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prediction in functional kriging
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Abstract

The increasing interest in spatially correlated functional data has led to the de-
velopment of appropriate geostatistical techniques that allow to predict a curve at an
unmonitored location using a functional kriging with external drift model that takes
into account the effect of exogenous variables (either scalar or functional). Neverthe-
less uncertainty evaluation for functional spatial prediction remains an open issue.
We propose a semi-parametric bootstrap for spatially correlated functional data that
allows to evaluate the uncertainty of a predicted curve, ensuring that the spatial de-
pendence structure is maintained in the bootstrap samples. The performance of the
proposed methodology is assessed via a simulation study. Moreover, the approach is
illustrated on a well known data set of Canadian temperature and on a real data set
of PM10 concentration in the Piemonte region, Italy. Based on the results it can be
concluded that the method is computationally feasible and suitable for quantifying
the uncertainty around a predicted curve. Supplementary material including R code
is available upon request.
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1 Introduction

Kriging is a well known prediction method in the geostatistics community (see e.g. Chiles

and Delfiner (2012)); it allows to predict a (scalar) random field or spatial process {Z(s), s ∈

D ⊆ R2} in a new spatial location s0 given a set of observed values Z = (Z(s1), . . . , Z(sn)),

taking into account the underlying correlation structure. Spatially dependent functional

data (see e.g. the last two chapters of the book by Horváth and Kokoszka (2012)) have

received increasing interest over the last few years. Geostatistical techniques for functional

data were first introduced in the pioneering work of Goulard and Voltz (1993), but the

development of such techniques is rather recent. The simplest case would be that of ordinary

kriging, which allows to predict a curve at an unmonitored site under the assumption of a

constant mean (see e.g. Delicado et al. (2010); Giraldo et al. (2011); Nerini et al. (2010)).

The case of a mean function that depends on longitude and latitude was considered in

Caballero et al. (2013); Menafoglio et al. (2013); Reyes et al. (2015). In their work, Ignaccolo

et al. (2014) consider more complex forms of non-stationarity, where the mean function may

depend on exogenous variables (either scalar or functional), developing the so called kriging

with external drift - or regression kriging - in a functional data setting.

While much effort has been put in prediction, the uncertainty of a predicted curve

remains an open issue, since there is no functional version of the kriging variance. The

lack of a distribution function in the functional framework leads to the use of resampling

methods for confidence band calculation. In this context, Cuevas et al. (2006) consider the

standard bootstrap and a smoothed version of it to obtain confidence intervals for location

estimators; an informal discussion on the asymptotic validity of the bootstrap approach

in a functional framework can also be found in their paper. Goldsmith et al. (2013) use

a bootstrap approach to account for the uncertainty in Functional Principal Components

decomposition in estimanting the functional mean and constructing a confidence band for

it. Further, Ferraty et al. (2010) propose using “wild bootstrapping” in the case of a

nonparametric regression model with scalar response and functional covariate and derive

asymptotic results; Rana et al. (2016) extend this last work to the case of α−mixing depen-

dence. The recent paper by González-Rodŕıguez and Colubi (2017) shows the consistency

of some bootstrap approaches for separable Hilbert-valued random elements but under the
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assumption of independence.

While the bootstrap theory is well established for independent data, in the spatial data

setting a bootstrap procedure needs to mimic the data generating mechanism in order to

reproduce the spatial dependence structure in the bootstrap samples. Mostly by extending

bootstrap for time series, several variants of spatial subsampling and spatial block boot-

strap methods have been proposed in the literature (see chapter 12 in Lahiri (2003) for a

good overview on resampling methods for spatial data). In classical geostatistics, it is com-

mon to assume a decomposition of data variability in large- and small-scale components,

so that a “semi-parametric” bootstrap method as described in Cressie (1993) (p.493) - and

inspired by Freedman and Peters (1984) and Solow (1985) - seems appropriate. The latter

consists in transforming the residuals of a regression model (i.e. after estimation of the

large-scale component) to remove the spatial dependence structure (small-scale) so that re-

sampling can be done on uncorrelated data, to then re-introduce the spatial correlation on

bootstrapped samples and finally add up the large-scale component. Recently, Iranpanah

et al. (2011) compare the semi-parametric bootstrap with a moving block bootstrap for

variance estimation of estimators in a simulation study, and point out some advantages of

the semi-parametric approach in terms of precision and accuracy of the estimator. A semi-

parametric bootstrap approach has also been considered in Schelin and de Luna (2010),

where the focus is on the ordinary kriging predictor for data whose distribution is not nec-

essarily Gaussian, and indeed their proposal does not need any distributional assumptions

about the data generating process. While Iranpanah et al. (2011) consider the presence

of a non-constant mean structure too, the main difference between the two proposals is

related to the considered statistics: Iranpanah et al. (2011) suggest to create the bootstrap

distribution of the spatial predictor, while Schelin and de Luna (2010) construct a boot-

strap distribution for the contrast defined as the difference between the spatial predictor

and the unknown value (the one we want to predict).

The literature available considers either prediction bands for functional data in the

case of independent observations or prediction intervals for spatially correlated data but

in a scalar framework. In this sense, we fill the gap by providing a solution for spatially

correlated functional data. In this framework, however, mimicking the data generating
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process is expected to be more difficult than in the scalar case. In this paper, we consider

the case of functional kriging with external drift (FKED) developed in Ignaccolo et al.

(2014) and extend it to take into account spatial correlation when estimating the drift

functional coefficients by means of an iterative algorithm. To evaluate the uncertainty of a

predicted curve, we propose to extend the semi-parametric bootstrap approach for spatially

correlated data introduced by Schelin and de Luna (2010) to the case of functional data,

with the addition of a functional drift in the kriging model (a scalar drift was considered

in Iranpanah et al. (2011)). Concurrently, Pigoli et al. (2016) have proposed a similar

approach to evaluate the kriging prediction error for manifold valued data, but always in

terms of a unique value for each location. The extension of the semi-parametric bootstrap

to the functional data setting is not straightforward and implies dealing with two main

issues: i) the specification and estimation of the spatial dependence structure and ii) the

ordering of curves to obtain functional quantiles. In lack of theoretical results about the

asymptotic validity of the proposed bootstrap, we rely on a simulation study to evaluate

the performance of the proposed method by analysing widths of the functional prediction

bands and coverages defined for functional data.

The paper is organized as follows. In Section 2, we summarize the kriging with external

drift methodology whereas in Section 3 we illustrate the proposed method for deriving

prediction bands in the general FKED setting. A simulation study is presented in Section 4,

followed by an application to two real data sets. All computations are coded in R (R Core

Team, 2015). A discussion completes the paper.

2 Functional kriging with external drift (FKED)

Let Υs = {Ys(t); t ∈ T} be a functional random variable observed at location s ∈ D ⊆ Rd,

whose realization is a function of t ∈ T , where T is a compact subset of R. Assume that

we observe a sample of curves Υsi , for si ∈ D, i = 1, . . . , n, taking values in a separable

Hilbert space of square integrable functions. The set {Υs, s ∈ D} constitutes a functional

random field or a spatial functional process (Delicado et al., 2010) that is not necessarily
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stationary. The following model is assumed:

Υs = µs + εs, (1)

where µs is the drift describing a spatial trend and εs is a zero-mean, second-order stationary

and isotropic residual random field, with covariance function Cov(εsi , εsj) = C(h),∀si, sj ∈

D with h = ‖si − sj‖, where h = ||si − sj|| represents the Euclidean distance between

locations si and sj. At a fixed site si, i = 1, . . . , n, and domain point t, the model can be

rewritten as a functional concurrent linear model (Ignaccolo et al., 2014)

Ysi(t) = µsi(t) + εsi(t) (2)

where εsi(t) represents the residual spatial functional process {εs(t), t ∈ T, s ∈ D} at site

si. The drift term can be expressed in terms of a set of scalar and functional covariates:

µsi(t) = α(t) +
∑
p

γp(t)Cp,i +
∑
q

βq(t)Xq,i(t) (3)

where α(t) is a functional intercept, Cp,i is the pth scalar covariate at site si, Xq,i is the qth

functional covariate at site si and γp(t) and βq(t) are the covariate functional coefficients.

Model (3) parameters can be estimated by means of a generalized additive model (GAM)

representation using the R package mgcv (see Ignaccolo et al. (2014), Wood (2006) and

Wood (2015) for details). The generalized additive model representation of Model (2) can

be re-expressed as a mixed effects model (Robinson, 1991; Speed, 1991) whose parameters

are estimated using REstricted Maximum Likelihood (REML) (Wood, 2011) under the

assumption of Gaussianity for εsi(t) with a longitudinal point of view.

To take into account the spatial correlation between functional observations when esti-

mating the drift term, we propose an iterative algorithm that considers the term εsi(t) as a

functional random intercept (i.e. a location specific smooth residual) with a given covari-

ance structure, similarly to Scheipl et al. (2015). An iterative algorithm is also proposed

in Menafoglio et al. (2013) to estimate drift coefficients for scalar covariates in universal

kriging, as well as in Ignaccolo et al. (2015) to take into account the heteroskedasticity of

functional residuals. The algorithm can be summarized as follows:

1. Fit a standard functional concurrent linear model; estimate the drift term µsi(t)

following Model (3) assuming independent functional observations and obtain the

functional residuals esi(t) = Ysi(t)− µ̂si(t) .
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2. Estimate the correlation matrix K =
{
Corr(εsi(t), εsj(t))

}
i,j=1,...,n

of the residual spa-

tial functional process using the trace-semivariogram (Giraldo et al., 2011). This is de-

fined, for a zero-mean weakly-stationary isotropic process, as υ(h) =
∫
T

1
2
V ar

(
εsi(t)− εsj(t)

)
dt.

The trace-semivariogram can be estimated as:

υ̂(h) =
1

2 |N(h)|
∑

i,j∈N(h)

∫
T

(
esi(t)− esj(t)

)2
dt

where N(h) = {(si, sj) : ‖si − sj‖ = h}. The estimate becomes computationally

efficient when data are expressed using cubic B-splines, as integration can be avoided

by re-expressing the integral in terms of the spline coefficients and basis (Giraldo et al.,

2011). Once estimated, the empirical trace-semivariogram provides a cloud of points

(hg, υ̂(hg)), g = 1, . . . , G to which a parametric model (e.g. exponential, spherical,

Matérn) can be fitted as in classical geostatistics using, for example, weighted least

squares (Cressie, 1993).

3. Fit Model (2) considering the term εsi(t) as a functional random effect, where the

inverse of the estimated correlation matrix K̂ (dim(K̂) = n×n) is used as the precision

matrix of a random field across locations, as proposed in Scheipl et al. (2015). In

practice this can be implemented using the function gamm in the mgcv package.

The algorithm’s convergence is determined based on the Akaike Information Criterion

AIC, since the effective degrees of freedom may change from iteration to iteration. The

algorithm stops when the AIC rate is smaller than 0.1%, where the criterion rate at the

jth iteration is calculated as

AICrate =

∣∣∣∣AICj − AICj−1

AICj−1

∣∣∣∣ .
The resulting functional residuals (at the last iteration) esi(t) = Ysi(t) − µ̂si(t) can

be used to predict the residual curve at an unmonitored site s0 via one of three kriging

options: 1) ordinary kriging for functional data (Giraldo et al., 2011), according to which

ês0(t) =
∑n

i=1 λiesi(t), with kriging coefficients λi ∈ R; 2) continuous time-varying kriging

(Giraldo et al., 2010), where the kriging coefficients λi(t) now depend on t and 3) functional

kriging total model (Giraldo et al., 2009; Nerini et al., 2010), where the kriging coefficients
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are defined on T × T and ês0(t) =
∑n

i=1

∫
T
λi(τ, t)esi(τ)dτ. Prediction at the unmonitored

site s0 is obtained by adding up, as in the classical regression kriging, the two terms, i.e.

Ŷs0(t) = µ̂s0(t) + ês0(t), where µ̂s0(t) = α̂(t) +
∑
p

γ̂p(t)Cp,0 +
∑
q

β̂q(t)Xq,0(t)

depends on the covariate values Cp,0 and Xq,0(·) at site s0.

From now on we focus on the ordinary kriging case for the residual field; this contributes

to keep a moderate computational complexity in what follows (the two other cases will

be considered in the discussion). Indeed, the ordinary case turns to be computationally

convenient because of the trace-variogram’s use. Not only integration can be avoided when

using B-splines, but also it is possible to show (see appendix) that the trace-variogram

induces a covariance structure that is separable with respect to space and the domain of

the functional data (e.g. time or depth). Moreover, Menafoglio and Petris (2016) show that

the solution to the Ordinary Kriging Problem via the trace-covariogram turns out to be the

best finite-dimensional approximation of the operatorial kriging predictor for Hilbert-space

valued random fields.

Note that, in practice, data are gathered as a finite discrete set of observations (tj, yij),

tj ∈ T , j = 1, . . . ,M , i = 1, . . . , n. Thus, before fitting Model (2), raw data can be

transformed into functional observations assuming yij = Ysi(tj) + δij, where δij represents

measurement error and Ysi(·) is a continuous function that corresponds to a realization of

the functional random field {Υs, s ∈ D} at site si. The conversion from discrete data to

curves involves smoothing; we use cubic B-splines and the R package fda (Ramsay et al.,

2014), choosing the number of basis functions and penalty parameter using functional

cross-validation (Ignaccolo et al., 2014).

3 Bootstrap uncertainty bands for functional kriging

To evaluate the uncertainty of a predicted curve Ŷs0(t) at a new site s0, we propose a

semi-parametic bootstrap approach for spatially correlated functional data that builds on

the work done by Schelin and de Luna (2010) and Iranpanah et al. (2011) for scalar data.

The main idea is to decorrelate the data so that resampling can be done on independent

observations and then transform back, ensuring that the spatial dependence structure is
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maintained in the bootstrapped samples. After removing the drift as in Iranpanah et al.

(2011), we propose to follow Schelin and de Luna (2010) according to which in the following

algorithm a sample of size n + 1 is drawn and an augmented covariance matrix created,

such that a bootstrap datum Y ∗js0 is generated at the unmonitored location s0.

Suppose that Ŷs0(t) − Ys0(t) follows the distribution Fn, a 1 − α prediction interval

for Ys0(t) can be built as (Ŷs0(t) − q1−α/2, Ŷs0(t) − qα/2), with qα the αth quantile of the

unknown distribution Fn. The idea is to construct B bootstrap replicates {Ŷ ∗js0 , Y
∗j
s0
}Bj=1

and approximate Fn by F̂ ∗n , the empirical distribution of {Ŷ ∗js0 −Y
∗j
s0
}Bj=1. The bootstrapping

algorithm can be summarized as follows:

1. Iteratively estimate the drift following Model (3) as proposed in steps 1-3 of the

FKED algorithm to take into account the spatial correlation and take the functional

residuals esi(t) = Ysi(t)− µ̂si(t).

2. Estimate the functional residuals covariance matrix Σ through the estimated trace-

semivariogram. Resampling directly from the functional residuals is not appropriate

due to spatial dependence; instead, we can transform them first as it is usual practice

when bootstrapping spatial data. Using Cholesky decomposition, Σ̂n×n = L̂n×nL̂
T
n×n

and the functional residuals can be transformed so that they become (spatially) un-

correlated:

ζn×M = (ζ(s1), . . . , ζ(sn))′ = L̂−1n×n (Yn×M − µ̂n×M) .

3. Generate B bootstrap samples with size n + 1, ζ∗n+1 = (ζ∗(s1), . . . , ζ
∗(sn), ζ∗(sn+1))

′

by sampling with replacement from ζ(s1), . . . , ζ(sn).

4. Create the augmented covariance matrix Λ̂ =

Σ̂ ĉTn

ĉn σ̂2

, where ĉn = {Ĉ(si − s0)}ni=1,

Ĉ is the estimated covariance function and σ̂2 = Ĉ(0) is the estimated scale. Use

Cholesky decomposition so that Λ̂ = R̂R̂T and transform the bootstrap samples ζ∗n+1

as

(e∗(s1), . . . , e
∗(sn), e∗(s0))

′ = R̂(n+1)×(n+1)ζ
∗
(n+1)×M .

5. The final bootstrap sample is determined as Y ∗si(t) = µ̂si(t) + e∗si(t), i = 1, . . . , n and

Y ∗s0(t) = µ̂s0(t) + e∗s0(t).
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The bootstrap samples {Y ∗js1 , . . . , Y
∗j
sn }

B
j=1 are then fed into the FKED model to obtain

B prediction curves Ŷ ∗js0 and the differences {Ŷ ∗js0 − Y
∗j
s0
}Bj=1 are considered. The prediction

interval for Ys0(t) can be written as(
Ŷs0(t)− q∗1−α/2, Ŷs0(t)− q∗α/2

)
,

with q∗α the αth percentile of F̂ ∗n , that can be obtained ordering the set of curves {Ŷ ∗js0 −

Y ∗js0 }
B
j=1. However, the idea of ordering curves is not as straightforward as ordering scalar

values, and to our knowledge there is no gold standard for doing so. We consider two

different ordering techniques available in the literature.

The first one builds on the idea of band depth (Lopez-Pintado and Romo, 2009), that

can be defined for any set of k curves. In their paper, Lopez-Pintado and Romo (2009)

suggest using k=3, stating that there is no need to increase k as “the band depth induced

order is very stable in k”. Even for k=2, the computational cost is considerable when the

sample includes a large number of functional curves; to improve computation times, we

have adopted the fast algorithm proposed in Sun and Genton (2011) and Sun et al. (2012)

with k=2. The band in R2 delimited by the curves yi1 , yi2 is defined as

B(yi1 , yi2) = {(t, y(t)) : t ∈ T,minr=1,2 yir(t) ≤ y(t) ≤ maxr=1,2 yir(t)} .

The sample band depth (BD) of a curve y(t) in a set of n curves can be calculated as

BDn,2(y) =

 n

2

−1 ∑
1≤i1<i2≤n

I {G(y) ⊆ B(yi1 , yi2)}

where I is the indicator function and G(y) is the graph of a curve y(t) defined as the subset

of the plane G(y) = {(t, y(t)) : t ∈ I}. Potential problems of using k = 2 include ties (i.e.

more than one curve with the same depth value) and crossing over of the curves delimiting

the band (in which case the band “is degenerated in a point and, with probability one, no

other curve will be inside this band”; see Lopez-Pintado and Romo (2009)). To avoid these

problems and still count with the computational advantage of using k = 2, band depth can

be modified to take into account whether a portion of the curve is in the band, giving rise

to the modified band depth (MBD), defined as

MBDn,2(y) =

 n

2

−1 ∑
1≤i1<i2≤n

λ ({t ∈ T : minr=i1,i2yr(t) ≤ y(t) ≤ maxr=i1,i2yr(t)})
λ (T )
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where λ is the Lebesgue measure on T (for further details see Lopez-Pintado and Romo

(2009)). With this scheme, the bigger the band depth value, the more central the curve is.

The second ordering scheme is based on L2 distance between curves (Cuevas et al.,

2006). In this case, the bootstrap-based predicted curves are ordered based on how distant

they are from the zero curve, according to the L2 distance definition:

||x− y|| =
(∫

T

(x(t)− y(t))2 dt

)1/2

.

With this scheme, the smaller the distance, the more central the curve is.

For a confidence level 1−α, the lower/upper limits of a 100(1−α)% prediction band are

obtained by taking either the pointwise (w.r.t. t) minimum/maximum of the 100(1− α)%

deepest curves using band depth (i.e. those closest to the center of the distribution) (Sun

and Genton, 2011) or of the 100(1−α)% curves closest to the zero curve using L2 distance

(Cuevas et al., 2006).

To evaluate the performance of the bootstrap method proposed, we can use different

indicators. First of all, we consider the width of the resulting 100(1−α)% prediction band

Bs0(α) at the unmonitored site s0. Then we evaluate the “domain coverage” DCs0(α),

defined as the proportion over the domain T of the simulated curve within the prediction

band, calculated as

DCs0(α) =
1

M

M∑
j=1

I {(tj, Ys0(tj)) ∈ Bs0(α)} , (4)

where M is the number of points used for discretizing the curve Ys0(t). The latter should

not be understood as coverage in the classical sense, and thus we propose a “functional

coverage” FCs0(α) defined as the percentage of times that the prediction band contains

the true curve in a set of S simulations, and calculated as

FCs0(α) =
1

S

S∑
sim=1

I
{

(t, Ys0(t)) ∈ B(sim)
s0

(α)
}

=
1

S

S∑
sim=1

I
{
DC(sim)

s0
(α) = 1

}
,

where B(sim)
s0 (α) and DC

(sim)
s0 (α) represent the prediction band and domain coverage for

the simth simulation, sim = 1, . . . , S; in the simulation study that follows S = 100. In

practice, the functional coverage depends somehow on the discretization that one makes of

the corresponding curve Ys0(t), in the sense that the finer the discretizing grid, the more
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difficult it is for the whole curve to be contained in the band, and indeed the functional

coverage varies slightly depending on the number of points chosen to represent the curve.

That said, we opt for a fine discretization (101 points) but allow for a small tolerance ς in

the functional coverage, in the sense that rather than requiring the whole true curve to be

contained in the band, we require at least 100(1 − ς)% of the true curve to be contained

in the band. This modified version of the functional coverage with tolerance ς can be

evaluated as

FCς
s0

(α) =
1

S

S∑
s=1

I
{
DC(sim)

s0
(α) ≥ 1− ς

}
. (5)

Obviously, FCς
s0

(α) coincides with FCs0(α) when ς = 0.

4 Simulation Study

The performance of the bootstrapping method proposed in Section 3 is evaluated here

through a simulation study. Our aim is to analyse the impact of the spatial structure of

the functional residual random field, by means of the covariance function parameters (scale

and range), as well as that of the ordering technique chosen to derive the uncertainty bands

when increasing the number of sites.

Data were simulated using cubic B-splines on a spatial irregular grid (n locations) on

D = [0, 2]× [0, 3] and curve domain T = [0, 1]. We used a B-spline basis on T with 10 basis

functions. The residual functional random field was built as es(t) =
∑10

j=1 ξj(s)Bj(t), where

Bj(t) is the jth basis function evaluated at t ∈ T (i.e. a curve) and {ξj(s), s ∈ D} are the

spatially correlated spline coefficients. These were generated independently for each j =

1, . . . , 10 using the same exponential covariance function with range and scale parameters

φ ∈ (0.5, 1, 1.5) and σ2 ∈ (0.25, 0.50, 0.75) respectively, resulting in 9 different scenarios.

As already mentioned in Section 2 and shown in the appendix, the trace-variogram of

{es(·), s ∈ D} turns out to be proportional to the variogram of the spline coefficients

{ξj(s), s ∈ D}. The drift was obtained as

ms(t) = α(t) + β1(t)lon+ β2(t)lat

where lon and lat are the spatial coordinates, α(t) is a functional intercept and β1(t), β2(t)

are functional coefficients. The functional coefficients α(t), β1(t) and β2(t) can be expressed
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in terms of the same B-spline basis with scalar spline coefficients (common for all sites)

that are drawn from normal distributions as follows: for α(t) we draw 10 splines coef-

ficients from N10(1, 0.05 I10×10); for β1(t) and β2(t) we draw 10 splines coefficients from

N10(ϑ, 0.05 I10×10) with ϑ = (0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1, 1)T , where I10×10 repre-

sents the identity matrix with dimension 10 × 10. Finally, simulated observations were

built as

Y sim
s (t) = ms(t) + es(t) + ηs(t)

where η(t) = {ηs1(t), . . . , ηsn(t)} ∼ Nn(0, 0.09 In×n) is a vector of random errors for each

fixed t ∈ [0, 1]; in practice we consider M =101 equally spaced points in [0, 1].

For each simulation scenario, we generated functional data at n = 25, 50 and 90 nested

locations. Additionally, data were generated at 10 more sites (always the same for all three

sample sizes) used as validation stations. Note that these validation stations, numbered

1 to 10 throughout the paper, represent a number of different situations that could be

found in real applications, ranging from isolated locations with no information nearby (e.g.

number 3) to locations situated very close to sites where data are available (e.g. number

9). The locations can be seen in Figure 1, while the simulated data can be seen in Figure 2

for n = 90 (note that the cases n = 25 and n = 50 are just subsets of this).
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Figure 1: Locations of the 25, 50 and 90 sites used for model fitting. Validation sites

numbered 1 to 10.

For each of the three sample sizes, and each simulation scenario, the FKED model
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Figure 2: Simulated data (n=90) with 10 validation stations curves in color, for each

simulation scenario.

presented in Section 2 was applied to the corresponding data set to predict curves at the

10 validation sites. In particular, a drift term depending on longitude and latitude was

considered and ordinary kriging was used to obtain the predicted residuals. In practice,

the variogram model is chosen automatically among exponential, gaussian and spherical

based on minimum SSE. Computational times ranged from 2 seconds (n=25) up to 16

seconds (n=90). The resulting predicted curves, along with the observed data, can be seen

in Figure 3 in the case of n = 90 and range and scale parameters φ = 0.5 and σ2=0.25,

respectively. The estimated range and scale parameters φ̂ and σ̂2 for all 9 simulation
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Figure 3: Original data (black dots), FKED predicted curve (solid red line), 95% prediction

band based on L2 distance (pink) and on MBD (blue) for n=90, σ2 = 0.25, φ = 0.5.

scenarios are in agreement with what one would expect given the values set for φ and σ2 in

the simulation design and the relationship between the trace-variogram and the variogram

described in the appendix. It appears that there is good accordance between simulated and

predicted observations. Similar figures for the remaining cases are available upon request

as supplementary material. Following the algorithm illustrated in Section 3, a bootstrap

sample of size B = 500 was obtained for each validation station. These 500 curves were

ordered using both distance and band depth, where the latter was calculated using the

modified version MBD. The resulting 95% prediction bands are shown in Figure 3. Overall,

the two uncertainty measures provide very similar prediction bands.

In Figure 4 (top), we show the depth based band width corresponding to a sample size

of n = 25 and all simulation scenarios, while Figure 4 (bottom) summarizes the difference

in width when using band depth and distance for the same sample size. The remaining

figures (for n = 50, 90) are not shown here due to space limitations but are available upon

request as supplementary material. Greater values of the scale parameter σ2 lead to wider
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prediction bands, while for a fixed value of the scale parameter, the width of the band

decreases slightly with increasing range φ. When comparing band depth and distance

(Figure 4 (bottom)) it is interesting to see that the depth based interval is predominantly

wider than the distance based one, regardless of the value of σ2 and φ. Figure 5 shows the

depth based prediction band width for a fixed simulation scenario (σ2 = 0.5 and φ = 1.5)

and all three samples sizes; here it can be seen that as n increases, the width of the interval

decreases and it becomes slightly more stable on T .

On the other hand, the median domain coverage (see Eq. (4)) over S = 100 simulations

is summarized in Figure 6 for all simulation scenarios and sample sizes. Looking at the

empirical distribution of DCs0(α) over S = 100 simulations the maximum is always 100%,

whereas the minimum varies from 78.2% to 100%. This coverage is linked to the width

of the interval (the larger the width the larger the coverage) but also to the goodness of

FKED prediction because the uncertainty band is built around the predicted curve: if

the prediction is far from the original data, the corresponding coverage will be poor, and

viceversa. We can see in Figure 6 that median domain coverage improves as n increases

and it is slightly better for small values of σ2. Overall, median coverage ranges from 85.2%

to 100% and is highly dependent on validation site. In particular, it can be seen that when

n = 90 all locations apart from validation stations numbered 4 and 7 have a median domain

coverage greater than 95%. Station 3 seems to perform particularly badly when n = 25 but

this is explained by the fact that it is located on the border of the spatial region considered

(see Figure 1(left)) and has no neighbouring sites.

Following the earlier discussion at the end of Section 3, we allow for a small tolerance

when calculating functional coverage (see Eq. (5)), and this is shown in Figure 7 for ς = 0.05

and ς = 0.10. It can be seen that FCς
s0

(0.05) decreases as σ2 increases but improves with

increasing values of φ (i.e. when the dependence structure becomes stronger) and varies

greatly with validation site. Once again, when ς = 0.05 (Figure 7 top) sites 4 and 7 show

a lower functional coverage for n = 90; if we disregard these two, FC0.05
s0

(0.05) for the

remaining stations is very close to 100% in the best scenario (σ2 = 0.25, φ = 1.5). Given

the empirical distribution of domain coverage discussed above, it is intuitive to see that

we cannot expect a functional coverage around the nominal level 95% for all validation
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Figure 4: Prediction band width according to band depth (top) and width (depth-distance)

difference (bottom) for 10 validation stations and different simulation scenarios when n =

25.
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Figure 5: Prediction band width, when using band depth for ordering curves, for a fixed

simulation scenario (σ2 = 0.5 and φ = 1.5) and all three samples sizes.

stations. For example, the minimum and median domain coverage for station 4 when

n = 90, σ2 = 0.75, φ = 0.25 are 82.2% and 90.1% respectively, while the 5th percentile

is 84.2%; this means that if we set the tolerance ς = 0.05 the nominal level 95% cannot

be reached. If instead we allow for a tolerance ς = 0.10 (see Section 6 for a discussion),

the functional coverage improves considerably as shown in Figure 7(bottom). Moreover, if

rather than discretizing the curve to 101 points we use M = 50, the results on coverage

improve; for example, median domain coverage ranges from 90% to 100%.

5 Real data analysis

5.1 Canadian temperature data

As first case study, we have chosen the well known data set of Canadian temperature. This

has been repeatedly used in the functional data literature (see, for example, Menafoglio

et al. (2013); Giraldo et al. (2010); Ramsay and Silverman (2006); Scheipl et al. (2015)).

The data set consists of daily annual mean temperature collected at 35 meteorological

stations in Canada’s Maritimes Provinces: Nova Scotia, New Brunswick and Prince Edward

Island, over the period 1960 to 1994. Note that the data set used here (available in the

geofd R package; Giraldo et al. (2012)), which is the same as in Menafoglio et al. (2013);

Giraldo et al. (2010), covers a smaller geographical area than that in Ramsay and Silverman
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(2006). While other papers have been devoted to prediction of these temperature curves,

our objective is to provide uncertainty bands for the predicted curves. Therefore, discussing

the fitted model is out of the scope of this paper. For this aim, we selected five stations at

random to use as validation stations for which we will provide prediction bands according to

our proposal in Section 3. These are marked in red in Figure 8 (left). Data were converted

to functional observations through smoothing by using penalized cubic B-splines with 120

basis functions and penalty parameter equal to zero. These values were chosen using

functional cross-validation. The FKED model, with longitude and latitude as covariates,

was then fitted to the remaining 30 stations and predicted temperature curves were obtained

using ordinary functional kriging with an exponential variogram model for the 5 validation

stations. From the empirical trace-variogram, there was no evidence of a discontinuity at

the origin and hence we fixed the nugget equal to zero. For each of the validation sites,

a bootstrap sample of size B = 1000 was obtained. Band depth was calculated using

the modified version MBD. The resulting 95% prediction bands are shown in Figure 9.

The uncertainty bands are fairly narrow, as expected when observing the small variability

among curves in Figure 8 (right) but they become slightly wider in winter. Overall, the

two uncertainty measures seem to agree well, although in some cases the distance based

prediction band appears to be slightly narrower than the depth based one. Domain coverage

percentages for all 5 validation sites range from 98.9% to 100%.

5.2 Air pollution data

The second case study considered consists of daily PM10 concentrations (in µg/m3) mea-

sured in 24 sites (red triangles in Figure 10) from October 2005 to March 2006 by the

monitoring network of Piemonte region (Italy). Measurements were also available at 10

additional locations (blue dots in Figure 10) that are used as validation stations. Apart

from geographical information, i.e. longitude, latitude and altitude of each station, which

were considered as scalar covariates, information was available on daily maximum mixing

height, daily total precipitation, daily mean wind speed, daily mean temperature and daily

emission rates of primary aerosols, which were taken as functional covariates. These are

available as a result of a nested system of deterministic computer-based models imple-
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mented by the environmental agency ARPA Piemonte (Finardi et al., 2008). This data set

had already been analyzed in Cameletti et al. (2011). For further details on the model the

reader is referred to Ignaccolo et al. (2014). A log transformation was used on the response

variable to achieve normality and stabilize within-station variability. Prior to modelling,

data (both response and functional covariates) were smoothed by means of cubic B-splines

with 146 basis functions and penalty parameter equal to 0. These values were chosen using

functional cross-validation (Ignaccolo et al., 2014).

The functional kriging with external drift model described in Section 2 was applied

to the air pollution data, including the (standardized) scalar and functional covariates

mentioned above, to obtain prediction curves (via ordinary kriging for functional data with

an exponential variogram model and zero nugget) at the 10 validation sites. To obtain

95% prediction bands for each of the predicted curves, a bootstrap sample of size 1000

was obtained for each site following the algorithm proposed in Section 3. We obtained

prediction bands according to both the modified band depth (with k = 2) and distance

induced order. Prediction bands for the ten validation sites are shown in Figure 11. Overall,

the two uncertainty measures seem to agree well, although in some cases the depth based

band appears to be slightly wider than the distance based one. The domain coverage varies

from 97.3% to 100%.

6 Discussion

The functional kriging with external drift model allows to predict a whole curve - regardless

of the domain of the functional observations - taking into account exogenous covariates and

the underlying spatial dependence. Nevertheless, uncertainty evaluation in the functional

kriging context has hardly ever been addressed in the literature. The classic functional

kriging variance provides a unique value over the whole domain T , while our aim is to pro-

vide an uncertainty measure whose value may change along the predicted curve. Given the

lack of an analytic expression of a domain-varying kriging variance for a curve, we propose

a semiparametric bootstrap approach that not only allows the uncertainty to change over

the domain T but also takes into account the uncertainty due to drift estimation. The

contrast considered to build the uncertainty band, defined as the difference between the
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spatial prediction and the unknown value, could be thought of as a sort of pivotal quantity,

the distribution of which is unknown. The use of a pivotal quantity is recalled to improve

the performance of the bootstrap in the parametric framework (Canty et al., 2006).

We considered two different techniques proposed in the literature for ordering the boot-

strapped curves, namely functional depth and L2 distance, but we did not find great differ-

ences in the results for either the simulations or the two case studies. To be conservative,

one could argue that it is safer to use the band depth as this criterion gives larger bands

on average.

Overall, using the known data at validation sites in both simulations and real case

studies, it can be concluded that the proposed method is a valid approach in evaluating

uncertainty for a predicted curve. In particular, the simulation study shows that the width

of the bands depends on the scale and range parameters of the covariance structure, at

least for the exponential case, and becomes more stable over the domain T with increasing

sample size.

In terms of functional coverage, we can conclude that once we allow for a small tolerance

the method performs generally well. If for a nominal domain coverage we are willing to

accept an effective coverage of 90%, then it seems reasonable to assume a tolerance ς = 0.10,

in which case results are satisfactory. Note that, in practice, when the method is applied

to a real dataset, the functional coverage cannot be calculated and assessment would have

to be done based solely on domain coverage, whose median in the simulation study was

not far from the nominal level of 95%.

Data in the two case studies considered in this paper were regularly spaced over the

domain T ; however, that is not always the case (see e.g. atmospheric profiles in Ignaccolo

et al. (2015)). For irregularly spaced data, curves could be aligned at the initial smoothing

step before fitting the functional kriging with external drift model, as it is straightforward

to evaluate the curves for every t ∈ T in a common grid for all curves.

The algorithm proposed for uncertainty evaluation of spatially correlated curves is com-

putationally feasible (running times with B = 1000: 4 hours for the PM10 case study and

2.35 hours for the Canadian temperature case study using an Intel Core i7-4770 CPU

3.40GHz 16GB RAM) and applies to a wide range of practical situations, as it can be used
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regardless of the complexity of the drift term, or even in the absence of the latter. Our

proposal has been specified in the case of ordinary kriging where the weight coefficients are

constant and the spatial structure is determined by means of the trace-variogram. We are

aware that the simulation study is limited to the simple case in which the spatial depen-

dence structure does not change w.r.t. t ∈ T , as assumed by the trace-covariogram. While

it might be worth exploring more complex scenarios a full analysis of the air pollution data

described in Section 5.2, Ignaccolo et al. (2014) showed that in practice the assumption of

a spatial structure that is constant over time is reasonable, as the drift term in the model

picks up most of the spatial variability over time. This suggests that in similar situations,

where the available covariates are able to explain a large part of the time-space variability,

ordinary residual kriging should be appropriate.

Nevertheless, it may be the case that a more complex kriging alternative is desiderable

in order to let the weights vary with t (for both the real data and the bootstrap samples). To

be consistent with the way the kriging weights have been specified in the cases of continuous

time-varying kriging and functional kriging total model, the underlying spatial structure

(and hence the matrices K in Section 2 and Σ in Section 3) should not be determined by

means of the trace-variogram. In fact, in Giraldo et al. (2011) and Giraldo et al. (2009)

functional data are expressed as linear combinations of splines and a Linear Model of

Coregionalization is used to estimate cross-correlations among the spline coefficients; this

way a possible interaction between the curve domain and the space domain is taken into

account. Consequently the matrices K and Σ would need to be adjusted accordingly but

with the added burden of an increased computational load.

We believe that the method proposed in this paper is appropriate in the framework of

functional data and is able to provide uncertainty bands for a predicted curve in an unmon-

itored site. Further, half the width of the resulting prediction band could be considered

as an approximate margin of error. We think this will prove useful for monitoring pur-

poses and policy assessment where the uncertainty should always accompany the related

prediction.
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Appendix: note on the trace-variogram

Let us recall that the trace-variogram is defined, for a zero-mean weakly-stationary isotropic

process, as

υ(h) =

∫
T

1

2
V ar

(
εsi(t)− εsj(t)

)
dt

where h = ||si − sj|| represents the Euclidean distante between locations si and sj.

By assuming a finite development for the functions ε(t) such that εsi(t) =
∑Nb

l=1 ξl(s)Bl(t)

where Nb is the number of considered basis functions and Bl(t) is the l-th basis function

evaluated at t ∈ T , we can write

Cov
(
εsi(t), εsj(v)

)
=

Nb∑
l=1

Cov (ξl(si), ξl(sj))Bl(t)Bl(v) = C(si, sj)
Nb∑
l=1

Bl(t)Bl(v) = C(si, sj)τ(t, v)

where C(si, sj) = Cov (ξl(si), ξl(sj)) is assumed identical for all l and τ(t, v) =
∑Nb

l=1Bl(t)Bl(v).

Thus we get a factorization with respect to the spatial domain D and the curve domain T .

Moreover, for every i, V ar (εsi(t)) = C(si, si)τ(t, t) and we can write

V ar
(
εsi(t)− εsj(t)

)
= V ar (εsi(t)) + V ar

(
εsj(t)

)
− 2Cov

(
εsi(t), εsj(t)

)
= C(si, si)τ(t, t) + C(sj, sj)τ(t, t)− 2C(si, sj)τ(t, t).

With the assumption of stationarity and isotropy for ε we obtain

υ(h) = [C(0)− C(h)]

∫
T

τ(t, t)dt

so that the trace-variogram is written as a product of a (classical) spatial variogram and a

constant depending on the Nb basis functions Bl.
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Figure 6: Median domain coverage (over S = 100 simulations) at each validation station

(numbered 1 to 10) for n=25, 50 and 90 and all 9 simulation scenarios.

27



1

2

3

4
5
6
7

8

9

φ=0.5

rep(1, 9)

F
C

10

0
20

40
60

80
10

0

σ2=0.25

1

2

3

4
5
6
7

8

910

1

23

4

5

6

7

8910

1

23

4

5
6

7

8910
1
23

4

5
6

7

89

10

1
23

4

56

7

89

10

1

2

3

4567

8

9

φ=1

rep(1, 9)

F
C

10

1

2

3

4567

8

910

1

23
4
5

6

7

8
910

1

23

4

5

6

7

8
910

1
23

4

56

7

8910 1
23

4

56

7

8910

1

2

3

4567

8

9

φ=1.5

rep(1, 9)

F
C

10

1

2

3

4567

8

910

1

23
4
5

6

7

8
910

1

23
4
5

6

7

8910
123

4

56

7

8910 123

4

56

7

8910

1

2

3

4567

8

9

rep(1, 9)

F
C

10

0
20

40
60

80
10

0

σ2=0.5

1

2

3

4
5
6
7

8

910

1

23

4

56

7

8910

1

23

4

56

7

8910

1

23

4

5

6

7

8910

1

23

4

56

7

8910

1

2

3

4567

8

9

rep(1, 9)

c5
.n

25
[[c

ua
l.D

i]]
[1

:9
]

10

1

2

3

4567

8

910

1

23

4

5

6

7

8
910

1

23

4

5
6

7

8910

1

23

4

5
6

7

89

10

1
23

4

5
6

7

89

10

1

2

3

4567

8

9

rep(1, 9)

c6
.n

25
[[c

ua
l.D

i]]
[1

:9
]

10

1

2

3

4567

8

910

1

23
4
5

6

7

8
910

1

23
4
5
6

7

8
910

1
23

4

5
6

7

89

10

123

4

5
6

7

89

10

1

2

3

4
5
6
7

8

9

F
C

10

0
20

40
60

80
10

0

n=25 n=50 n=90
Dis Dep Dis Dep Dis Dep

σ2=0.75

1

2

3

4

5

6

7

8

910

1

23

4

56

7

8910

1

23

4

56

7

8910

1

23

4

5

6

7

8910

1

23

4

56

7

8910

1

2

3

4567

8

9
c8

.n
25

[[c
ua

l.D
i]]

[1
:9

]
10

n=25 n=50 n=90
Dis Dep Dis Dep Dis Dep

1

2

3

4567

8

910

1

23

4

56

7

8
910

1

23

4

56

7

8910

1

23

4

5

6

7

89
10

1

23

4

56

7

89
10

1

2

3

4567

8

9

c9
.n

25
[[c

ua
l.D

i]]
[1

:9
]

10

n=25 n=50 n=90
Dis Dep Dis Dep Dis Dep

1

2

3

4567

8

910

1

23
4
5

6

7

8
910

1

23
4
5
6

7

8910
1

23

4

5

6

7

89
10 1

23

4

56

7

89

10

1
2

3

4567
8
9

φ=0.5

rep(1, 9)

F
C

10

0
20

40
60

80
10

0

σ2=0.25 1
2

3

45678910

1

2345678910

1

2345678910 123

4

5678910 123

4

5678910
1
2

3

4567
8
9

φ=1

rep(1, 9)

F
C

10
1
2

3

45678910 1
2345
6
78910 12345678910 123

4

5678910 123

4

5678910
1
2

3

4567
8
9

φ=1.5

rep(1, 9)

F
C

10
1
2

3

45678910 12345

6

78910 12345
6
78910 123

4

5678910 123

4

5678910

12

3

4567
8
9

rep(1, 9)

F
C

10

0
20

40
60

80
10

0

σ2=0.5
12

3

4567
8
910

1
2345678910

1

2345678910 123

4

5678910 123

4

5678910 12

3

4567
8
9

rep(1, 9)

c5
.n

25
[[c

ua
l.D

i]]
[1

:9
]

10 12

3

4567
8
910

1

2345678910

1

2345678910
1
23

4

5678910 123

4

5678910
1

2

3

4567
8
9

rep(1, 9)

c6
.n

25
[[c

ua
l.D

i]]
[1

:9
]

10

1

2

3

45678910 1
2345
6
78910

1
2345678910 123

4

5678910 123

4

56789
10

12

3

4567

8

9

F
C

10

0
20

40
60

80
10

0

n=25 n=50 n=90
Dis Dep Dis Dep Dis Dep

σ2=0.75
12

3

4567

8

910

1

2345678910

1

2345678910
1
23

4

56
7
8910

1
23

4

56
7
8910 12

3

4567

8

9

c8
.n

25
[[c

ua
l.D

i]]
[1

:9
]

10

n=25 n=50 n=90
Dis Dep Dis Dep Dis Dep

12

3

4567

8

910
1
2345678910

1
2345678910 123

4

5678910 123
4
5678910

1
2

3

4567
8
9

c9
.n

25
[[c

ua
l.D

i]]
[1

:9
]

10

n=25 n=50 n=90
Dis Dep Dis Dep Dis Dep

1
2

3

4567
8
910

1
2345
6
78910

1
2345678910 123

4

5678910 123
4
5678910

Figure 7: Functional coverage FCς(0.05) at each validation station (numbered 1 to 10) for

n=25, 50 and 90 and all 9 simulation scenarios with tolerance ς = 0.05 (top) and ς = 0.10

(bottom).
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Figure 8: Locations of the 35 meteorological stations in Canada’s Maritimes Provinces area

(left, validation stations numbered in red) and temperature curves (right, raw data)
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Figure 9: Original temperature data (black dots), FKED predicted curve (red line), 95%

prediction band based on L2 distance (pink) and on MBD (blue) for validation stations
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Figure 10: Locations of the 24 PM10 monitoring sites (red triangles) and 10 validation

stations (blue dots).
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Figure 11: Original PM10 data (black dots), FKED predicted curve (red line), 95% predic-

tion band based on L2 distance (pink) and on MBD (blue) for validation stations.

31


