality is m, to which a mortality j due to inter-
action with the infected is added. Note that in describing the hunting of the predators on the infected, 
we separate the influences that the latter have on the predator: there is a positive effect due to the 
feeding, but also the contact with them might lead to the predators’ death.

The model is thus:

where r is the prey reproduction rate, a and b are the intraspecific competition rates of genotypes X 
and Y, h and g the predators’ hunting rates on genotypes X and Y, respectively. Note that we have 
also implicitly assumed that it is equally likely for the predators to capture a healthy or an infected 
individual of genotype X. Further, e < 1 denotes the conversion factor of captured prey into new 
predators, � is the disease contact rate and � represents its recovery rate.

3. Equilibria
We find the following system’s equilibria Ek =

(
Sk, Ik, Yk, Zk

)
. The origin E

0
, the predator- and dis-

ease-free equilibria E
1
 and the disease-free point E

2
:

(1)

S� = [rp − aS](S + Y) − hSZ − �SI + �I

I� = I[�S − hZ − �]

Y �
= [rq − bY](S + I + Y) − gYZ

Z� = Z[e(h(S + I) + gY) −m − jI]

E
1
=

( rp
a
, 0,

rq

b
, 0
)
, E

2
=

(
m − egY

2

eh
, 0, Y

2
,

H
2
Y
2
+ K

2

g2eh
(
ag − hb

)
Y
2

)
,
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where H
2
= egr(h − g)(qag + phb) − hbm(ag − hb), K

2
= rqm(bh2 − ag2) and Y

2
 solves

with A
2
= eg(ag − hb), A

1
= eghr +m(hb − ag), A

0
= −hrmq < 0. There are two cases, whether 

this quadratic Equation 2 has one or two nonnegative roots. In the former, by Descartes’ rule, to 
have a nonnegative root it is enough to impose positivity of the first coefficient, from which we have 
ag > hb. In the second case, we have instead two positive roots if A

2
< 0, A

1
> 0 and 

Δ = A2
1
− 4A

0
A
2
> 0. Positivity of A

1
 is ensured by ag < hb, and this entails the negativity of A

2
 and 

in turn the fact that the roots are real, recalling that q < 1:

We then need the nonnegativity of Z
2
, which leads to

in the former case, and to the opposite inequality in the latter, in view of the sign of A
1
. Now looking 

once again for sufficient conditions, K
2
> 0 implies h > g in the former case and then asking H

2
> 0 

yields egr(h − g)(qag + phb) > hbm(ag − hb). For ag < bh instead, we find that requesting 
K
2
< 0 gives h < g and then H

2
< 0 is ensured by egr(h − g)(qag + phb) < hbm(ag − hb).

In summary, one equilibrium is feasible if

two such points instead arise and are feasible if

For the coexistence equilibrium E
3
=
(
S̄, Ī, Ȳ , Z̄

)
, we solve the second and fourth equations of (1) for 

S and I, to get

Substitution into the remaining equations gives the following two conic sections

(2)A
2
Y2 + A

1
Y + A

0
= 0,

Δ = [eghr −m(ag − hb)]2 + 4eghmrq(ag − hb)

> (eghr)2 +m2
(ag − hb)2 + 2eghmr(ag − bh) = [eghr +m(ag − hb)]2 > 0.

Y
2
H
2
+ K

2
≡ Y

2
[egr(h − g)(qag + phb) − hbm(ag − hb)] + rqm(bh2 − ag2) > 0

(3)Y
2
≤
m

eg
, ag > hb, h > g, egr(h − g)(qag + phb) > hbm(ag − hb);

(4)Y
2
≤
m

eg
, ag < hb, h < g, egr(h − g)(qag + phb) < hbm(ag − hb).

S̄ =
hZ + 𝛾

𝜆
, Ī =

𝜆(m − egY) − eh
(
hZ + 𝛾

)
𝜆(eh − j)

.

(5)

f (Y , Z) =

[
eh3

�(eh − j)
−
ah2

�
2

−
h2

�

]
Z2 +

[
heg

eh − j
−
ah

�

]
YZ +

[
rp −

a�

�

]
Y

+

[
rph

�
−
2a�h

�
2

−
h�

�
−

hm

eh − j
+

eh2�

�(eh − j)

]
Z +

rp�

�
−
a�2

�
2

= 0

(6)

g(Y , Z) =

[
beg

eh − j
− b

]
Y2 +

[
rq −

egrq

eh − j
−
b�

�
−

bm

eh − j
+

ehb�

�(eh − j)

]
Y+

+

[
ebh2

�(eh − j)
−
bh

�
− g

]
YZ +

[
rqh

�
−

rqeh2

�(eh − j)

]
Z

+
rq�

�
+

rqm

eh − j
−

ehrq�

�(eh − j)
= 0
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Both are conic sections of the type described by the generic equation 
AZ2 + 2HYZ + BY2 + 2GZ + 2FY + C = 0, with, using obvious notations, Af ≠ 0 and Bf = 0 for the 
first one and for Ag = 0 and Bg ≠ 0 the second one.

Now the invariants of Equation 5 are

so that it is a hyperbola since Πf < 0, assuming nondegeneracy, Γf ≠ 0. Also Equation 6 is a hyper-
bola, since

with once again Πg < 0 and assuming nondegeneracy, Γg ≠ 0.

These curves are better investigated by solving for each variable, to get:

We seek now sufficient conditions ensuring the existence of the equilibrium where all population 
thrive.

For Zg, note that if Bg < 0 it follows Gg > 0, Hg < 0. If we take also Cg > 0, then Zg(0) < 0 and 
Ψ(Y) is a quadratic with one positive root in view of Descartes’ rule of signs. These roots Y−

g < 0 < Y+

g  
always exist since Δg > 0. This statement follows observing that 2Fg = −b(rq)−1Cg − rqb

−1Bg so 
that easily Δg = 4F

2
− 4BgCg = [b(rq)−1Cg − rqb

−1Bg]
2
> 0. Since �(Y) ≥ 0 whenever 

Y < Y∞

g ≡ −2GgH
−1

g , with Y∞

g > 0, the function Zg is positive only in between Y+

g  and Y∞

g , indepen-
dently of their order.

A similar analysis on Yf (Z) shows the same result. Only in the absence of more specific information 
on the respective hunting rates on the two genotypes, g and h, we assume both Hf < 0 and Af < 0, 
given their asymmetry; the latter would however be a direct consequence of the former if g ≥ h. Note 
also that taking Cf > 0 we obtain Ff > 0. The discriminant then is always positive in view of the oppo-
site signs of the coefficients Af  and Cf , Δf = G

2
− Af Cf > 0. The function Yf (Z) then is positive only in 

the interval between the positive root Z+f  and the vertical asymptote, Z∞f , independently of which one is 
the smallest.

Evidently since these curves are surjective on their respective half ranges, the half lines Z ≥ 0 and 
Y ≥ 0, respectively, they always meet at a feasible point. Therefore, in summary, sufficient condi-
tions for the feasibility of the equilibrium E

3
 are provided by the following inequalities:

Γf = −Af F
2

f − CfH
2

f + 2Ff Gf Hf =
h2(a� − rp�)

4�
2
(
eh − j

)2
[
e2g2� − e2ghpr

+ egjpr + ehjpr − aehm − eg� j + eg�m − j2pr + ajm
]
,

Πf = −H2f = −

(
heg

2(eh − j)
−
ah

2�

)2

,

Γg = −BgG
2

g − CgH
2

g + 2FgGgHg =
rq
(
heg� − bhj − gj�

)

4�
2
(
eh − j

)3
[
eh2jqr

− eghjqr + eg� hj − egh�m − hj2qr − g� j2 + gj�m
]
,

Πg = −H2g = −

(
ebh2

2�(eh − j)
−
bh

2�
− g

)2

,

Yf = −
1

2

�(Z)

�(Z)
≡ −

1

2

Af Z
2
+ 2Gf Z + Cf

Hf Z + Ff
, Zg = −

1

2

Ψ(Y)

�(Y)
≡ −

1

2

BgY
2
+ 2FgY + Cg

HgY + Gg
.

(7)
eg

eh − j
< 1, 𝛾 +

m𝜆

eh − j
>

eh𝛾

eh − j
;

eg

eh − j
<
a

𝜆
,

eh

eh − j
<
a

𝜆
+ 1,

rp

𝛾
>
a

𝜆
.
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4. Stability
The Jacobian of (1) is

with J
11

= rp − 2aS − aY − hZ − �I, J
33

= rq − 2bY − b(I + S) − gZ and 
J
44

= eh(S + I) + egY −m − jI.

E
0
 is unstable, since its eigenvalues are 0, rp + rq, −m,−�.

The eigenvalues of the Jacobian evaluated at E
1
 are (ehrpb + egrqa −mab)(ab)−1, 

−r
(
aq + bp

)
a−1, (�rp − �a)a−1, −r

(
aq + bp

)
b−1, implying that this point is stable for

Therefore, the predators and the disease establish themselves in the ecosystem if the disease trans-
mission rate exceeds the threshold

On comparing the last conditions in Equations 9 and in 7, we infer that a transcritical bifurcation 
leading from E

2
 to E

3
 might arise. The conditional is needed as Equation 7 are only sufficient condi-

tions for the feasibility of the coexistence equilibrium.

Equilibrium E
1
, shown in Figure 1, is achieved by the following choice of system’s parameter 

values

(8)J =

⎛
⎜⎜⎜⎜⎝

J
11

−�S + � rp − aS −hS

�I �S − hZ − � 0 −hI

rq − bY rq − bY J
33

−gY

ehZ Z(eh − j) egZ J
44

⎞
⎟⎟⎟⎟⎠

(9)mab > er(hpb + gqa), 𝛾a > 𝜆rp.

(10)�
†
=

�a

rp
.

(11)

a = 2.7, b = 2.6, r = 2.42, h = 0.4, g = 0.7, j = 4.5,

m = 5.5, � = 5.82, � = 3.59, p = 0.4, q = 0.6, e = 0.95.

Figure 1. Equilibrium E
1
. 
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4.1. The disease-free equilibrium E
2

At E
2
 one explicit eigenvalue is available: �S

2
− hZ

2
− �. It gives the necessary stability condition:

The Routh–Hurwitz conditions on the remaining minor J(2) of order 3 obtained deleting the second 
row and column of Equation 8 give the following inequalities:

where M
2
(J(2)) represents the sum of the principal minors of order 2 of the matrix J(2). Now, the con-

dition on the trace gives:

from which using the value of S
2
 we find

Sufficient conditions for the above inequality are

For the determinant, we have

which, observing that conditions Equation 13 already imply negativity of the trace and therefore of 
the above first and third terms, is ensured by

The last Routh–Hurwitz condition is then:

Equilibrium E
2
, shown in Figure 2, is indeed achieved by the system, for the following set of param-

eter values

4.2. The coexistence equilibrium E
3

The Jacobian at this point simplifies a bit, in that J
22

= J
44

= 0.

The Routh–Hurwitz conditions in this case are more involved. The condition on the trace gives here

Denoting by Dij the minor of J(E
3
) obtained by deleting the ith row and jth column, the condition on 

the determinant instead provides: −𝜆ID
2,1

− hID
2,4

> 0 which is satisfied if we take both minors 
negative. This holds if we impose the following two conditions:

(12)𝜆m < 𝜆egY
2
+ eh(hZ

2
+ 𝛾).

tr(J(2)) <, det(J(2)) < 0, tr(J(2))M
2
(J(2)) < det(J(2)),

rp − 2aS
2
− aY

2
− hZ

2
+ rq − 2bY

2
− bS

2
− gZ

2
< 0

r −
m

eh
(2a + b) −

1

h
Y
2
[ag − bh + (g − h)(a + b)] − (g + h)Z

2
< 0.

(13)ehr < m(2a + b), ag > bh, g > h.

eh2Z
2
S
2

(
rq − bS

2
− 2bY

2
− gZ

2

)
− eghY

2
Z
2

(
rp − aS

2

)

+ eg2Y
2
Z
2

(
rp − 2aS

2
− aY

2
− hZ

2

)
− eghZ

2

(
rq − bY

2

)
S
2
< 0

(14)aS
2
< rp, bY

2
< rq.

[(
rp − 2aS

2
− aY

2
− hZ

2

)
+
(
rq − bS

2
− 2bY

2
− gZ

2

)][(
rp − 2aS

2
− aY

2

− hZ
2

)(
rq − bS

2
− 2bY

2
− gZ

2

)
+ eh2Z

2
S
2
+ eg2Y

2
Z
2
−
(
rq − bY

2

)(
rp − aS

2

)]

< eh2Z
2
S
2

(
rq − bS

2
− 2bY

2
− gZ

2

)
− eghZ

2

(
rq − bY

2

)
S
2

+ eg2Y
2
Z
2

(
rp − 2aS

2
− aY

2
− hZ

2

)
− eghY

2
Z
2

(
rp − aS

2

)
.

(15)
a = 3.1, b = 2.3, r = 6.4, h = 2.1, g = 1.7, j = 3,

m = 3.5, � = 1.8, � = 2.2, p = 0.4, q = 0.6, e = 0.85.

(16)r − (2a + b)S̄ − (a + 2b)Ȳ − (g + h)Z̄ − (𝜆 + b)Ī < 0.
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The remaining two conditions are a much more involved. In terms of the coefficients of the monic 
characteristic equation 

∑4

k=0 akΛ
k
= 0, they are

These coefficients are, in addition to the trace a
3
 and the determinant a

0
 of the Jacobian, the sum of 

its principal minors of order 2 and 3. Explicitly:

and

(17)hS̄Z̄
[
J̄
33
(eh − j) − eg(rq − bȲ)

]
+ gȲZ̄

[
eg(𝛾 − 𝜆S̄) − (rp − aS̄)(eh − j)

]
< 0,

(18)
egZ̄J̄

11
(rq − bȲ) + ehZ̄(𝛾 − 𝜆S̄)J̄

33
+ (rp − aS̄)(rq − bȲ)Z̄(eh − j)

− ehZ̄(rp − aS̄)(rq − bȲ) − (eh − j)Z̄J̄
11
J̄
33

− egZ̄(𝛾 − 𝜆S̄)(rq − bȲ) < 0.

(19)a
3
a
2
> a

1
, a

3
a
2
a
1
> a2

1
+ a

0
a2
3
.

a
2
=
|||||
J
11

(� − �S)

�I 0

|||||
+
|||||

J
11

(rp − aS)

(rq − bY) J
33

|||||
+
|||||
J
11

−hS

ehZ 0

|||||
+
|||||

0 0

(rq − bY) J
33

|||||
+
|||||

0 −hI

Z(eh − j) 0

|||||
+
|||||
J
33

−gY

egZ 0

|||||
= hSehZ − (� − �S)�I + J

11
J
33

− (rp − aS)(rq − bY) + hIZ(eh − j) + gYegZ

a
3
= −hI

|||||
(rq − bY) J

33

Z(eh − j) egZ

|||||
+

|||||||

J
11

(rp − aS) −hS

(rq − bY) J
33

−gY

ehZ Z(eh − j) 0

|||||||

+

|||||||

J
11

(� − �S) −hS

�I 0 −hI

ehZ Z(eh − j) 0

|||||||
− �I

|||||
(� − �S) (rp − aS)

(rq − bY) J
33

|||||
= −hI

[
(rq − bY)egZ − J

33
Z(eh − j)

]

− eghYZ(rp − aS) − hSZ(rq − bY)(eh − j) + eh2SZJ
33

+ gYZJ
11
(eh − j)J

11
hIZ(eh − j) − eh2IZ(� − �S)

− hS�IZ(eh − j) − �I
[
(� − �S)J

33
− (rp − aS)(rq − bY)

]
.

Figure 2. Equilibrium E
2
, for 

the parameters given in 
Equation 15.
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Also the coexistence equilibrium is empirically shown to be achievable in a stable way in Figure 3 
by the following choice of parameters:

5. Conclusions
The model considered in this paper extends in a new direction the ones that have been introduced 
in Venturino (2012) and Viberti and Venturino (2014). Namely, we consider the fact that one of the 
genotypes can be subject to a disease, that however cannot affect the other one. In addition, we 
assume that the infected genotype has also some toxic effects for a possible specialist predator, 
that feeds on both genotypes.

Our findings indicate that the ecosystem in these assumptions cannot completely disappear. The 
model trajectories can settle toward the disease- and predator-free equilibria, toward the predator-
free one, or the system can achieve coexistence of all the populations. Thus, to answer one of the 
questions raised in the Introduction, the disease can be eradicated, and the predators have a funda-
mental role in it, as the parameters related to their dynamics appear in the necessary stability condi-
tion (Equation 12). Both genotypes of the healthy prey can survive in an environment where the 
predators are absent, as it is found also in Venturino (2012). Thus, the elimination of the predators 
at first sight does not appear to be tied to the presence of the disease in the prey, elucidating then 
the statement of the Introduction. It is also interesting to note that in the assumptions of this par-
ticular ecosystem, the disease cannot endemically survive among the prey in the absence of the 
predators, which seems to constitute another fact in support of a negative answer to the second 
claim stated in the Introduction. However, at a deeper analysis, looking at the stability conditions for 
the equilibrium in which only the two prey genotypes thrive, (Equation 9), we observe that the first 
one is essentially a purely demographic condition, which plays the same role of equation (11) in 
Venturino (2012). The second one however is new and depends on the epidemic parameters, the 
disease contact rate �, and its recovery rate �. Evidently, if in the absence of the disease the two 
genotypes can thrive without the predators, it is possible that in the presence instead of a particu-
larly virulent, i.e. highly transmissible, disease, combined perhaps with a low recovery rate, or in any 
case if the contact rate exceeds the threshold �†, (Equation 10), the system can be driven away from 
this equilibrium. In such case certainly the disease is introduced at an endemic level and, since the 
endemic predator-free equilibrium here does not exist, in addition the invasion of the predators is 

(20)

a = 4.7, b = 3.6, r = 5.42, h = 2.8, g = 1.7, j = 1.5,

m = 3.9, � = 2.82, � = 0.59, p = 0.6, q = 0.4, e = 0.95.

Figure 3. Coexistence 
equilibrium obtained for 
the set of parameter values 
Equation 20.
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made possible. Furthermore, if the disease is unrecoverable, i.e. � = 0, the second condition in 
(Equation 9) cannot be satisfied, implying that either the disease or the predators, or both, are  
always present in the system.

As it in general occurs in ecoepidemic models, the major finding of this investigation is thus the 
fact that the disease deeply influences the underlying demographics of the system.
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